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Abstract

This paper questions whether it is possible to derive consistency and

asymptotic normality of the Gaussian quasi-maximum likelihood estima-

tor (QMLE) for possibly the simplest VEC-GARCH model, namely the

multivariate ARCH(1) model of the BEKK form, under weak moment

conditions similar to the univariate case. In contrast to the univariate

specification, we show that the expectation of the loglikelihood function

is unbounded, away from the true parameter value, if (and only if) the

observable has unbounded second moment. Despite this non-standard

feature, consistency of the Gaussian QMLE is still warranted. The same

moment condition proves to be necessary and sufficient for the stationarity

of the score, when evaluated at the true parameter value. This explains

why high moment conditions, typically bounded sixth moment and above,

have been used hitherto in the literature to establish the asymptotic nor-

mality of the QMLE in the multivariate framework.

1 Introduction

Whereas the probabilistic and statistical theory of univariate GARCH models

can be considered firmly established, there are still many open problems for

multivariate GARCH (MGARCH) models. In the univariate framework, nec-

essary and sufficient conditions for strict stationarity have been established by

Nelson (1990) and Bougerol and Picard (1992a,b). On the other hand, in a

multivariate framework only sufficient conditions are known; see, for example,
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Boussama et al. (2011). Berkes et al. (2003) derived consistency and asymptotic

normality of the Gaussian QMLE for univariate GARCH(p, q) processes under

mild conditions, extending the GARCH(1, 1) results of Lumsdaine (1996) and

Lee and Hansen (1994). In particular, their results imply that the existence

of the second moment of the observed variable, typically a financial return, is

not required. Francq and Zaköıan (2004) and Robinson and Zaffaroni (2006)

obtained the same results, the former assuming slightly weaker conditions, the

latter considering a more general model. Jensen and Rahbek (2004a,b) showed

that the parameters of the ARCH(1) and GARCH(1,1) models, with a known

intercept, can be consistently estimated and exhibits a conventional Gaussian

asymptotic distribution with a standard rate of convergence, even if the pa-

rameters are outside the strict stationarity region. From a theoretical point of

view, these results show that the presence of a unit, and even explosive, root

in the autoregressive equation does not imply a knife-edge result on the asymp-

totic distribution of the QMLE. From an empirical point of view, conditions

requiring only the existence of low order (fractional) moments of the observed

variable are more likely met by financial time series, characterized by a fat-tail

distribution.

Let us now turn back to the multivariate framework. When several times

series displaying temporal or contemporaneous dependencies are under investi-

gation, it is important to analyze them in a multivariate framework. In particu-

lar, understanding the co-movements of financial returns is of great importance,

for example, for asset pricing, risk management, and asset allocation. How-

ever, unlike ARMA models, the GARCH model specification does not suggest

a natural extension to the multivariate framework (Francq and Zaköıan, 2010a,

Chapter 11). Two recent surveys by Bauwens et al. (2006) and Silvennoinen and

Teräsvirta (2008) offer a comprehensive review of the most common MGARCH

models. Since these models may differ substantially from each other, there is

no general result covering all MGARCH models. Most of the results in the

literature are valid only for particular models; see Francq and Zaköıan (2010a),

Section 11.5. for a complete and updated bibliography. For instance, Hafner

and Preminger (2009a) and Francq and Zaköıan (2010b) derived asymptotic

normality of the QMLE estimator for a full factor GARCH model and the CCC

(constant conditional correlation) GARCH model of Bollerslev (1990) respec-

tively, under conditions that do not involve the existence of the second-order

moment of the observable process. However, for the general MGARCH model

known as the VEC-GARCH model, which was introduced by Bollerslev et al.

(1988), the more general results are by Comte and Lieberman (2003) and Hafner

and Preminger (2009b) who showed asymptotic normality of the QMLE assum-

ing the eighth and sixth moment, respectively, of the observable process. Bardet

and Wintenberger (2009) provide asymptotic results for the QMLE of a class of

multidimensional causal processes that include multivariate ARCH(1) processes

as a special case. Aymptotic normality is obtained assuming that the fourth

moment of the observable variables is bounded, among other less primitive con-

ditions (Bardet and Wintenberger, 2009, Sec. 4.3).
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It is worth recalling that the VEC-GARCH model can be viewed as the most

direct generalization of the univariate GARCH. Moreover, this model is very

general, and it contains as important special case the BEKK model by Engle

and Kroner (1995). The main advantage of the BEKK specification is that it

automatically ensures that the conditional covariance matrices are almost surely

positive definite. The relation between the VEC and the BEKK parametrization

is analyzed by Stelzer (2008). Given the discrepancy between the strength of

the regularity conditions employed to derive the asymptotics of the Gaussian

QMLE in the univariate and multivariate case, it is natural to ask whether this

discrepancy is due to some fundamental difference or just because of technical

difficulties that have not been solved so far. To analyze this question we shall

consider one of the simplest models (see Equation (1)) contained in the VEC-

GARCH model.

The core results of the paper are the following. First, for the MGARCH

model under consideration, we show that there are parameters for which the

Gaussian loglikelihood function has unbounded mean if and only if the observ-

able has an unbounded second moment. This holds under a rather weak set of

conditions. Roughly speaking it excludes that the observable vector has a sin-

gular distribution and that the parameter space is too small. Instead, the mean

is finite at the true parameter value under an extremely mild moment condition.

This non standard behavior does not preclude and in fact, if any, facilitates the

proof for consistency of the Gaussian QMLE. Second, we establish that bound-

edness of the second moment of the observable is also necessary and sufficient

for boundedness of the variance matrix of the score function. Thus, when the

second moment is unbounded, one of the major steps in proving asymptotic

normality of the QMLE is ruled out. This shows that, although the moment

conditions imposed in the literature might be stronger than necessary, certainly

asymptotic normality of the Gaussian QMLE cannot be established simply as-

suming a mild fractional moment condition of the observable, as occurring in

the univariate case.

The rest of the article is organized as follows. In Section 2 we briefly recall

the model we shall study, introduce some notation and assumptions. Section 3

investigates the behavior of the expectation of the likelihood function paying

particular attention to the behavior of the expectation of the likelihood function

if the observable variables do not have a finite second moment. The ideas we use

to show this behavior will also be the basis for proving that the second moments

of the observable variables are necessary to ensure that the score function has

a finite variance, as illustrated in Section 4. In the Appendix we give some

auxiliary results that are used in the proofs.

2 Model, notation and assumptions

We denote the set of real p × p real matrices by Mp, the linear subspace of

symmetric matrices by Sp, the cone of positive semidefinite matrices by S†p and

its interior (positive definite matrices) by S‡p. For B ∈ Mp we denote by tr(B)
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and B′ the trace and the transpose of B, respectively; det(B) is the determinant

and B−1 the inverse of B. The scalar λi(B) is the ith eigenvalue of the matrix B,

λmin and λmax denote the minimum and the maximum eigenvalue, respectively.

