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Chapter 1

Introduction

Although introduced in the late ’60s, hidden Markov models (HMMs, see

MacDonald and Zucchini, 1997; Cappé, Moulines and Rydén, 2005) have

become increasingly popular in the last ten years, due to their rich math-

ematical structure and flexibility. HMMs belong to a wide class of models

(Markovian models), for which the dynamics of the stochastic process are

(completely or partially) governed by a Markov chain or a Markov process;

the model is hidden in the sense that the stochastic process is only partially

observable (thus we cannot observe some variables constituting the process).

Markovian models are widely studied in the literature and some important

results obtained by Kalbfleisch and Lawless (1985) in analyzing longitudinal

data under Markov assumptions remain valid also for HMMs.

As pointed out by MacKay (2003), these models are used for two pur-

poses. The first is to make inferences about an unobserved process based on

the observed one. A second reason for using HMMs is to explain variation

in the observed process based on variation in a postulated hidden process.

1



2 CHAPTER 1. INTRODUCTION

Overdispersion in the observed data can be addressed through an HMM

assuming that observations come from one of several different conditional

distributions, each associated to a different latent state.

Several applications of the basic model (see e.g. Rabiner, 1989 for a

tutorial) are provided in the literature and, during the last few years, several

variations on the general form of the model occurred. Since the key paper of

Baum et al. (1970), where a method for maximum likelihood estimation is

provided, a wide range of applications and theoretical extensions have been

proposed. For example, Rabiner and Juang (1993) and Jelinek (1997) give a

description of the use of HMMs in speech recognition; Young (1996) provides

an overview of current large-scale speech recognition systems; Kosaka et al.

(2005) introduce new methods of robust speech recognition using discrete-

mixture HMMs for reducing computation costs.

Recently, HMMs have found a new application field in health sciences.

Broët and Richardson (2006) analyze comparative genomic hybridization

(CGH) microarray starting from a mixture model framework (McLachlan

and Peel, 2000a) and extend the three-state (copy gain/copy loss/modal

copy) mixture model proposed by Hodgson et al. (2001) and Wang et al.

(2004) to analyze CGH microarrays, assuming spatial dependence between

genomic sequences within a Bayesian framework. HMMs are widely used

in computational biology: Lander and Green (1987) use HMMs for genetic

linkage maps; Churchill (1989) employs HMMs to distinguish coding from

non-coding regions in DNA; Krogh et al. (1994) apply HMMs to statisti-

cal modeling, database searching and multiple sequence alignment of protein

families and domains and, recently, Scharpf et al. (2007) improve genotype
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calls and copy number estimates. In a clustering framework, Shcliep et al.

(2003) analyze gene expression data accounting for time dependence in time

course data and coping with missing values, while Zeng and Garcia-Frias

(2006) propose the profile-HMMs (Eddie, 1998) to take into account the dy-

namics of gene expression profiles, which is ignored by standard clustering

methods.

Some theoretical issues are exposed in detail also in specific application

contexts. Ip (2006) discusses some problems related to latent class model

(LCM) and applies an HMM to a longitudinal data set of brain tumor pa-

tients, assuming uniform latent class profiles and uniform transition matrix

over time. Donaghy and Marshall (2006) analyze patient survival time and

dynamic clinical variables, determining characteristics of the hidden phases

in a Coxian phase-type distribution. Netzer et al. (2005) consider typical

transaction data to evaluate the effectiveness of both relationship marketing

actions and other customer-brand encounters on the dynamics of customer

relationships and the buying behaviors.

The use of hidden states makes the model general enough to handle a

variety of real-world time dependent data, while the relatively simple prior

dependence structure still allows for the use of efficient computational pro-

cedures. It should be stressed that the idea one has about the nature of

the hidden Markov chain may be quite different from one case to another.

In some cases the Markov chain does have a well-defined physical meaning,

whereas in other cases it may be completely fictitious and the probabilistic

structure of the hidden Markov model is used only as a tool for modelling

serial dependence in the analyzed data.
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One frequent extension concerns the use of the HMM framework for

modelling longitudinal data, but most of the proposed models have been

developed in specific application contexts without a complete investigation

of the corresponding theoretical aspects. Our aim is to extend approaches

developed for HMMs under longitudinal observations (see e.g. Hughes, Gut-

torp and Charles, 1999, Wang and Puterman, 2001, Crespi et al., 2005 and

MacKay, 2007) to empirical situations where potential heterogeneity sources

are present. A natural way to deal with this case is to add random effects

in the link function, taking into account individual- and outcome-specific ef-

fects due to unobserved heterogeneity. For this reason, we propose a random

effects hidden Markov regression model within the framework of generalized

linear models (GLMs) for longitudinal count data. Starting from the basic

structure, we model the dispersion of the observed outcome associating each

state to a mixture of several different Poisson distributions where the canon-

ical parameters depend on a mixed model design to deal with unobservable

heterogeneity sources. Estimation is carried out through an EM algorithm

without parametric assumptions upon the random coefficients distribution.

Furthermore, the use of HMM framework may solve problems related

to classify three-mode three-way data (Carroll and Arabie, 1980) extending

mixture models approach to i.e. longitudinal data. Several models have

been proposed for clustering such data in a hierarchical context (see e.g.

Basford and McLachlan, 1985; Vermunt, 2007). We introduce a multivariate

HMM model in the hierarchical framework, discussing the issue of longitu-

dinal multivariate data allowing for both time and local dependence; more

generally, we would like to select a multivariate Gaussian HMM whose la-
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tent states correspond to association structures that receive support from the

data not always, but at least for considerable periods of time. We remark

that the applicability of multivariate HMMs is quite wide: it applies to any

multivariate time series whose dependency structure is thought to change

considerably over time. Further important examples include, among others,

environmental data, typically multivariate and never measured exhaustively,

and financial times series, where the state of a national economy, e.g., is a

powerful qualitative mechanism that determines changes in the correlation

structure among the considered variables.

The thesis is structured as follows. In Chapter 2 we introduce the adopted

notation, we define theoretical framework which HMMs are related with and

provide computational methods for three fundamental problem for HMM

designs: the evaluation problem, the optimal state sequence problem and

the parameter estimation problem. Chapter 3 provides an overview of lon-

gitudinal data structure with a particular focus on ways for dealing with

such data in a regression context through generalized linear models (GLMs)

and generalized linear mixed models (GLMMs). New developments of the

standard HMM for longitudinal data in a regression context are provided

in Chapter 4. The so called mixed hidden Markov models (MHMMs) are

introduced; in particular a semi-parametric estimation method is proposed

and discussed in detail with respect to other parametric methods (see e.g.

MacKay, 2007) and computational details are study in depth. Simulations

and two empirical application of semi-parametric MHMM are provided in

Chapter 5. Chapter 6 provides an overview on clustering three-way data

and MHMM are discussed for clustering three-way time dependent data in
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a hierarchical context studying in depth all the computational aspects. Sim-

ulations are provided in Chapter 7. Conclusions and further remarks are

discussed in Chapter 8.



Chapter 2

Hidden Markov Models

2.1 Preliminaries and notation

• Yt is a stochastic process corresponding to the observed response at

time t, t = 0, . . . , T

• St is a Markov chain, where t is an integer index, t = 0, . . . , T

• A set of m states S = {1, . . . ,m}

• Q = [qjk], where qjk = Pr(St+1 = k | St = j), j, k = 1, . . . ,m and∑
k qjk = 1

• δ = (δ1, δ2, . . . , δm), where δj = Pr(S0 = j), j = 1, . . . ,m and∑
j δj = 1

• fj(Yt | θj) = Pr(Yt | St = j, θj), j = 1, . . . ,m; t = 0, . . . , T , where θj

denote the corresponding parameter set

• λ = {Q, δ, θ}

7
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The key idea is that a HMM is a finite model that describes a probability

distribution over an infinite number of possible sequences1.

A hidden Markov model is a doubly stochastic process with an under-

lying stochastic process that is not directly observable (hidden) but can be

observed only through another process that produces the sequence of ob-

servations. Loosely speaking, a HMM is a Markov chain observed in noise

(Cappé, Moulines and Rydén, 2005).

Let {Yt}t≥0 be a stochastic process, and yt its realization, that corresponds

to the observed response at time t; indeed, the model comprises a Markov

chain, which we will denote by {St}t≥0 (and by st its realization), where

t is an integer index. This Markov chain is often assumed to be discrete,

homogeneous, aperiodic, irreducible on a finite state-space {1, . . . , j, . . . ,m}

(see chapter 2.2.1 for further details). a first-order HMM is defined by a set of

m states S = {1, . . . ,m} and a transition matrix Q over S ×S. The (j, k)-th

element qjk = Pr(St+1 = k | St = j) represents the a priori probability of

transition from state j at time t to state k at time t + 1; while the initial

distribution is δ = (δ1, δ2, . . . , δm), where δj = Pr(S0 = j)2. In other words,

Moreover we introduce the (conditional) model for the observed process, Yt,

fj(Yt | θ) = Pr(Yt | St = j, θ), where θ denote the corresponding parameter

set. In the following we will refer to λ = {Q, δ, θ} as the model parameters.

Now, the hypothesis characterizing HMMs is that the Markov chain is

1We will treat only Markov chains which have finite state spaces. The theory is more

general, but the general case will only obscure the basic ideas.
2If we assume that {St} is a homogeneous, irreducible Markov chain defined on a

finite state space, it has initial stationary distribution δ, that is δj = P(St = j) for any

t = 0, 1, . . . , T
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hidden, that is, it is not observable. It is worth noticing that the states of

the chain may have either a convenient interpretation suggested by the nature

of the observed phenomenon, or be used only for convenience in formulating

the model. What is available to the observer is another stochastic process

{Yt}t≥0 linked to the Markov chain in that St governs the distribution the

corresponding Yt. The observable process must satisfy two conditions:

conditional independence condition: random variables Y0:T = (Y0, . . . , YT )

are conditionally independent, given the states S0:T = (S0, . . . , ST );

contemporary dependence condition: the distribution of any Yt, given

the state variables (S0, . . . , ST ), depends only on the current state St
3.

