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Abstract. Factor model methods recently have become extremely popular in the theory and

practice of large panels of time series data. Those methods rely on various factor models

which all are particular cases of the Generalized Dynamic Factor Model (GDFM) introduced

in Forni, Hallin, Lippi and Reichlin (2000). In that paper, however, estimation relies on

Brillinger’s concept of dynamic principal components, which produces filters that are in gen-

eral two-sided and therefore yield poor performances at the end of the observation period and

hardly can be used for forecasting purposes. In the present paper, we remedy this problem,

and show how, based on recent results on singular stationary processes with rational spectra,

one-sided estimators are possible for the parameters and the common shocks in the GDFM.

Consistency is obtained, along with rates. An empirical section, based on US macroeconomic
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time series, compares estimates based on our model with those based on the usual static-

representation restriction, and provide convincing evidence that the assumptions underlying

the latter are not supported by the data.

JEL subject classification : C0, C01, E0.

Key words and phrases : Generalized dynamic factor models. Vector processes with singular

spectral density. One-sided representations for dynamic factor models. consistency and rates

for estimators of dynamic factor models.

1 Introduction

1.1 Dynamic factor models

Large-dimensional factor model methods can be traced back to two seminal papers

by Chamberlain (1983) and Chamberlain and Rothschild (1983). The fastly grow-

ing literature on the subject, however, is starting with the contributions by Forni et

al. (2000), Forni and Lippi (2001), Stock and Watson (2002a,b), Bai and Ng (2002) and

Bai (2003). Fostered by their success in applications, factor model methods since then

have attracted considerable attention. The recent literature in the area is so abundant

that a complete review is impossible here, and we restrict ourselves to a short and un-

avoidably somewhat subjective selection of “representative” references. Applications

include (a) forecasting (Stock and Watson 2002a and b, Forni et al. 2005, Boivin and

Ng, 2006), (b) business cycle indicators and nowcasting (Cristadoro et al., 2005, Gi-

annone et al., 2008, Altissimo et al. 2010), (c) structural macroeconomic analysis and

monetary policy (Bernanke and Boivin, 2003, Bernanke et al. 2005, Stock and Watson,

2005, Giannone et al., 2005, Favero et al., 2005, Eickmeier, 2007, Forni et al., 2009,

Boivin et al., 2009, Forni and Gambetti, 2010b), (d) the analysis of financial markets

(Corielli and Marcellino, 2006, Ludvigson and Ng (2007 and 2009), Hallin et al., 2011),

to quote only a few.

Apart for some minor features, most factor models considered in the literature

are particular cases of the so-called Generalized Dynamic Factor Model (GDFM) in-

troduced in Forni et al. (2000). Consider a countable set {xit}, i ∈ N of observable

stationary stochastic processes: the GDFM relies on a decomposition of the form

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1.1)
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where ut = (u1t u2t · · · uqt)′ is a q-dimensional orthonormal unobservable white noise

vector and bif(L), i ∈ N, f = 1, . . . , q are square-summable filters (L, as usual, stands

for the lag operator). The basic assumptions are

(A1) ut is orthogonal to ξi,t−k for all i ∈ N and k ∈ Z;

(A2) cross-covariances among the ξit’s are “weak”.

By “weak”, we mean that, while some cross-covariance among the ξ’s is allowed,

all sequences of weighted cross-sectional averages of the form
∑n
i=1wniξit such that

limn→∞
∑n
i=1 w

2
ni = 0 tend to zero in mean square as n → ∞ (the sequence of arith-

metic averages n−1∑n
i=1 ξit being a particular case).1 Note that E(ξ2

it) ≤ M for all i

and E(ξitξjt) = 0 for all i 6= j, is sufficient, but not necessary for (A2) to hold (we refer

to Section 2 for a detailed presentation and discussion). Being mildly cross-correlated,

the ξit’s are called idiosyncratic, while the χit’s are called common. The model implies

that that cross-covariances among the observable variables xit, essentially, is accounted

for by the common components χit, the latter being driven by the small-dimensional

vector of common shocks uft, f = 1, 2 . . . , q.

The problem consists in recovering the unobserved common and idiosyncratic com-

ponents χit and ξit, the common shocks ut and the filters bif (L), from a finite real-

ization (i = 1, . . . , n; t = 1, . . . , T ) of the process {xit}. The main tool so far has

been a principal component analysis (PC) of the variables xit, either standard or in the

frequency domain (Brillinger’s concept of dynamic principal components), depending

on the assumptions made. The results obtained can be summarized as follows.

(i) Most authors assume that, denoting by span( . . . ) the space generated by a col-

lection of random variables,2 span(χit, i ∈ N), for given t, has finite dimension r,

1Weak cross-covariance among the ξ’s, as opposed to cross-sectional orthogonality (that is, the much

stronger assumption of no cross-covariances at all), is the reason for using the term “generalized” in

the denomination of the GDFM. It constitutes a major difference with respect to the dynamic factor

models studied in Sargent and Sims (1977), Geweke (1977), Quah and Sargent (1993), which, being

based on a finite number n of equations of the form (1.1), require strict cross-sectional orthogonality.
2More precisely, span(ζi, i ∈ N), where ζi belongs to the Hilbert space of square-summable random

variables defined over some probability space, equipped with the corresponding L2 norm, is the closed

Hilbert space of all mean-square convergent linear combinations of the ζi’s and limits of convergent

sequences thereof.

3



where r ≥ q. Under that assumption, model (1.1) can be rewritten as

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit

Ft = (F1t . . . Frt)
′ = N(L)ut.

(1.2)

In this case, we say that the GDFM admits a static representation. Criteria

to determine r consistently are given in Bai and Ng (2002) (see also Alessi et

al. 2010). The vectors Ft and the loadings λij can be estimated consistently using

the first r standard principal components, see Stock and Watson (2002a,b), Bai

and Ng (2002). Moreover, the second equation in (1.2) is usually specified as a

singular VAR, so that (1.2) becomes

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit

(I − D1L− D2L
2 − . . .− DpL

p)Ft = Kut,
(1.3)

where the matrices Dj are r× r while K is r× q. Under (1.3), Bai and Ng (2007)

and Amengual and Watson (2007) provide consistent criteria to determine q.

VAR estimation, and therefore, up to multiplication by an orthogonal matrix,

estimation of ut in (1.3) is standard.

(ii) Using the frequency-domain principal components (Brillinger 1981), and without

any finite-dimensional assumption of the form (1.2), Forni et al. (2000) obtain an

estimator of the spectral density of the common components χit and show how to

consistently recover the common components themselves. Criteria to determine

q without assuming (1.2) or (1.3) are obtained in Hallin and Lǐska (2007) and

Onatski (2009). Unfortunately, frequency-domain principal components produce

estimators of the χit’s that are based two-sided filters, which hence cannot be

used at the end of the sample or for prediction.

Due to that unpleasant two-sidedness feature, the GDFM is seldom considered

in practice, and finite-dimensional structure assumptions like (1.2) or (1.3) are made

with almost no exception.3 The moot point is that such assumptions are far from being

innocuous, and, in many cases, are not supported by the data. For instance, (1.2) is

so restrictive that even the very elementary model

xit = ai(1 − αiL)−1ut + ξit, (1.4)

3Some papers (see e.g. Forni et al., 2005, Altissimo et al., 2010) use the spectral density principal

component approach in combination with finite-dimensional assumptions as in (1.2) or (1.3).
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where q = 1, ut is scalar white noise, and the coefficients αi are drawn from a uniform

distribution, is ruled out. Indeed, the space spanned, for a given t, by the common

components χit, i ∈ N, is easily seen to be infinite-dimensional unless the αi’s take on

a finite number of values.

An analysis based on (1.2) or (1.3) then can be extremely misleading (spuriously

identifying an infinite number of factors, etc.). This is a strong motivation for solving

the one-sidedness issue in the GDFM. This is the objective of the present paper.

1.2 Outline of the paper

Instead of finite-dimensional assumptions of the form (1.2) or (1.3), we impose the much

milder condition that the common components have a rational spectral density, that is,

each filter bif (L) in (1.1) is a ratio of polynomials in L. 4 Under that assumption, we

construct one-sided estimators for the common components χit, the common shocks ut,

and the corresponding filters bif (L). Such estimators are then applied in an empirical

investigation based on US quarterly macroeconomic data. We find that our method

outperforms the standard PC estimator, which is based on assumption (1.2), both

for the matrices Ak(L), the common components and the common shocks ut. Thus,

assumption (1.2) is not supported by the US macroeconomic dataset we use. We believe

that this provides strong empirical motivation for the present research. Let us give a

detailed description of the construction leading to our estimator.

(A) Population results. Our assumption that the common components have rational

spectral density implies, for the common components χit, the representation

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · · + ciq(L)

diq(L)
uqt, i ∈ N, f = 1, 2, . . . , q, (1.5)

where

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 and dif (L) = dif,0 + dif,1L+ . . .+ dif,s2L

s2

(the degrees s1 and s2 of the polynomials are assumed to be independent of i for the

sake of simplicity, but this is a minor point). As for the idiosyncratic components

we do not make any parametric assumptions, nor do we restrict their cross-covariance

4Under that assumption, the dimension of span(χit i ∈ N) is infinite, apart from a set of values of

the coefficients of the polynomials defining the rational filters lying in negligible subsets (subsets that

are, roughly speaking, lower-dimensional; see Section 2 for a formal definition).
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structure—except of course for “weakness”, as described above. Our model, in that

sense, is a semiparametric one, with a huge nuisance; in particular, the autocorrelation

structures of idiosyncratic components remain completely unspecified. We show that

for generic values of the parameters cif,k and dif,k (i.e. apart from a subset that is

negligible, in a sense to be specified in Section 2), the infinite-dimensional idiosyncratic

vector χχχt = (χ1t χ2t · · · χnt · · · )′ has an autoregressive representation with block

structure, of the form




A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0
. . .

0 0 · · · Ak(L)
...

. . .




χχχt =




R1

R2

...

Rk

...




ut, (1.6)

where Ak(L) is a (q+1)×(q+1) polynomial matrix with finite degree and Rk is (q+1)×q.

Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides

of (1.6), and defining xt and ξξξt in analogy with χχχt, we obtain

A(L)xt = Rut + A(L)ξξξt, (1.7)

which is a factor model for A(L)xt, with a static representation of the form (1.2),

playing a crucial role in the estimation of ut. Some features of (1.6) deserve some

further comments:

(i) Because the infinite-dimensional vector χχχt is driven by the q-dimensional white

noise ut, for generic values of the parameters we can invert the infinite-dimen-

sional moving average representation (1.5) piecewise, by partitioning χχχt into the

(q+1)-dimensional subvectors (χ1t χ2t . . . χq+1,t), (χq+2,t χq+3,t . . . χ2(q+1),t), . . .

(see Forni and Lippi, 2010).

(ii) For generic values of the parameters, each of the subvectors, whose dimension

and rank are (q + 1) and q, respectively, has a finite-order autoregressive repre-

sentation. This is an application of a general result obtained in Anderson and

Deistler (2008a and b) for rational-spectrum vector stochastic processes that are

singular (i.e. with reduced-rank spectral density for all θ ∈ [−π π]). We con-

tribute to this literature showing that when the dimension is equal to q + 1 the

minimum-lag autoregressive representation is generically unique.
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(iii) Under the assumption that the degrees of the VAR matrices Ak(L) are bounded,

the number of VAR coefficients grows at rate n, not n2. Moreover, each matrix

Ak(L) can be estimated independently of the others.

(B) Estimation results. The spectral density of the common components can be con-

sistently estimated by using the first q frequency-domain principal components (see

Forni et al., 2000). Using such spectral density, we obtain consistent estimators of

the autocovariance functions of the common components, which in turn are used to

estimate the matrices Ak(L) and Rk. Lastly, once the matrices Ak(L) have been es-

timated, we use equation (1.7) to estimate ut. As already observed, (1.7) has a static

factor representation, so that standard principal components are the appropriate tool.

However, the matrices Ak(L) must be replaced by their estimates, this implying con-

siderable complications in the proof of consistency (see Section 3.3). For the entries of

the matrices Ak(L) and Rk, and the components of ut, we obtain the consistency rate

max(n−1/2, ρ
−1/2
T ), where ρT is any sequence with divergence slower than T 2/3/ log T (as

both n and T go to infinity. That ρT is the toll to be paid for using non-parametric

spectral estimation. However, our empirical exercise provides evidence that the general

dynamic nature of our model can offset a lower speed of consistency, as compared to

the rate T 1/2 that can be obtained with model (1.3). Alternative estimators for the

matrices Ak(L) and Rk are briefly discussed in Section 3.5.

The body of the paper contains detailed discussion and motivation of the main

assumptions. Longer proofs are collected in the Appendix. The population and esti-

mation results are derived in Sections 2 and 3, respectively. The empirical results are

presented and discussed in Section 4. Section 5 concludes.

2 Main assumptions and population results

2.1 Notation

The GDFM (1.1) throughout can be thought of as (i) a double-indexed stochastic pro-

cess {xit, i ∈ N, t ∈ Z}, (ii) a family of stationary processes {xit, t ∈ Z} indexed

by i ∈ N, or (iii) a family of cross-sections {xit, i ∈ N} indexed by t ∈ Z, i.e. a process

of infinite-dimensional stochastic vectors. We find the third option convenient, and

accordingly write xt for (x1t x2t · · · xnt · · · )′. The notation χχχt, ξξξt and xt = χχχt + ξξξt
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is used in similar way, with obvious componentwise meaning. Associated with this

infinite-dimensional vector notation, we also consider infinite-dimensional matrices,

such as A(L) or R (see (1.7)), which are ∞ × ∞ and ∞ × q, respectively. Also,

defining b(L) as the ∞× q matrix with (i, f)-entry bif(L), (1.1) is rewritten as xt =

b(L)ut + ξξξt. The reader will easily check that we never produce infinite sums of prod-

ucts, so that our infinite-dimensional matrices are no more than a notational conve-

nience. All infinite-dimensional matrices are underlined, while their finite-dimensional

submatrices are not. In particular, As(L) denotes the s × s upper left submatrix

of A(L), bs(L) and Rs the s× q upper submatrices of b(L) and R, respectively.

In Section 3, explicit reference to s in As(L), bs(L), Rs, etc., is no longer necessary,

and we switch to a somewhat different and more convenient notation. Given the

infinite-dimensional process yt = (y1t y2t · · · ynt · · · )′, we use the following notation:

(1) yst is the s-dimensional process (y1t y2t · · · yst)′;

(2) Hy = span(yit, i ∈ N, t ∈ Z), Hys = span(yit, i ≤ s, t ∈ Z);

(3) Hy
t = span(yiτ , i ∈ N, τ ≤ t), Hys

t = span(yiτ , i ≤ s, τ ≤ t).

The same notation Hys, Hys
t , etc. is used when yt is finite-dimensional.

2.2 Basic assumptions

All the stochastic variables xit, χit and ξit below have mean zero and finite variance.

Assumption A.1 For all n ∈ N, the vector xnt is weakly stationary and has a spectral

density (an absolutely continuous spectral measure).

Denote by ΣΣΣx
n(θ), with entries σxij(θ), i, j ∈ N, θ ∈ [−π π], the nested spectral

density matrices of the vectors xnt = (x1t x2t · · · xnt)′. The matrix ΣΣΣx
n(θ) is Her-

mitian, non-negative definite and has therefore non-negative real eigenvalues for all

θ ∈ [−π π]. Denote by λxnj(θ) the j-th eigenvalue, in decreasing order, of ΣΣΣx
n(θ), and let

λ̄xf (θ) = supn∈N λ
x
nf (θ). The notation ΣΣΣχ

n(θ), σ
χ
ij(θ), λ

χ
nj(θ), λ̄

χ
f (θ), ΣΣΣξ

n(θ), σ
ξ
ij(θ), λ

ξ
nj(θ),

and λ̄ξf (θ) is used in a similar way. Our second assumption is

Assumption A.2 There exists a positive integer q such that (i) λ̄xq (θ)) = ∞ for almost

all θ in [−π π], and (ii) λ̄xq+1(θ) is essentially bounded.
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Forni and Lippi (2001) prove that

Theorem A Assumptions A.1 and A.2 imply that xt can be represented as in (1.1), i.e.

xt = χχχt + ξξξt = b(L)ut + ξξξt, (2.1)

where b(L) is an ∞ × q matrix of square summable filters, ut is a q-dimensional

orthonormal white noise. Moreover,

(i) ξξξnt satisfies Assumption A.1, and λ̄ξ1(θ) is essentially bounded;

(ii) χχχt (which obviously also satisfies A.1) is such that λ̄χq (θ) = ∞ for almost all θ

in [π π] (note that λ̄χq+1(θ) = 0 a.e. in [π π]);

(iii) ξξξt and ut−k are uncorrelated for all t ∈ Z and k ∈ Z;

(iv) the integer q and the components χit and ξit are unique.

Conversely, if xt can be represented as in (2.1) with χχχt and ξξξt fulfilling (i), (ii) and (iii),

then xt satisfies Assumptions A.1 and A.2.

An infinite-dimensional vector fulfilling (i) is called an idiosyncratic vector. Diver-

gence of the first q eigenvectors of χχχnt ensures that a representation of χχχt as a moving

average involving lower-dimensional white noise is not possible.

2.3 Infinite-dimensional processes with finite rank

Of course uniqueness of χχχt and ξξξt in (2.1) does not imply that ut or b(L) are unique.

Alternative representations are χχχt = [b(L)B][B′ut] = c(L)vt, where B is an arbitrary

q × q orthogonal matrix, or, more generally, χχχt = [b(L)C(L)][(C′(F )ut] = d(L)wt,

where F = L−1 and C(L)C′(F ) = Iq for almost all θ in [−π π].