The selection vector e
(p)
i is defined as the ith column of the identity matrix Ip.

The vec(·) operator stacks columns of a matrix one under another in a single

column; the vech(·) of B ∈ Sp does the same thing but starting each column at

its diagonal elements. We use the notation E[·] and ‖ · ‖ for the expectation and

the Euclidean norm, respectively. We denote by
a.s.−→ almost sure convergence.

For a random variable X we denote by X+ its positive part, and by X− its

negative part. As usual, we say that E[X] is defined if either E[X+] or E[X−]

is finite. If both are finite, we say that E[X] exists.

Let {Xt}t∈Z be a sequence of random vectors with values in Rm and let

Ft−1 be the σ-field generated by past X ′ts, i.e. Ft−1 := {Xt−1, Xt−2, . . . }. We

assume that

Xt = H
1/2
t (θ0)εt, t ∈ Z,

where {εt}t∈Z, εt ∈ Rm, is a sequence of unobservable and real-valued random

vectors and the conditional variance-covariance matrix Ht(θ0) evolves according

to the equation

Ht(θ0) = C0 +A0Xt−1X
′
t−1A

′
0, (1)

with C0 ∈ S‡m, A0 ∈ Mm. The true, but unknown v-dimensional vector θ0 on

the left-hand side of model (1), is given by

θ0 = (vech(C0)′, vec(A0)′)′,

where v = m(3m + 1)/2. Without loss of generality, H
1/2
t (θ0) is chosen to be

symmetric and positive definite; the choice is then unique by Theorem 7.2.6. in

Horn and Johnson (1985). Under the standard assumptions (cf. Assumption 2.1

below) it follows that Ht(θ0) is the conditional covariance matrix of Xt given

Ft−1, that is

E[Xt|Ft−1] = 0, E[XtX
′
t|Ft−1] = Ht(θ0).

The normal density based quasi-maximum likelihood estimator θ̂n is defined as

minimizing

Ln(θ) =
1

2n

n∑
t=2

`t(θ), (2)

with

`t(θ) = X ′tH
−1

t (θ)Xt + log (det (Ht(θ))) . (3)

Minimization is with respect to the set of matrices with elements

Ht(θ) = C(θ) +A(θ)Xt−1X
′
t−1A

′(θ),

where C(θ) ∈ S‡m and A(θ) ∈ Mm. The parameter θ and the matrices C(θ)

and A(θ) are related by θ := (vech(C)′, vec(A)′)′. The main advantage of model
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(1) is that the inverse of Ht(θ) is easy to compute using the Sherman-Morrison-

Woodbury formula (Harville, 1997, Corollary 18.2.10.):

H−1
t (θ) = C(θ)−1 −

C(θ)−1A(θ)Xt−1X
′
t−1A(θ)′C(θ)−1

1 +X ′t−1A
′(θ)C(θ)−1A(θ)Xt−1

.

In the original paper of Engle and Kroner (1995) the constant matrix we denoted

C0 is the product of a lower triangular matrix and its transpose. This, of course,

ensures positive definiteness. Moreover, this parametrization has advantages for

estimation but it is not necessary from a theoretical point of view and it is less

convenient in terms of notation.

At several places later on we need one or more of the following assumptions.

Because we are only interested in the expectation of the likelihood function

and the variance of the score, we do not state our assumptions for the whole

sequence {Xt} and do not incorporate conditions like stationarity, necessary to

prove consistency and asymptotic normality.

Assumption 2.1 (a) εt has zero mean and identity variance-covariance ma-

trix.

(b) E[‖Xt−1‖s| <∞ for some s ∈ (0, 1).

(c) Θ ⊂ Rv is a compact set, the parametrization is canonical so that C(θ)

and A(θ) are continuous functions of θ, and for all θ ∈ Θ: C(θ) ∈ S‡m.

(d) For θ 6= θ0 if E [`t(θ)] <∞, we have

Ht(θ)H
−1
t (θ0) 6= I a.s.

(e) The components of εt are independent and E ε4
it = µ4 < ∞ for all i =

1, ...,m.

(f) The vector εt is independent of Ft−1.

Assumption 2.1 (e) is used in the proof of Theorem 4.1. However it could be

weakened by assuming that the fourth moment of εit equals µ4,i, i = 1, . . . ,m.

Remark 2.2 Identification of model (1) has been assumed in Assumption 2.1.(d)

for sake of simplicity. We will show that the aforementioned condition is fulfilled

by the model imposing further assumptions. Assume that (i) a given (i, j) entry

of the matrix A(θ) is restricted to be positive for every θ ∈ Θ and (ii) {εt}t∈Z is

a non-degenerate and i.i.d. (independent and identically distributed) sequence.

We need to prove that for a fixed t, Ht(θ) = Ht(θ0) Pθ0 − a.s. implies that

θ = θ0. Suppose that for some θ 6= θ0, Ht(θ) = Ht(θ0) Pθ0 − a.s. It implies that

AXt−1X
′
t−1A

′ −A0Xt−1X
′
t−1A

′
0 = CC ′ − C0C

′
0

or equivalently, taking the vec transformation,

Bt vec(εt−1ε
′
t−1) = d, (4)
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with

Bt =
[(
AH

1/2
t−1(θ0)⊗AH1/2

t−1(θ0)
)
−
(
A0H

1/2
t−1(θ0)⊗A0H

1/2
t−1(θ0)

)]
d = vec(C)− vec(C0).

Let B∗t be the Moore-Penrose inverse of Bt. Equation (4) implies either

Bt vec(εt−1ε
′
t−1) = BtB

∗
t d (5)

or

Bt = d = 0 (6)

Equality (5) implies that vec(εt−1ε
′
t−1) is a function εt−2, εt−3, . . . ε1. This is

impossible by (ii). Assumption (i) rules out the case A = −A0, so that (6) is

satisfied if and only if θ = θ0, which proves the statement. Restrictions similar to

(i) are used by Engle and Kroner (1995) (see their Proposition 2.1) to exclude

equivalent representations. Assumption (ii) is standard in the literature and

clearly implies (f).

3 The expectation of the likelihood function

We start by analyzing the expectation of the likelihood function. The first three

parts of the next theorem show that the expectation of the likelihood function

has all the properties necessary to show consistency along the lines of Francq and

Zaköıan (2004) (see our Remark 3.4). Anyhow, the fourth and the fifth part of

it demonstrate already that the second moments of the observable variables play

an important role in a multivariate framework. Moreover, as mentioned in the

introduction, part four and five of the following theorem indicate that there is a

fundamental difference between the univariate and the multivariate framework.