Taking into account these assumptions, we will define L(λ; y0:T ) as the

likelihood function to express the fact that the likelihood is a function of λ

when the observation sequence y0:T is given. We can derive an expression for

the likelihood in terms of multiple sums:

L(λ; y0:T ) =
∑

s0:T∈ST
Pr(Y0:T = y0:T , S0:T = s0:T | λ)

=
∑
ST

δs0

T∏
t=1

qst−1st

T∏
t=0

fst(yt | θst) (2.1)

where λ represent the adopted HMM model parameters.

As it stands, this expression is of little or no computational use, because

it has mT terms and cannot be evaluated except for very small T . In section

3The underlying Markov chain {St} is sometimes called the regime, or state. Statistical

inference, even on the Markov chain itself, has to be done in terms of {Yt} only, as {St}

is not observed.
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2.3, we show how it may be rewritten using a by-product of the filtering

recursion, suggesting an efficient computational algorithm.

2.2 Theoretical framework

2.2.1 Markov chain

As shown in section 2.1, a HMM is a statistical model where the dynamic be-

ing modeled is assumed to be determined by an underlying (latent) Markov

process with unknown parameters, and the challenge is to estimate the pa-

rameters of the hidden process from the realizations of the observed pro-

cess. In a regular Markov model, the state is directly visible to the observer,

therefore the state transition probabilities represent the only parameters; in

a hidden Markov model, the state is not directly visible, since only variables

influenced by the state are visible.

In 1907, A. A. Markov began the study of an important new type of

chance process. In this class of processes, the outcome of a given experiment

can influence the outcome of the next experiment. This type of process is

called a Markov chain. A Markov chain is a sequence of random variables

S0, S1, . . . , St, . . . , ST fulfilling the Markov property; given the present state,

future and past states are independent. More formally,

Pr(St+1 = st+1 | St = st, St−1 = st−1, . . . , S0 = s0) = P(St+1 = st+1 | St = st)

(2.2)

The possible values of St form a countable set S called the state space

of the chain4. A discrete Markov chain is completely defined by the set of

4There are also continuous-time Markov processes, which have countable state space
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one-step transition probabilities

qjk = Pr(St+1 = k | St = j), j, k ∈ S

and the initial distribution of the states

δj = Pr(S0 = j), j ∈ S

Markov chains are often described by a directed graph, where the edges

are labeled by the probabilities of going from one state to the other states

(transition probabilities). Two more obvious properties are satisfeid by a

Markov chain:

• qjk = Pr(St+1 = k | St = j) ≥ 0;

•
m∑
k=1

qjk = 1.

In the following, we will see in details the properties of a Markov chain.

Time homogeneity. A time-homogenous Markov chain5 is a process where

one has

Pr(St = st | St−1 = st−1) = Pr(St−1 = st−1 | St−2 = st−2). (2.3)

A general, inhomogeneous Markov chain does not require this property,

and so one may have

Pr(St = st | St−1 = st−1) 6= Pr(St−1 = st−1 | St−2 = st−2). (2.4)

but have a continuous index.
5There exists also Markov chain that are spatially homogeneous (Karlin and Taylor,

1975)
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Let us define the probability of going from state j to state k in t time

steps as

q
(t)
jk = Pr(St = k | S0 = j). (2.5)

and the single-step transition as

qjk = P(S1 = j | S0 = k). (2.6)

The t-step transition satisfies the Chapman-Kolmogorov equation

q
(T )
jk =

m∑
k=1

q
(t)
jk q

(T−t)
km . (2.7)

Hence, when the Markov chain is a homogeneous Markov chain, so

that the transition matrix Q is independent of the label t, then the

t-step transition probability can be computed as the t-th power of the

transition matrix, say Qt.

Accesibility. A state k is said to be accessible from state j if, given that we

are in state j, there is a non-zero probability that at some time in the

future, we will be in state k. That is, there exists a time t such that

q
(t)
jk = Pr(St = k | S0 = j) > 0 (2.8)

Communicability. A state j is said to communicate with state k if it is

true that both j is accessible from k and that k is accessible from j.

Irreducibility. A Markov chain is said to be irreducible if its state space

is a communicating class (if every pair of states in the state space

communicates with each other); in an irreducible Markov chain it is

possible to get to any state from any state.
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Periodiciy. A state j has period t if any return to state j must occur in

some multiple of t time steps and t is the largest number with this

property. If t = 1, then the state is said to be aperiodic; otherwise

(t > 1), the state is said to be periodic with period t.

It can be shown that every state in a communicating class must have

the same period. An irreducible Markov chain is said to be aperiodic

if its states are aperiodic.

Ergodicity. A state j is said to be ergodic if it is aperiodic and positive

recurrent (i.e. the expected return time is finite). If all states in a

Markov chain are ergodic, then the chain is said to be ergodic6.

Stationarity. Finally, we briefly analyze the limit behaviour of a Markov

chain. Let us define the stationary distribution δ as a (row) vector

which satisfies the equation

δ = δQ (2.9)

in other words, the stationary distribution δ ia a normalized left eigen-

vector of the transition matrix associate with the eigenvalue 1. Alterna-

tively, δ can be viewed as a fixed point of the linear (hence continuous)

transformation on the unit simplex associated to the matrix Q. As any

continuous transformation in the unit simplex has a fixed point, a sta-

tionary distribution always exists, but is not guaranteed to be unique,

in general. In addition, Q(t) converges to a rank-one matrix in which

6Note that if the state space S is finite, irreducibility and aperiodicity are sufficient

conditions for ergodicity
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each row is the stationary distribution δ, that is,

lim
t→∞

Q(t) = 1δ (2.10)

where 1 is the column vector with all entries equal to 1. This is stated

by the Perron-Frobenius theorem. The existence of such limit distri-

bution is guaranteed for ergodic Markov chain. Furthermore, it can be

shown that the limit of an ergodic Markov chain is the unique station-

ary (initial) distribution.

HMM are often classified according to the properties of their hidden

Markov chain. For instance, an HMM is called ergodic if its hidden Markov

process, St, is ergodic. Recall that a necessary and sufficient conditions for

the finite discrete Markov chain St to be ergodic are that it must be positive

recurrent, aperiodic and irreducible (Resnick, 1992)7.

It is often assumed that the initial state distribution of an ergodic HMM is

the unique stationary distribution, such as described by equation (2.9). This

assumption makes sense in practice since the state distribution of an ergodic

Markov chian always converges toward the stationary distribution8. For non-

ergodic HMMs, the solution of equation (2.9) need not be unique; however,

if the hidden Markov chain is stationary, the complete process {(Yt, St)} is

stationary (Couvreur, 1996) and if the hidden Markov chain is also ergodic,

then the observed process is ergodic too (Leroux, 1992).

7If all the transitions probabilities are strictly positive, i.e. qjk > 0,∀j, k ∈ S, the

Markov chain is said to be fully connected; full-connectedness is a sufficient condition for

ergodicity but it is not a necessary one.
8Note that in this case λ = {δ,Q, θ} is rendunt since δ can be computed from Q by

solving equation (2.9)
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2.2.2 Finite mixtures

Finite mixtures distributions represent a mathematical-based approach to

the statistical modeling of a wide range of phenomena. Because of their use-

fulness as extremely flexible methods of modeling densities, finite mixture

models have continued to receive increasing attention over past years. Finite

mixture of probability distributions can be seen as zero-th order HMMS in

which the mixture component (state or class) of each observation is indepen-

dent of other observations.

Thus, the HMM provides a convenient way of formulating an extension

of a mixture model to allow for dependent data. In detail, let us consider

the following mixture model

f(yt) =
G∑
g=1

πgfg(yt) (2.11)

for the density of a random variable Yt. In a finite mixture context, an

unobserved vector zt = {zgt} to indicate whether yt is viewed as belonging

or not belonging to the g-th component of the mixture (g = 1, . . . , G).

The component labels zt1, . . . , ztG are assumed to be drawn from a multi-

nomial distribution on G categories with probabilities π1, . . . , πG; that is:

Zt1, . . . , ZtG
i.i.d∼ MultG(1, π), ∀t. (2.12)

The response y1, . . . , yT are assumed to be conditionally independent

given zT ; that is:

f(y1, . . . , yT | z1, . . . , zT ) =
T∏
t=1

f(yt | zt) (2.13)
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where

f(yt | zt) =
G∏
g=1

fg(yt)
ztg (2.14)

The HMM extension relaxes the independence hypothesis on the Yt by as-

suming successive observations to be correlated. With this approach, the in-

dependence assumption (2.12) on the component indicator vector is relaxed.

Usually, a stationary Markovian model is formulated for the distribution of

the hidden states Z1, . . . , ZT . The conditional distribution of Yt is formulated

as before to depend only on the value of Zt, the component of origin (state of

the Markvo process), and to be conditionally independent as in (2.13). Re-

laxing assumption (2.12), the marginal density of Yt will not have its simply

representation (2.11) of a mixture density as in the independence case.

2.2.3 Markov Switching Models

A variety of linear models for response processes that exhibit discontinuous

changes at certain undetermined points in time have been discussed in sta-

tistical literature. Within a regression context, the literature refers to such

models as switching regression models, in which parameters are allowed to

move discretely between a fixed number of regimes, with the switching being

controlled by an unobserved state variable. Switching regressions have a rich

history in econometrics, dating back to at least Quandt (1958) and Quandt

and Henderson (1958) and studied among others by Quandt (1972), Quandt

and Ramsey (1978) and Kiefer (1978). Goldfeld and Quandt (1973) intro-

duce a particularly useful version of these models, referred to as a Markov-

switching model, where the latent state variable controlling regime shifts
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follows a Markov-chain, and is thus serially dependent.