More importantly, Theorem A does not ensure that χχχt admits a one-sided represen-

tation, i.e., a representation of the form χχχt = e(L)zt such that e(L) = e0 + e1L + · · ·

for some ∞× q matrices ej and some q-dimensional white noise zt. For example, if

χit = ut+i−1, i ∈ N, t ∈ Z, (2.2)

where (q = 1) ut is one-dimensional white noise, then statement (ii) of Theorem A is

fulfilled, so that χχχt is the common component of some process xt satisfying A.1 and A.2,
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but χχχt has no one-sided representations (this is quite obvious, see Lemma 1).5

Simple conditions for the existence of one-sided representations of infinite-dimensional

stochastic vectors are given in Lemmas 1 and 2 below.

Definition 1 Consider the infinite-dimensional process yt = (y1t y2t · · · ynt · · · )′.

Assume that yt fulfills Assumption A.1. We say that yt has rank q if there exists s

such that rank(ΣΣΣy
n(θ)) = q, for n ≥ s and almost all θ in [−π π].

Definition 2 Let yt denote an infinite-dimensional stationary stochastic vector, which

has a moving average representation

yt = b(L)vt, t ∈ Z (2.3)

where vt is q-dimensional orthonormal white noise and b(L) is an ∞ × q square

summable filter. We say that (2.3) is a fundamental representation if (1) b(L) is

one-sided, and (2) vt belongs to Hy
t . In that case, we also say that the white noise vt

is fundamental for yt.

Note that if vt is fundamental for yt, then Hvq

t = Hy
t . The same definition can be given,

mutatis mutandis, when yt is n-dimensional. In that case q ≤ n. (Orthonormality of

vt is convenient but not necessary.)

Now suppose that yt is n-dimensional: the following properties hold.

(A) If (2.3) is fundamental and yt = c(L)wt, with wt orthonormal, is another funda-

mental representation, then wt has dimension q, c(L) = b(L)Q and wt = Q′vt,

where Q is a q × q orthogonal matrix (Rozanov 1967, pp. 56-57).

(B) If (2.3) is fundamental, then rank(b(z)) = q for all complex z such that |z| < 1

(Rozanov 1967, p. 63, Remark 3). In particular, rank(b0) = rank(b(0)) = q.

A finite-dimensional stationary process with a spectral density does not necessarily

possess a fundamental representation. For example, if the spectral density of yt is

singular on a positive-measure subset of [−π π], then yt has no fundamental represen-

tations (indeed, it has no one-sided representations, see footnote 5). However,

5The possibility that χχχt has no one-sided representations arises here from infinite dimension. This

bears no relationship with the possible non-existence of one-sided representations for finite-dimensional

processes, which occurs if their spectral density is singular in a positive-measure subset of [−π π], see

e.g. Pourahmadi (2001), Theorem 10.5, p. 361.
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(C) If yt has rational spectral density, then it has fundamental representations. If

yt = b(L)vt is one of them, vt being q-dimensional orthonormal white noise,

then the entries of b(L) are rational functions of L (Rozanov 1967, Chapter I,

Section 10; Hannan 1970, pp. 62-67).

(B′) Suppose that yt has rational spectral density, that yt = b(L)vt, where b(L) is

n× q, rational, square summable and one-sided, vt is q-dimensional orthonormal

white noise, and that rank(b(z)) = q for all z such that |z| < 1. Then, yt =

b(L)vt is fundamental (Hannan, 1970, pp. 62-67).

We say that the infinite-dimensional process yt has rational spectral density if ynt

has rational spectral density for all n.

Lemma 1 Suppose that the infinite-dimensional process yt fulfills A.1, has rational

spectral density and rank q. The following statements are equivalent:

(i) yt has a one-sided rational moving average representation yt = b(L)vt (i.e. the

entries of b(L) are rational functions of L), where vt is q-dimensional orthonor-

mal white noise.

(ii) There exists a positive integer s such that Hys
t = Hy

t .

Proof. Assume (ii) and let yst = bs(L)vt be rational, one-sided and fundamental, so

that Hys
t = Hvq

t . By assumption ys+k,t ∈ Hys
t and, therefore, ys+k,t ∈ Hvq

t , so that

yst = bs(L)vt and ys+k,t = bs+k(L)vt. (2.4)

The white noise vt is fundamental for yst, hence also for (yst ys+k,t). Thus represen-

tation (2.4) is fundamental, so that, by (C), bs+k(L) must be rational. The conclusion

follows. Assume now that (i) holds. We say that β is a zero of b(L) if the determinant

of all the q × q submatrices of b(β) vanish. Assume that α is a zero of b(L) and

that |α| < 1. There exists an orthogonal q × q matrix Bα such that all the entries of

the first column of b(L)Bα vanish at α. Defining γγγα(L) as the q × q diagonal matrix

with diagonal entries ((1 − αL)(L− α)−1 1 · · · 1), we have

yt = [b(L)Bαγγγα(L)]
[
γγγα̃(L

−1)B̃αvt
]

= c(L)wt,

where a tilde denotes transposition and conjugation. This is an alternative one-sided

rational representation in which the multiplicity of α as a zero of the matrix polynomial

11



has decreased by one unit. Because a zero of b(L) is a zero of bq(L), with a finite num-

ber of iterations we obtain a rational representation, yt = d(L)zt, say, such that d(L)

has no zeros of modulus less than unity. For the same reason, there exists an integer

s such that ds(L) has no zeros of modulus less than unity. By (B′), yst = ds(L)zt is

fundamental for yst and therefore for yt. Q.E.D.

Lemma 2 Suppose that the infinite-dimensional process yt fulfills A.1, has rational

spectral density and rank q. Then,

(i) yt has a fundamental rational representation yt = b(L)vt if and only if it has a

one-sided representation;

(ii) if yt = b(L)vt and yt = c(L)wt are fundamental, with vt and wt q-dimensional

and orthonormal, then c(L) = b(L)Q and wt = Q′vt, where Q is some q × q

orthogonal matrix;

(iii) if yt = b(L)vt = b0vt + b1vt−1 + · · · is fundamental, then b0 has rank q.

Proof. Statement (i) is part of the proof of Lemma 1. As for (ii), suppose that

yt = b(L)vt and yt = c(L)wt both are fundamental. By Lemma 1, there exists s

such that Hys
t = Hy

t . As a consequence, both vt and wt belong to Hys
t , and therefore

are fundamental for yst. This implies that wt = Q′vt, where Q is orthogonal. Thus

yt = c(L)wt = [c(L)Q′]vt = b(L)vt. As vt is orthonormal white noise, we have

c(L) = b(L)Q. Because vt is fundamental for yst, bs(0) has rank q, see (B), so that

b(0) = b0 has rank q. Q.E.D.

Summing up, given the infinite-dimensional vector yt, assuming A.1, finite rank,

rational spectral density, and the existence of a one-sided moving average representa-

tion, thus ruling out cases like (2.2), we obtain the existence of a rational fundamental

representation for yt, which is unique up to an orthogonal matrix.

Let us now return to the infinite-dimensional vector χχχt. As we have seen, χχχt ful-

fills A.1. Assume that χχχt has rational spectral density, so that either rank(ΣΣΣχ
n(θ)) < q

for all θ ∈ [−π π] or rank(ΣΣΣχ
n(θ)) = q for almost all θ in [−π π]. On the other

hand, since λχnq(θ) diverges θ-almost everywhere in [−π π], there exists s such that

rank(ΣΣΣχ
n(θ)) = q for n ≥ s and almost all θ in [−π π]. Therefore χχχt has rank q.

Assuming that χχχt has rational spectral density and that Hχs
t = Hχ

t for some s, so

that cases like (2.2) cannot occur, Lemma 2 ensures that χχχt has a rational fundamental

12



representation. More precisely, for i ∈ N,

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · · + ciq(L)

diq(L)
uqt, (2.5)

where cif (L) and dif (L) are polynomials in L, and ut is fundamental for χχχt. Represen-

tation (2.5) is unique up to an orthogonal matrix.

However, in Assumption A.3 (see Section 2.5), we require more than the existence

of an integer s such that Hχs
t = Hχ

t , and rather assume that the space spanned by

χi1τ , χi2τ , . . . , χiq+1,τ , τ ≤ t, coincides with Hχ
t for all (q+1)-tuples i1 < i2 < · · · < iq+1.

Thus, ut in (2.5) is fundamental for any (q + 1)-dimensional subvector of χχχt, not only

for the subvectorχχχst associated with some s. This stronger requirement is motivated by

the main result of Section 2.4. We prove that, under a quite general parameterization,

the stronger condition holds generically, i.e. outside of a negligible subset, as defined

in Section 2.4, of the parameter space.

2.4 AR representations of singular stochastic vectors

Consider a n-dimensional vector yt such that

yit =
ci1(L)

di1(L)
v1t +

ci2(L)

di2(L)
v2t + · · · + ciq(L)

diq(L)
vqt (2.6)

with

cif (L) = cif,0 + cif,1L+ · · ·+ cif,s1L
s1 and dif (L) = 1+ dif,1L+ · · ·+ dif,s2L

s2 (2.7)

for i = 1, 2, . . . , n, f = 1, 2, . . . , q, where vt = (v1t v2t · · · vqt) is orthonormal white

noise. For each value of i, the filters in (2.7) are parameterized by a ν-dimensional

real parameter, with ν = q(s1 + s2 + 1). More precisely, for each i, the parameter

space for (2.7) is the set Π ⊂ Rν such that all the roots of the polynomial dif (L) are

of modulus greater than unity. Thus the vector yt is described by a parameter taking

values in Πn = Π × Π× · · · × Π︸ ︷︷ ︸
n

, which is an open subset of Rµ, with µ = nν.

We are interested in the case n > q. Such “tall systems” have been studied recently

in Anderson and Deistler (2008a and b). One of their results is that (if n > q), then, for

generic values of the parameters, yt has an autoregressive representation of the form

A(L)yt = Rvt, (2.8)

where R is n × q, rank(R) = q, and A(L) is an n × n matrix polynomial with finite

degree. Precisely, there exists a nowhere dense set N ⊂ Πn, i.e. a set whose closure
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has no interior points, such that, for all parameter vectors in Πn−N , yt has the finite-

order autoregressive representation (2.8). As R has full rank, (2.6) and (2.8) imply

that, generically, vt is fundamental for yt.

To provide an intuition for this result and Proposition 1 below, let us consider the

following elementary example, in which n = 2, q = 1, and

y1t = a1vt + b1vt−1 y2t = a2vt + b2vt−1, t ∈ Z (2.9)

with parameter (a1, b1, a2, b2) in R2×R2. Outside of the nowhere dense subset in which

a1b2 − a2b1 = 0, we obtain

vt =
1

a1b2 − a2b1
(b2y1t − b1y2t). (2.10)

Using (2.10) to get rid of vt−1 in (2.9), we obtain the AR(1) representation

y1t = db1b2y1t−1 − db21y2t−1 + a1vt y2t = db22y1t−1 − db1b2y2t−1 + a2vt, t ∈ Z (2.11)

where d = 1/(a1b2 − a2b1). Note that

(i) If a1b2−a2b1 = 0, no finite-order autoregressive representation exists, unless b1 =

b2 = 0. Moreover, fundamentalness of vt for yt requires that the root of a1 + b1L

(which is also the root of a2 + b2L) has modulus larger than one.

(ii) As soon as a1b2 − a2b1 6= 0, however, the position of the root of ai + biL does not

play any role in the fundamentalness of vt for yt.

(iii) Quite obviously a1b2 − a2b1 6= 0 if and only if χ1t−1 and χ2t−1 are linearly inde-

pendent. Therefore, generically, the projection (2.11) is unique, i.e. generically

no other autoregressive representation of order one exists.

(iv) But other autoregressive representations do exist. Rewriting (with obvious defi-

nitions of A and a) (2.11) as yt = Ayt−1+avt, we get yt = A2yt−2+Aavt−1+avt.

Using (2.10) to get rid of vt−1, we obtain another autoregressive representation, of

order two. Such non-uniqueness does not occur for square systems (when n = q).

(v) On the other hand, if n = 3 and yit = aivt+bivt−1, i = 1, 2, 3, then, outside of the

set in which a2b1 = a1b2 and a3b1 = a1b3, which is nowhere dense in R2×R2×R2,

we have

vt =
1

a1γ1 + a2γ2 + a3γ3
(γ1y1t + γ2y2t + γ3y3t),
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where b1γ1 + b2γ2 + b3γ3 = 0. This can be used to get rid of vt−1, in the same way

as we did in the n = 2 case. Thus, generically, yt has an AR(1) representation.

However, the variables yit−1, i = 1, 2, 3, are not linearly independent, so that such

minimum-lag autoregressive representation is not unique.

Let us show that remark (iii) can be generalized. Precisely, if n = q + 1, then,

generically, there exists only one minimal-lag autoregressive representation.

Proposition 1 Consider an n-dimensional vector yt with representation (2.6), and

assume that n = q + 1. There exists a set N ⊂ Πq+1, nowhere dense in Πq+1, such

that, if the parameter vector lies in Πq+1 −N ,

(a) yt has a finite-order AR representation A(L)yt = Rvt, where R = (Rif ) is

(q + 1) × q, Rif = cif (0), rank(R) = q, A(L) is (q + 1) × (q + 1) and has order

not exceeding S = qs1 + q2s2. This implies that vt is fundamental for yt.

(b) If (i) A∗(L) is a (q+1)×(q+1) polynomial matrix whose order does not exceed S,

with A∗(0) = I, (ii) R∗ is (q + 1) × q, (iii) v∗
t is a q-dimensional orthonormal

white noise orthogonal to yt−k, k ≥ 1, (iv) A∗(L)yt = R∗v∗
t , then A∗(L) = A(L),

R∗ = RB, v∗
t = B′vt, where B is an orthogonal q × q matrix.

See Appendix A for the proof.

Note that Proposition 1 does not claim that (generically) the process yt corre-

sponding to a parameter value in Πq+1 has no non-fundamental representations. What

it claims is that (generically) such non-fundamental representations are not parameter-

ized in Πq+1. For example, representation (2.9) is generically fundamental in R2 × R2.

On the other hand, given any a with |a| > 1, the process yt also has the representation

yit =
[
(ai + biL)

1 + aL

1 + a−1L

] [
1 − a−1L

1 − aL
vt

]
=

(ai + biL)(1 − aL)

1 − a−1L
wt, (2.12)

for i = 1, 2, where

wt =
1 − a−1L

1 − aL
vt = −a−1F

1 − a−1L

1 − a−1F
vt

is white noise (this is easily proved by showing that its spectral density is constant).

This is a non-fundamental representation for yt. However, (2.12) is parameterized in

R2 × R2 × R, not R2 × R2.

Now assume that yt is infinite-dimensional with yit modeled as in (2.6) for i ∈ N.

The vector yt is parameterized in Π∞ = Π × Π × · · · . We define negligible sets and
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genericity in Π∞ with respect to the product topology. We say that a subset of Π∞ is

negligible if it is meagre, i.e. the union of a countable set of nowhere dense subsets, and

that a property holds generically in Π∞ if the subset where it does not hold is meagre.

Define the set Ms, for s ≥ q + 1, as the set of points in Π∞ such that all vectors

y
i1,i2,...,iq+1

t = (yi1t yi2t · · · yiq+1t), with i1 < i2 < · · · < iq+1 ≤ s, admit a representation

of the form

Ai1 ,i2,...,iq+1(L)y
i1,i2 ,...,iq+1
t = Ri1,i2,...,iq+1vt, (2.13)

where Ai1 ,i2,...,iq+1(L) is of order not greater than S and unique in the sense of Proposi-

tion 1(b). From Proposition 1, we see that Ns = Π∞ −Ms is a nowhere dense subset

in the product topology of Π∞, so that the set N = ∪∞
s=q+1Ns, being a countable

union of nowhere dense subsets of Π∞, is a meagre subset. We can conclude that, in

Π∞−N , thus generically in Π∞, all vectors of the form y
i1,i2,...,iq+1
t = (yi1t yi2t · · · yiq+1t),

with i1 < i2 < · · · < iq+1 (no upper limit for iq+1), can be represented as in (2.13),

where Ai1 ,i2,...,iq+1(L) is of order not greater than S and unique in the sense of Propo-

sition 1(b).6

Some observations are in order. Firstly, definining negligible subsets of Π∞ as

meagre subsets has a good motivation in the fact that (i) the complement of a meagre

subset of Π∞ is not meagre, (ii) if a subset of Π∞ is not meagre, obtaining it as the

union of a family of nowhere dense subsets requires an uncountable family.7

Secondly, the family of meagre subsets of Π∞ is strictly broader than the family

of nowhere dense subsets. In particular, the set N is not nowhere dense. To see

this, consider again the MA(1) example yit = aivt + bivt−1, with i ∈ N. Denote

by c = (c1 c2 · · · cn · · · ), where ci = (ai bi), a point in Π∞. A well-known feature

of the product topology is that any neighborhood G of c contains points c′ such that,

for some s and all n > s, c′n = c′s. Such points obviously belong to N . Thus N is

meagre but dense in Π∞ (in the same way as the rational numbers are a meagre but

dense subset of the real numbers).

6An analogous genericity result can be obtained if negligible subsets of Π∞are defined as subsets

of zero measure with respect to the product measure.
7Denote by Π the closure of Π. Then, (1) the space Π

∞
, being the Cartesian product of a

countable family of complete metric spaces, is a complete metric space; (2) in complete metric spaces

the complement of a meagre subset is not meagre (Baire Category Theorem; see Dunford and Schwartz

(1988), p. 32, Lemma 4, and p. 20, Theorem 9 (Baire Theorem), respectively. It is easily seen that

the Baire Theorem also applies to Π∞, which is an open dense subset of Π
∞

).
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Lastly, assuming that the parameter space indexing the polynomials cij(L) and dij(L)

does not depend on i, as we do in (2.6), is convenient but not necessary. With the di-

mension of the parameter space depending on i, a more general version of Proposition 1

holds as well as the meagreness result for infinite-dimensional vectors yt. However, the

gain in generality does not seem to justify the substantial additional complications in

the proof of Proposition 1 and the determination of the order of A(L).