To see this, recall that for a univariate GARCH process the expectation of the

likelihood function is finite at every θ in a compact parameter space Θ that

rules out zero coefficients; see, for instance the proof of Lemma 5.4 in Berkes

et al. (2003).

Theorem 3.1 (i) Under Assumption 2.1 part (c) we have

E
[

inf
θ∈Θ

`t(θ)

]
> −∞,

implying that E [`t(θ)] is defined for all θ ∈ Θ.

(ii) If part (a) and (b) of Assumption 2.1 hold true, we have

E [|`t(θ0)|] <∞.

(iii) If part (a), (b), (d) and (f) of Assumption 2.1 hold true, then whenever

θ 6= θ0

E [`t(θ)] > E [`t(θ0)] .
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(iv) If part (c) of Assumption 2.1 holds true and if we assume that E
[
‖Xt‖2

]
<

∞, then we indeed have that sup
θ∈Θ

E [| `t(θ) |] <∞.

(v) Assume part (a) and (f) of Assumption 2.1 and that E
[
‖Xt‖2

]
= ∞,

and additionally that for some θ̄ ∈ Θ we have that A(θ̄)x and A(θ0)x are

linearly independent ∀x 6= 0. Then E
[
`t(θ̄)

]
=∞.

Proof (i) From the definition of `t (see Equation (3)) we have for every ω ∈ Ω

inf
θ∈Θ

`t(θ) ≥ inf
θ∈Θ

log [det (Ht(θ))] .

where Ω denotes the sample space and where we suppressed the dependence on

ω. Moreover,

det
(
C(θ) +A(θ)Xt−1(ω)X ′t−1(ω)A′(θ)

)
≥ det (C(θ)) , ∀ω ∈ Ω.

The inequality follows from the fact that

λk(A+B) ≥ λk(B), k = 1, 2, . . . , p, A ∈ Sp, B ∈ S†p (7)

(Lütkepohl, 1996, Sec. 5.3.2, Result (4)). Hence,

E
[

inf
θ∈Θ

`t(θ)

]
≥ inf
θ∈Θ

log (det(C(θ))) > K,

where K > −∞ by Assumption 2.1, part (c).

(ii) Similar as in part (i) one sees that there is a uniform lower bound on

`−t (θ0). It only remains to prove that E[`+t (θ0)] < ∞. Since the first part

of the right-hand side in Equation (3) equals ε′tεt for θ0 we need only to

show that E
[
log+ (det (Ht(θ0)))

]
< ∞. Using det (Ht(θ0)) ≤

∏m
i=1 hii,t(θ0)

(cf. Lütkepohl (1996), Sec. 5.3.1, Result (7)), it is thus sufficient to prove that

E
[
log+(hii,t(θ0))

]
<∞. Here hii,t(θ0) denote the diagonal elements of Ht(θ0).

Taking into account that hii,t(θ0) = e
(m)′

i C0e
(m)
i + (e

(m)′

i A0Xt−1)2 , we obtain

E
[
log+(hii,t(θ0))

]
= E

[
log(hii,t(θ0))1{hii,t(θ0)≥1}

]
= E

[
2

s
log

((
e

(m)′

i C0e
(m)
i +

(
e

(m)′

i A0Xt−1

)2
) s

2

)
1{hii,t(θ0)≥1}

]

≤ E
[

2

s

(
e

(m)′

i C0e
(m)
i + tr

(
e

(m)′

i A0Xt−1X
′
t−1A

′
0e

(m)
i

)) s
2

1{hii,t(θ0)≥1}

]
≤ E

[
2

s

(
e

(m)′

i C0e
(m)
i

) s
2

1{hii,t(θ0)≥1}

]
+ E

[
2

s
tr
(
e

(m)′

i A0Xt−1X
′
t−1A

′
0e

(m)
i

) s
2

1{hii,t(θ0)≥1}

]
≤ K1 + E

[
2

s
tr
(
A′0e

(m)
i e

(m)′

i A0

) s
2

tr
(
Xt−1X

′
t−1

) s
2

]
≤ K1 +K2 E [||Xt−1||s] .
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The first inequality uses log(x) ≤ x for any x > 0, the second make use of

Loeve’s cr inequality, and the third uses that

tr(AB) ≤ tr(A) tr(B), A,B ∈ S†p (8)

(Abadir and Magnus, 2005, Exercise 12.14 (a)) and tr(AB) = tr(BA) (Lütkepohl,

1996, Sec. 4.1.1, Result (8)).

(iii) If E [`t(θ)] =∞ the result is obvious from the finiteness of E [`t(θ0)].

Otherwise

E[`t(θ)]− E[`t(θ0)]

= E[ε′t(H
1
2
t (θ0)H−1

t (θ)H
1
2
t (θ0)− I)εt] + E[log(det(Ht(θ)H

−1
t (θ0)))]

= E[tr((H
1
2
t (θ0)H−1

t (θ)H
1
2
t (θ0)− I)εtε

′
t)]− E[log(det(H

1
2
t (θ0)H−1

t (θ)H
1
2
t (θ0)))]

= E
[
tr
(
H

1
2
t (θ0)H−1

t (θ)H
1
2
t (θ0)

)
−m− log

(
det(H

1
2
t (θ0)H−1

t (θ)H
1
2
t (θ0))

)]
> 0,

because log det(A) ≤ tr(A)−n for any matrix A ∈ S‡p, with equality if and only

if A = Ip (Lütkepohl, 1996, Sec. 4.1.2, Result (10)).

(iv) We have

sup
θ∈Θ

E [|`t(θ)|] ≤ sup
θ∈Θ

E
[∣∣X ′tH−1

t (θ)Xt

∣∣]+ sup
θ∈Θ

E
[∣∣ log [det (Ht(θ))]

∣∣] . (9)

We consider the two terms on the right-hand side separately. Using (8) and (7),

the first term can be bounded as follows

E
[
tr(X ′tH

−1
t (θ)Xt)

]
≤ E

[
tr(H−1

t (θ)) tr(XtX
′
t)
]
≤ tr(C(θ))−1 E[‖Xt‖2]. (10)

For the second term similar as in the proof of part (ii) we find, using condition

(c), for some continuous and positive functions K1 : Θ → R, and K2 : Θ → R,

and some s′ < 2

E [log(hii,t(θ))] ≤ K1(θ) +K2(θ)E
[
||Xt−1||s

′
]
. (11)

By our assumption E ‖Xt−1‖2 <∞ and the compactness of Θ the upper bounds

in (10) and (11) are finite, implying that the right-hand side of (9) is finite as

well.