The regime-switching model combines several sets of model parameters

into one system; the set of parameters should be applied depends on the

regime the system is likely in at a given time. The simplest formulation of

the switching regression model may be described as follows, let us assume

we have recorded T observations on some dependent variable Yt and on p

independent variables xt = (xt1, . . . , xtp) and define the structure of a two

state regime model:

yt = β01 + β11xt1 + · · ·+ βp1xtp + εt = xTt β1 + εt, St = 1 (2.15)

with probability π and

yt = β02 + β12xt1 + · · ·+ βp2xtp + εt = xTt β2 + εt St = 2 (2.16)

with probability (1-π); St is an unobserved random variable which changes

through time and represent the state variable and ε ∼ N(0, σ2
ε,St

). In other

words, the state variable describes the first regime with probability π =

Pr(St = 1), while the second one is attained with probability 1−π = Pr(St =

2).

A complete description of the probability law governing the observed data

would then require a probabilistic model describing the change from St = 1 to

St = 2. The simplest specification is that St is the realization of a two-state

Markov chain with

qjk = Pr(St = k | St−1 = j), j, k = 1, 2.

Such a model appears to have been first analyzed by Baum, et. al. (1970)

and Lindgren (1978). In the speech recognition literature specifications that
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incorporate autoregressive elements date back to Juang and Rabiner (1985),

and Rabiner (1989), who described such processes as HMMs. The Markov

switching regression model is an extension of finite mixtures of regression

models to time series data. Cosslett and Lee (1985) studied a regression

where an unobserved dichotomous explanatory variable was presumed to fol-

low a Markov process, and the principles they use to evaluate the likelihood

function are those describe in Hamilton (1989; 1990) to study a time series

subject to time-varying coefficients. The Markov-switching models are ex-

tended to the case of dependent data, specifically using an autoregressive

structure. The vast literature spawned by Hamilton (1989; 1990) has typi-

cally assumed that the regime shifts are exogenous of all realizations of the

regression error. Given this vast interest in applied econometric inference

for Markov switching models, it is not surprising that parameter estimation

for these models is well-developed by now, either using classical methods

such as the EM-algorithm or using Bayesian estimation via Markov chain

Monte Carlo methods (MCMC), see for instance Frühwirth-Schnatter (2001,

2006). Initial consistent estimates may be obtained using the method of

moment generating functions suggested by Quandt (1972). An extended

version of the model proposed by Baum et al.(1970) and Kiefer(1980) has

been provided by Hamilton (1989,1990). Hamilton (1989) proposes a very

tractable approach to model ARMA processes subject to Markovian changes

in regime. Hamilton (1990) summarizes the results necessary to apply the

EM algorithm in the present context of dependent switching regimes, thus

generalizing Kiefer’s model where only i.i.d switching regression are consid-

ered. A further computational improvement is discussed by Kim (2004) who
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points out that the maximum likelihood estimation of a Markov-switching

regression model based on the Hamilton (1989) proposal is not valid if endoge-

nous explanatory variables are present; however, there exists an appropriate

transformation of the model that allows to solve the problem of endogene-

ity within the class of Hamilton’s (1989; 1990) Markov switching regression

model.

An interesting feature of the Markov-switching models is that one can

draw inferences about the state distributions at different timepoints condi-

tional on a given sample, known as filtering, prediction and smoothing prob-

lems (Zijian, 2004; see Chapter 2.3). Since we do not observe St directly, we

infer on its value through the observed behavior of Yt and the inferred state

distributions are usually obtained as a by-product of the filtering-smoothing

process for ML estimation, for a survey see Hamilton (2005). Yang (2001)

shows that closed-form partial derivatives of the likelihood function can be

readily derived from closed-form likelihood function. These results provide a

clear framework for ML estimation in Markov-switching models and may be

used to improve the efficiency of numerical optimization techniques.

The relation between Markov-switching models and HMMs is straight-

forward (see for example Junag and Rabiner, 1985; Rabiner, 1989): HMMs

represent a subclass of autoregressive models with Markov regime, for which

the conditional distribution of Yt does not depend on lagged Y s but only

on St. Even so, the only theoretical result available up till now, for autore-

gressive processes with Markov regime, is consistency of the MLE when the

regime takes values in a finite set (Krishnamurthy and Ryden, 1998; Francq

and Roussignol, 1998) and asymptotic properties of the MLE when the hid-
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den Markov chain takes values in a compact space (Douc et al., 2004).

2.3 Computational methods for HMM

We will focus on three fundamentals problems for HMM designs, namely: the

evaluation of the probability of a sequence of observations given a specific

HMM; the determination of a best sequence of model states; the adjustment

of model parameters to best account for the observed outcomes. Formally

the three problems can be written as:

Probability evaluation. Given an observation sequence Y0:T = (y0, y1, . . . , yT )

and the model λ, how do we efficiently compute the likelihood that the

T -tuple Y will be observed, given the model?

Optimal state sequence. Given an observation sequence Y0:T = (y0, y1, . . . , yT )

and the model λ, how do we find informations about the ”optimal” state

sequence from the available observations?

Parameter estimation. How do we optimize the model parameters so as

to best describe how a given observation come about?

The solutions of these problems are given in the next three subsections.

2.3.1 The Baum-Welch and Forward-Backward algo-

rithms

The Baum-Welch algorithm was developed by L.E. Baum and his co-workers

in a series of papers published between 1966 and 1972: Baum and Petrie
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(1966), Baum and Eagon (1967), Baum et al. (1970) and Baum (1972). As

can be easily observed the name of L.R. Welch does not appear in these

references. As Welch (2003) himself explains, Baum and Welch had both

been working independently on hidden Markov chains and had both come

up with essentially the same calculations for the posterior probabilities of

”local” events.

Those papers lay bare a principle which underlies the effectiveness of

an iterative technique which occurs in employing the maximum likelihood

method in statistical estimation for probabilistic functions of Markov chains.

Analyzing Markov chains and Markov processes, it is well-known that in

many cases it is not the state of sequence of the model which is observed

but rather the effects of this process; that is, the states are unobservable but

some functions, possibly random, of the state are observed. The Baum-Welch

algorithm addresses the problem of finding the values of model parameters

which maximize the likelihood of the observed data. The related parameter

estimation procedure is described in Rabiner (1989), with respect to speech

recognition context, MacDonald and Zucchini (2001) and Cappé, Moulines

and Rydén (2005) in a general form.

The calculation of the likelihood according to its definition (2.1) involves

O(TmT ) operations (product and summations), which is computationally

infeasible, even for moderate size HMMs. Clearly, a more efficient proce-

dure is needed to perform the calculation of the likelihood. The problem of

computing these factors may be addressed through the Forward-Backward

procedure (Baum et al., 1970; for a brief review see Welch, 2003). Let us
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start considering the forward variable

αt(j) = Pr(y0:t, St = j), (2.17)

which represents the joint probability of the partial observed sequence until

time t and state j at time t (given the model λ). Now, recursive factorization

of αt(j) is given inductively:

Initialization. The first factor is the joint probability of the state at time

0 and the initial observation y0

α0(j) = Pr(y0, S0 = j) = Pr(S0 = y)Pr(y0 | S0 = j) =

δjfj(y0), 1 ≤ j ≤ m. (2.18)

Induction. The heart of the procedure is given by the recursive term used

in the induction step.

αt+1(k) = Pr(y0:t+1, St+1 = k) =
m∑
j=1

Pr(y0:t+1, St+1 = k, St = j) =

m∑
j=1

Pr(y0:t, St = j)Pr(yt+1, St+1 = k | y0:t, St = j) =

m∑
j=1

Pr(y0:t, St = j)Pr(yt+1, St+1 = k |, St = j) =

m∑
j=1

Pr(y0:t, St = j)Pr(St+1 = k | St = j)Pr(yt+1 | St+1 = k) =[
m∑
j=1

αt(j)qjk

]
fk(yt+1), 1 ≤ k ≤ m; 0 ≤ t ≤ T − 1. (2.19)
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As a by-product of the forward recursion, we obtain that the likelihood

can be written as

L(λ; y0:T ) =
m∑
j=1

αT (j). (2.20)

A reverse time recursion exists for the backward variable which is defined

as

τt(j) = P(yt+1:T | St = j), (2.21)

i.e. the probability of the partial observation sequence from t+ 1 to the end,

given state j at time t. Again we can solve for τt(j) inductively, as follows:

Initialization. The initialization step arbitrarily defines

τT (j) = 1, 1 ≤ j ≤ m. (2.22)

Induction.

τt(j) =
m∑
k=1

qjkfk(yt+1)τt+1(k), 1 ≤ k ≤ m; t = T − 1, T − 2, . . . , 0.

(2.23)

Now, given a fully specified model and a set of observations, we would aim

at estimating the corresponding unobserved state sequence. More specifically,

we are concerned with the evaluation of the conditional distributions of the

state at time t, St, given the observations y0:T , a task that is usually referred

to as smoothing. The smoothing function is defined as

φt|T (j) = Pr(St = j | y0:T ), 1 ≤ t ≤ T, (2.24)

and

φt|T (j) ∝ Pr(St = j, y0:T ) = Pr(St = j, y0:t)Pr(yt+1:T | St = j, y0:t) =

αt(j)τt(j). (2.25)
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Therefore

φt|T (j) =
αt(j)τt(j)
m∑
j=1

αt(j)τt(j)
. (2.26)

Similarly we can derive the filter φt|t function, where the goal is to com-

pute the distribution of the hidden state, St, conditionally on the sequence

y0:t

φt|t(j) = Pr(St = j | y0:t) =
Pr(St = j, y0:t)

Pr(y0:t)
=

αt(j)
m∑
k=1

αt(k)
(2.27)

We can solve for φt|t(j), as follows: let us define

φ0|0(j) =
δjfj(y0)
m∑
k=1

δkfk(y0)
=

α0(j)
m∑
k=1

α0(k)
(2.28)

then, by recursion

φt+1|t+1(k) =

m∑
j=1

φt|t(j)qjkfk(yt+1)

m∑
k=1

m∑
j=1

φt|t(j)qjkfk(yt+1)
. (2.29)