2.5 Autoregressive representations for the vector χχχt

Let us now turn our attention to the vector χχχt of common components. As we have

seen, assuming that χχχt has rational spectral density and that Hχs
t = Hχ

t for some s

implies, by Lemmas 1 and 2 that χχχt has a fundamental rational representation of the

form (2.6). The meagreness argument above motivates assuming that statements (a)

and (b) hold for all (q + 1)-dimensional subvectors of χχχt. More precisely,

Assumption A.3 The vector χχχt has a representation

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · · + ciq(L)

diq(L)
uqt,

where

cif(L) = cif,0 + cif,1L + · · · + cif,s1L
s1 and dif (L) = 1 + dif,1L+ · · · + dif,s2L

s2

for all i ∈ N and f = 1, 2, . . . , q. Moreover,

(i) Each vector χχχ
i1 ,i2,...,iq+1
t = (χi1t χi2t · · · χiq+1t)

′, with i1 < i2 < · · · < iq+1, has an

autoregressive representation

Ai1 ,i2,...,iq+1(L)χχχ
i1 ,i2,...,iq+1
t = Ri1,i2,...,iq+1ut, (2.14)

where Ai1 ,i2,...,iq+1(L) is of order not greater than S = qs1 + q2s2, and Ri1,i2,...,iq+1

has rank q. This implies that ut is fundamental for all (q + 1)-dimensional sub-

vectors of χχχt.

(ii) Representation (2.14) is unique in the sense of Proposition 1(b).

An immediate consequence of Assumption A.3 is that χχχt can be represented as

in (1.6), that is,

A1(L)




χ1t

χ2t

...

χq+1,t




= R1ut, A2(L)




χq+2,t

χq+3,t

...

χ2(q+1),t




= R2ut, . . . (2.15)
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where the orders of the polynomial matrices Ak(L) do not exceed S. Moreover,

those Ak(L)’s are unique among autoregressive representations of order not greater

than S. Writing A(L) for the (infinite) block-diagonal matrix with diagonal blocks

A1(L),A2(L), . . ., and letting R = (R1′,R2′, · · · )′, we thus have

A(L)χχχt = Rut.

Of course, any permutation of the variables produces a distinct (q + 1)-blockwise

autoregressive representation. Precisely, let χ̃it = χg(i),t with g : N → N a one-to-one

mapping. Assumptions A.1, A.2 and A.3 imply that χ̃̃χ̃χt has a representation of the

form (2.15), with matrices Ãk(L), R̃k and a white noise vector ũt. Assumption A.3

implies that ũt = Hut, with H orthogonal.

It must be pointed out that neither ut nor R play any special role. Assumption A.3

states that there exists ut such that (2.14) holds. All the white noise vectors and

matrices corresponding to alternative representations are linked to ut and R by or-

thogonal transformations. For identification and estimation of a couple u∗
t , R∗ based

on economic theory, see Section 3.3.

2.6 Construction of the autoregressive representations of χχχt

Assumption A.3 ensures the existence of the autoregressive representation (2.15). We

now show how (2.15), i.e. the matrices Ak(L) and (up to multiplication by an orthog-

onal matrix) Rk, can be constructed from the spectral density of the χ’s.

(i) Assume that the population spectral density of the vector χχχt is known, i.e. that

the nested spectral density matrices ΣΣΣχ
n(θ), n ∈ N, are known.

(ii) Denote by χχχkt the k-th of the (q + 1)-dimensional subvectors of χχχt (which is

unobservable) appearing in (2.15), and call ΣΣΣχ
jk(θ) the (q + 1) × (q + 1) cross-

spectral density between χχχjt and χχχkt . Then, denoting by ΓΓΓχjk,s the covariance

between χχχjt and χχχkt−s,

ΓΓΓχjk,s = E
[
χχχjtχχχ

k
t−s

′ ]
=
∫ π

−π
eısθΣΣΣχ

jk(θ)dθ, (2.16)

where ı stands for the imaginary unit.

(iii) Using the autocovariance function ΓΓΓχkk,s, we obtain the minimum-lag matrix poly-

nomial Ak(L) and the autocovariance function of the unobservable vectors

ψψψ1
t = A1(L)χχχ1

t , ψψψ2
t = A2(L)χχχ2

t , . . . (2.17)
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Indeed, letting Ak(L) = Iq+1 − Ak
1L − · · · − Ak

SL
S , define

A[k] =
(
Ak

1 Ak
2 · · · Ak

S

)
, Bχ

k =
(
ΓΓΓχkk,1 ΓΓΓχkk,2 · · · ΓΓΓχkk,S

)
(2.18)

and

Cχ
jk =




ΓΓΓχjk,0 ΓΓΓχjk,1 · · · ΓΓΓχjk,S−1

ΓΓΓχjk,−1 ΓΓΓχjk,0 · · · ΓΓΓχjk,S−2

...
...

ΓΓΓχjk,−S+1 ΓΓΓχjk,−S+2 · · · ΓΓΓχjk,0




. (2.19)

We have

A[k] = Bχ
k (Cχ

kk)
−1

= Bχ
k (Cχ

kk)ad det (Cχ
kk)

−1
and ΓΓΓψjk = ΓΓΓχjk − A[j]Cχ

jkA
[k],

(2.20)

where Fad denotes the adjoint of the square matrix F.

(iv) The ∞×∞ matrix ΓΓΓψ obtained by piecing together the matrices ΓΓΓψjk is of rank q

(see Lemma 2(iii)) and can therefore be represented as ΓΓΓψ = S S′, where S is

an ∞× q matrix. On the other hand, ΓΓΓψ is the covariance matrix of the right-

hand side terms in (2.15), so that S = RH, where H is q× q and orthogonal. In

conclusion, using xt = χχχt + ξξξt, we obtain, with zt = A(L)xt and φφφt = A(L)ξξξt,

zt = Rut + φφφt t ∈ Z. (2.21)

The above construction, based on an estimate of the spectral densites ΣΣΣχ
n(θ) rather

than ΣΣΣχ
n(θ) itself, is used, step by step, in our estimation procedure, see Section 3.

2.7 Assumptions on the representation zt = Rut + φφφt

Equation (2.21) looks like a static representation of the form (1.2) for zt = A(L)xt,

with r = q and N(L) = Iq. However, the requirements that the q-th eigenvalue of

the spectral density of Rnut diverges (such eigenvalue is constant as a function of θ),

whereas the first eigenvalue of An(L)ξξξt is bounded, calls for some further assumptions.

It is convenient here to assume, without loss of generality, that n, the number

of variables, increases by blocks of size q + 1. Thus n = m(q + 1), where m is the

number of blocks, so that n and m grow at the same pace. Moreover, consistently

with Section 2.1, denote by An(L) the n × n upper-left submatrix of A(L), i.e. the

block-diagonal matrix with diagonal blocks As(L), s = 1, . . . ,m.
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Denote by λψnj the j-th eigenvalue of the spectral density matrix of ψψψnt = Rnut =

An(L)χχχnt (a constant spectral density). Our assumption that λxnq(θ), hence λχnq(θ),

diverges a.e. in [−π π] does not imply that λψnq diverges. This is easily seen using the

MA(1) example χit = aiut + biut−1, for which

λχn1(θ) =
n∑

i=1

|ai + bie
−ıθ|2 and λψn1 =

n∑

i=1

a2
i .

Clearly, λχn1(θ) can diverge for almost all θ in [−π π] even though λψn1 does not. An

additional assumption is therefore necessary, see Assumption A.8 in Section 3.1.

Next, we need an assumption implying that φφφt is an idiosyncratic vector, i.e. that

the first eigenvalue of its spectral density is bounded. Still assuming that n = m(q+1),

the spectral density of An(L)ξξξnt is An(e
−ıθ)ΣΣΣξ

n(θ)A
′
n(e

ıθ). If a is an n-dimensional

column unit vector, we have

a′An(e
−ıθ)ΣΣΣξ

n(θ)A
′
n(e

ıθ)a ≤ λξn1(θ)
[
a′An(e

−ıθ)A′
n(e

ıθ)a
]
≤ λξn1(θ)λ

An
1 (θ),

where λAn
1 (θ) is the first eigenvalue of An(e

−ıθ)A′
n(e

ıθ), which is Hermitian, non-

negative definite. By Theorem A, supn λ
ξ
n1(θ) is essentially bounded. Thus we have to

discuss conditions under which supn λ
An
1 (θ) or, equivalently, supk∈N λ

Ak

1 (θ), where λA
k

1 (θ)

now is Ak(e−ıθ)Ak ′(eıθ)’s first eigenvalue, is essentially bounded. Inspection of (2.20)

shows that the next two assumptions are sufficient to ensure that there exists a com-

mon upper bound for the moduli of the entries of A[k], and therefore that λA
k

1 (θ), as a

function of k and θ, is bounded.

Assumption A.4 There exist a real d such that

detCχ
kk > d > 0,

for all k ∈ N.

Assumption A.5 There exists a real number G such that |σχij(θ)| ≤ G for all i ∈ N,

j ∈ N and θ ∈ [−π π].

Under Assumptions A.4 and A.5 the first eigenvalue of the spectral density of

An(L)ξξξnt is bounded, i.e. A(L)ξξξ t is an idiosyncratic component. Assumption A.8, see

Section 3.1, ensures that the q-th eigenvalue of Rnut diverges. Using Theorem A (its

converse part), (2.21) is a GDFM representation for zt with q factors—as noted above,

a static one, of the form (1.2), with r = q.
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3 Estimation

Our estimation procedure follows the same steps as the population construction in Sec-

tion 2.6, with the population spectral density replaced with an estimator. Firstly, via

the frequency-domain principal components of xnt (see Forni, Hallin, Lippi and Reich-

lin 2000), we obtain (step (ii)) an estimator of ΣΣΣχ
n(θ) from a non-parametric estimator

of (step (i)) the spectral density ΣΣΣx
n(θ) of xnt. Then (step (iii)), Ân(L) and Γ̂ψ

n are

computed as a natural counterparts of their population versions in Section 2.6. Lastly

(step (iv)), estimators for Rn and ut are obtained via a standard principal component

analysis of ẑnt = Â(L)xnt, see Sections 3.3 and 3.4. consistency and consistency rates

for all the above estimators are provided in Propositions 2 through 6.

3.1 Estimation of σχij(θ) and γχij,k

Explicit dependence on the index n has been necessary in Section 2. From now on,

it will be convenient to introduce a minor change in notation, dropping n whenever

possible. In particular,

(i) ΣΣΣx(θ) =
(
σxij(θ)

)
i,j=1,...,n

and λxf (θ) replace ΣΣΣx
n(θ) and λxnf (θ), respectively;

(ii) ΛΛΛx(θ) denotes the q × q diagonal matrix with diagonal elments λxf (θ);

(iii) Px(θ) denotes the n × q matrix the q columns of which are the unit-modulus

eigenvectors corresponding to ΣΣΣx(θ)’s first q eigenvalues. The columns and entries

of Px(θ) are denoted by Px
f (θ) and pxif (θ), respectively;

(iv) ΣΣΣχ(θ) =
(
σχij(θ)

)
i,j=1,...,n

, λχf (θ), ΛΛΛχ(θ), Pχ(θ), etc. are defined similarly as in (i);

(v) all the above matrices and scalars depend on n; the corresponding estimators,

Σ̂̂Σ̂Σx(θ), λ̂xf (θ), Λ̂̂Λ̂Λx(θ), P̂x(θ) and Σ̂̂Σ̂Σχ(θ), λ̂χf (θ), Λ̂̂Λ̂Λχ(θ), P̂χ(θ)

(precise definitions are provided below) depend both on n and the sample xit,

i = 1, . . . , n, t = 1, . . . , T . For simplicity, we say that they depend on n and T ;

(vi) the same notational change applies to ΓΓΓψn and related eigenvalues and eigenvec-

tors;

(vii) A(L) and R, denoting the upper left n × n and n × q submatrices of A(L)

and R, respectively, are used instead of An(L) and Rn; Â(L) and R̂ stand for

their estimated counterparts;
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(viii) to avoid confusion, however, we keep explicit reference to n in xnt, χχχnt, znt etc.,

with estimated counterparts of the form χ̂̂χ̂χnt, ẑnt, etc.; thus, we write, for instance,

znt = A(L)xnt = Svt + φφφnt.

Our estimation procedure relies on an estimator Σ̂̂Σ̂Σx(θ) of the spectral density ΣΣΣx(θ).

Consistency results quite naturally require some regularity assumptions on ΣΣΣx(θ) and

the asymptotic behavior, as n and T tend to infinity, of Σ̂̂Σ̂Σx(θ). We assume (i) continuity

of the spectral densities σxij(θ) and (ii) linear divergence for the first q eigenvalues

of ΣΣΣx(θ). The latter condition is also assumed for the first q eigenvalues of ΓΓΓψ.

Assumption A.6 The functions θ 7→ σxij(θ) are continuous for all i, j ∈ N.

Assumption A.7 There exist real numbers a1 > b1 > a2 > b2 > · · · > aq > bq > 0,

and an integer n̄ such that, for n > n̄, as ≥ λxs (θ)/n ≥ bs, for s = 1, . . . , q, and

all θ ∈ [−π π].

Assumption A.8 There exist real numbers h1 > k1 > h2 > k2 > · · · > hq > kq > 0,

and an integer n̄ such that, for n > n̄, hs ≥ λψs /n ≥ ks for s = 1, . . . , q.

A consequence of Assumptions A.3 and A.6 is that ξξξt has a continuous spectral

density as well, so that θ 7→ λξn1(θ) also is continuous. It is easily seen that essential

boundedness of λ̄ξ1(θ) = supn λ
ξ
n1(θ), see Theorem A(i), then implies strict boundedness,

i.e. the existence of a constant λ > 0 such that λξn1(θ) ≤ λ for all n and θ.

Turning to Σ̂̂Σ̂Σx(θ), let BT be a sequence of positive integers,

θh = πhBT
−1, h = −BT ,−BT + 1, . . . , BT − 1, BT ,

and denote by σ̂ij(θh) the Bartlett lag-window estimate

σ̂xij(θh) =
BT∑

k=−BT

γ̂xij,kwke
−ıkθh , wk = 1 − |k|

BT + 1
, (3.1)

where γ̂xij,k is the usual estimator of the cross-covariance γxij,k = E(xitxj,t−k). We will

need more than the usual consistency of the non-parametric estimator σ̂xij, namely that

consistency be uniform with respect to the frequency θ. Very few papers are addressing

that uniformity problem. Robinson (1991), for instance, gives conditions for uniform

consistency but provides no rates. Uniformity with rates is obtained in Benktus (1985).

Denote by f the spectral density of a Gaussian process {xt}, and assume that θ 7→ f(θ)

has r derivatives in [−π, π]. Let f̂T (θ) be a lag-window estimator of f based on an
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observed realization of length T , with bandwidth BT of the order (T/ log T )1/2β+1 as

T → ∞. Then, see Benktus (1985), Theorem 2.2 (statement 2),

E

(
sup

θ∈[−π π]
|f̂x(θ) − f(θ)|

)
≤ K(T/ log T )−β/2β+1, (3.2)

where K > 0, β = α + r, 0 < α ≤ 1. Recently, under fairly general conditions, Liu

and Wu (2010) show that, provided that BT is of the order of T γ as T → ∞ for some

γ such that 1/3 < γ < 1,

max
|h|≤BT

|f̂(θh) − f(θh)|2 = OP(BTT
−1 log T ) as T → ∞ (3.3)

(see their Theorems 3, 4, 5 and Remark 5). Note that for small values of r the rates in

(3.2) and (3.3), as functions of α and γ respectively, have a very similar range, whereas

for r → ∞ the rate in (3.2) tends to the standard parametric rate T 1/2.

A discussion of the conditions imposed in Benktus or Liu and Wu is of course

outside the scope of the present paper. Rather, we directly suppose, in the spirit of

their results, that:

Assumption A.9 Let BT be of the order of T γ, with 1/3 < γ < 1. Then

E

(
max
|h|≤BT

|σ̂xij(θh) − σxij(θh)|2
)
≤ K

[
BTT

−1 log T
]
. (3.4)

with K independent of i and j.

Note that: (i) we take it for granted that (3.2) or (3.3) can be extended to cross-

spectra; (ii) we assume the same rate as in (3.3), but enhance it by bounding the

moments, as in (3.2).

Using the assumption that K is independent of i and j in A.9 and the Markov

Inequality, it is easily seen that

n−2
n∑

i=1

n∑

j=1

max
|h|≤BT

|σ̂xij(θh) − σxij(θh)|2 = OP (BTT
−1 log T )

n−1
n∑

i=1

max
|h|≤BT

|σ̂xij(θh) − σxij(θh)|2 = OP (BTT
−1 log T ),

(3.5)

for all i, as T → ∞ and n → ∞. As the proof of our consistency results is based

on (3.5), Assumption A.9 might be replaced by this weaker condition. Assumptions

in the form of uniform bounds, like K in A.9, or bounds for cross-sectional averages,

like in (3.5), play a crucial role in the literature on dynamic factor models, see e.g.

Assumptions A, B, C and D (C1 in particular) in Bai and Ng (2002) and Bai (2003),

or Assumptions F1 and M1 (F1c and M1c in particular) in Stock and Watson (2002b).
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Based on Σ̂̂Σ̂Σx(θ), our estimate of the spectral density of χχχnt is (see Forni et al. 2000)

Σ̂̂Σ̂Σχ(θh) = P̂x(θh)Λ̂̂Λ̂Λ
x(θh)

˜̂
Px(θh),

where F̃ denotes the transposed conjugate of F. We then have the following result.

Let ζTn = max(1/
√
n, 1/

√
T/BT log T ).

Proposition 2 Under Assumptions A.1 through A.9,

max
|h|≤BT

|σ̂χij(θh) − σχij(θh)| = OP (ζTn) ,

as T → ∞ and n→ ∞.

See Appendix B for a proof.