(v) To abbreviate the notation we let Ā = A(θ̄), C̄ = C(θ̄). We now show that

E
[
`+t (θ̄)

]
=∞. By the arguments in part (i) we have

`+t (θ̄) ≥ X ′tH−1
t (θ̄)Xt −K, 0 ≤ K <∞. (12)

Thus it is sufficient to show that E[X ′tH
−1
t (θ̄)Xt] = ∞. First we note that by

part (f) of Assumption 2.1

E
[
X ′tH

−1

t (θ̄)Xt|Ft−1

]
= E

[
tr(H

1
2
t (θ0)H

−1

t (θ̄)H
1
2
t (θ0)εtε

′
t)|Ft−1

]
= tr

(
Ht(θ0)H−1

t (θ̄)
)
.
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Next Ht(θ0)H−1
t (θ̄) is computed explicitly for a fixed but arbitrary realization

of Xt−1. To simplify the notation we suppress the subscript t − 1 and denote

this realization just by x. By the Sherman-Morrison-Woodbury formula applied

to H−1
t (θ̄)

tr(Ht(θ0)H−1
t (θ̄))

= tr(C0C̄
−1) +

x′A′0C̄
−1A0x− x′Ā′C̄−1C0C̄

−1Āx

1 + x′Ā′C̄−1Āx
(13)

+
(x′A′0C̄

−1A0x)(x′Ā′C̄−1Āx)− (x′A′0C̄
−1Āx)2

1 + x′Ā′C̄−1Āx
. (14)

It turns out that (13) and (14) are both non-negative. In fact, regarding (13),

tr(C0C̄
−1) +

x′A′0C̄
−1A0x− x′Ā′C̄−1C0C̄

−1Āx

1 + x′Ā′C̄−1Āx

=
tr(C0C̄

−1) + tr(C0C̄
−1)x′Ā′C̄−1Āx+ x′A′0C̄

−1A0x− x′Ā′C̄−1C0C̄
−1Āx

1 + x′Ā′C̄−1Āx

=
tr(C0C̄

−1)

1 + x′Ā′C̄−1Āx
+

x′A′0C̄
−1A0x

1 + x′Ā′C̄−1Āx
(15)

+
tr(C0C̄

−1) tr(C̄−1Āxx′Ā′)− tr(C̄−1C0C̄
−1Āxx′Ā′)

1 + x′Ā′C̄−1Āx
. (16)

Looking at the three terms after the last equality, the first is larger than 0 and

less than or equal to tr(C0C̄
−1), the second term is non-negative since C̄ is

positive definite, and the third term is non-negative, because (8) implies

tr(C0C̄
−1) tr(C̄−1Āxx′Ā′)− tr(C̄−1C0C̄

−1Āxx′Ā′)

= tr(C0C̄
−1) tr(C̄−1Āxx′Ā′)− tr

[(
C̄−

1
2C0C̄

− 1
2

)(
C̄−

1
2 Āxx′Ā′C̄−

1
2

)]
≥ tr(C0C̄

−1) tr(C̄−1Āxx′Ā′)− tr
(
C̄−

1
2C0C̄

− 1
2

)
tr
(
C̄−

1
2 Āxx′Ā′C̄−

1
2

)
= tr(C0C̄

−1) tr(C̄−1Āxx′Ā′)− tr
(
C0C̄

−1
)
tr
(
C̄−1Āxx′Ā′

)
= 0.

Thus, the random variable in (13) is non-negative. Moreover, noting that the

assumption of linear independence between A(θ0)x and A(θ̄)x implies that A(θ̄)

has full rank, Remark 3.2, part (ii) shows that (13) is even bounded.

We now turn to (14). Notice first that (14) is non-negative by the Cauchy-

Schwarz inequality. We next show that there is a constant K > 0 such that

(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx)− (x′A′0C̄

−1Āx)2

≥ K(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx), ∀x, ||x|| ≥ 1. (17)

Consider an arbitrary vector x with ||x|| = 1. Then

(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx)− (x′A′0C̄

−1Āx)2 > 0,

because by our assumption the vectors A0x and Āx are linearly independent

∀x 6= 0, implying that x′A′0C
− 1

2 and x′Ā′C−
1
2 are independent ∀x 6= 0. More-

over, by the compactness of the unit sphere

inf
x, ||x||=1

[
(x′A′0C̄

−1A0x)(x′Ā′C̄−1Āx)− (x′A′0C̄
−1Āx)2

]
> K̃, (18)

9



where K̃ > 0. To see that this implies (17) for x with ||x|| = 1, notice first that

(17) holds with K = 1 if x′A′0C̄
−1Āx = 0. Moreover, for all x with ||x|| = 1

and x′A′0C̄
−1Āx 6= 0 we obtain from the uniform lower bound in (18)

(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx) > K̃ + (x′A′0C̄

−1Āx)2

which in turn implies

(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx)

(x′A′0C̄
−1Āx)2

>
K̃

supx, ||x||=1(x′A′0C̄
−1Āx)2

+ 1 ≥ K̃1

with K̃1 > 1. Hence

K̃−1
1 (x′A′0C̄

−1A0x)(x′Ā′C̄−1Āx) > (x′A′0C̄
−1Āx)2.

It follows that

(x′A′0C̄
−1A0x)(x′Ā′C̄−1Āx)− (x′A′0C̄

−1Āx)2

> (1− K̃−1
1 )(x′A′0C̄

−1A0x)(x′Ā′C̄−1Āx).

Setting K := 1− K̃−1
1 > 0, the latter inequality proves (17) for x with ||x|| = 1.

For x with ||x|| > 1 inequality (17) follows now from the fact that x = ||x|| x||x|| .
Hence, we obtain

E
[
X ′tH

−1
t (θ̄)Xt

]
≥ E

[
K(X ′t−1A

′
0C̄
−1A0Xt−1)(X ′t−1Ā

′C̄−1ĀXt−1)

1 +X ′t−1Ā
′C̄−1ĀXt−1

1{||Xt−1||≥1}

]
≥ KK̄ E

[
X ′t−1A

′
0C̄
−1A0Xt−11{||Xt−1||≥1}

]
.

Here K̄ = infx,||x||≥1
x′Ā′C̄−1Āx

1+x′Ā′C̄−1Āx
> 0. We have K̄ > 0 since Ā has full rank by

assumption and C̄−1 is positive definite. Now the claim follows from the fact

that E[||Xt||2] =∞ implies that

E
[
X ′t−1A

′
0C̄
−1A0Xt−1

]
=∞ (19)

which clearly implies that E
[
X ′t−1A

′
0C̄
−1A0Xt−11{||Xt−1||≥1}

]
= ∞. To see

that (19) holds true, the following result (Magnus and Neudecker (1999), p.204)

is useful:

λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B), ∀ A ∈ Sp, B ∈ S†p. (20)

Then we have

E
[
tr(X ′t−1A

′
0C̄
−1A0Xt−1)

]
= E

[
tr(C̄−1A0Xt−1X

′
t−1A

′
0)
]

≥ λmin(C̄−1)E
[
tr(A0Xt−1X

′
t−1A

′
0)
]
.