The numerator of (2.29) is equal to

m∑
j=1

Pr(St = j | y0:t)Pr(St+1 = k | St = j)Pr(yt+1 | St+1 = k) =

m∑
j=1

Pr(y0:t+1, St+1 = k)Pr(St = j | y0:t) =

m∑
j=1

Pr(St = j | y0:t)Pr(St+1 = k | St = j)Pr(yt+1 | St+1 = k) =

m∑
j=1

Pr(yt+1, St+1 = k | St = j)Pr(St = j | y0:t) =

Pr(yt+1, St+1 = k | y0:t) (2.30)
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As a by-product of the filtering procedure we obtain:

P(yt+1 | y0:t) =
m∑
k=1

m∑
j=1

φt|t(j)qjkfk(yt+1) (2.31)

where the right hand term of (2.31) corresponds to the denominator of (2.29);

moreover, we obtain the prediction, φt+1|t(k):

φt+1|t(k) = Pr(St+1 = k | y0:t) = Pr(St+1 = k | y0:t, St = j)

Pr(St = j | y0:t) = Pr(St+1 = k | St = j)Pr(St = j | y0:t) =
m∑
j=1

φt|t(j)qjk (2.32)

Hence, we can rewrite the filter recursion equation 2.29 trough the pre-

diction quantity defined in 2.32 as follows:

φt+1|t+1(k) =
φt+1|t(k)fk(yt+1)
m∑
k=1

φt+1|t(k)fk(yt+1)
(2.33)

It is also possible to define the t1(> 0)-th prediction as9:

φt+t1|t(k) = Pr(St+t1 = k | y0:t) = Pr(St+t1 = k | y0:t, St = j)

Pr(St = j | y0:t) = Pr(St+t1 = k | St = j)Pr(St = j | y0:t) =
m∑
j=1

φt|t(j)q
(t1)
jk (2.34)

where q
(t1)
jk is t1-th power of the transition probability matrix and

P(yt+t1 | y0:t) =
m∑
j=1

fj(yt+t1)φt+t1|t(j) (2.35)

9If t1 →∞ and St is ergodic, a unique stationary distribution, δ, exists and q(t1)
jk → δk.

Thus, φt+t1|t(k)→
∑
j

φt|t(j)δk = δk
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Finally, we report some examples of the forward-backward procedure with

respect to extended versions and to related applications.Lystig and Hughes

(2002) estimate the variance of the parameter estimates by inverting the

information matrix of the observed data extending the forward-backward al-

gorithm to compute the information matrix directly, an approach that both

simplifies and speeds-up the computation. Fearnhead (2005) shows how to

perform direct simulation for discrete mixture models, where the approach is

based on directly calculating the posterior distribution using a set of recur-

sions which are similar to those of the forward-backward algorithm; Qin et

al. (2000) show that the applicability of the HMM algorithms to patch-clamp

recordings have been limited by several problems and propose to model the

background noise by an autoregressive (AR) process, so that the data can be

reduced to a higher-order Markov process with white noise. Venkataramanan

and Sigworth (2002) show that the forward-backward algorithm performs well

when applied to data with additive noise, but yield biased estimates of the

parameters when the noise is correlated.

2.3.2 The Viterbi algorithm

The Viterbi algorithm has roots going back to the mathematical program-

ming field of dynamic programming, which was given its name by Richard

Bellman (1957). Several examples of applications that might be considered

to belong to this branch are given in, for instance, Hillier and Lieberman

(1995).

The original paper, whose author later was honored by the generally ac-

cepted naming of the algorithm, is Viterbi (1967). It has been originally
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written within the context of decoding convolutional codes. An early re-

view of the algorithm was given in Forney (1973), where the algorithm is

formulated as a way of finding a shortest path problem. Later, the HMM tu-

torial proposed by Rabiner (1989) described the algorithm within the speech

recognition context.

The parameter estimation procedure for the Viterbi algorithm, denoted

by Viterbi training or classification EM, is described in e.g. Durbin et al.

(1998), Koski (2001) and Cappè, Moulines and Rydén (2005).

We provide two more examples from the biological scientific community

of the Viterbi algorithm and its related training procedure :

• in linkage analysis, the Viterbi algorithm could be used for evaluat-

ing the a posteriori most likely inheritance distribution and then take

advantage of the one-to-one relationship between this distribution and

the individual haplotype (Lander and Green, 1987);

• Viterbi training is used in the recent application of gene identification

described in Lomsadze et al. (2005) and Yuan and Kendziorski (2006).

To describe the Viterbi algorithm and the related procedures, let us intro-

duce some notation. We start out with calculating the posterior probabilities

of the unobserved states j = 1, . . . ,m

P (St = j | y0:T , λ) ∝ αt(j)τt(j), (2.36)

where αt(j) = P (St = j, y0:t | λ), τt(j) = P (yt+1:T | St = j, λ) and λ =

(δ,Q, θ) is the assumed HMM model10.

10When not needed, we will not explicitly write out the dependence on λ
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Both the forward αt(j) and the backward probabilities τt(j) are calcu-

lated recursively (see 2.17 and 2.21) using starting values derived from their

definitions taking advantage of, in the forward case, the model λ. For prac-

tical numerical reasons, one may need to normalize these terms in order to

implement the algorithm. This is preferably done by incorporating scaling

procedures into the algorithm in itself. Specifically, we remind that in the

forward case one may define

φt|t(j) = P (St = j | y0:t) =
αt(j)
m∑
k=1

αt(k)
, (2.37)

In connection with the corresponding neighbor φt|t−1(j) = P (St = j |

y0:t−1) it possible to automatically normalize the calculations through recur-

sion. This is done by successively calculating and using a sequence of nor-

malizing constants (c0, c1, . . . , cT ). In the backward case one may actually

use the same sequence of normalizers (c0, c1, . . . , cT ) which was previously

calculated when scanning through the forward procedure.

The basic problem tackled by the Viterbi algorithm is the following: given

an output sequence Y0:T = y0:T and a HMM model λ, how do we choose a

state sequence s0:T in a optimal way, i.e. in the sense of best explaining the

observed sequence? Finding a solution is equivalent to uncover the hidden

part of the model, but an obvious question is how to select a valid and

meaningful optimality criterium, i.e. how to find the ”correct” state sequence.

In the following, we will give two common examples of criteria which both

are based on the concept of maximum a posteriori.

The first procedure is based on the maximum a posteriori individual ob-

servations (i.e. maximization of posterior state probability), which is defined
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as

ŝt = arg max
1≤j≤m

[αt(St = j)τt(St = j)], 0 ≤ t ≤ T (2.38)

which gives the estimated optimal sequence ŝ = (ŝ0, ŝ1, . . . , ŝT ). The corre-

sponding probability is given by:

p̂ ∝ max
1≤j≤m

[
αT (Ŝt = j)τT (Ŝt = j)

]
(2.39)

The second procedure is based on the maximum a posteriori sequence

of observations (maximization of the probability of the whole sequence of

states) and is defined as

ŝ0:T = arg max
s0:T∈ST+1

Pr(S0:T = s0:T | y0:T ) (2.40)

where ST+1 is a set of mT+1 valid distinct state sequences and, by definition,

the whole sequence is estimated in one step. The corresponding maximum

sequence probability is now given by:

p̂ = max
ŝ0:T∈ST+1

Pr(S0:T = ŝ0:T | y0:T ). (2.41)

This approach is generally called the Viterbi algorithm.

Now let the (unknown) sequence of true states be s∗ = (s∗1, s
∗
2, . . . , s

∗
T ).

The first approach maximizes the expected number of correctly estimated

states, i.e.

max
O

E[
T∑
t=0

I({ŝt = s∗t}) | y0:T , O] (2.42)

where O is an optimality algorithm. Equivalently it may be formulated

as minimizing the expected Hamming distance (Hamming, 1950) between

estimated and true sequences, i.e.

min
O
E[d(ŝ, s∗) | y0:T , O] (2.43)



30 CHAPTER 2. HIDDEN MARKOV MODELS

where d(u, v) is the corresponding distance measure defined as the number

of positions where states of the sequences u and v differ.

The second approach is more robust and intuitively attractive since it

considers possible dependencies with respect to the state sequence, i.e. the

Markov transition matrix Q is not neglected. In the first procedure, the

estimated optimal sequence may even be inconsistent, i.e. if qŝt,ŝt+1 = 0

for some t. Intermediate steps between the two approaches may be to look

at maximum a posteriori in successive state pairs, triplets or, generally, k-

tuples. This can be done sequentially, either independently or conditionally,

i.e. in the pair case respectively: (i) first (ŝ0, ŝ1) then ŝ2, ŝ3 and so on; (ii)

first (ŝ0, ŝ1) then (ŝ1, ŝ2 | ŝ1) and so on 11.

To formulate the algorithm we need to introduce

ρt(j) = max
s0:t−1

Pr(S0:t−1 = s0:t−1, y0:t | St = j). (2.44)

We maximize the probability only with respect to the sequence of states up

to and including time t− 1, since we condition on the t-th state and

Pr(S0:t = s0:t | y0:t) ∝ P(S0:t = s0:t, y0:t), (2.45)

which explains why we can work with the latter quantity.

Using the introduced probability ρt(j), we may formulate the induction

step, which is the core of the algorithm,

ρt+1(k) =

[
max
j
ρt(j)qjk

]
fk(yt+1), (2.46)

where the density fk(·) is not involved in the maximization.

11The T-tuple equals the Viterbi algorithm
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To derive the optimal state sequence, we need to define a corresponding

quantity ψt(k), which keeps track of the partially optimal state sequence

found during the scan. Therefore, the algorithm in its general form consists

of the following steps:

Step 1, Initialization. We use the initial distribution and the transition

matrix to perform initialization,

ρ0(j) = ρjfj(y0), 1 ≤ j ≤ m, (2.47)

ψ0(j) = 0, 1 ≤ j ≤ m. (2.48)

Vaguely speaking, the state sequence array is set equal to 0 throughout

according to the property of one step delay.