Our estimator of the covariance γχij,` of χit and χj,t−` is, as in Forni et al. (2005),

γ̂χij,` =
π

BT

BT∑

s=−BT +1

eı`θsσ̂χij(θs). (3.6)

Recalling that

γχij,` =
∫ π

−π
eı`θσχij(θ)dθ,

we have

|γ̂χij,` − γχij,`| ≤ π

BT

BT∑

s=−BT +1

|eı`θsσ̂χij(θs) − eı`θsσχij(θs)|

+

∣∣∣∣∣∣
π

BT

BT∑

s=−BT +1

eı`θsσχij(θs) −
∫ π

−π
eı`θσχij(θ)dθ

∣∣∣∣∣∣

≤ π

BT

BT∑

s=−BT +1

|σ̂χij(θs) − σχij(θs)|

+
π

BT

BT∑

s=−BT +1

max
θs−1≤θ≤θs

|eı`θsσχij(θs) − eı`θσχij(θ)|

≤ 2π max
|s|≤BT

|σ̂χij(θs) − σχij(θs)| +
πG

BT

BT∑

s=−BT +1

max
θs−1≤θ≤θs

|eı`θs − eı`θ|

+
π

BT

BT∑

s=−BT +1

max
θs−1≤θ≤θs

|σχij(θs) − σχij(θ)|

≤ 2π max
|s|≤BT

|σ̂χij(θs) − σχij(θs)|

+
πG

BT

BT∑

s=−BT +1

(
|eı`θs−1 − eı`θ∗s−1 |+ |eı`θ∗s−1 − eı`θs−1 |

)

+
π

BT

BT∑

s=−BT +1

(
|σχij(θs−1) − σχij(θ

∗∗
s−1)| + |σχij(θ∗∗s−1) − σχij(θs)|

)
,

(3.7)
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where (i) G is the bound in Assumption A.5, (ii) θ∗s−1 and θ∗∗s−1 are points in the interval

[θs−1 θs] where |ei`θs − ei`θ| and σij(θs) − σij(θ)|, respectively, attain a maximum. Of

course, the function eı`θ is of bounded variation. Under Assumption A.3, the functions

σχij(θ) are of bounded variation as well. This is sufficient for Propositions 3 and 4.

However, the proof of Lemma 12 (see Appendix D), which is part of the proof of

Proposition 5, requires that the functions σij are of bounded variation uniformly in i

and j. Precisely:

Assumption A.10 There exists M such that for all i, j and w in N, and all w-tuple

−π = θ0 < θ1 < · · · < θw = π, we have

w∑

k=1

|σχij(θk) − σχij(θk−1)| ≤M.

Using Proposition 2 and Assumption A.10, we obtain that |γ̂χij,` − γχij,`| is of the

form OP (ζTn) + O(1/BT ). Because BT is of the order of T γ with 1/3 < γ < 1, and

ζTn = max(1/
√
n, 1/

√
T/BT log T ), we have the following consistency result.

Proposition 3 Under Assumptions A.1 through A.10, for each ` ≥ 0,

|γ̂χij,` − γχij,`| = OP (ζTn) , (3.8)

as T → ∞ and n→ ∞.

3.2 Estimation of Ak(L) and ΓΓΓψjk

The definition of the estimates Â[k]and Γ̂̂Γ̂Γψjk is straightforward from (2.18), (2.19) and

(2.20). Denote by ‖F‖ the spectral norm of an s1 × s2 matrix F (see Appendix B for

details).

Proposition 4 Under Assumptions A.1 through A.10,

‖Â[k] − A[k]‖ = OP (ζTn) and ‖Γ̂̂Γ̂Γψjk −ΓΓΓψjk‖ = OP (ζTn)

as T → ∞ and n→ ∞.

See Appendix C for the proof.
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3.3 Estimation of R

We now turn to the crucial point of estimating representation (2.21). For n ≥ q, we

have znt = ψψψnt+φφφnt = Rut+φφφnt, where ψψψnt has covariance matrix RR′ = PψΛΛΛψPψ′ =

Pψ(ΛΛΛψ)1/2(ΛΛΛψ)1/2Pψ′; the columns of the n× q matrix Pψ are the eigenvectors of RR′,

and ΛΛΛψ is q × q with the corresponding eigenvalues on the main diagonal. Thus we

have the representation

znt = Pψ(ΛΛΛψ)1/2vt + φφφnt = Rvt + φφφnt,

where vt = Hut, with H orthogonal. Note that, given i and f , the entry (i, f) of

R depends on n, so that the matrices R are not nested; nor is vt independent of n.

However, the product of each row of R by vt yields the corresponding coordinate of ψψψnt

and is therefore independent of n.

Our estimate of R = Pψ(ΛΛΛψ)1/2 is R̂ = P̂z(Λ̂̂Λ̂Λz)1/2, where P̂z and Λ̂̂Λ̂Λz are the

eigenvectors and eigenvalues, respectively, of the empirical variance-covariance matrix

of ẑnt = Â(L)xnt, that is, xnt filtered with the estimated matrices Â(L). This is the

reason for the complications we have to deal with in Appendix D.

Proposition 5 Under Assumptions A.1 through A.10,

‖R̂i −RiŴ
z‖ = OP(ζTn),

as T → ∞ and n → ∞, where Ri is the i-th row of R, and Ŵz is a q × q diagonal

matrix, depending on n and T , whose diagonal entries equal either 1 or −1.

See Appendix D for a proof.

Let us point out again that the i-th row of R depends on n. Therefore, Proposition 5

only states that the difference between the estimated entries of R̂ and the entries

of R converges to zero (upon sign correction), not that the estimated entries converge.

Now suppose that the common shocks can be identified by means of economically

meaningful statements. For example, suppose that we have good reasons to claim that

the upper q×qmatrix of the “structural” representation is lower triangular with positive

diagonal entries (an iterative scheme for the first q common components). As is well

known, such conditions determine a unique representation, denote it by zt = R∗u∗
t +φφφt,

or znt = R∗u∗
t + φφφt, where the n × q matrices R∗ are nested. In particular, starting
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with xnt = Rvt+φφφnt, there exists exactly one orthogonal matrix G(R) (actually G(R)

only depends on the q×q upper submatrix of R) such that R∗ = RG(R). Thus, while

the entries of R depend on n, the entries of RG(R) do not.

Applying the same rule to R̂ we obtain the matrices R̂∗ = R̂G(R̂). It is easily seen

that each entry of R̂∗ (depending on n and T ) converges to the corresponding entry

of R∗ (independent of n and T ) at rate ζTn.

Lastly, define the population impulse-response functions as the entries of the n ×

q matrix B(L) = A(L)−1R∗ and their estimators as those of B̂(L) = Â(L)−1R̂∗.

Denoting by Bif (L) = Bif,0+Bif,1L+· · · and B̂if (L) = B̂if,0+B̂if,1L+· · · , respectively,

such entries, Propositions 4 and 5 imply that |B̂if,k −Bif,k| = OP (ζTn) for all i, f and

k.

An iterative identification scheme will be used in Section 4 to compare different

estimates of the impulse-response functions.8

3.4 Estimation of vt

Our estimator of vt is simply the projection of ẑt on P̂z(Λ̂z)−1/2, namely,

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt.

For that estimation v̂t we have the following consistency result.

Proposition 6 Under Assumptions A.1 through A.10,

‖v̂t − Ŵzvt‖ = OP(ζTn),

as T → ∞ and n→ ∞, where Ŵz is a q × q diagonal matrix, depending on n and T ,

whose diagonal entries equal either 1 or −1.

3.5 Alternative estimators for Ak(L) and Rk

Under further assumptions on the idiosyncratic components, Ak(L) and Rk can be

estimated consistently, as T → ∞, by fully parametric methods. Let us return to the

k-th (q + 1)-dimensional block Ak(L)χχχkt = Rkut and the corresponding equation for

xkt :

Ak(L)xkt = Rkut + Ak(L)ξξξkt . (3.9)

8All just-identifying rules considered in the SVAR literature can be dealt with along the same lines,

see Forni, Giannone, Lippi and Reichlin, 2009.
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Under the assumption that ξξξkt is white noise, (3.9) is a VARMA with equal AR and MA

orders, allowing direct estimation of Ak(L). Direct estimation of Ak(L) is also possible

if ξξξkt is a vector moving average. Assuming that ξξξkt has a VARMA structure, Ak(L)

and Rk in (3.9) can be estimated using unobserved components model’s techniques.

However, VARMA and unobserved components models consistently estimate Ak(L),

Ak(L) and Rk, respectively, as T → ∞, but not ut. Consistent estimation of ut

requires that both T and n diverge.

Altissimo et al. (2009) estimate the αi’s and ut in model (1.4) by means of an

iterative procedure which starts by the estimation of αi, equation by equation, from

(1 − αiL)xit = aiut + (1 − αiL)ξit.

In this particular case estimating q-dimensional instead of (q + 1)-dimensional blocks

is correct because in (1.4) ut is fundamental for χit for all i. However, if χit =

[ci(L)/di(L)]ut, ut is generically fundamental for 2-dimensional but not 1-dimensional

blocks, nor has ci(L)/di(L) a finite inverse.

4 An empirical exercise

In the present section we compare the estimation performance of the methods studied in

the present paper, referred to as FHLZ, and model (1.3), whose consistency has been

studied in Forni et al. (2009), referred to as FGLR. Let us recall that both models

assume rational spectral density for the common components, but FGLR also assumes

finite dimension for the space spanned by the variables χit for any given t and i ∈ N.

Using a Monte Carlo simulation based on actual US macroeconomic data, we compare

(i) impulse response functions and (ii) structural shocks, estimated using FHLZ and

FGLR, respectively, under the same iterative identification scheme.

4.1 Simulation design

Let us firstly illustrate the simulation design. We use two macroeconomic panels.

The first is the one used in Forni and Gambetti (2010a), with 101 US quarterly se-

ries, covering the period 1959 I - 2007 IV. The second is the one used in Forni and

Gambetti (2010b), which is essentially an updating of the panel used in Stock and

Watson (2002a, 2002b) and Bernanke, Boivin and Eliasz (2005). It includes 112 US
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monthly series between March 1973 and November 2007. Details on both panels and

their treatment are reported in Appendix F.

We run the FGLR and FHLZ methods on both the quartely and the monthly panels.

Here are some of the major features of this empirical study.

(1) Based on Hallin and Lǐska (2007) and Onatski (2009), we identify q = 4 for both

panels.

(2) In FGLR, using the Bai and Ng (2002) IC2 criterion, we obtain, for the dimension

of Ft, r = 12 in the quarterly panel and r = 16 in the monthly panel. Moreover,

identification via the BIC criterion of the number of lags in the VAR, see the

second equation in (1.3), yields p = 2 for both panels.

(3) In FHLZ, the number of lags in each (q+1)-dimensional VAR is chosen by the BIC

criterion for each VAR. In the estimation of the spectral density of xnt, we set the

Bartlett lag-window size to 12 for quarterly data and 30 for monthly data, which

is large enough to retain the most important cyclical auto- and cross-correlations.

(4) Our simulations require an estimate of the idiosyncratic components. For FGLR,

we take the residuals of the projection of the x’s on the first r principal com-

ponents. For FHLZ, we take the residuals of the projection of xit onto present,

past and future values of the first q dynamic principal components, i.e. we ap-

ply the two-sided filters described in Forni et al. (2000) to get an estimate of

the common components and take the deviations from the x’s. The resulting

poor end-of-sample estimation, see the Introduction, is harmless for the present

analysis.

(5) Impulse-response functions and shocks are estimated by FHLZ and FGLR ap-

plying the same identification scheme. Precisely, we use a recursive identification

scheme on 4 selected variables (see Section 3.2). With the quarterly data we

use GDP, the GDP deflator, the federal funds rate and the Standard & Poor in-

dex of 500 Common Stocks; for the monthly data, we use Industrial Production,

the CPI, the federal funds rate and the NAPM commodity price index. Simi-

lar schemes are widely used in the VAR literature on monetary policy (see e.g.

Christiano, Eichenbaum and Evans, 1999).9

9We take the variables in the order specified above. The ordering however is irrelevant in the present

context, since our measure of the estimation error (described below) is invariant to the application of
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(6) Regarding FHLZ, whereas the population impulse-response functions and the

shocks, given the identification scheme, do not depend on the particular group-

ing of the variables, some dependence occurs in the estimates. This is due to the

estimation errors contained in the covariances used in VAR estimation, and pos-

sibly to incorrect specification of the number of lags. We deal with this problem

by averaging the impulse-response functions obtained with a number of random

permutations of the variables in the panel. We find that 30 random permutations

are sufficient to stabilize the averages.

Denote by (IRF, ξ)FGLR and (IRF, ξ)FHLZ the impulse-response functions and

idiosyncratic components estimated via FGLR and FHLZ, respectively. Based on

(IRF, ξ)FGLR, we generate 500 artificial quarterly panels and 200 artificial monthly

panels as follows. Firstly, we produce 4 random independent standard normal shocks,

filter them with the impulse-response functions, and add the resulting series to get

the common components (the impulse-response functions are truncated at 20 lags for

quarterly data and 48 lags for monthly data). Then we add artificial idiosyncratic

components obtained by block bootstrapping (without overlapping) the idiosyncratic

components estimated as in (4) above. We take blocks of 19 periods for quarterly data

and 51 periods for monthly data. Block bootstrapping is intended to randomize the id-

iosyncratic components while preserving the idiosyncratic auto- and cross-correlation

structure of macroeconomic time series. The same procedure is applied to obtain

the 500 quarterly and 200 monthly panels based on (IRF,ξ)FHLZ.

Lastly, the impulse-response functions are estimated for each artificial panel using

the two competing methods, with the recursive identification scheme described under

(5) above:

(a) The true number of structural shocks is assumed to be known, i.e. equal to 4,

for both methods.

(b) For each artificial panel we set the parameters, r, p when using FGLR, the lag-

window size and the length of the (q+ 1)-dimensional VAR’s when using FHLZ,

according to the criteria specified under (2) and (3) above. In particular, for

FHLZ, the BIC criterion is applied separately to each of the of the (q + 1)-

dimensional VAR’s, the (Bartlett) lag window size is 12 for quarterly data and 30

the same orthonormal transformations to both the target and the estimator.
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for monthly data (we do not report results for different values of the lag-window

size since they are fairly stable within the range 2-4 years). The number of

random permutations of the variables in the panel, see (6) above, was set to 30

for all experiments. Results obtained by using the HQC criterion to determine

the length of the VAR’s, in both methods, are also reported. On the other hand,

both AIC and the Bai and Ng (2002) IC1 criterion produce poor results, which

are not reported.

(c) We also report results obtained using a grid of values for some parameters. For

FGLR estimation, we report results for r = 6, 12, p = 1, 2, 3,6 (quarterly data),

r = 8, 16, p = 2, 4, 6, 12 (monthly data). For FHLZ, we report results obtained

by setting the length of all the (q + 1)-dimensional VAR’s to 1, 2, 3, 6 (quarterly

data), 2, 4, 6, 12 (monthly data).

The estimation error for the impulse-response functions is defined as the normal-

ized sum of the squared deviations of the estimated from the “true” impulse response

coefficients respectively. Precisely, let bif,h and b̂if,h be the true and estimated impulse-

response coefficients, respectively, of variable i, shock f , lag h. Then the estimation

error of the impulse response functions is measured by

MSE(irf) =

∑n
i=1

∑q
f=1

∑H
h=0

(
b̂if,h − bif,h

)2

∑n
i=1

∑q
f=1

∑H
h=0 b

2
if,h

.

The truncation lag H was set to 20 for quarterly data, to 48 for monthly data.

4.2 Results

Tables 1-4 report the average and the corresponding standard deviation (slanted fig-

ures) of the estimation error across the artificial panels. Boldface figures indicate the

best result.

The first four columns report the results obtained using preassigned values for the

lag in the VAR’s, see (c) above, the last two columns are reporting the results obtained

using the BIC or HQC criterion, see (b) above. The second and third row report results

for FHLR when r is set to preassigned values, see (c) above, the fourth row reports the

same when r is chosen according to IC2, see (b).

Comparing the best results provides an idea of the potential performance of the

competing methods, independently of model selection techniques. We see that the
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FHLZ outperforms FGLR when the DGP is FHLZ and in one of the cases in which the

DGP is FGLR. However, the relevant comparison is in the last two columns, first and

fourth rows. Underscored figures in the first row report results from FHLZ, with the

VAR length chosen according to the BIC or the HQC criteria. Results from FGLR,

with the VAR length chosen with the same criteria and r by IC2, are reported in the

fourth row. The outcome does not change: FHLZ outperforms FGLR in three out

of four cases. The standard deviations show that the performance of FHLZ is almost

always less volatile than FGLR, often to a large extent.