Because C̄ has full rank this implies (19) if our assumption implies

E
[
tr(A0Xt−1X

′
t−1A

′
0)
]

=∞. The latter follows from

E
[
‖Xt‖2

]
= E [tr(Ht)] = tr(C0) + E

[
tr(A0Xt−1X

′
t−1A

′
0)
]
,

10



which finishes the proof. 2

Before commenting on the consistency, there are four questions arising im-

mediately from part (v) of the above theorem. Firstly, why can we bound the

expectation of the likelihood at θ0 imposing mild moment conditions on Xt?

Secondly, why is the expectation of the likelihood function in the univariate

case finite for all θ ∈ Θ if we exclude zero coefficients in θ but the second

moment is allowed to be infinite? Thirdly, which terms in `t(θ) cause the unde-

sirable behavior? Fourthly, can the phenomenon of part (v) of Theorem 3.1 be

excluded if, for instance, A(θ0) has reduced rank in which case linear indepen-

dence cannot hold for all x 6= 0? The first question is easy to answer, because

in part (v) we showed that E[XtH
−1
t (θ)Xt] does not exist for some θ 6= θ0.

Clearly, for θ = θ0 this expectation exists. The second and third questions are

addressed in the next Remark 3.2 part (i) and (ii), respectively, and the fourth

question in Remark 3.3.

Remark 3.2 (i) We showed that the expectation of `t(θ) does not exist by prov-

ing that the expectation of the conditional expectation of X ′tH
−1
t (θ)Xt does not

exist which in turn followed from the fact that the expectation of (14) does not

exist. In the univariate case for every θ ∈ Θ the term (14) does not appear in

the likelihood function. Moreover, in the univariate case the second term in the

conditional expectation of X ′tH
−1
t (θ)Xt, i.e. (13), can be bounded under mild

conditions; see Berkes et al. (2003), Lemma 5.1.

(ii) We have seen in the proof of part (v) of Theorem 3.1 that it is at least

the term (14) that has an undesirable behavior. If Ā has full rank then this

is the only term with a non-existing expected value. Indeed, the term (13) can

be rewritten in terms of (15) and (16), and both are bounded. Because for the

second term in (15) we find (using the convention 0/0 = 0)

X ′t−1A
′
0C̄
−1A0Xt−1

1 +X ′t−1Ā
′C̄−1ĀXt−1

≤ Y ′tDYt
Y ′t Yt

≤ λmax(D)

with D = C̄1/2Ā−1′A′0C̄
−1A0Ā

−1C̄1/2, Yt = C̄−1/2ĀXt−1 (see Lütkepohl (1996),

Sec. 5.2.2, Result 2 for the second inequality), and (16) is smaller than tr(C0C̄
−1).

If we allow Ā to have reduced rank, the expectation of (15) can still be shown to

be finite imposing further restrictions on the density of Xt−1. Because

X ′t−1A
′
0C̄
−1A0Xt−1

1 +X ′t−1Ā
′C̄−1ĀXt−1

≤
(X ′t−1A

′
0C̄
−1A0Xt−1)u

(1 +X ′t−1Ā
′C̄−1ĀXt−1)v

(21)

<
(X ′t−1A

′
0C̄
−1A0Xt−1)u

(X ′t−1Ā
′C̄−1ĀXt−1)v

(22)

with u = 1, v ≤ u, we can apply the results in Roberts (1995) to bound the

expectation of the ratio of the quadratic forms. For instance, assuming that

Xt−1 has an elliptically symmetric distribution, with the 2(u − v)th moments

existing, the expectation of (21) exists whenever rank(Ā′C̄−1Ā) > 2v. Choosing

v = 1/2 − δ, δ ∈ (0, 1/2) only the existence of E ‖Xt−1‖1+2δ is required when
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rank(Ā)=1. Further sets of conditions can be given to ensure that the expectation

of (21) exists; see the theorem in Section 7.2.2. of Roberts (1995).

The first part of the next remark shows that the proof of part (v) of The-

orem 3.1 only needs a slight modification and a very weak assumption on the

distribution of Xt−1 to carry over to the case where A0 has reduced rank. The

second and third part of it deal with the modification of the proof of part (v) of

Theorem 3.1 for the case where all the Ā’s have reduced rank. This shows that

the problem cannot be overcome by simply restricting the parameter space to

matrices A(θ) that have reduced rank.

Remark 3.3 (i) If A0 has reduced rank, (17) is not satisfied by the x′s lying in

the null space of A0. In the following, it will be shown that if the distribution of

Xt−1 is not concentrated in a neighborhood of the null space of A0, (19) remains

true. To make the above arguments more precise, let V = {x ∈ Rm|A0x = 0} ⊂
Rm and denote by q the dimension of V . To simplify the exposition we focus on

the case q = 1. Take v1 ∈ V with ||v1|| = 1 and denote its polar coordinates by

φv11 , . . . , φ
v1
m−1, where φv1i ∈ (0, π), i = 1, . . . ,m − 2, and φv1m−1 ∈ (0, 2π). If we

assume that Xt has a density with respect to Lebesgue measure denoted by fX ,

then∫
Rm

g(x1, . . . , xm) dλm(x1, . . . , xm)

=

∫
S

ρm−1 sinm−2 φ1 · . . . · sinφm−2g(t(ρ, φ1, . . . , φm−1)) dλm(ρ, φ1, . . . , φm−1),

(23)

where g(x1, . . . , xm) = (x2
1 + . . . + x2

m)fX(x1, . . . , xm), λm denotes Lebesgue

measure on Rm, S = (0,∞) × (0, π)m−2 × (0, 2π), and t denotes the canonical

diffeomorphism mapping S onto Rm\Hm, where Hm is the hyperplane defined by

Hm = {x ∈ R|xm−1 ≥ 0, xm = 0}. If Xt does not have a finite second moment,

then both sides in (23) are infinite. Moreover, on the right-hand side in (23) we

can replace integration over S by integration over (0,∞) × [0, π]m−2 × [0, 2π].

Thus, the right-hand side in (23) is, for ε > 0 sufficiently small, equal to∫
Sε

g(t(ρ, φ1, . . . , φm−1))ρm−1 sinm−2 φ1 · . . . · sinφm−2 dλ
m(ρ, , φ1, . . . , φm−1)

+

∫
SCε

g(t(ρ, φ1, . . . , φm−1))ρm−1 sinm−2 φ1 · . . . · sinφm−2 dλ
m(ρ, , φ1, . . . , φm−1),

(24)

where Sε = (0,∞)×(φv11 −ε, φ
v1
1 +ε)×· · ·×(φv1m−1−ε, φ

v1
m−1 +ε) and SCε denotes

the complement of Sε in (0,∞) × [0, π]m−2 × [0, 2π]. To proceed we make the

following assumption: There is an ε > 0 such that the first integral in (24) is

finite.