Step 2, Recursion. We use the induction step to define the algorithmic

recursion,

ρt+1(k) =

[
max

1≤j≤m
ρt(j)qjk

]
fk(yt+1), 1 ≤ k ≤ m 0 ≤ t ≤ T − 1,

(2.49)

ψt+1(k) = arg max
1≤j≤m

ρt(j)qjk, 1 ≤ k ≤ m 0 ≤ t ≤ T − 1. (2.50)

Step 3, Termination. Eventually, after T steps we have found both the

final (globally) maximum probability and the exit state,

p̂ = max
1≤j≤m

ρT (j), (2.51)

ŝT = arg max
1≤j≤m

ρT (j). (2.52)

To achieve the goal of calculating the corresponding conditional prob-

ability Pr(S0:T = s0:T | y0:T ) one only needs to normalize the uncondi-

tional probability with respect to Pr(y0:T ) =
∑m

j=1 αT (j)
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Step 4, Backtracking. The final step of the algorithm consists of back-

tracking, i.e. recursively unravelling the optimal state sequence, using

the derived matrix of partially state sequence ψ = {ψt(j)}m∗(T+1) as

ŝt−1 = ψt(ŝt), t = T, T − 1, . . . , 1. (2.53)

An alternative formulation of the algorithm would be to use logarithms of

the chosen quantinties, Pr(S0:T = s0:T | y0:T ) or Pr(S0:T = s0:T , y0:T ), thus

transforming the products into sums. In the conditional (scaled) case there

will be a single term in the t-th step of the algorithm,

(`t−1 − `t)

in the expression corresponding to the t-th scaling factor ct. Here `t =

log Pr(y0:t) denotes the log-likelihood of observations y0:t.

If somewhere along the line of stepwise calculations we end up with a

nonunique maximum probability max1≤j≤m δt(j)qjk one may for instance:

• arbitrarily choose one of the corresponding states and continue the

procedure;

• create a separate matrix ψ for each of the equally probable cases and

proceed simultaneously for all these cases.

We assumed a known (constant) model λ. When this is not an appropriate

assumption one may sequentially, step-by-step, both estimating the model

with

λ̂ = (δ̂, Q̂, θ̂)
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and calculating the HMM-probabilities. The standard procedure is based on

the EM algorithm (Baum-Welch algorithm, for details see section 2.3.1). As

an approximation to the EM algorithm one may use Viterbi training.

2.3.3 The EM algorithm

As we have seen before, the log-likelihood can be evaluated recursively, even

for very long observed sequences; hence it is feasible to perform parameter

estimation for HMMs by direct numerical maximization of the log-likelihood

fuction. The maximization can be accomplished by solving m separate max-

imization problems defined by starting from a fixed initial state (Leroux and

Puterman, 1992). An EM algorithm to find model parameter estimates can

be used (e.g. Leroux and Puterman, 1992; Hughes, 1997; Bilmes, 1998). In

the EM framework, Y0:T is referred to as the incomplete data, S0:T is called

the ”missing” data, while (Y0:T , S0:T ) is the complete-data. Given a particular

sequence of states, the complete-data log-likelihood can be easily computed

as

`c(λ) = logLc(λ) = log Pr(y0:T , s0:T | λ)

=
∑
jj∈S

log δj +
∑
j∈ST

∑
k∈ST

log qjk +
T∑
t=0

m∑
j=1

fj(yt | λ). (2.54)

Let us define the Q function as

Q(λ, λ′) = Eλ[`
c(λ′) | y0:T ] =

∑
s∈S

Pr(y0:T , s0:T | λ) log Pr(y0:T , s0:T | λ′)

(2.55)

where λ are our initial (or guessed) parameter estimates and S is the space of

all state sequences. By the Jensen’s inequality and exploiting the concavity
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of the log function, Baum et al. (1970) find that replacing the parameter

values by the expected frequencies of states and of state transitions given

the current observations increases the likelihood function. They apply the

Kullback-Leibler divergence, denoted by D(λ, λ′), to a general HMM (Baum

and Eagon, 1967)

0 ≤ D(λ, λ′) =
∑
S

Pr(y0:T , s0:T | λ)

Pr(y0:T | λ)
log

(
Pr(y0:T , s0:T | λ)Pr(y0:T | λ′)
Pr(y0:T , s0:T | λ′)Pr(y0:T | λ)

)
= log

Pr(y0:T | λ′)
Pr(y0:T | λ)

+
∑
S

Pr(y0:T , s0:T | λ)

Pr(y0:T | λ)

log

(
Pr(y0:T , s0:T | λ)

Pr(y0:T , s0:T | λ′)

)
. (2.56)

Replacing (2.56) in (2.55) we obtain

0 ≤ D(λ, λ′) = log

(
Pr(y0:T | λ′)
Pr(y0:T | λ)

)
+
Q(λ, λ)−Q(λ, λ′)

Pr(y0:T | λ)
(2.57)

and rearranging the inequality we have

Q(λ, λ′)−Q(λ, λ)

Pr(y0:T | λ)
≤ log

(
Pr(y0:T | λ′)
Pr(y0:T | λ)

)
. (2.58)

In general, the EM algorithm involves the following two iterative steps:

E-step. Compute Q(λ, λ′) = Eλ′ [`
c(λ | y0:T )].

M-step. Maximize Q(λ, λ′) as a function of λ′.

Before deriving the conditional expectation of the complete loglikelihood, we

define with

γjt = Pr(St = j | y0:T ), (2.59)

the posterior probability, given the observed data, of being in state j at time

t and with

ξjkt = Pr(St+1 = k, St = j | y0:T ) (2.60)
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the posterior probability that the unobserved sequence visited state j at time

t and made a transition to state k at time t+1, given the observed individual

sequence.

Let us examine the function Q(λ, λ′) in more details. Taking the loga-

rithms, we may rewrite

Q(λ, λ′) =
∑
j∈S

γj0 log δj +
T∑
t=1

∑
j∈ST

∑
k∈ST

ξjkt log qjk +
T∑
t=0

∑
j∈ST

γjt log fj(yt | λ).(2.61)

It can be seen that it is easy to differentiate with respect to model parameters,

add the Langrange mulptilers and solve.

We can compute (2.61) using the forward and the backward variables

defined in (2.17) and (2.21) considering that the first and the third parts of

the (2.61) can be seen as smoothing probabilities, while the second one is a

bivariate smoothing probability. Hence

γjt =
αt(j)τt(j)
m∑
j=1

αT (j)
(2.62)

ξjkt =
αt(j)qjkfk(yt+1)τt(k)

m∑
j=1

αT (j)
(2.63)

In the M-step, we update all model parameter estimates starting with the

transition probabilities qjk. For each row j, we maximise
m∑
k=1

ξjkt log qjk like

in a multinomial distribution context; hence the update of qjk is given by:

q̂jk =

T−1∑
t=0

ξjkt

T−1∑
t=0

∑
k′∈S

ξjk′

, j ∈ S, k ∈ S (2.64)
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while the update of the initial probability corresponds to the smoothing prob-

ability:

δ̂j = Pr(S0 = j | y0:T ) =

∑
j∈S

γj0

T
. (2.65)

Estimates of model parameter in the f(·) function may vary depending on

the specific parametric assumptions upon f(·), for Gaussian distributions see

i.e. Bilmes (1998) and Cappé et al. (2005).

Summarizing, a single EM cycle:

• runs the Forward-Backward algorithm (eventually scaled);

• computes the smoothing probabilities;

• computes the updated parameter estimates λ̂ = (δ̂, Q̂, θ̂).

Baum and Petrie (1966) analyzed in deep the case when Yt takes values

in a finite set and provide results on consistency and asymptotic normality

of the MLE. The conditions for consistency are weakened in Petrie (1969),

who also discusses HMM identifiability. For general HMM, Lindgren (1978)

proved consistency property of the maximum likelihood estimators θ̂, but no

results on the estimation of the transition probabilities were given. Leroux

(1992) proved consistency of the MLE for general HMM under mild condi-

tions, applying the strategy developed by Wald (1949) and further developed

by Kiefer and Wolfowitz (1956), obtaining convergence in the quotient topol-

ogy. Rydén (1994), starting from the local asymptotic normality of the MLE

in the sense of Le Cam, as proved by Bickel and Ritov (1993), proposed a new

class of estimates which are almost as good as the MLE and, under fairly gen-

eral conditions, are consistent and asymptotically normal. Although Bickel
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and Ritov (1996) proved that an estimator similar to the MLE is asymptoti-

cally normal. Bickel et al. (1998) showed that, under weaker conditions than

those in Bickel and Ritov (1996), the curvature of the likelihood is asymptot-

ically equal to the information bound and hence the MLE is asymptotically

normal.Bickel et al. (2002a) gave explicit expressions for HMM derivatives

and corresponding expectations, bounding them as the size of the chain in-

creases, obtaining second order asymptotics and some qualitative properties

extending some results of Petrie (1969). Le Gland and Mevel (2000) indepen-

dently developed a different technique to prove consistency and asymptotic

normality of the MLE for HMMs with finite hidden state space. This work

was later extended to HMMs with non-finite hidden state space by Douc and

Matias (2001)12. This approach is based on the remark that the loglikeli-

hood can be expressed as an additive function of an extended Markov chain.

These techniques, which are well-adapted to study recursive estimators, re-

quire stronger assumption than those outlined in Bickel et al. (1998). Under

suitable conditions, Bickel et al. (2002a) showed how to establish stochastic

asymptotic expansions for the MLE in terms of derivatives of the likelihood

debiasing the MLE; furthermore, analytic forms for the Fisher information,

the Kullback-Leibler distance and entropy are provided13. Recently, Genon-

Catalot and Laredo (2006), under rather minimal assumptions, provided a

further extension, assuming the unobserved Markov chain is neither finite

12Asymptotic properties of the MLE in autoregressive models with Markov regime in a

possibly non-stationarity process with a compact, but not necessarily finite, hidden state

space are provided in Douc et al. (2001)
13Details of proof of lemmas and theorems in Bickel et al. (2002a) are available in Bickel

et al. (2002b)
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(Leroux, 1992) nor compact (Douc and Matias, 2001). However the state

space is assumed to be an open interval of R, obtaining the convergence of

the normalized loglikelhood function to a limit that could be identified at the

true value of the parameter.