Table 1: Average and standard deviation (slanted) of MSE across 500 artificial data

set. Data generating Process (DGP): FGLR. Quarterly data.

p = 1 p = 2 p = 3 p = 6 p = BIC p = HQC

FHLZ 0.2494 0.1915 0.1857 0.2447 0.2040 0.1928

0.0256 0.0274 0.0281 0.0388 0.0266 0.0281

FGLR r = 6 0.2468 0.2030 0.2276 0.2937 0.2288 0.2070

0.0490 0.0628 0.0714 0.0699 0.0604 0.0604

FGLR r = 12 0.2137 0.1862 0.2163 0.3302 0.2137 0.1959

0.0298 0.0321 0.0349 0.0445 0.0298 0.0360

FGLR r = IC2 0.2305 0.1931 0.2190 0.3095 0.2226 0.2160

0.0369 0.0476 0.0518 0.0764 0.0663 0.0824

Table 2: Average and standard deviation (slanted) of MSE across 500 artificial data

set. DGP: FHLZ. Quarterly data.

p = 1 p = 2 p = 3 p = 6 p = BIC p = HQC

FHLZ 0.1401 0.1186 0.1287 0.1740 0.1184 0.1280

0.0179 0.0182 0.0184 0.0232 0.0178 0.0193

FGLR r = 6 0.1651 0.1665 0.1894 0.2659 0.1651 0.1660

0.0204 0.0232 0.0261 0.0325 0.0204 0.0210

FGLR r = 12 0.1494 0.1631 0.1951 0.3149 0.1494 0.1546

0.0205 0.0239 0.0271 0.0344 0.0205 0.0350

FGLR r = IC2 0.1585 0.1657 0.1932 0.2914 0.1764 0.1862

0.0200 0.0235 0.0300 0.0624 0.0732 0.0858
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Table 3: Average and standard deviation (slanted) of MSE across 200 artificial data

set. DGP: FGLR. Monthly data.

p = 2 p = 4 p = 6 p = 12 p = BIC p = HQC

FHLZ 0.3003 0.2768 0.2797 0.3133 0.3012 0.2760

0.0435 0.0383 0.0386 0.0338 0.0400 0.0364

FGLR r = 8 0.2435 0.2417 0.2606 0.3274 0.2603 0.2408

0.0919 0.0882 0.0914 0.0916 0.0955 0.0954

FGLR r = 16 0.2156 0.2325 0.2649 0.3962 0.2562 0.2320

0.0799 0.0837 0.0833 0.0795 0.0905 0.0893

FGLR r = IC2 0.2273 0.2286 0.2523 0.3412 0.2632 0.2417

0.0820 0.0723 0.0765 0.0893 0.0947 0.1006

Table 4: Average and standard deviation (slanted) of MSE across 200 artificial data

set. DGP: FHLZ. Monthly data.

p = 2 p = 4 p = 6 p = 12 p = BIC p = HQC

FHLZ 0.1226 0.1292 0.1394 0.1832 0.1228 0.1220

0.0250 0.0243 0.0237 0.0219 0.0236 0.0214

FGLR r = 8 0.2890 0.3131 0.3423 0.4040 0.3018 0.2949

0.1064 0.0980 0.0978 0.0887 0.1129 0.1104

FGLR r = 16 0.2564 0.2780 0.3148 0.4448 0.2619 0.2679

0.0951 0.0842 0.0823 0.0718 0.1067 0.1134

FGLR r = IC2 0.2652 0.2872 0.3208 0.4134 0.2826 0.2928

0.0906 0.0912 0.0923 0.0849 0.0981 0.1178

The results obtained when the artificial panels are generated by (IRF, ξ)FHLZ, i.e.

a fairly large advantage of FHLZ over FGLR, Tables 2 and 4, provide evidence that

IRFFHLZ, the impulse-response functions estimated by FHLZ with the actual panels, do

not fulfill a finite-dimension restriction, neither strictly nor approximately. They more-

over demonstrate the danger of a static approach when such finite-dimension restriction

is not supported by the data at hand.

When the artificial panels are generated using (IRF, ξ)FGLR, FHLZ is, apart from

very special cases, a less parsimonious representation as compared to FGLR. In partic-

ular, if r ≥ 10 in (1.3), the length of the (q+1)-dimensional VAR’s in the corresponding
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FHLZ representation is larger than 10 (this can be seen by elementary algebraic manip-

ulation). On the other hand, as a consequence of the value of T in the datasets under

study, the length of the (q+1)-dimensional VAR’s determined by the BIC or the HQC

criterion, when estimating with FHLZ the artificial panels generated by (IRF, ξ)FGLR,

is either 1 or 2. Thus, a quite parsimonious FHLZ specification is sufficient to account

for the dynamics in the panel, which is a possible explanation for the unexpected better

performance of FHLZ even in Table 1.

5 Conclusions

An estimate of the common-components spectral density matrix Σ̂̂Σ̂Σχ can be easily ob-

tained using the frequency-domain principal components of the observations xit. The

central idea of the present paper is that, because Σ̂̂Σ̂Σχ has large dimension but small

rank q, a factorization of Σ̂̂Σ̂Σχ can be obtained piecewise. Precisely, the factorization

of Σ̂̂Σ̂Σχ only requires the factorization of (q+1)-dimensional subvectors of χχχt. Under our

assumption of rational spectral density for the common components, this implies that

the number of parameters to estimate grows at pace n, not n2.

The rational spectral density assumption has also the important consequences

that χχχt has a finite autoregressive representation and that the dynamic factor model

can be transformed into the static model zt = Rvt + φφφt, where zt = A(L)xt. We

construct estimators for A(L), R and vt starting with a standard non-parametric es-

timator of the spectral density of the x’s. This implies a slower rate of convergence

as compared to the usual T−1/2. However, in Section 3, we prove that our estimators

for A(L), R and vt do not undergo any further reduction in their speed of convergence.

The main difference of the present paper with respect to previous literature on

GDFM’s is that although we make use of a parametric structure for the common

components, we do not make the standard, but quite restrictive assumption that our

dynamic factor model has a static representation of the form (1.3). Section 4 provides

important empirical support to the richer dynamic structure of unrestricted GDFM’s.
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Appendix

A Proof of Proposition 1

Consider first the case s2 = 0, so that yt is a moving average. Setting s = s1, we have

yt = C0vt + C1vt−1 + · · · + Csvt−s = C(L)vt, (A.1)

Consider the stack

(yt−1 yt−2 · · · yt−S)
′ = CS(vt−1 vt−2 · · · vt−S−s)

′ (A.2)

where

CS =




C0 C1 · · · Cs 0 · · · 0

0 C0 · · · Cs−1 Cs · · · 0
...

. . .

0 0 · · · · · · Cs




. (A.3)

is (q + 1)S × q(S + s). Setting S = sq, CS is square. If it is non singular, then

(vt−1 vt−2 · · · vt−S−s)
′ = C−1

S (yt−1 yt−2 · · · yt−S)
′. Substituting into (A.1),

yt = A1yt−1 + · · · + ASyt−S + C0vt. (A.4)

Note that (2.6) implies that vt is orthogonal to yt−k for k > 0. Thus, (A.4) is the

orthogonal projection of yt on its past values. Moreover, non-singularity of CS implies

that the entries of the left hand side of (A.2) are linearly independent. As a conse-

quence, (A.4) is the unique AR representation of yt of order less than or equal to S,

up to an orthogonal transformation of vt and C0.

It remains to prove that CS is non singular for generic values of Cj. Note that the

determinant of CS is a polynomial in the parameters, and is therefore either zero for all

parameters’ values or generically non zero. Thus, if we find a particular value of the

parameters for which det CS 6= 0 we can conclude that CS is generically non singular.

Suppose that, for some ααα=(α01 · · ·α0,q+1;α11 · · ·α1,q+1; · · · ;αS−1,1 · · ·αS−1,q+1) 6= 0,

αααCS = 0. (A.5)
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Setting αααi = (αi1 · · · αi,q+1), (A.5) can be rewritten as

ααα0(C0 + C1L+ · · · + CsL
s) + ααα1L(C0 + C1L+ · · · + CsL

s)

+ · · · +αααS−1L
S−1(C0 + C1L + · · · + CsL

s)

= (ααα0 +ααα1L+ · · · +αααS−1L
S−1)(C0 + C1L+ · · · + CsL

s) = 0,

that is,

(β1(L) β2(L) · · · βq+1(L))C(L) = 0, (A.6)

where βj(L) = α0j+α1jL+ · · · +αS−1,jL
S−1. Thus, (A.5) is equivalent to the existence

of q + 1 scalar polynomials βj(L), of degree S − 1, such that βj(L) 6= 0 for some j

and (A.6) holds.

Let us now construct a point in the parameter space as follows. Let di(L), for

i = 1, . . . , q, denote polynomials of degree s such that di(L) and dj(L) have no common

roots for i 6= j. Put

C(L) =




d1(L) 0 · · · 0

0 d2(L) · · · 0
...

...
. . .

...

0 0 · · · dq(L)

1 1 · · · 1




. (A.7)

If there exist βi(L), i = 1, . . . , q + 1, not all zero, such that (A.6) holds, then, for

i ≤ q, di(L)βi(L) = −βq+1(L). Therefore, the set of roots of βq+1(L) includes those of

the polynomials di(L) for i ≤ q. But then, given our assumption on the roots of the

di(L)’s, either βi(L) = 0 for all i = 1, . . . , q + 1, or the degree of βq+1(L) is at least

qs = S. Thus, det CS 6= 0 in this case, hence also generically.

Let us now turn to the general rational case

yt = E(L)vt, t ∈ Z (A.8)

where

eif (L) =
cif(L)

dif (L)
=
cif,0 + cif,1L+ · · · + cif,s1L

s1

1 + dif,1L+ · · · + dif,s2L
s2

.

Rewrite (A.8) as



h1(L) 0 · · · 0

0 h2(L) · · · 0
. . .

0 0 · · · hq+1(L)




yt = G(L)vt,
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where hi(L) =
∏q
f=1 dif (L) and gif (L) = cif (L)hi(L)/dif (L). For generic parameter

values, the degrees of hj(L) and gik(L) are qs2 and s1 + (q − 1)s2, respectively. Now

consider the moving average G(L)vt. Select a point in the parameter space such that

(i) cif (L) = 0 if i 6= f and i ≤ q, which implies gif (L) = 0 if i 6= f and i ≤ q,

(ii) gii(L) has degree s1 + (q − 1)s2 for i ≤ q,

(iii) gii(L) and gjj(L) have no roots in common for i 6= j,

(iv) gq+1,f (L) = 1 for f = 1, . . . , q.

This reproduces the situation in (A.7). As the entries of G(L) are polynomial functions

of p ∈ Πq+1, for generic parameter values, G(L)vt has an autoregressive representation

of order not greater than [s1 + (q − 1)s2]q. This implies that, for generic values of the

parameters, yt has an autoregressive representation of order not greater than

S = qs2 + [s1 + (q − 1)s2]q = qs1 + q2s2.

To prove uniqueness we now show that the entries of yt−1, yt−2, . . . , yt−S, still

generically, are linearly independent, which is equivalent to proving that, if βj(L),

j = 1, . . . , q + 1, are polynomials in L and

(β1(L) β2(L) · · · βq+1(L))E(L) = 0, (A.9)

then, for generic values of the parameters, either βj(L) = 0 for all j, or the degree

of βj(L) is greater than S − 1 for some j. The sequel of the proof is subdivided into

seven steps, numbered (I) through (VII).

(I) Let Eq(L) be the square submatrix obtained by dropping E(L)’s last row. Rational-

ity of the entries of E(L) implies that det(Eq(z)) = 0 either for all z ∈ C or for a finite

subset of C. On the other hand, if det(Eq(z)) = 0 for all z ∈ C, then the parameters

fulfill a set of polynomial equations. Obviously, there exist parameter values such that

det(Eq(z)) = 0 for a finite subset of C,

i.e. such that Eq(z) is a non-zero rational function. Thus, for the parameter belonging

to Πq+1−M1, where M1 is a nowhere dense subset of Πq+1, Eq(z) is a non-zero rational

function, and hence [Eq(L)]−1 is well defined. As a consequence, still for parameter

values in Πq+1 −M1, the system of equations

(ρ1(L) ρ2(L) · · · ρq(L))Eq(L) = (eq+1,1(L) eq+1,2(L) · · · eq+1,q(L))

41



in the unknown rational functions ρj(L) has the unique solution

(τ1(L) τ2(L) · · · τq(L)) = (eq+1,1(L) eq+1,2(L) · · · eq+1,q(L))[Eq(L)]−1.

(II) There exists a nowhere dense in Πq+1 set M2 such that, for parameter values

in Πq+1−M2, det(Eq(L)) = h(L)/
∏q
i,j=1 dij(L), where h(L) has degree qs1 +(q2−q)s2.

(III) There exists a nowhere dense in Πq+1 set M3 such that, for parameter values

in Πq+1 −M3, the (i, j) entry of the adjoint matrix of Eq(L) can be written as

hij(L)/
∏

h,k=1,...q
h6=j, k 6=i

dhk(L),

the degrees of numerator and denominator being (q − 1)s1 + [(q − 1)2 − (q − 1)]s2

and (q − 1)2s2, respectively.

(IV) There exists a nowhere dense in Πq+1 set M4 such that, for parameter values

in Πq+1 −M4, the entries of [Eq(L)]−1 can be written as

hij(L)
∏

h,j=1,... ,q
h=j or k=i

dhk(L)/h(L) = h̃ij(L)/h(L),

where the degrees of the numerator and denominator are (q − 1)s1 + (q2 − (q − 1))s2

and qs1 + (q2 − q)s2, respectively.

(V) There exists a nowhere dense in Πq+1 set M5 such that, for parameter values

in Πq+1 −M5,

τk(L) =
q∑

i=1

cq+1,i(L)h̃ik(L)

dq+1,i(L)h(L)
=

∑q
i=1 cq+1,i(L)h̃ik(L)

∏
j=1,...,q

j 6=i
dq+1,j(L)

h(L)
∏q
i=1 dq+1,i(L)

= νk(L)δ(L),

where both νk(L) and δ(L) are polynomials of degree S = qs1 + q2s2.

(VI) Moreover, for generic values of the parameters, νk(L) and δ(L) have no roots in

common. To show this, recall that

νk(z) = νk,Sz
S + νk,S−1z

S−1 + · · · + νk,0 and δ(z) = δSz
S + δS−1z

S−1 + · · · + δ0,

both of degree S, have roots in common if and only if their resultant vanishes. That

resultant is a homogeneous polynomial of degree S in the coefficients νk,j and δj, in-

volving the term νSk,Sδ
S
0 (see van der Waerden 1953, pp. 83-5). All other terms contain

powers νS−hk,S of νk,S, with 0 < h ≤ S. We have

νSk,Sδ
S
0 =

[ q∑

i=1

cq+1,i,s1h̃ik,g
∏

j=1,...,q
j 6=i

dq+1,j,s2

]S
h(0)S = cSq+1,1,s1

[
h̃S1k,g

∏

j=2,...,q

dSq+1,j,s2
h(0)S

]
+ . . . ,

(A.10)
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where h̃ik,g is the coefficient of order g of h̃(z) and g = (q−1)s1 +(q2− (q−1))s2. Note

that h(z) and h̃ik(z) do not contain any of the parameters cq+1,i,h. As a consequence,

all other terms in (A.10) and in the resultant of νk(L) and δ(L) contain powers cS−hq+1,i,s1

of cq+1,i,s1, with 0 < h ≤ S. Moreover, the coefficient of cSq+1,1,s1
in (A.10) is generically

non zero. Thus, the resultant of νk(z) and δ(z) does not vanish everywhere in Πq+1,

and therefore vanishes only on a nowhere dense subset. Summing up, there exists a

nowhere dense set M6 in Πq+1, such that, for parameter values in Πq+1 −M6, none of

the resultants of δ(z) and νk(z), k = 1, 2, . . . , q vanishes.

(VII) Lastly, if the βk(L)’s are such that (A.9) holds, then τk(L) = −βk(L)/βq+1(L).

The results above imply that the degree of the polynomials βj(L) is at least S for

parameter values in Πq+1 − ∪6
k=1Mk. Q.E.D.

B Proof of Proposition 2

The proof below closely follows Forni et al. (2009). Denote by µj(A), j = 1, 2, . . . , s,

the (real) eigenvalues, in decreasing order, of a complex s×s Hermitian matrix A, and

by ‖B‖ =
√
µ1(B̃B) the spectral norm of an s1 × s2 matrix B, which coincides with

the Euclidean norm of B in case B is a row matrix. Recall that, if B1 is s1× s2 and B2

is s2 × s3, then

‖B1B2‖ ≤ ‖B1‖‖B2‖. (B.1)

We also will use of the following inequality: for any two s× s Hermitian matrices A1

and A2,

|µj(A1 + A2) − µj(A1)| ≤ ‖A2‖, j = 1, . . . , s. (B.2)

This result, also known as Weyl’s inequality, is an obvious consequence of Lancaster

and Tismenetsky (1985), p. 301 (see also Forni and Lippi 2001, Fact M and Forni et

al. 2009, Appendix). In particular, as ΣΣΣx(θ) = ΣΣΣχ(θ) + ΣΣΣxi(θ), we have

|µ1(ΣΣΣ
x(θ)) − µ1(ΣΣΣ

x(θ))| ≤ µ1(ΣΣΣ
ξ(θ)). (B.3)

The proof of Proposition 2 is divided into several intermediate propositions. Let

a1 < a2 < · · · < as be integers, and put M = {a1, a2, · · · , as}. Denote by SM the n× s

matrix with 1 in entries (aj, j) and zero elsewhere, and define ρT = T/BT log T . As

most of the arguments below depend on equalities and inequalities that hold for all
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θ ∈ [−π π], the notation has been simplified by dropping θ. Moreover, properties

holding for max|h|≤BT
F (θh), where F is some function of θ, are often phrased as holding

for F uniformly in θ. Lastly, all lemmas in this Appendix hold, and are proved under

Assumptions 1 through 9.

Lemma 3 As T → ∞ and n→ ∞,

(i) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣx‖ = OP(ρ

−1/2
T );

(ii) given M, max|h|≤BT
n−1/2‖S ′

M(Σ̂̂Σ̂Σx −ΣΣΣx)‖ = OP(ρ
−1/2
T );

(iii) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ = OP(max(n−1, ρ

−1/2
T ));

(iv) given M, max|h|≤BT
n−1/2‖S ′

M(Σ̂̂Σ̂Σx −ΣΣΣχ)‖ = OP(max(n−1/2, ρ
−1/2
T )).

Proof. Since

µ1((Σ̂̂Σ̂Σ
x −ΣΣΣx)(

˜̂
Σ
˜̂
Σ
˜̂
Σx − Σ̃̃Σ̃Σx)) ≤ trace((Σ̂̂Σ̂Σx −ΣΣΣx)(

˜̂
Σ
˜̂
Σ
˜̂
Σx − Σ̃̃Σ̃Σx)) =

n∑

i=1

n∑

j=1

|σ̂xij − σxij|2.