Then, if Xt does not have a finite second moment the second integral in (24)

must be infinite. Now fix ρ = 1 and notice that the complement of (φv11 −ε, φ
v1
1 +

ε)×· · ·×(φv1m−1−ε, φ
v1
m−1+ε) in [0, π]m−2×[0, 2π] is compact. Assuming that A0x

12



and Āx (for some Ā) are linearly independent for all x of radius ρ = 1 that are in

the complement of Sε,1 = (φv11 −ε, φ
v1
1 +ε)×· · ·×(φv1m−1−ε, φ

v1
m−1+ε), we obtain on

SCε,1 the uniform lower bound (18) by Cauchy-Schwarz inequality. As in Theorem

3.1 part (v) we now obtain inequality (17) which now holds for all x ∈ SCε,ρ≥1,

where Sε,ρ≥1 = [1,∞)×
(
(φv11 − ε, φ

v1
1 + ε)× · · · × (φv1m−1 − ε, φ

v1
m−1 + ε)

)
. Here

and in the following x ∈ SCε,ρ≥1 (or Xt−1 ∈ SCε,ρ≥1) means that the polar coor-

dinates of x are in SCε,ρ≥1 (or that the polar coordinates of Xt−1 are in SCε,ρ≥1).

Thus, we obtain (recall that Ā was assumed to have full rank)

E
[
X ′tH

−1
t (θ̄)Xt

]
≥ E

[
K(X ′t−1A

′
0C̄
−1A0Xt−1)(X ′t−1Ā

′C̄−1ĀXt−1)

1 +X ′t−1Ā
′C̄−1ĀXt−1

1{Xt−1∈SCε,ρ≥1
}

]
≥ KK̄ E

[
X ′t−1A

′
0C̄
−1A0Xt−11{Xt−1∈SCε,ρ≥1

}

]
.

The claim follows now from the facts that we obtained (19) under the assump-

tions that Xt does not have a finite second moment and that C̄ has full rank, and

that (19) implies E
[
X ′t−1A

′
0C̄
−1A0Xt−11{X∈SC

ε,ρ≥1
}

]
= ∞ under the assump-

tion that there is an ε > 0 such that the first integral in (24) is finite. Indeed,

we have

E
[
X ′t−1A

′
0C̄
−1A0Xt−11{Xt−1∈Sε}

]
= E

[
tr(A′0C̄

−1A0Xt−1X
′
t−11{Xt−1∈Sε})

]
≤ λmax(A′0C̄

−1A0) tr
(
E
[
Xt−1X

′
t−11{Xt−1∈Sε}

])
<∞.

The first inequality follows from (20). This shows our claim.

(ii) In the proof of part (v) of Theorem 3.1 we assumed that Ā has full rank to

conclude that K̄ = infx,||x||≥1
x′Ā′C̄−1Āx

1+x′Ā′C̄−1Āx
> 0. Of course, if the rank of Ā was

smaller than m, the conclusion would be wrong. However, introducing similar

to part (i) the set V̄ = {x ∈ Rm|Āx = 0} ⊂ Rm, assuming for simplicity that

its dimension is equal to 1 and denoting the polar coordinates of v1 ∈ V̄ with

||v1|| = 1 by γv11 , . . . , γv1m−1, then

K̄ = inf
x∈S̄C

ε,ρ≥1

x′Ā′C̄−1Āx

1 + x′Ā′C̄−1Āx
> 0,

where S̄Cε,ρ≥1 is the complement of S̄ε,ρ≥1 = [1,∞) × (γv11 − ε, γ
v1
1 + ε) × · · · ×

(γv1m−1 − ε, γ
v1
m−1 + ε). Now (if we assume that A0 has full rank), the restriction

on the distribution becomes

tr
(
E
[
Xt−1X

′
t−11{Xt−1∈S̄ε,ρ≥1}

])
<∞

for some ε > 0.

(iii) By combining (i) and (ii) one can obviously carry over part (v) of Theorem

3.1 to the case where A0 and all the Ā’s have reduced rank.

As mentioned above before turning to the variance of the score in the next

section we now briefly discuss consistency of the QMLE.
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Remark 3.4 It is worth pointing out that under Assumptions 2.1 (a)–(d) and

(f), if {Xt} is a stationary ergodic process we obtain

θ̂n
a.s.−→ θ0 as n→∞, (25)

where θn is a measurable minimizer of L (θ). The proof can be carried out

along the lines of the proof of Theorem 5.14 in van der Vaart (1998) by using

the ergodic theorem (Billingsley, 1995, p. 284 and 495) or along the lines of the

proof of Theorem 2.1 in Francq and Zaköıan (2004).

4 Variance of the score

The next theorem shows that the variance of the score is infinite if A0 has full

rank and the second moment of Xt−1 does not exist. The former assumption

can easily be relaxed; see Remark 4.2. Although not essential for the next theo-

rem, it is worth recalling that the expectation of ∂`t(θ0)/∂θ, denoting the score

evaluated at θ = θ0, is equal to zero; see, for example, (Comte and Lieberman,

2003, Section 4).

Theorem 4.1 Under Assumptions 2.1 (a), (e), and (f) if A0 has full rank

E
[
∂`t(θ0)

∂θ

∂`t(θ0)

∂θ′

]
(26)

is finite if and only if E
[
‖Xt−1‖2

]
<∞.

Proof Before turning to the actual proof we introduce some notation and give

some useful results that we shall use in the actual proof for sufficiency and

necessity. Notice first that the vector ∂`t(θ)/∂ vech(C(θ)) is constant; therefore

we focus on the score with respect to the sub-vector vec(A(θ)) of θ. Let [B]ij
denote the (i, j)th entry of a matrix B and set to abbreviate the notation

Ḣ
(a)
0t,ij =

∂Ht(θ0)

∂[A(θ)]ij
, and H0t = Ht(θ0).

Using Lemma A.1. in Comte and Lieberman (2003), which is possible due to

Assumptions 2.1 (a) and (e), we have

E

[(
∂`t(θ0)

∂[A(θ)]ij

)2 ∣∣∣Ft−1

]

= (µ4 − 3)

m∑
k=1

(
H
− 1

2
0t Ḣ

(a)
0t,ijH

− 1
2

0t

)2

(k,k)
+ 2 tr

(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
.(27)

From Comte and Lieberman (2003) (Proof of B2, p.78) the expectation of the

first term on the right-hand side is bounded by the expectation of the second
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summand. Concerning the latter term, let Ȧij = ∂A(θ)/∂[A]ij , and notice that

Ȧij = e
(m)
i e

(m)′

j independently of θ. Moreover, we note that

Ḣ
(a)
0t,ij = ȦijXt−1X

′
t−1A

′
0 +A0Xt−1X

′
t−1Ȧji.