The use of the recursive algorithm of Baum et al. (1970) results in exact

evaluation of the likelihood, optimal parameter estimates and efficient com-

putation (see Le et al., 1992); however, an alternative approximation to the

E-step when using the EM algorithm for parameter estimation can be pro-

vided. The major drawback of the EM algorithm is its rate of convergence,

which is linear only in the proximity of the MLE. Various modifications of

the basic algorithm have been suggested; see, for example, Albert (1991),

Jamshidian and Jenrich (1997), Meng and van Dyk (1997) and references

therein14. Albert (1991) proposed an approximate method to evaluate the

conditional probabilities in the E-step, conditioning only on current obser-

vations and its 2m nearest neighbors. This leads to a computational burden

that increases in exponential order with respect to the number of nearest

neighbors used; therefore, the method becomes impractical if one requires

a high-order approximation (Le et al., 1992), while the complexity of the

forward-backward algorithm is of linear order with respect to the sample size

(Leroux and Puterman, 1992). Jashimidian and Jenrich (1997) suggested

an integration of the EM algorithm through a Newton-type accelerator to

improve the rate of convergence, but this approach usually leads to loss of

14Maximization with respect to λ can be also obtained by any standard numerical opti-

mization scheme, i.e. the downhill simplex algorithm (Press et al., 1989), which does not

require any derivatives of the objective function
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stability and increased complexity. A further alternative approach is to use

hybrid algorithms, which are based on combining the EM algorithm with a

fast algorithm with strong local convergence, such as Newton-type algorithm

(Bulla and Berzel, 2007): this choice leads to a hybrid algorithm that yields

the stability and convergence properties of the EM algorithm along with su-

perlinear convergence of Newton-type algorithms in the neighborhood of the

maximum.

Difficulties in computing γjt and ξjkt by (2.62) and (2.63) may arise since

αt(j) and τt(j) rapidly converge to 0 as t increases, thus making the cal-

culation and storage of long sequences impossible (see Leroux, 1992). This

feature will cause underflow problems in the computation for long series data,

though this may not be a serious issue for longitudinal data with short in-

dividual series. Various methods for avoiding this issue have been proposed

(see e.g. Devijver, 1985). To overcome these difficulties, Leroux and Put-

erman (1992) determined and stored the order of magnitude on
∑

j∈S αt(j),

i.e., the integer p for which 10−p
∑

j∈S αt(j) lies betweeen 0.1 and 1, and

multiply αt(j) by 10−p; then αt+1(k) are computed15. Wang and Puterman

(2001) proposed to rescale αt(j) and τt(j) so that the corresponding maxi-

mum value is around 1 for each t. This approach takes the structure of the

model into account, represents positive αt(j) and τt(j) in the natural expo-

nential form, stores the largest exponents of the positive αt(j) and τt(j) for

each t respectively, and rescales these positive quantities by subtracting the

corresponding largest exponent for each t.

Whatever optimization algorithm is used, there is no guarantee that it

15A similare procedure is applied to τt(j)
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converges towards the MLE (thus it may converge to a local maximum),

since the likelihood surface of a HMM is in general multimodal. However, a

reliable procedure to overcome this issue is to start optimization algorithms

from several different, possibly random, points in Λ. A natural way for

dealing with this issue was given by Leroux and Puterman (1992), even if

this proposal has some limitations: too many null transition probabilities or

independence or complete dependence in the underlying Markov chain, both

of which are preserved by the EM algorithm.

If the dynamics changes slowly in time, the estimation procedure must be

modified: instead of cumulating past data, we must gradually forget them.

This forgetting property refers to the fact that observations far back in the

past have little impact on the posterior distribution of the current state. It

is sensible to assume that Pr(St = j | Y0:T = y0:T ) gets asymptotically close

to Pr(St = j | Yt∗:T = yt∗:T ) as t− t∗ increases. In fact

Pr(St = j | Y0:T = y0:T )

=
m∑
k=1

Pr(St = j | Y0:T = y0:T , St∗ = k)Pr(St∗ = k | Y0:T = y0:T )

=
m∑
k=1

Pr(St = j | Yt∗:T = yt∗:T , St∗ = k)Pr(St∗ = k | Y0:T = y0:T )(2.66)

and

Pr(St = j | Yt∗:T = yt∗:T ) =
m∑
k=1

Pr(St = j | Yt∗:T = yt∗:T , St∗ = k)

Pr(St∗ = k | Yt∗:T = yt∗:T ). (2.67)

Along the same path, let us consider two chains with initial distributions

Pr(St∗ = j | Y0:T = y0:T ) and Pr(St∗ = j | Yt∗:T = yt∗:T ). Since we start
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both chains at time t∗, the probability that the coupling (i.e. the two chains

coincide) occurs after time t is given by

Pr(T̃ > t) = (1− ν)t−t
∗

where T̃ is the coupling time and ν is a positive number that represent a

lower bound for the transition probabilities (i.e. ν is the minorizing costant

that satisfies the so-called minorization condition, see Cappé et al, 2005).

Then

‖Pr(St = j | Y0:T = y0:T )− Pr(St = j | Yt∗:T = yt∗:T )‖TV ≤ 2(1− ν)t−t
∗

where ‖ · ‖TV is the total variation norm 16, which is usually adopted to mea-

sure the distance between probability measures. As can be easily observed

the total variation distance converges to zero at a geometric rate as t − t∗

tends to infinity.

16For signed and bounded measure ω that the norm is defined by ‖ω‖TV =

sup|f |≤1 |
∫
f(·)dω|. If the state space S is finite, then ‖ω‖TV =

∑
j∈S |ω(j)|. Then

the total variation distance between two smoothing distribution is then given by

‖Prω(St ∈ · | y0:T )−Prω′(St ∈ · | y0:T )‖TV =
∑
j∈S
|Prω(St = j· | y0:T )−Prω′(St = j· | y0:T )|
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Chapter 3

Longitudinal Data

3.1 Data structure

Panel or longitudinal data are increasingly available and provide an oppor-

tunity to relax some of the more dogmatic features of model applied to pure

cross-section and time series data.

Loosely speaking, a panel is a collection of observations which are recorded

repeatedly over time1; panel data consist of repeated observations on the

same cross section of i.e. individuals, firms, ecc., over time. In this con-

text, since it is reasonable to allow for correlation in individual behavior

over time, the random sampling assumptions (a population model has been

specified and an independent identically distributed sample can be drawn

from the population) appear too restrictive; however we can still use such

assumptions in the cross-section dimension; furthermore, the dependence in

1Usually these data are referred as longitudinal data to emphasize that the data refer

to the same individuals at successive times.

43
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the time series dimension can be entirely unrestricted.

Maddala (1993) defines panel data as datasets on the same individu-

als over several periods of time. This encompasses longitudinal data anal-

ysis where the primary focus is on individual histories. Panel data is also

used to describe the pooling of time series observations across a variety of

cross-sectional units, including countries, regions, states, firms or households.

Some of the benefits and limitations of using panel data sets are given in

Hsiao (1986) and Baltagi (2001)2. In the following we will focus mainly on

longitudinal data. Obvious benefits include a usually larger data set with

more variability and less collinearity among the variables than it is typi-

cal of cross-sectional or time series data; such larger datasets help one get

more reliable estimates and test more sophisticated behavioral models under

less restrictive assumptions. Another advantage of longitudinal datasets is

that one may control for individual heterogeneity: not controlling for unob-

served individual-specific effects leads to biased parameter. In linear mod-

els,we may account for heterogeneity using simple tools; in fact transforming

the data into deviations over time from observed individual means drops

individual-specific effects while transforming data into individual deviations

from time averages eliminates all time specific effects. Thus, it is possible to

test for bias-inducing latent effects and construct consistent estimators that

account for individual heterogeneity (Hausman and Taylor, 1981). Longitu-

dinal datasets are also used to identify and estimate effects that are simply

not detectable in pure cross-sections or pure time series data; in particular,

2Here we will not treat panel data in a bayesian context; for an introduction to bayesian

methods applied to panel data see e.g. Koop (2003) and Lancaster (2004)
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panel data sets are better able to study complex issues of dynamic behavior.

Limitations of panel data sets include problems due to nonresponse and mea-

surement errors, as well as to bias deriving from sample selection issues. In

fact, respondents may refuse to participate or the interviewer may not find

anybody at home; this may cause some bias in the inference drawn from this

sample. While such nonresponse can also occur in cross-sectional data sets,

it is more serious with longitudinal studies because subsequent waves of the

panel are still subject to nonresponse.

A rich set of model and estimators for use with longitudinal data have

been developed; since observations are often generated by an explicit sam-

pling scheme, there is often interest in allowing parameters to be randomly

distributed in the population. The principal distinction in the literature is

between fixed or random effects models where effects or coefficients may be

specific to individuals or times. Let us start from the so called unobserved

effect model. In the error form it can be written as

yit = xTitβ + bi + uit = β0 + β1xit1 + · · ·+ βpxitp, t = 1, . . . , T (3.1)

where xit contain explanatory variables that may vary across time as well

as across individuals, i = 1, . . . , n, bi is a time constant variable, represent-

ing unobserved effects due to individual heterogeneity and uit represents the

idiosyncratic errors with, by definition, E(uit | xit, bi) = 0. Since the over-

all homogeneity hypothesis is rejected by the longitudinal data structure,

such model specification takes into account individual heterogeneity assum-

ing that, conditional on the observed explanatory variables, the effects of all

omitted variables are driven by an individual time invariant variable. The

focus is often on whether bi is to be treated as a random or a fixed effect;
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usually bi is called random effect when it is treated as a random variable and

fixed effect when it is a parameter that has to be estimated along with β3.