Because

n−2 max
|h|≤BT

n∑

i=1

n∑

j=1

|σ̂xij − σxij|2 ≤ n−2
n∑

i=1

n∑

j=1

max
|h|≤BT

|σ̂xij − σxij|2,

statement (i) follows from (3.5). Similarly, since

trace
(
S ′

M(Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ
˜̂
Σx − Σ̃̃Σ̃Σx)SM

)
=
∑

i∈M

n∑

j=1

|σ̂xij − σxij|2,

statement (ii) also follows from (3.5). As for (iii), orthogonality of common and id-

iosyncratic components at all leads and lags implies Σ̂̂Σ̂Σx −ΣΣΣχ = Σ̂̂Σ̂Σx −ΣΣΣx +ΣΣΣξ, so that,

by the triangle inequality for matrix norm, ‖Σ̂̂Σ̂Σx − ΣΣΣχ‖ ≤ ‖Σ̂̂Σ̂Σx − ΣΣΣx‖ + ‖ΣΣΣξ‖. The

statement follows from (i) and the fact that ‖ΣΣΣξ‖ = λξ1 is bounded. Statement (iv) is

obtained in a similar way, using (ii) instead of (i). QED

Lemma 4 As T → ∞ and n→ ∞,

(i) max|h|≤BT
n−1

∣∣∣λ̂xf − λχf
∣∣∣ = OP(max(n−1, ρ

−1/2
T )) for f = 1, 2, . . . , q;

(ii) Letting

Gχ =





Iq if λχq = 0

n(ΛΛΛχ)−1 otherwise
and Ĝx =





Iq if λ̂xq = 0

n(Λ̂̂Λ̂Λx)−1 otherwise
,

max|h|≤BT
n−1‖ΛΛΛχ‖ and max|h|≤BT

‖Gχ‖ are O(1), max|h|≤BT
n−1‖Λ̂̂Λ̂Λx‖ and max|h|≤BT

‖Ĝx‖

are OP(1);

(iii) max
|h|≤BT

∥∥∥n−1Λ̂̂Λ̂ΛxĜx − Iq
∥∥∥ = OP(max(n−1, ρ

−1/2
T )).
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Proof. Setting A1 = ΣΣΣχ and A2 = Σ̂̂Σ̂Σx −ΣΣΣχ, (B.2) yields |λ̂xf − λχf | ≤ ‖Σ̂̂Σ̂Σx − ΣΣΣχ‖;

hence, statement (i) follows from Lemma 3 (iii). Boundedness of n−1‖ΛΛΛχ‖ and ‖Gχ‖,

uniformly in θ, is a consequence of Assumption A.7. Boundedness in probability

of n−1‖Λ̂̂Λ̂Λx‖ and ‖Ĝx‖, uniformly in θ, follows from statement (i). Statement (iii)

thus follows from (i) and Assumption A.7. Q.E.D.

Lemma 5 As T → ∞ and n→ ∞,

(i) max|h|≤BT
n−1‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = OP(max(n−1, ρ

−1/2
T ));

(ii) max|h|≤BT
‖ ˜̂PxPχP̃χP̂x − Iq‖ = OP(max(n−1, ρ

−1/2
T ));

(iii) there exist diagonal complex orthogonal matrices Ŵq = diag(ŵ1 ŵ2 · · · ŵq),

|ŵj|2 = 1, j = 1, . . . , q depending on n and T , such that max|h|≤BT
‖ ˜̂
PxPχ − Ŵq‖ =

OP(max(n−1, ρ
−1/2
T )).

Proof. By (B.1), ‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = ‖P̃χ(Σ̂̂Σ̂Σx −ΣΣΣχ)P̂x‖ ≤ ‖Σ̂̂Σ̂Σx −ΣΣΣχ‖. State-

ment (i) thus follows from Lemma 3 (iii). Turning to (ii), set

a = ˜̂PxPχP̃χP̂x, b =
[
˜̂PxPχP̃χP̂x

]
n−1Λ̂̂Λ̂ΛxĜx = ˜̂PxPχ

[
P̃χP̂xn−1Λ̂̂Λ̂Λx

]
Ĝx,

c =
˜̂
PxPχ

[
n−1ΛΛΛχP̃χP̂x

]
Ĝx=

[
n−1 ˜̂PxΣΣΣχP̂x

]
Ĝx, d =

[
n−1 ˜̂PxΣ̂̂Σ̂ΣxP̂x

]
Ĝx = n−1Λ̂̂Λ̂ΛxĜx,

and f = Iq: we have ‖ ˜̂PxPχP̃χP̂x−Iq‖ ≤ ‖a−b‖+‖b−c‖+‖c−d‖+‖d− f‖. Using

Lemma 4, statement (i), the boundedness in probability, uniformly in θ, of ‖ ˜̂PxPχ‖, ‖Ĝx‖

and ‖ ˜̂
PxPχP̃χP̂x‖, all terms on the right-hand side of that inequality can be shown

to be OP(max(n−1, ρ
−1/2
T )), uniformly in θ. As for (iii), note that, from statement (i),

n−1 ˜̂Px
hP

χ
k (λ

χ
k − λ̂xh) = OP(max(n−1, ρT

−1/2)). Assumption A.7 implies that, for h 6= k,

˜̂
Px
hP

χ
k = OP(max(n−1, ρT

−1/2)). This and the fact that, in view of statement (ii),
∑q
f=1 |

˜̂
Px
hP

χ
f |2 − 1 = OP(max(n−1, ρT

−1/2)) implies that

| ˜̂Px
hP

χ
h|2 − 1 = (| ˜̂Px

hP
χ
h| − 1)(|P̃χ

hP̂
x
h| + 1) = OP(max(n−1, ρT

−1/2)).

The conclusion follows. Q.E.D.

Note that Lemma 5 clearly also holds for n−1‖ ˜̂PxPχΛΛΛχ−Λ̂̂Λ̂Λx ˜̂PxPχ‖, ‖P̃χP̂x ˜̂PxPχ − Iq‖

and ‖ ˜̂
PχP̂x − ˜̂

Wq‖.

Lemma 6 Given M, as T → ∞ and n→ ∞,

max
|h|≤BT

‖S ′
M(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP(max(n−1/2, ρT

−1/2)). (B.4)
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Proof. We have

‖S ′
M(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ ≤ ‖S ′

M(n1/2PχŴq − n1/2P̂x)(n−1ΛΛΛχ)1/2‖

+‖S ′
MP̂x(n−1/2(ΛΛΛχ)1/2 − n−1/2(Λ̂̂Λ̂Λx)1/2)‖.

By Lemma 4 (i), thus, we only need to prove that

‖n1/2S ′
MPχŴq − n1/2S ′

MP̂x‖ = OP(max(n−1/2, ρT
−1/2)).

Firstly, we show that, uniformly in θ,

‖n1/2S ′
MPχ‖ = O(1). (B.5)

Assumption A.5 implies that σχii =
∑q
f=1 λ

χ
f |p

χ
if |2 = O(1), uniformly in θ. As all the

terms in the sum are positive, λχf |p
χ
if |2 = (λχf/n)n|pχif |2 also is O(1), uniformly in θ.

Assumption A.7, Theorem A(i) and (B.3) imply that λχf /n is bounded away from zero

uniformly in θ, so that n|pχif |2 must be O(1), uniformly in θ. Hence, the eigenvalues

of nS ′
MPχP̃χSM are O(1) uniformly in θ; (B.5) follows. Next, define

g = n1/2S ′
MPχ

[
Ŵq

]
, h = n1/2S ′

MPχ
[
P̃χP̂x

]
= n1/2S ′

MPχ[P̃χP̂xΛ̂x/n](Λ̂x/n)−1,

i = n1/2S ′
MPχ[(Λχ/n)P̃χP̂x](Λ̂x/n)−1 = [n−1/2S ′

MΣΣΣχ]P̂x(Λ̂x/n)−1,

and
j = [n−1/2S ′

MΣ̂̂Σ̂Σx]P̂x(Λ̂x/n)−1 = n1/2S ′
MP̂x.

Using (B.5), Lemma 5 and Lemma 3 (iv), we obtain that ‖g − h‖ and ‖h − i‖ are

OP(max(n−1, ρT
−1/2)), while ‖i−j‖ isOP(max(n−1/2, ρT

−1/2)); the result follows. Q.E.D.

Note that the eigenvectors Pχ are defined up to post-multiplication by a complex

diagonal matrix with unit modulus diagonal entries. In particular, using the eigen-

vectors ΠΠΠχ = PχŴq, (B.4) would hold for ΠΠΠχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2. For the sake of

simplicity, we avoid introducing a new symbol and henceforth refer to the result of

Lemma 6 as

max
|h|≤BT

‖S ′
M(Pχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP(max(n−1/2, ρT

−1/2)). (B.6)

In the same way, the result of Lemma 5(iii) will be referred to as

‖ ˜̂PxPχ − Iq‖ = OP(max(n−1, ρT
−1/2)).

Proposition 3 now follows from the fact that Σ̂̂Σ̂Σx = P̂xΛ̂̂Λ̂Λx ˜̂Px and ΣΣΣχ = PχΛΛΛχP̃χ.

46



C Proof of Proposition 4

Firstly, note that, as the last term in (3.7) contains

πG

BT

BT∑

s=−BT +1

max
αs≤θ≤βs

|eı`θs − eı`θ|,

convergence in (3.8) is not uniform with respect to `. However, estimation of the matri-

ces Bχ
k and Cχ

jk only requires the covariances γ̂ij,` with ` ≤ S, where S is finite. There-

fore, Proposition 3 implies that ‖B̂χ
k −Bχ

k‖ and ‖Ĉχ
jk−Cχ

jk‖ are OP(max(n−1/2, ρ
−1/2
T )).

From (2.20), applying (B.1),

‖Â[k] − A[k]‖ ≤ ‖B̂χ
k‖‖(Ĉ

χ
kk)

−1 − (Cχ
kk)

−1 ‖ + ‖B̂χ
k − Bχ

k‖‖ (Cχ
kk)

−1 ‖.

By Assumption A.5, ‖Bχ
k‖ ≤ W for some W > 0, so that ‖B̂χ

k‖ is bounded in prob-

ability. By Assumptions A.4 and A.5, ‖ (Cχ
kk)

−1 ‖ ≤ W1 for some W1 > 0. Observ-

ing that the entries of (Cχ
kk)

−1
are rational functions of the entries of Cχ

kk, and that

det (Cχ
kk) > 0 by Assumption A.4, Proposition 3 implies that ‖(Ĉχ

kk)
−1 − (Cχ

kk)
−1 ‖ is

OP(max(n−1/2, ρ
−1/2
T )). Thus ‖Â[k] − A[k]‖ is OP(max(n−1/2, ρ

−1/2
T )). As regards Γ̂̂Γ̂Γψjk,

using (B.1),

‖Â[j]Ĉχ
jkÂ

[k] − A[j]Cχ
jkA

[k]‖ ≤ ‖Â[j]Ĉχ
jk‖‖Â[k] − A[k]‖ + ‖Â[j]‖‖Ĉχ

jk − Cχ
jk‖‖A[k]‖

+‖Â[j] − A[j]‖‖Cχ
jkA

[k]‖.

The conclusion follows.

D Proof of Proposition 5

Consider the static model znt = Rvt + φφφnt. If znt = A(L)xnt were observed, i.e. if

the matrices A(L) were known, then Proposition 5, with an estimator of R based on

the empirical covariance ΓΓΓz of the znt’s, would be straightforward. However, we only

have access to ẑnt = Â(L)xt and its empirical covariance matrix Γ̂̂Γ̂Γ
z
, which makes the

estimation of R significantly more difficult. The consistency properties of our estimator

follow from the convergence result (D.4) in Lemma 13, which establishes the asymptotic

behavior of the difference ΓΓΓz− Γ̂̂Γ̂Γ
z
; Lemmas 7 through 12 are but a preparation for that

crucial result. All lemmas in this Appendix hold, and are proved under Assumptions 1

through 10.
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Lemma 7 As T → ∞ and n→ ∞,

(i) | pχif |= O(n−1/2) and | p̂xif |= OP(n−1/2), uniformly in θ;

(ii) for any positive integer d, n−1∑n
i=1 | pχif |d and n−1∑n

i=1 | p̂xif |d are OP(n−d/2),

uniformly in θ.

Proof. The first part of (i) already has been taken care of in the proof of Lemma 6.

Lemma 6 and Assumption A.5 jointly imply that σ̂xii =
∑q
f=1 λ̂

x
f |p̂xif |2 = OP(1), uni-

formly in θ. As all the terms in the sum are positive, λ̂xf |p̂xif |2 = (λ̂xf/n)n|p̂xif |2 is OP(1)

as well, uniformly in θ. Lemma 4 and Assumption A.7 imply that λ̂xf/n is OP(1) and

bounded away from zero in probability uniformly in θ. The conclusion follows.

As for (ii), we prove it by induction. First consider Pχ
f . When d = 1, n−1∑n

i=1 |p
χ
if |

is bounded by (n−1∑n
i=1 |p

χ
if |2)1/2, which is O(n−1/2). Assume now that the result holds

for d− 1, d ≥ 2. Summing by parts and using part (i) of this Lemma,

n−1
n∑

i=1

| pχif |d = n−1
n∑

i=1

| pχif |d−1| pχif |

= n−1 | pχnf |
n∑

i=1

| pχif |d−1 −n−1
n−1∑

i=1

i∑

s=1

| pχsf |d−1 (| pχi+1,f | − | pχif |)

≤ |pχnf |n−1
n∑

i=1

| pχif |d−1= O(n−1/2 n−(d−1)/2) = O
(
n−d/2

)
,

the inequality holding because without loss of generality (reordering) we can assu-

me | pχi+1,f |≥| pχif |. The same argument applies to P̂x
f . Q.E.D.

Lemma 8 As T → ∞ and n→ ∞,

max
|h|≤BT

∥∥∥∥P
χ (ΛΛΛχ)1/2 Ŵq − P̂x

(
Λ̂̂Λ̂Λx
)1/2

∥∥∥∥ = OP(n1/2 max(n−1, ρ
−1/2
T )). (D.1)

Proof. The left-hand side of (D.1) equals the left-hand side of (B.4) when SM is re-

placed by In. The proof goes along the same lines as that of Lemma 6. Firstly, ‖n1/2Pχ‖

is O(n1/2). Both ‖g − h‖ and ‖h − i‖ are OP(n−1/2 max(n−1, ρ
−1/2
T )). As for ‖i − j‖,

the conclusion follows from Lemma 3 (iii). Q.E.D.

Lemma 9 As T → ∞ and n→ ∞,

(i) |pχif − p̂xif | = OP(n−1/2 max(n−1/2, ρ
−1/2
T )), uniformly in θ;

(ii) n−1
n∑

i=1

|pχif − p̂xif | = OP(n−1/2 max(n−1, ρ
−1/2
T )), uniformly in θ.
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Proof. Starting with (i), by (B.6), pχif (λ
χ
f )

1/2 − p̂x(λ̂xf )
1/2 = OP(max(n−1/2, ρ

−1/2
T )).

Now,

pχif (λ
χ
f )

1/2 − p̂x(λ̂xf )
1/2 = pχif

(
(λχf )

1/2 − (λ̂xf )
1/2
)

+ (λ̂xf )
1/2
(
pχif − p̂xif

)
. (D.2)

For the first term on the right-hand side of (D.2),

pχif
(
(λχf )

1/2 − (λ̂xf )
1/2
)

= n1/2pχif
(λχif − λ̂xif )/n

((λχf )
1/2 + (λ̂xf )

1/2)/n1/2
= OP(max(n−1, ρ

−1/2
T )),

by Lemma 4(i), Assumption A.7 and Lemma 9(i) above. Thus, (λ̂xf )
1/2
(
pχif − p̂xif

)
is

OP(max(n−1/2, ρ
1/2
T )). By Assumption A.7, n−1/2(λ̂xf )

1/2 is bounded away from zero.

The conclusion follows.

Regarding (ii), taking modulus and summing over i = 1, ..., n in (D.2) yields

n−1/2(λ̂xf )
1/2

n∑

i=1

|pχif−p̂xif | ≤ n−1/2
n∑

i=1

|pχif (λ
χ
f )

1/2−p̂x(λ̂xf )1/2| + n−1/2|(λχf )1/2−(λ̂xf )
1/2|

n∑

i=1

|pχif |.

Regarding the first term on the right-hand side, by Jensen’s inequality and Lemma 8:
n∑

i=1

∣∣∣pχif (λ
χ
f )

1/2− p̂x(λ̂xf )
1/2
∣∣∣ ≤ n1/2

( n∑

i=1

∣∣∣pχif (λ
χ
f )

1/2− p̂x(λ̂xf )
1/2
∣∣∣
2
)1/2

= OP(nmax(n−1, ρ
−1/2
T )).

Lemma 4(i)-(ii) and Lemma 7(ii) yield bounds for the second term. Q.E.D.

Lemma 10 For any integer d ∈ N, as T → ∞ and n→ ∞,

n−1
n∑

i=1

| pχif − p̂xif |d= OP((n−1 max(n−1, ρ−1
T ))d/2), (D.3)

uniformly in θ.

Proof. By induction. Lemma 9(ii) implies that n−1∑n
i=1 | p̂

χ
if−p

χ
ij | isOP((n−1 max(n−1, ρ−1

T ))1/2).

In fact, to avoid unnecessary complications, we consider here a slightly looser bound

than the one provided by Lemma 9. Assume now that d ≥ 2 and that the result holds

for d− 1. Using summation by parts,

n−1
n∑

i=1

| pχif − p̂xif |d= n−1
n∑

i=1

| pχif − p̂xif |d−1| pχif − p̂xif |

=| pχnf − p̂xnf | n−1
n∑

i=1

| pχif − p̂xif |d−1

− 1

n

n−1∑

i=1

i∑

k=1

| pχkf − p̂xkf |d−1 (| pχi+1,f−p̂xi+1,f |−| pχif−p̂xif |)

≤ | pχnf−p̂xnf | 1
n

n∑

i=1

| pχif−p̂xif |d−1= | pχnf−p̂xnf |OP

(
(n−1 max(n−1, ρ−1

T ))(d−1)/2
)

since without loss of generality we can assume | pχi+1,f − p̂xi+1,f |≥| pχif − p̂xif |. The result

follows from Lemma 9(i). Q.E.D.
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Lemma 11 For n→ ∞ and T → ∞, uniformly in θ,

(i) n−2
n∑

i=1

n∑

j=1

| σ̂χij(θ) − σχij(θ)|d = OP((max(n−1, ρ−1
T ))d/2);

(ii) n−1
n∑

i=1

| σ̂χij(θ) − σχij(θ) |d= OP((max(n−1, ρ−1
T ))d/2) for any 1 ≤ j ≤ n;

(iii) n−1
n∑

i=1

| σ̂χii(θ) − σχii(θ) |d= OP((max(n−1, ρ−1
T ))d/2).