From Appendix A we have:

tr
(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
= 2

(
X ′t−1A

′
0C
−1
0 A0Xt−1

) (
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

)
−
(
X ′t−1Ȧ

′
ijC
−1
0 A0Xt−1

)2

1 +X ′t−1A
′
0C
−1
0 A0Xt−1

+2

(
X ′t−1Ȧ

′
ijC
−1
0 A0Xt−1

)2

(1 +X ′t−1A
′
0C
−1
0 A0Xt−1)2

. (28)

Sufficiency: We now first show that the existence of the second moment implies

existence of the information matrix. The expectation of the information matrix

exists if the expectations of the diagonal elements exist. Using that the first

summand is non-negative by Cauchy-Schwarz we obtain

tr
(
H−1

0t Ḣ
(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ij

)
≤ 2

(
X ′t−1A

′
0C
−1
0 A0Xt−1

) (
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

)
1 +X ′t−1A

′
0C
−1
0 A0Xt−1

+2

(
X ′t−1A

′
0C
−1
0 A0Xt−1

) (
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

)
(1 +X ′t−1A

′
0C
−1
0 A0Xt−1)

≤ 4
(
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

)
,

where we applied Cauchy-Schwarz also to the second summand on the right-

hand side in (28). Moreover, for any i, j, if E
[
‖Xt−1‖2

]
<∞,

E
[
X ′t−1Ȧ

′
0,ijC

−1
0 Ȧ0,ijXt−1

]
≤ λmax(C−1

0 ) max
s∈{1,...,m}

E (xt−1,s)
2
<∞,

where xt−1,s denotes the sth element of the random vector Xt−1. The off-

diagonal elements of the information matrix are bounded by the Cauchy-Schwarz

inequality.

Necessity: We next show the necessity. If

E
[
tr

(
∂`t(θ0)

∂ vec(A)

∂`t(θ0)

∂ vec′(A)

)]
=∞, (29)

the information matrix does not exists. Since an arbitrary element of the m2

elements of the diagonal of the matrix ∂`t(θ0)
∂ vec(A)

∂`t(θ0)
∂ vec′(A) is given by (28), we have
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that the left-hand side in (29) is infinite, if the expectation of

2

m∑
i=1

m∑
j=1

(
X ′t−1A

′
0C
−1
0 A0Xt−1

) (
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

)
−
(
X ′t−1Ȧ

′
ijC
−1
0 A0Xt−1

)2

1 +X ′t−1A
′
0C
−1
0 A0Xt−1

+2

m∑
i=1

m∑
j=1

(
X ′t−1Ȧ

′
ijC
−1
0 A0Xt−1

)2

(1 +X ′t−1A
′
0C
−1
0 A0Xt−1)2

(30)

is infinite. We focus on the first term in (30) since the second is non-negative.

Again we consider a fixed but arbitrary realization of Xt−1. To do so, notice

that hij : Rm → R defined by

hij(x) =
(
x′A′0C

−1
0 A0x

) (
x′Ȧ′ijC

−1
0 Ȧijx

)
−
(
x′Ȧ′ijC

−1
0 A0x

)2

is continuous, and hence so is
∑m
i=1

∑m
j=1 hij . It follows from Appendix B and

the Cauchy-Schwarz inequality that
∑m
i=1

∑m
j=1 hij(x) > 0, ∀x with ||x|| = 1.

Hence,

inf
x,‖x‖=1

m∑
i=1

m∑
j=1

[(
x′A′0C

−1
0 A0x

) (
x′Ȧ′0,ijC

−1
0 Ȧ0,ijx

)
−
(
x′Ȧ′0,ijC

−1
0 A0x

)2
]
> K̃.

Similar as in the proof of part (v) of Theorem 3.1 we obtain for some K > 0:

m∑
i=1

m∑
j=1

(
x′A′0C

−1
0 A0x

) (
x′Ȧ′ijC

−1
0 Ȧijx

)
−
(
x′Ȧ′ijC

−1
0 A0x

)2

> K

m∑
i=1

m∑
j=1

(
x′A′0C

−1
0 A0x

) (
x′Ȧ′ijC

−1
0 Ȧijx

)
.

By assumption A0 has full rank and therefore

K̄ = inf
x,‖x‖=1

[(
x′A′0C

−1
0 A0x

)
/(1 + xA′0C

−1
0 A0x)

]
> 0.

Thus,

m∑
i=1

m∑
j=1

K

(
x′A′0C

−1
0 A0x

) (
x′Ȧ′0,ijC

−1
0 Ȧ0,ijx

)
1 + x′A′0C

−1
0 A0x

> K̄K

m∑
i=1

m∑
j=1

(
x′Ȧ′0,ijC

−1
0 Ȧ0,ijx

)
. (31)

Finally, notice that by using the left-hand side inequality in (20) we obtain

E

 m∑
i=1

m∑
j=1

(
X ′t−1Ȧ

′
ijC
−1
0 ȦijXt−1

) ≥

 m∑
i=1

m∑
j=1

λmin(C−1
0 )E

(
X ′t−1Ȧ

′
ijȦijXt−1

)
≥ λmin(C−1

0 )

m∑
i=1

E[x2
t−1,i],
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where xt−1,i is the ith component of the random vector Xt−1. Thus, the result

follows by using (30), (31) and that C0 is positive definite. 2

Remark 4.2 Notice that we did not use that A0 has full rank when we showed

that the existence of the second moment of Xt−1 is sufficient for the information

matrix to exist. In the necessity part we did use this. However, using the idea

of Remark 3.3 the above proof can also be used if A0 has reduced rank.

Remark 4.3 Similar to Remark 3.2, we note that the first summand in (28)

vanishes when Xt is a scalar. Concerning the second summand, define

Ã =
1

2
Ȧ′ijC

−1
0 A0 +

1

2
A′0C

−1
0 Ȧij .

Clearly, x′ȦijC
−1
0 A0x = x′Ãx, ∀x ∈ Rm. If A0 has full rank, then the up-

per bound is given λmax(D̃), D̃ = C
1/2
0 A−1′

0 ÃA−1
0 C

1/2
0 . Next we consider the

case rank(A0) = r < m. Denote by USV ′ the singular value decomposition of

C
−1/2
0 A0. Let Λ = S2 be the diagonal matrix containing the eigenvalues of the

matrix A′0C
−1
0 A0 in a decreasing order; V is the matrix of the corresponding

eigenvectors. Define the m × r matrix V1, the columns of which are comprised

of the first r eigenvectors associated to the nonzero eigenvalues, so that V is

partitioned as (V1 : V2). The inequality

(X ′t−1ÃXt−1)2

(1 +X ′t−1A
′
0C
−1
0 A0Xt−1)2

≤
(X ′t−1ÃXt−1)u

(X ′t−1A
′
0C
−1
0 A0Xt−1)v

(32)

is clearly satisfied by u = 2, v ≤ 2, the expectation of the right-hand side of

inequality (32) can be bounded using again the theorem in Section 7.2.2. in

Roberts (1995) (see also Remark 3.2). Because V ′1ÃV2 6= 0 but V ′2ÃV2 = 0,

choosing v = 3/2− δ, δ ∈ (0, 1/2) the inequality r > 2v − u is satisfied for any

r ≥ 1. Under mild conditions on the density of Xt−1, implying the existence

of the moment of order 1 + 2δ (see also Remark 3.2)), the theorem in Section

7.2.2. in Roberts (1995) implies that the expectation of the right-hand side of

(32) exists.