Fixed effect models can be treated as ordinary linear regression models

with intercepts specific to individuals; while adding nonlinear random effects

in the model may have a number of qualitative differences (Chamberlain,

1980; 1982). Assuming a fixed effect model implies that the focus is on

the individual effects on the relations among the effects; when effects are

assumed to be random, the portion of variance of the response variable due

to variation of random effects is often of primary interest. This leads to

procedures for inferences about variance components. In both random or

mixed (some effects are fixed and other are random) models inferences may

be sought about the individual realized values of the random effects; in this

cases, the procedures for estimating the effects may differ from those used

for estimating fixed effects (for an overview of the analytical procedures for

parameter estimation see i.e. Wooldridge, 2002).

In the following we will focus on models for the analysis of response data

drawn from a exponential family distribution; let us define yit the response

of the i-th unit at time t, a density f(yit) belong to the exponential family if

it can be expressed as:

f(y1:n,0:T ) = f(y1:n,0:T ; θ) = exp

[
y1:n,0:T θ − a(θ)

ω
+ b(y1:n,0:T , ω)

]
(3.2)

where θ is the canonical parameter while ω, called the dispersion parameter,

is usually treated as a nuisance parameter. Some example are described

below:

3In the econometric literature, the key issue involving bi is whether or not it is uncor-

related with the observed explanatory variables (Mundlak, 1987; Wooldridge, 2002)
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Bernoulli distribution: if Y ∼ Bin(1, π), with 0 < π < 1, then

f(y; π) = πy(1− π)(1−y) = exp

[
y ln

π

1− π
+ ln(1− π)

]
(3.3)

therefore we have θ = ln π
1−π , ω = 1 and a(θ) = ln(1 + eθ).

Poisson distribution: if Y ∼ Poi(λ), with λ > 0, then

f(y;λ) =
λy

y!
e−λ = exp(y lnλ− λ− ln y!) (3.4)

thus, in this case we obtain θ = lnλ, ω = 1, a(θ) = eθ and b(y, ω) =

− ln y!

Gaussian distribution: if Y ∼ N(µ, σ2), with −∞ < µ < ∞ and 0 <

σ2 <∞, then

f(y;µ, σ2) =
1

σ
√

2π
exp

{
−1

2

(
y − µ
σ

)2
}

= exp

{
yµ− µ2/2

σ2
− 1

2

[
y2

σ2
+ ln(2πσ2)

]}
(3.5)

where θ = µ, ω = σ2, a(θ) = θ2

2
and b(y, ω) = −1

2

[
y2

σ2 + ln(2πσ2)
]

A natural way for dealing with such distributions in a regression context,

including a set of explanatory variables, is through a generalized linear model

(GLM).

3.2 Generalized Linear Models (GLMs)

Generalized linear models (GLMs) represent a class of fixed effects regression

models for several types of dependent variables (i.e., continuous, dichoto-

mous, counts) belonging to the exponential family. McCullagh and Nelder
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(1989) discuss this class of models in great detail and refer to the term gen-

eralized linear model is due to Nelder and Wedderburn (1972) who described

how a set of seemingly unrelated statistical techniques can be unified. Com-

mon GLMs include linear regression, logistic regression, and Poisson regres-

sion. A GLM may be specified in three steps; first, the linear predictor,

denoted as νi, is of the form

νi = xTi β (3.6)

where xi is the vector of regressors for unit i associated to fixed effects β.

Then, a link function g(·) is specified which converts the conditional expected

value µi of the response variable Yi (i.e., µi = E[Yi | xi]) to the linear

predictor νi

g(µi) = νi (3.7)

We shall model the dependence of Y on X by assuming that there exists a

link function g such that, for all x in the support of X

g(µi) = xTi β. (3.8)

The resulting family of conditional distributions of Y | X is called a GLM

with link function g4. Such model specification makes possible a transforma-

tion to achieve linearity in the linear predictors (Box and Cox, 1962) such

that linear models carry over to GLMs.

Deriving parameter estimates through maximum likelihood, we have to

take into account for some identities described in McCulloch and Searle

(2001); following Peracchi (2004), we may write the loglikelihood and its

4The link function g is assumed to be admissible: g has a continuously differentiable

inverse h = g−1 which maps R onto the range space of µ(·)
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first derivative as follows:

`(θ) = c+
n∑
i=1

[Yiθi − a(θi)] ,
∂

∂θi
`(θ) = Yi − a′(θi) (3.9)

where c is an arbitrary constant, θi is the canonical parameter for the i-th

observation and θ = (θ1, . . . , θn). Let h = g−1 be the inverse link function,

since the canonical parameter θi satisfies µi = a′(θi) = h(νi) = h(xTi β), we

get

a′′(θi)dθi = h′(xTi β)xidβ. (3.10)

Thus
∂θi
∂β

=
h′(xTi β)

a′′(θi)
xi. (3.11)

We can write the likelihood equation defining a ML estimator for β as

`′(β) =
n∑
i=1

(yi − h(xTi β̂))xi = 0 (3.12)

leading to the score equations

n∑
i=1

yixi =
n∑
i=1

h(xTi β̂)xi. (3.13)

In this case, a ML estimator for β may be interpreted as equating the suf-

ficient statistic
n∑
i=1

yixi to its conditional expectation calculated using the

adopted model and the current estimate for β.

Fixed effects models, which assume that observations are independent of

each other, are not appropriate for the analysis of several types of correlated

data structures; in particular, for longitudinal data. For the analysis of such

data, random (time and/or subject specific) effects can be added into the lin-

ear predictor to account for dependence. Usually the following assumptions

are made for a balanced panel of T observations on n sample units:
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• the xit are strictly exogenous conditional on the individual effect bi,

i = 1, . . . , n, t = 1, . . . , T ;

• the distribution of the outcome yit is assumed to fall within the expo-

nential family of distributions given xit and bi;

• the individual effect bi is independent of xit

There are no general rules about the way in which the individual effects enter

the conditional mean and the conditional variance of yit. The most common

alternatives are:

Multiplicative effect: E[yit | xit, bi] = bih(xTitβ)

Intercept shifts: E[yit | xit, bi] = h(bi + xTitβ)

The most common model is a mixed model including standard fixed effects

for the regressors plus the random effects5. If we disregard the possible au-

tocorrelation in the observations induced by the presence of the individual-

specific random effects, β can simply be estimated by Non Linear Least

Square (NLLS) or, in order to improve efficiency, as proposed by Liang and

Zeger (1986) (for a discussion on this topic, see Wooldridge, 2002). Perac-

chi (2004) points out that since heteroskedasticity or failure of parametric

assumptions may lead to inconsistency of conventional ML or NLLS esti-

mators it is fundamental to build up estimators that are consistent under

weaker distributional assumptions. Semiparametric estimation can be done

5Mixed models for continuous normal outcomes have been extensively developed since

the seminal paper by Laird and Ware (1982).
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through Manki’s maximum score estimator (Manski 1975, 1985) or through

its smoothed version (Horowitz, 1992).

In the following we build a statistical model for the longitudinal data6

containing both ordinary regression parameters common to all individuals

and individual-specific random parameters. Our main focus is on so-called

mixed models, which assume that the individual-specific effects are drawn

from a population distribution. Mixed models cope in a natural way with

individual heterogeneity and provide common parameter estimates with ad-

equate levels of uncertainty.

3.3 Generalized Linear Mixed Models (GLMMs)

We have seen above that GLMs represent an extension of standard linear

models to non normal data whose distribution lies in the exponential effect;

when dealing with longitudinal data, they can be extended easily to mixed ef-

fect models, leading to GLMMs7. Recently, GLMMs have become important

tools for analyzing panel data. Many models from Item Response Theory

(see e.g. Legler and Ryan, 1997; Rijmen et al., 2003) and multilevel models

for non-normal data (Snijders and Bosker, 1999; Rabe-Haskett et al., 2004)

are special cases of GLMMs. Furthermore, the inferential procedures for

these models is well under way and has spawned a large number of methods

and procedures, all coming with specific advantages and disadvantages.

Let us start describing a random-intercept model, which is the simplest

mixed model; in this context, we augment the linear predictor with a single

6The statistical model proposed is valid for clustered data too.
7Agresti (2002) describe a variety of social science applications of GLMMs



52 CHAPTER 3. LONGITUDINAL DATA

random effect for subject i,

νit = xTitβ + bi, i = 1, . . . , n; t = 1, . . . , T (3.14)

where bi is the random effect (one for each subject). These random effects rep-

resent the influence of omitted covariates or individual heterogeneity which is

not captured by the observed covariates. These are treated as random effect-

sand they are usually assumed to be distributed as N(0, σ2
i ), as for example

in mixed logit Rasch-type models. The parameter σ2
i indicates the variance

in the random effect distribution, and therefore the degree of heterogeneity

between subjects. Including the random effects, the conditional expectation

of the response variable, which is related to the linear predictor via the link

function, is given by

µit = E[Yit | xit, bi] (3.15)

As a result, GLMMs are often referred to as conditional models when

compared to marginal generalized estimating equations (GEE) models (Liang

and Zeger, 1986), which represent an alternative extension of GLMs for cor-

related data based on a quasi-likelihood representation. The model can be

easily extended to include multiple random effects; in fact, in many longi-

tudinal problems, it could be common to have a random subject intercept

and a random linear time-trend. In so called random coefficient model we

will denote with zit the vector of variables associated to varying effects (a

column of ones is usually included to account random intercept). The vector

of random effects bi is assumed to follow a multivariate normal distribution

with mean 0 and covariance matrix Σb. The model can now be written as

νit = xTitβ + zTitbi, i = 1, . . . , n; t = 1, . . . , T (3.16)
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The conditional mean µit is now specified as E[Yit | bi,xit] in terms of the

vector of random effects.

In (3.16) , the random effect enters the model on the linear predictor

scale; this is convenient but also natural for many applications. For in-

stance, random effects sometimes represent heterogeneity caused by omitted

explanatory variables. Thus, random effects models may be related to meth-

ods for dealing with unmeasured predictors or other missing data; for exam-

ple, the random effects in the linear predictor reflect effects that would be

in the fixed effects part if certain explanatory variables have been included.