Proof. We have

σ̂χij − σχij = (λ̂x1 − λχ1 )p̂xi1
¯̂pxj1 + · · · + (λ̂xq − λχq )p̂

x
iq

¯̂pxjq + λχ1 p̂
x
i1(

¯̂pxj1 − p̄χj1)

+λχ1 p̄
χ
j1(p̂

x
i1 − pχi1) + . . .+ λχq p̂

x
iq(

¯̂pxjq − p̄χjq) + λχq p̄
χ
jq(p̂

x
iq − pχiq).

Using the triangular and Cr inequalities, by Lemmas 4, 7 and 10,

n−2
n∑

i=1

n∑

j=1

| σ̂χij − σχij |d

≤ (3q)d−1
(
| λχ1 − λ̂x1 |d

(
n−1

n∑

i=1

| p̂xi1 |d
)2

+ · · ·+ | λχq − λ̂xq |d
(
n−1

n∑

i=1

| p̂xiq |d
)2
)

+ (3q)d−1(λχ1 )d
(
n−2

n∑

i=1

| p̂xi1 |d
n∑

j=1

| pχj1 − p̂xj1 |d +n−2
n∑

j=1

| pχj1 |d
n∑

i=1

| pχi1 − p̂xi1 |d
)

+ · · ·

+ (3q)d−1(λχq )
d
(
n−2

n∑

i=1

| p̂xiq |d
n∑

j=1

| pχjq − p̂xjq |d +n−2
n∑

j=1

| pχjq |d
n∑

i=1

| pχiq − p̂xiq |d
)

= OP((max(n−1, ρ
−1/2
T ))d) +OP((max(n−1, ρ−1

T ))d/2) = OP((max(n−1, ρ−1
T ))d/2).

Statement (i) follows. For statement (ii),

n−1
n∑

i=1

| σ̂χij − σχij |d

≤ (3q)d−1
(
| λχ1 − λ̂x1 |d|p̂xj1|d n−1

n∑

i=1

|p̂xi1|d + · · ·+ | λχq − λ̂xq |d |p̂xjq|d n−1
n∑

i=1

| p̂xiq |d
)

+ (3q)d−1(λχ1 )d
( ∣∣∣pχj1 − p̂xj1

∣∣∣
d
n−1

n∑

i=1

|p̂xi1|
d +

∣∣∣pχj1
∣∣∣
d
n−1

n∑

i=1

| pχi1 − p̂xi1 |d
)

+ · · ·

+ (3q)d−1(λχq )
d
(∣∣∣pχjq − p̂xjq

∣∣∣
d
n−1

n∑

i=1

∣∣∣p̂xiq
∣∣∣
d
+
∣∣∣pχjq

∣∣∣
d
n−1

n∑

i=1

| pχiq − p̂xiq |d
)

= OP((max(n−1, ρ
−1/2
T ))d) +OP((max(n−1, ρ−1

T ))d/2) = OP((max(n−1, ρ−1
T ))d/2).

Statement (iii) follows along the same lines, by setting j = i.

Q.E.D.

Lemma 12 For n→ ∞ and T → ∞,

n−2
S∑

`=0

n∑

i=1

n∑

j=1

| γ̂χij,` − γχij,`|d and n−1
S∑

`=0

n∑

i=1

| γ̂χij,` − γχij,` |d

are OP

(
(max(n−1, ρ−1

T ))d/2
)
.
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Proof. We have |γ̂χij,` − γχij,`| ≤ Uij + V` + Wij , where Uij , V` and Wij are the terms

in the last line of (3.7). Using the Cr inequality we get

n−2
n∑

i=1

n∑

j=1

|γ̂χij,0 − γχij,0|d ≤ n−23d−1
n∑

i=1

n∑

j=1

Ud
ij + n−23d−1

n∑

i=1

n∑

j=1

Vd
` + n−23d−1

n∑

i=1

n∑

j=1

Wd
ij .

The first term on the right-hand side is bounded using Lemma 11. Because ` takes only

a finite number of values, the second term is O(B−d
T ) (see the proof of Proposition 4).

Because the functions σij are of bounded variation uniformly in i and j, see Assumption

A.10, the third term is O(B−d
T ). The same argument used to obtain Proposition 3

applies. The second statement is proved in the same way. Q.E.D.

We are now able to state and prove the main lemma of this section. Assume,

without loss of generality, that n increases by blocks of size q+1, so that n = m(q+1).

Lemma 13 Denoting by Ẑ the T × n matrix with ẑit in entry (t, i), let Γ̂̂Γ̂Γz = Ẑ′Ẑ/T.

Then, as n→ ∞ and T → ∞,

n−1‖Γ̂̂Γ̂Γz −ΓΓΓz‖ = OP(ζTn) and n−1/2‖S ′
M(Γ̂̂Γ̂Γz −ΓΓΓz)‖ = OP(ζTn), (D.4)

where Γz is the population covariance matrix of znt.

Proof. Denote by Γ̌z = Z′Z/T the empirical covariance matrix we would compute

from the znt’s, were the matrices A(L) known. We have

‖Γ̂̂Γ̂Γz −ΓΓΓz‖ ≤ ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖ + ‖Γ̌̌Γ̌Γz −ΓΓΓz‖, (D.5)

so that the lemma can be proved by showing that (D.4) holds with ‖Γ̂̂Γ̂Γz −ΓΓΓz‖ replaced

by any of the two terms on the right-hand side of (D.5). Consider firstly ‖Γ̌̌Γ̌Γz − ΓΓΓz‖.

Using A(L) = In − A1L− · · · − ASL
S , where

As =




A1
s 0 · · · 0

0 A2
s · · · 0

...
. . .

0 0 · · · Am
s




for s > 0 and A0 = In, we obtain

‖Γ̌̌Γ̌Γz−ΓΓΓz‖2≤
S∑

s=0

S∑

r=0

‖AsΓ̂̂Γ̂Γ
x
s−rA

′
r−AsΓΓΓ

x
s−rA

′
r‖2 =

S∑

s=0

S∑

r=0

‖As

(
Γ̂̂Γ̂Γxs−r−ΓΓΓxs−r

)
A′
r‖2, (D.6)

which is a sum of (S+1)2 terms. Inspection of the right-hand side of (D.6) shows that

(D.4) holds, with ‖Γ̂̂Γ̂Γz−ΓΓΓz‖ replaced with ‖Γ̌̌Γ̌Γz−ΓΓΓz‖, under assumptions A.4, A.5, A.9,

and A.10.
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Turning to ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖, since ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖2 ≤ ∑S
s=0

∑S
r=0 ‖ÂsΓ̂̂Γ̂Γ

x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖2,

it is sufficient to prove that (D.4) holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. Denoting by ajsα the α-th column of Aj

s
′
, we have

‖ÂsΓ̂̂Γ̂Γxs−rÂ
r′ − AsΓ̂̂Γ̂Γxs−rA

r′‖2 ≤
m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

(
âj′sαΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−ra

k
rβ

)2

≤ 2
m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

(
(âjsα − aj′sα)Γ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2

+ 2
m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

(
aj′sαΓ̂

x
jk,s−r(â

k
rβ − akrβ)

)2
,

(D.7)

where Γ̂̂Γ̂Γxjk,s−r is the (j, k)-block of Γ̂̂Γ̂Γxs−r = T−1∑T
t=1 xt−rx

′
t−s, and the second inequality

follows from applying the Cr inequality to each term of the form

(âj′sαΓ̂̂Γ̂Γ
x
jk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−ra

k
rβ)

2 = ((âjsα − ajsα)
′Γ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−r(â

k
rβ − akrβ))

2.

The two terms on the right-hand side of (D.7) can be dealt with in the same way. Let

us focus on the first of them. Using the Cauchy-Schwartz, Cr and Jensen inequalities,

we obtain

m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

((âjsα − ajsα)
′Γ̂̂Γ̂Γxjk,s−râ

k
rβ)

2

≤
m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

((âjsα − ajsα)
′(âjsα − ajsα

)
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

=
m∑

k=1

q+1∑

β=1

m∑

j=1

q+1∑

α=1

(âjsα − ajsα)
′(âjsα − ajsα)â

k′
rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

≤
m∑

k=1

q+1∑

β=1

[ m∑

j=1

[ q+1∑

α=1

(âjsα − ajsα)
′(âjsα − ajsα)

]2]1/2[ m∑

j=1

(
âkrβ

′Γ̂̂Γ̂Γxjk,s−r
′Γ̂̂Γ̂Γxjk,s−râ

k
rβ

)2]1/2

= m
[ m∑

j=1

[ q+1∑

α=1

(âjsα − aj′sα)(â
j
sα − ajsα)

]2]1/2 1

m

m∑

k=1

q+1∑

β=1

[ m∑

j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2]1/2

≤ AB, say,

where

A = m(q + 1)1/2
[ m∑

j=1

q+1∑

α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

,

B =
1

m

m∑

k=1

q+1∑

β=1

[ m∑

j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2

≤
[
(q + 1)/m

m∑

k=1

q+1∑

β=1

m∑

j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
= C, say.

First consider A. Letting aj′sα = (ajsα,1 a
j
sα,2 · · · ajsα,q+1), note that ajsα,δ = e′

αA
[j]gsδ,

where eα and gsδ are the α-th and (s− 1)(q+1)+ δ-th unit vectors in the (q+1)- and
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(q + 1)S-dimensional canonical bases, respectively. Writing, for the sake of simplicity,

Bj and Cj instead of Bχ
j and Cχ

jj , as defined in (2.18) and (2.19), we obtain, from

(B.1), the Cr, the triangular and the Cauchy-Schwartz inequalities,

[ m∑

j=1

q+1∑

α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2 ]1/2

≤ (q + 1)1/2
( m∑

j=1

q+1∑

α=1

q+1∑

δ=1

(âjsα,δ − ajsα,δ)
4
)1/2

= (q + 1)1/2
( m∑

j=1

q+1∑

α=1

q+1∑

δ=1

[
eα
(
(B̂j − Bj)Ĉ

−1
j + BjĈ

−1
j (Ĉj − Cj)C

−1
j

)
gsδ
]4 )1/2

≤ 23/2(q + 1)3/2
( m∑

j=1

‖(B̂j − Bj)Ĉ
−1
j ‖4 + ‖BjĈ

−1
j (Ĉj − Cj)C

−1
j ‖4

)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j − Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖8

]1/2

+
[ m∑

j=1

‖Ĉj − Cj‖8
]1/2[ m∑

j=1

‖B̂jĈ
−1
j ‖8‖C−1

j ‖8
]1/2)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j − Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖8

]1/2

+
[ m∑

j=1

‖Ĉj − Cj‖8
]1/2[ m∑

j=1

‖B̂j‖16
] 1

4
[ m∑

j=1

‖Ĉ−1
j ‖16‖C−1

j ‖16
] 1

4
)1/2

.

Denoting by bjil the entries of Bj, i = 1, . . . , q+1, l = 1, . . . , S(q+1), the Cr inequality

and Lemma 12 entail

m∑

j=1

‖B̂j − Bj‖8 ≤
m∑

j=1

( q+1∑

i=1

S(q+1)∑

l=1

(b̂jil − bjil)
2
)4

≤ (q + 1)6S3
m∑

j=1

q+1∑

i=1

S(q+1)∑

l=1

(b̂jil − bjil)
8 = OP(m(max(n−1, ρ−1

T ))4).

In a similar way, one can prove that
∑m
j=1 ‖Ĉj−Cj‖8 is OP(m(max(n−1, ρ−1

T ))4). More-

over, Assumptions A.4 and A.5 imply that
∑m
j=1 ‖B̂j‖16 and

∑m
j=1 ‖C−1

j ‖16, as well as
∑m
j=1 ‖Ĉ−1

j ‖8 and
∑m
j=1 ‖Ĉ−1

j ‖16, are OP (m).

Collecting terms:

A = m(q + 1)1/2
[ m∑

j=1

q+1∑

α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

≤ 23/2(q + 1)2m
( m∑

i=1

‖Âi
s − Ai

s‖4
)1/2

= OP

(
m3/2 max(n−1, ρ−1

T )
)
. (D.8)
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Turning to C, we obtain, by means of similar methods,

C ≤ ((q + 1)/m)1/2
{[ m∑

k=1

( q+1∑

β=1

(âk′rβâ
k
rβ)

2
)2]1/2[ m∑

j=1

( m∑

k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ ((q + 1)/m)1/2
{[

(q + 1)
m∑

k=1

q+1∑

β=1

(âk′rβâ
k
rβ)

4
]1/2[ m∑

j=1

( m∑

k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ (q + 1)1/2
[
(q + 1)4

m∑

k=1

q+1∑

α=1

q+1∑

β=1

(âkr,αβ)
8
]1/4[

m−1
m∑

j=1

m∑

k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4]1/4

≤ (q + 1)3/2
[ m∑

k=1

q+1∑

α=1

q+1∑

β=1

(âkr,αβ)
8
]1/4[

((q + 1)6/m)
m∑

j=1

m∑

k=1

q+1∑

α=1

q+1∑

β=1

(γ̂xjk,αβ(s− r))8
] 1

4

= OP(m1/2),

where γ̂xjk,αβ(s− r) stands for the (α, β) entry of Γ̂̂Γ̂Γxjk,s−r. Collecting terms yields

m−1‖ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r‖ ≤

(
1

m2
AC

)1/2

= OP (ζTn) , r, s = 0, ..., p.

Now consider the second statement in (D.4). Again, it is sufficient to prove that it

holds with ‖Γ̂̂Γ̂Γz−ΓΓΓz‖ replaced with any of the ‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r−AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. Without loss

of generality, we can assume that the number s of elements selected by SM is of the

form s = s∗(q + 1) for some integer s∗. The two terms on the right-hand side of (D.7)

must be dealt with separately, since there is only one summation ranging from 1 to n.

In the first of those two terms, substituting the summation
∑s∗

k=1 for
∑m
k=1 gives

m∑

j=1

s∗∑

k=1

q+1∑

α=1

q+1∑

β=1

(
(âjsα − ajsα)

′Γ̂̂Γ̂Γxjk,s−râ
k
rβ

)2
= OP

(
m(max(n−1, ρ−1

T ))
)
.

Indeed, the left-hand side is bounded by a product DE, say, where

D = m1/2(q + 1)1/2
[ m∑

j=1

q+1∑

α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2 ]1/2

and

E =
s∗∑

k=1

q+1∑

β=1

(
1

m

m∑

j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2
)1/2

can be bounded along the same lines as A and B are in the proof of the first statement.

As for the second term, using arguments similar to those used in the first part of

the proof, we obtain

s∗∑

k=1

m∑

j=1

q+1∑

α=1

q+1∑

β=1

(
(âksα − aksα)

′Γ̂̂Γ̂Γx′jk,s−ra
j
rβ

)2

≤ m
[ s∗∑

k=1

[ q+1∑

α=1

(âksα − aksα)
′(âksα − aksα)

]2]1/2[ 1

m

m∑

j=1

q+1∑

β=1

[ s∗∑

k=1

(aj′rβΓ̂̂Γ̂Γ
x
jk,s−rΓ̂̂Γ̂Γ

x′
jk,s−ra

j
rβ)

2
]1/2]

= FG, say.
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It easily follows from Proposition 4 that F = OP(mζ2
TN) , while G = OP(1) can be

obtained using the arguments used to bound C in the proof of the first statement.

Collecting terms, we obtain, as desired,

m−1/2‖S ′
M(ÂsΓ̂

x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r)‖ = Op (ζTn) , r, s = 0, ..., p. Q.E.D.

Starting with (D.4), which plays here the same role as (3.5) does for the proof of

Proposition 2, we can easily prove statements that replicate in this context Lemmas 3,

4, 5 and 6, using the same arguments used in Section B, with x, χ and ξ replaced by

z, ψ and φ respectively. Precisely:

(I) In the results corresponding to Lemma 3 we obtain the rate ζTn for (i), (ii), (iii)

and (iv). Note that no reduction from 1/n to 1/
√
n occurs between (iii) and

(iv), as in Lemma 3. For, (iii) has OP(ζTn) + O(1/n) = OP(ζTn), while (iv) has

OP(ζTn) +O(1/
√
n) = OP(ζTn).

(II) The same rate ζTn is obtained for the results of Lemma 4.

(III) The same holds for Lemma 5. The orthogonal matrix in point (iii), call it again

Ŵq, has either 1 or −1 on the diagonal. Thus ˜̂Wq = Ŵq.

(IV) Lastly, Lemma 6 becomes

‖S ′
M

(
P̂z
(
Λ̂̂Λ̂Λz
)1/2

− Pψ
(
ΛΛΛψ
)1/2

Ŵq

)
‖ = OP (ζTn) . (D.9)

Going over the proof of Lemma 6, we see that ‖c−d‖ has the worst rate, whereas

here ‖a− b‖, ‖b− c‖ and ‖c− d‖ all have rate OP(ζTn).

(V) Moreover, in the same way as the proof of Lemma 6 can be replicated to obtain

(D.9), the proof of Lemma 8, see below, can be replicated to obtain:

‖P̂z(Λ̂̂Λ̂Λz)1/2 − Pψ(Λψ)1/2Ŵq‖ = OP

(
n1/2ζTn

)
. (D.10)

E Proof of Proposition 6

Let

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt

= (Λ̂z)−1/2P̂z′(Â(L) − A(L))xt + ((Λ̂z)−1/2P̂z′ − Ŵz(Λψ)−1/2Pψ′)A(L)xt

+Ŵz(Λψ)−1/2Pψ′A(L)ξt + Ŵz(Λψ)−1/2Pψ′Pψ(Λψ)1/2vt. (E.11)

55



Considering the first term on the right hand side of (E.11),

‖(Λ̂z)−1/2P̂z′
(
Â(L) − A(L)

)
xt‖ = ‖(Λ̂z/n)−1/2P̂z′n−1/2(Â(L) − A(L) xt‖

≤ ‖(Λ̂z/n)−1/2‖‖P̂z′‖‖n−1/2(Â(L) − A(L))xt‖.