Remark 4.4 Establishing asymptotic normality of an extremum estimator re-

quires two steps, asymptotic normality of the score (suitably normalized) at the

true parameter value and convergence of the Hessian to a positive definite ma-

trix uniformly in the parameter space. Comte and Lieberman (2003) and Hafner

and Preminger (2009b) provide regularity conditions for the QMLE estimator

of the VEC-GARCH and BEKK model, which include boundedness of the eighth

and sixth moment, respectively, of the observable. These conditions are suffi-

cient to establish uniform convergence of the Hessian, although they could be

stronger than effectively needed. On the other hand Theorem 4.1 implies that to

establish asymptotic normality of the score one would require at least covariance

stationarity of the observables. Further calculations show that boundedness of

the Hessian, for all but the true parameter value, require a bounded fourth mo-

ment of the observable, casting serious doubts on the possibility of establishing
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asymptotic normality with a weaker moment condition. This contrasts with the

univariate case when a low order fractional moment condition for the observable

suffices for establishing asymptotic normality of the QMLE.

5 Conclusion

We have seen that for the simplest BEKK model the finiteness of the variance of

the score requires stronger moment assumptions on the observable than we could

have expected from the univariate case. However, the normal density based

QMLE is not the only possibility. In the univariate case Berkes and Horvàth

(2004) consider estimators based on other densities than the normal density

and show that the moment condition on the unobservable can be weakened

compared to the normal density based QMLE. The results in this paper clearly

show the necessity to investigate other than the normal density based QMLE in

the multivariate case. That will be the subject of a future paper by the authors.

A Computation of tr
(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
Put a0 = A0Xt−1 and aij = ȦijXt−1. By the Sherman-Morrison-Woodbury

formula

(1 + a′0C
−1
0 a0)2

(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
=
[(
ȧija

′
0C
−1
0 + a0ȧ

′
ijC
−1
0 + a0ȧ

′
ijC
−1
0 (a′0C

−1
0 a0)− a0(ȧ′ijC

−1
0 a0)a′0C

−1
0

)]2
= ȧija

′
0C
−1
0 ȧija

′
0C
−1
0 + ȧija

′
0C
−1
0 a0ȧ

′
ijC
−1
0 (1 + a′0C

−1
0 a0)− ȧija′0C−1

0 a0a
′
0C
−1
0 (ȧ′ijC

−1
0 a0)

+ (1 + a′0C
−1
0 a0)

[
a0ȧ
′
ijC
−1
0 ȧija

′
0C
−1
0 + a0ȧ

′
ijC
−1
0 a0ȧ

′
ijC
−1
0 (1 + a′0C

−1
0 a0)

−a0ȧ
′
ijC
−1
0 a0a

′
0C
−1
0 (ȧijC

−1
0 a′0)

]
− (ȧ′ijC

−1
0 a0)

[
a0a
′
0C
−1
0 ȧija

′
0C
−1
0 + a0a

′
0C
−1
0 a0ȧ

′
ijC
−1
0 (1 + a′0C

−1
0 a0)

−a0a
′
0C
−1
0 a0a

′
0C
−1
0 (ȧ′ijC

−1
0 a0)

]
.

Taking the trace and setting

b0 = a′0C
−1
0 a0, b0,ij = ȧ′ijC

−1
0 a0, d0,ij = ȧ′ijC

−1
0 aij ,

yields

(1 + b0)2 tr
(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
= b20,ij + (1 + b0)b0d0,ij − b0b20,ij + (1 + b0)b0d0,ij + (1 + b0)2b20,ij

−(1 + b0)b0b
2
0i − b0b20,ij − (1 + b0)b0b

2
0,ij + b20b

2
0,ij
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which simplifies to

tr
(
Ḣ

(a)
0t,ijH

−1
0t Ḣ

(a)
0t,ijH

−1
0t

)
= 2

b0
(1 + b0)

d0,ij + 2
(1− b0)

(1 + b0)2
b20,ij

= 2
X ′t−1A

′
0C
−1
0 A0Xt−1

(1 +X ′t−1A
′
0C
−1
0 A0Xt−1)

(
X ′t−1Ȧ

′
ijC
−1
0 Ȧ0,ijXt−1

)
+ 2

(1−X ′t−1A
′
0C
−1
0 A0Xt−1)

(1 +X ′t−1A
′
0C
−1
0 A0Xt−1)2

(
X ′t−1Ȧ

′
ijC
−1
0 A0Xt−1

)2

.

B Some linear algebra

Proposition B.1 Assume that A0 has full rank and let Ȧij = e
(m)
i e

(m)′

j . Then

for every x 6= 0 there is at least one pair (i, j), i, j ∈ {1, . . . ,m} such that the

vectors A0x and Ȧijx are linearly independent.

Proof It is sufficient to consider an arbitrary x with unit norm. Define

I := {i ∈ {1, . . . ,m}|(A0x)i 6= 0} and J := {j ∈ {1, . . . ,m}|xj 6= 0},

where zi denotes the ith element of the vector z. Notice that both sets are

nonempty due to the facts that ||x|| = 1 and that A0 has full rank. Then for

I ∩ J = ∅ we have that Ȧ0,jjx, where j ∈ J , and A0x are linearly independent.

For |I ∩ J | = 1 distinguish the cases that |I| = 1 and that |I| > 1, where | · |
denotes the cardinality of a set. In the former case take Ȧ0,icj , where ic /∈ I
and j ∈ J . Then Ȧ0,icjx and A0x are linearly independent. In the latter case

take Ȧ0,j′j , where j′ ∈ {1, . . . ,m} is arbitrary and j ∈ J . With this choice

Ȧ0,j′jx and A0x are linearly independent. Finally, if |I ∩ J | ≥ 2, then this

implies in particular that |I| ≥ 2. Thus, as before we can take Ȧ0,j′j , where

j′ ∈ {1, . . . ,m} is arbitrary and j ∈ J , and obtain again that Ȧ0,j′jx and A0x

are linearly independent.

2
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