Since ‖(Λ̂z/n)−1/2‖ = OP(1) and ‖P̂z‖ = 1, by (D.8), we get

‖n−1/2(Â(L) − A(L))xt‖ ≤ n−1/2
p∑

r=0

[ m∑

i=1

xi′t−r(Â
i
r − Ai

r)
′(Âi

r −Ai
r)x

i
t−r

]1/2

≤
p∑

r=0

(
n−1

m∑

i=1

(xi′t−rx
i
t−r)

2
)1/4(

n−1
m∑

i=1

( q+1∑

j=1

q+1∑

h=1

(âir,jh − air,jh)
2
)2)1/4

≤
p∑

r=0

(
n−1

m∑

i=1

(xi′t−rx
i
t−r)

2
)1/4(

(q + 1)3n−1
m∑

i=1

‖Âi
r − Ai

r‖4
)1/4

= OP (ζTn)

setting xt = (x1′
t ...x

i′
t ...x

m′
t )′ for sub-vectors xit of size (q + 1) × 1.

Next, considering the second term on the righthand side of (E.11),

‖
(
(Λ̂z)−1/2P̂z′ − Ŵz(Λψ)−1/2Pψ′

)
A(L)xt‖

= ‖(Λ̂z/n)−1
(
(Λ̂z)1/2P̂z′ − ŴzΛ̂z(Λψ)−1/2Pψ′

)
A(L)xt/n‖

= ‖(Λ̂z/n)−1
(
(Λ̂z)1/2P̂z′ − Ŵz[Λ̂z − Λψ + Λψ](Λψ)−1/2Pψ′

)
A(L)xt/n‖

≤ ‖(Λ̂z/n)−1‖‖
(
(Λ̂z)1/2P̂z′ − Ŵz(Λψ)1/2Pψ′

)
‖‖A(L)xt/n‖

+‖(Λ̂z/n)−1‖‖Ŵz(Λ̂z − Λψ)(Λψ)−1/2Pψ′‖‖A(L)xt/n‖ = OP (ζTn) ,

since, by (D.10), ‖(P̂z(Λ̂z)1/2 − Pψ(Λψ)1/2Ŵz)‖ = OP

(
n1/2ζTn

)
, and

‖Â(L)xt/n‖ = n−1/2
(
x′
tÂ

′(L)Â(L)xt/n
)1/2

≤ n−1/2
p∑

r=0

(
x′
t−rÂ

′
rÂrxt−r/n

)1/2

≤ n−1/2
p∑

r=0

(x′
t−rxt−r/n)1/2(λ1(Â

′
rÂr))

1/2 = OP(n−1/2),

boundedness of λ1(Â
′
rÂr) being a consequence of Assumptions A.4 and A.5. As for

the third term on the right hand side of (E.11), (Λψ)−1/2Pψ′A(L)ξt is OP(n−1/2). To

conclude, note that Ŵz(Λψ)−1/2Pψ′Pψ(Λψ)1/2vt = Ŵzvt. Q.E.D.
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F Data description
Quarterly data. Most series are taken from the FRED data base. A few stock market and leading indicators are
taken from Data Stream. Some series have been constructed as transformations of the original FRED series. Monthly
data have been temporally aggregated to get quarterly figures. Outliers are treated as in Stock and Watson (2002b).
Transformations: 1 = levels, 2 = first differences of the original series, 5 = first differences of logs of the original series,
6 = second differences of logs of the original series.

no.series Transf. Mnemonic Long Label
1 5 GDPC1 Real Gross Domestic Product, 1 Decimal
2 5 GNPC96 Real Gross National Product
3 5 NICUR/GDPDEF National Income/GDPDEF
4 5 DPIC96 Real Disposable Personal Income
5 5 OUTNFB Nonfarm Business Sector: Output
6 5 FINSLC1 Real Final Sales of Domestic Product, 1 Decimal
7 5 FPIC1 Real Private Fixed Investment, 1 Decimal
8 5 PRFIC1 Real Private Residential Fixed Investment, 1 Decimal
9 5 PNFIC1 Real Private Nonresidential Fixed Investment, 1 Decimal
10 5 GPDIC1 Real Gross Private Domestic Investment, 1 Decimal
11 5 PCECC96 Real Personal Consumption Expenditures
12 5 PCNDGC96 Real Personal Consumption Expenditures: Nondurable Goods
13 5 PCDGCC96 Real Personal Consumption Expenditures: Durable Goods
14 5 PCESVC96 Real Personal Consumption Expenditures: Services
15 5 GPSAVE/GDPDEF Gross Private Saving/GDP Deflator
16 5 FGCEC1 Real Federal Consumption Expenditures & Gross Investment, 1 Decimal
17 5 FGEXPND/GDPDEF Federal Government: Current Expenditures/ GDP deflator
18 5 FGRECPT/GDPDEF Federal Government Current Receipts/ GDP deflator
19 2 FGDEF Federal Real Expend-Real Receipts
20 1 CBIC1 Real Change in Private Inventories, 1 Decimal
21 5 EXPGSC1 Real Exports of Goods & Services, 1 Decimal
22 5 IMPGSC1 Real Imports of Goods & Services, 1 Decimal
23 5 CP/GDPDEF Corporate Profits After Tax/GDP deflator
24 5 NFCPATAX/GDPDEF Nonfinancial Corporate Business: Profits After Tax/GDP deflator
25 5 CNCF/GDPDEF Corporate Net Cash Flow/GDP deflator
26 5 DIVIDEND/GDPDEF Net Corporate Dividends/GDP deflator
27 5 HOANBS Nonfarm Business Sector: Hours of All Persons
28 5 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons
29 5 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments
30 5 ULCNFB Nonfarm Business Sector: Unit Labor Cost
31 5 WASCUR/CPI Compensation of Employees: Wages & Salary Accruals/CPI
32 6 COMPNFB Nonfarm Business Sector: Compensation Per Hour
33 5 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour
34 6 GDPCTPI Gross Domestic Product: Chain-type Price Index
35 6 GNPCTPI Gross National Product: Chain-type Price Index
36 6 GDPDEF Gross Domestic Product: Implicit Price Deflator
37 6 GNPDEF Gross National Product: Implicit Price Deflator
38 5 INDPRO Industrial Production Index
39 5 IPBUSEQ Industrial Production: Business Equipment
40 5 IPCONGD Industrial Production: Consumer Goods
41 5 IPDCONGD Industrial Production: Durable Consumer Goods
42 5 IPFINAL Industrial Production: Final Products (Market Group)
43 5 IPMAT Industrial Production: Materials
44 5 IPNCONGD Industrial Production: Nondurable Consumer Goods
45 2 AWHMAN Average Weekly Hours: Manufacturing
46 2 AWOTMAN Average Weekly Hours: Overtime: Manufacturing
47 2 CIVPART Civilian Participation Rate
48 5 CLF16OV Civilian Labor Force
49 5 CE16OV Civilian Employment
50 5 USPRIV All Employees: Total Private Industries
51 5 USGOOD All Employees: Goods-Producing Industries
52 5 SRVPRD All Employees: Service-Providing Industries
53 5 UNEMPLOY Unemployed
54 5 UEMPMEAN Average (Mean) Duration of Unemployment
55 2 UNRATE Civilian Unemployment Rate
56 5 HOUST Housing Starts: Total: New Privately Owned Housing Units Started
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57 2 FEDFUNDS Effective Federal Funds Rate
58 2 TB3MS 3-Month Treasury Bill: Secondary Market Rate
59 2 GS1 1-Year Treasury Constant Maturity Rate
60 2 GS10 10-Year Treasury Constant Maturity Rate
61 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield
62 2 BAA Moody’s Seasoned Baa Corporate Bond Yield
63 2 MPRIME Bank Prime Loan Rate
64 6 BOGNONBR Non-Borrowed Reserves of Depository Institutions
65 6 TRARR Board of Governors Total Reserves, Adjusted for Changes in Reserve
66 6 BOGAMBSL Board of Governors Monetary Base, Adjusted for Changes in Reserve
67 6 M1SL M1 Money Stock
68 6 M2MSL M2 Minus
69 6 M2SL M2 Money Stock
70 6 BUSLOANS Commercial and Industrial Loans at All Commercial Banks
71 6 CONSUMER Consumer (Individual) Loans at All Commercial Banks
72 6 LOANINV Total Loans and Investments at All Commercial Banks
73 6 REALLN Real Estate Loans at All Commercial Banks
74 6 TOTALSL Total Consumer Credit Outstanding
75 6 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items
76 6 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food
77 6 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy
78 6 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy
79 6 CPIENGSL Consumer Price Index for All Urban Consumers: Energy
80 6 CPIUFDSL Consumer Price Index for All Urban Consumers: Food
81 6 PPICPE Producer Price Index Finished Goods: Capital Equipment
82 6 PPICRM Producer Price Index: Crude Materials for Further Processing
83 6 PPIFCG Producer Price Index: Finished Consumer Goods
84 6 PPIFGS Producer Price Index: Finished Goods
85 6 OILPRICE Spot Oil Price: West Texas Intermediate
86 5 USSHRPRCF US Dow Jones Industrials Share Price Index (EP) NADJ
87 5 US500STK US Standard & Poor’s Index of 500 Common Stocks
88 5 USI62...F US Share Price Index NADJ
89 5 USNOIDN.D US Manufacturers New Orders for Non Defense Capital Goods (BCI 27)
90 5 USCNORCGD US New Orders of Consumer Goods & Materials (BCI 8) CONA
91 1 USNAPMNO US ISM Manufacturers Survey: New Orders Index SADJ
92 5 USVACTOTO US Index of Help Wanted Advertising VOLA
93 5 USCYLEAD US The Conference Board Leading Economic Indicators Index SADJ
94 5 USECRIWLH US Economic Cycle Research Institute Weekly Leading Index
95 2 GS10-FEDFUNDS
96 2 GS1-FEDFUNDS
97 2 BAA-FEDFUNDS
98 5 GEXPND/GDPDEF Government Current Expenditures/ GDP deflator
99 5 GRECPT/GDPDEF Government Current Receipts/ GDP deflator
100 2 GDEF Governnent Real Expend-Real Receipts
101 5 GCEC1 Real Government Consumption Expenditures & Gross Investment, 1 Decimal
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Monthly data. Most series are those of the Stock-Watson data set used in Bernanke et al. (2005). A few real exchange
rates and short-term interest rate spreads between US and some foreign countries are added, and some discontinued
series are eliminated. The basic source is the FRED data base; some series have been constructed as transformations
of the original series. Outliers are treated as in Stock and Watson (2002b). Transformations: 1 = levels, 4 = logs, 5 =
first differences of logs of the original series.

no.series Mnemonic Long Label Transformation
1 DSPIC96 Real Disposable Personal Income 5
2 A0M051 Personal Income Less Transfer Payments 5
3 PCEC96 Real Personal Consumption Expenditures 5
4 A0M059 Sales, Orders, And Deliveries, Sales, Retail Stores 5
5 IPS10 Industrial Production Index - Total Index 5
6 IPS11 Industrial Production Index - Products, Total 5
7 IPS12 Industrial Production Index - Consumer Goods 5
8 IPS13 Industrial Production Index - Durable Consumer Goods 5
9 IPS18 Industrial Production Index - Nondurable Consumer Goods 5

10 IPS25 Industrial Production Index - Business Equipment 5
11 IPS299 Industrial Production Index - Final Products 5
12 IPS306 Industrial Production Index - Fuels 5
13 IPS307 Industrial Production Index - Residential Utilities 5
14 IPS32 Industrial Production Index - Materials 5
15 IPS34 Industrial Production Index - Durable Goods Materials 5
16 IPS38 Industrial Production Index - Nondurable Goods Materials 5
17 IPS43 Industrial Production Index - Manufacturing (SIC) 5
18 PMP NAPM Production Index (Percent) 1
19 MCUMFN Capacity Utilization: Manufacturing (NAICS) 1
20 LHEL Index Of Help-Wanted Advertising In Newspapers 5
21 LHELX Employment: Ratio; Help-Wanted 4
22 LHEM Civilian Labor Force: Employed, Total 5
23 LHNAG Civilian Labor Force: Employed, Nonagric.Industries 5
24 LHU14 Unemploy.By Duration: Persons Unempl.5 To 14 Wks 1
25 LHU15 Unemploy.By Duration: Persons Unempl.15 Wks + 1
26 LHU26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks 1
27 LHU27 Unemploy.By Duration: Persons Unempl.27 Wks + 1
28 LHU5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks 1
29 LHU680 Unemploy.By Duration: Average(Mean)Duration In Weeks 1
30 LHUR Unemployment Rate: All Workers, 16 Years & Over (%,SA) 1
31 CES002 Employees On Nonfarm Payrolls - Total Private 5
32 CES003 Employees On Nonfarm Payrolls - Goods-Producing 5
33 CES006 Employees On Nonfarm Payrolls - Mining, Thousands 5
34 CES011 Employees On Nonfarm Payrolls - Construction 5
35 CES015 Employees On Nonfarm Payrolls - Manufacturing 5
36 CES017 Employees On Nonfarm Payrolls - Durable Goods 5
37 CES033 Employees On Nonfarm Payrolls - Nondurable Goods 5
38 CES046 Employees On Nonfarm Payrolls - Service-Providing 5
39 CES048 Employees On Nonfarm Payrolls - Trade, Transp., Utilities 5
40 CES049 Employees On Nonfarm Payrolls - Wholesale Trade 5
41 CES053 Employees On Nonfarm Payrolls - Retail Trade 5
42 CES088 Employees On Nonfarm Payrolls - Financial Activities 5
43 CES140 Employees On Nonfarm Payrolls - Government 5
44 AWHI Aggregate Weekly Hours Index: Total Private Industries 5
45 CES151 Average Weekly Hours Goods-Producing 1
46 CES155 Average Weekly Hours Manufacturing Overtime Hours 1
47 AWHMAN Average Weekly Hours: Manufacturing 1
48 PMEMP Napm Employment Index (Percent) 1
49 HSBMW Houses Authorized By Build. Permits:Midwest 4
50 HSBNE Houses Authorized By Build. Permits:Northeast 4
51 HSBR Housing Authorized: Total New Priv Housing Units 4
52 HSBSOU Houses Authorized By Build. Permits:South 4
53 HSBWST Houses Authorized By Build. Permits:West 4
54 HSFR Housing Starts:Nonfarm (1947-58);Total Farm&Nonfarm(1959-) 4
55 HSMW Housing Starts:Midwest 4
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no.series Mnemonic Long Label Transformation
56 HSNE Housing Starts:Northeast 4
57 HSSOU Housing Starts:South 4
58 HSWST Housing Starts:West 4
59 PMDEL Napm Vendor Deliveries Index 1
60 PMI Purchasing Managers’ Index 1
61 PMNO Napm New Orders Index 1
62 PMNV Napm Inventories Index 1
63 A0M007 New Orders, Durable Goods Industries 5
64 A0M027 New Orders, Capital Goods Industries, Nondefense 5
65 A1M092 Manufacturers’ Unfilled Orders, Durable Goods Industries 5
66 FM1 Money Stock: M1 5
67 FM2 Money Stock:M2 5
68 FMFBA Monetary Base, Adj For Reserve Requirement Changes 5
69 FMRNBA Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs 5
70 FMRRA Depository Inst Reserves:Total,Adj For Reserve Req Chgs 5
71 FCLBMC Wkly Rp Lg Com’L Banks:Net Change Com’L & Indus Loans 1
72 CCINRV Consumer Credit Outstanding - Nonrevolving(G19) 5
73 FSPCOM S&P’S Common Stock Price Index: Composite 5
74 FSPIN S&P’S Common Stock Price Index: Industrials 5
75 FYFF Interest Rate: Federal Funds (Effective) 1
76 FYGM3 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo. 1
77 FYGM6 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.0 1
78 FYGT1 Interest Rate: U.S.Treasury Const Maturities,1-Yr. 1
79 FYGT10 Interest Rate: U.S.Treasury Const Maturities,10-Yr. 1
80 FYGT5 Interest Rate: U.S.Treasury Const Maturities,5-Yr. 1
81 FYAAAC Bond Yield: Moody’S Aaa Corporate 1
82 FYBAAC Bond Yield: Moody’S Baa Corporate 1
83 EXRUS United States;Effective Exchange Rate (MERM) 5
84 EXRCAN Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) 5
85 EXRJAN Foreign Exchange Rate: Japan (Yen Per U.S.$) 5
86 EXRSW Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 5
87 EXRUK Foreign Exchange Rate: United Kingdom (Cents Per Pound) 5
88 PWFCSA Producer Price Index:Finished Consumer Goods 5
89 PWFSA Producer Price Index: Finished Goods 5
90 PWCMSA Producer Price Index:Crude Materials 5
91 PWIMSA Producer Price Index:Intermed Mat.Supplies & Components 5
92 PMCP Napm Commodity Prices Index 1
93 PU83 CPI-U: Apparel & Upkeep 5
94 PU84 CPI-U: Transportation 5
95 PU85 CPI-U: Medical Care 5
96 PUNEW CPI-U: All Items 5
97 PUC CPI-U: Commodities 5
98 PUCD CPI-U: Durables 5
99 PUS CPI-U: Services 5

100 PUXF CPI-U: All Items Less Food 5
101 PUXHS CPI-U: All Items Less Shelter 5
102 PUXM CPI-U: All Items Less Medical Care 5
103 CES277 Average Hourly Earnings - Construction 5
104 CES278 Average Hourly Earnings - Manufacturing 5
105 CES275 Average Hourly Earnings Goods-Producing 5
106 Real Foreign Exchange Rate: Swiss 4
107 Real Foreign Exchange Rate: Japan 4
108 Real Foreign Exchange Rate: Uk 4
109 Real Foreign Exchange Rate: Canada 4
110 Us - Canada Interest Rates Spread 1
111 Us - Japan Interest Rates Spread 1
112 Us - Uk Interest Rates Spread 1
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