Random effects may also represent random measurement error in the ex-

planatory variables or provide a mechanism for explaining overdispersion in

standard models (Breslow and Clayton, 1993) where the variance function is

constrained by the definition of the mean function.

Model fitting for GLMMs is rather complex: the main difficulty is that the

likelihood function usually does not have a closed form; therefore, parameter

estimation in GLMMs typically involves numerical approximation to likeli-

hood function. As a general point, the solutions are usually iterative and nu-

merically quite intensive. As pointed out by Aitkin (1999), if the distribution

of the random effects is conjugate to the model distribution, then maximum

likelihood (ML) is straightforward in principle from the marginal distribution

of the observed data; the negative binomial and the beta-binomial distribu-

tions (Lee and Nelder, 1996) are examples of this kind. However, the con-

jugate approach lacks generality because a different conjugate distribution

is to be assumed for each density in the exponential family. A more ap-

pealing approach would be to assume a common distribution for the random
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effects regardless of the response distribution; an obvious choice is the normal

N(0, σ2
i ) distribution (Breslow and Clayton, 1993; McGilchrist, 1994). This

is especially natural for link functions giving an unbounded parameter space

for the linear predictor; however, exponential family models other than the

normal with a normal random effect have been difficult and slow to fit by

ML because the resulting likelihood does not have a closed form. A number

of different approaches have been followed to deal with this problem.

The likelihood can be integrated numerically using some form of Gaussian

quadrature (Anderson and Aitkin, 1985) to give full ML estimation. This ap-

proach is widely regarded as computationally intensive. Current quadrature

methods use the EM algorithm (Hinde, 1982; Anderson and Hinde, 1988)

for fitting the finite mixture distribution resulting from the discretization of

the normal into L probability masses πl at known locations bl. On the other

hand, the log-likelihood function can be approximated by a quadratic, and

standard computational methods for the normal variance component models

can then be used, giving approximate ML or REML estimation (Laird and

Ware, 1982). The success of the approximation depends on the closeness

to normality of the observed data likelihood and might fail badly, e.g., for

binary response data (Rodriguez and Goldman, 1995).

In detail, the GLMM can be viewed as a two-stage model. At the first stage,

conditional on the random effects, observations are assumed to follow a GLM;

while at the second stage, the random effects bi are drawn from a N(0, σ2
i )

distribution. The likelihood is therefore given by:

L(·) =
n∏
i=1

∫ T∏
t=1

f(yit | bi,xit)f(bi)dbi (3.17)
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where f(bi) is the standard normal density or any other parametric distribu-

tion.

The integral dimension depends on the random effects structure and it may

not have a closed form except for Y ∼ N(µ, σ2) and bi ∼ MVN(0,Σb). A

potential choice would be to approximate by Gaussian quadrature. The ap-

proximation is a finite weighted sum that evaluates the function at known

locations; in the univariate normal random effects case, the approximation

has the form

L(·) =
n∏
i=1

L∑
l=1

πl

T∏
t=1

f(yit | bl,xit) (3.18)

In other words, the likelihood is thus (approximately) the likelihood of a fi-

nite mixture of exponential family densities with known mixture proportions

πl at known locations bl.

The adequate approximation of likelihood function for random parameter

models, where the random effects are distributed according with a MVN,

is computationally intensive and cannot be accomplished through standard

Gaussian Quadrature whose complexity increases exponentially with integral

dimension. To avoid these problems, the integrals required in the E-step of

the EM algorithm can be avoided by Monte Carlo methods which are more

computationally feasible than numerical integration techniques (McCulloch,

1997).

This issue can be solved in a generalized estimating equation context (Liang

and Zeger, 1986), where the marginal distribution of y is not fixed to belong

to the exponential family but is rather specified in term of a quasi-likelihood

function with an adequate choice of the covariance function. The repeated-

measures structure is represented by the covariance matrix parameters esti-
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mated by marginal or partial quasi-likelihood.

Finally, a fully Bayesian approach can be followed, with the additional struc-

ture of a prior distribution on model parameters; successively Markov chain

Monte Carlo methods can be used to obtain posterior distributions of model

parameters. In the Bayesian context, the distinction between fixed and ran-

dom effects no longer occurs, as every effect has a probability distribution.

A potential disadvantage of this approach is the possible sensitivity of the

conclusions to parametric assumption upon the random parameter distribu-

tion (Heckman and Singer, 1984).

This difficulty can be avoided by NPML estimation of the mixing distribu-

tion concurrently with the structural model parameters; the NPML estimate

is well known to be a discrete distribution on a finite number of mass points

(Kiefer and Wolfowitz, 1956; Laird, 1978; Lindsay, 1983).

Leaving unspecified the random effects distribution a NPML estimation of

the mixing distribution, together with the GLM parameters, could be ap-

plied, assuming the mixing distribution is a nuisance function rather than

a parameter of interest. As suggested by Aitkin (1999), NPML approach is

linked with the GQ technique, but its complexity is linear in the integral

dimension. In fact, we now treat the masses and locations as unknown pa-

rameters; the number L of mass points is also unknown but is treated as fixed

and sequentially increased until the likelihood is maximized. Let us define

with bl the locations, the linear predictor becomes

νitl = xTitβ + bl (3.19)

It can immediately be estimated simply by including an L-level factor in

the model (Hinde and Wood, 1987). Differentiating the loglikelihood with
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respect to πl, we obtain directly a standard finite mixture ML result (Aitikin,

1999).
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Chapter 4

Hidden Markov Regression

Models for Longitudinal

Observations

4.1 Hidden Markov Model and Longitudinal

Observation

A natural extension of Markov models for univariate time series is towards

models describing multiple processes, with a particular focus on longitudinal

data.

Under Markov assumptions, the methodology so far proposed (in particu-

lar in continuous Markov model) regression models for longitudinal data are

treated in detail by Kalbfleisch and Lawless (1985), who provide efficient ways

to obtain maximum likelihood estimates (MLEs). They suppose individuals

59
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independently move from and to m states according to a continuous time

Markov process1 and obtain parameter estimates through a quasi-Newton

algorithm. Direct use of the Newton-Raphson algorithm would require the

evaluation of the first and second derivatives, the use of the scoring procedure

does not, since the second derivatives are replaced by their expectation esti-

mates. This method provides also an estimate of the asymptotic covariance

matrix of model parameters.

Furthermore, Kalbfleisch and Lawless (1985) propose other modeling ex-

tensions; they consider that individuals may be only partially observed, i.e.

some may exit the study before its completion: if individuals who leave the

study are similar to those who stay in the study with respect to all relevant

respects, then ML estimation applies without change.

Moreover, it is unnecessary that all individuals be observed over the same set

of time points; the amount of computation increases linearly with the num-

ber of distinct time intervals in the sample. One of the possible extensions

is fitting nonhomogeneous Markov models, considering a time-dependent in-

tensity matrix. In many empirical applications, we have covariates measured

on individuals under study and the focus is on the relationship between the

1We remind that a continuous-time Markov process is a process characterized by a

transition probability matrix specified in terms of the transitions

q∗jk(t) = lim
∆t→0

qjk(t, t+ ∆t)/∆t, j 6= k (4.1)

For convenience, we also define

q∗jk(t) = −
∑
k 6=j

qjk(t) (4.2)

and let Q∗(t) be the transition intensity matrix with entries q∗jk(t).
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covariates and the intensity entries in the Markov model.

Kalbfleisch and Lawless (1985) results apply to a wide class of Markov

models, i.e. also to hidden Markov model (HMM); in the following, we will

discuss some recent papers on HMMs for longitudinal observations, noting

that in the last 10 years several variations on the form of the model have

occurred.

In the discrete-finite state HMM, MacDonald and Zucchini (1997) discuss

a Markov Poisson regression assuming an unobserved state Markov chain

with stationary transition probabilities and a conditional Poisson distribution

for observed counts. Wang and Puterman (2001) extend this model by using

a two-state Markov chain with covariate-dependent transition probabilities.

In particular, they assume that:

• for an observed count, at each time point, there exists an unobserved

binary random variable representing the state of a (two-state) Markov

chain;

• the unobserved binary random variable follows a two-state discrete

Markov chain with transition probabilities described by a logit link

function;

• conditional on a given state, observed counts follows a Poisson distri-

bution with a state specific model parameters.

They propose an alternative model for handling extra-Poisson variation which

is usual in a huge number of empirical applications due to various rea-

sons, including random effects or missing information. For this purpose,
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the conditional distribution on the hidden chain are overdispersed distribu-

tions, such as Negative Binomial (NB) comparing these two models using a

likelihood ratio test2. Going in detail through some computational aspects,

maximum likelihood estimation is performed using a combination of stan-

dard EM (Dempster, Laird and Rubin, 1977) and quasi-Newton algorithms

(Nash, 1990). A modified EM algorithm is also used by Hughes, Guttorp and

Charles (1999) to estimate parameters for an autologistic model (EM Monte

Carlo Maximum Likelihood - EM-MCML). They discuss a inhomogeneous

Gaussian HMM with covariates, where the current hidden state depends on

the previous hidden state and the current covariates. Spatial dependence is

modeled using the autologistic model; however this model need the compu-

tation of normalizing constant which is computationally intractable as the

number of observations increase. Therefore, to avoid direct computation

of the normalizing constant, a Monte Carlo maximum likelihood (MCML)

method can be adopted (Geyer and Thompson, 1992). However, estimation

using the EM-MCML method can be computationally intensive, as well as

the use of a maximum pseudolikelihood (Besag, 1975) in the maximization

step can lead to nonsensical states (Hughes et al., 1996).

Computational issues can be tackled also in a Bayesian framework (Scott,

2002; Crespi et al., 2005; Ridall and Pettitt, 2005), EM-type algorithms and

empirical Bayes procedures could be computationally difficult; in contrast, es-

timation of this model can be readily achieved using a full Bayesian approach

using the Gibbs sampler (Crespi et al., 2005). In a Bayesian context, Ridall

2Giudici et al. (2000) show that under appropriate conditions, the standard asymptotic

theory of likelihood ratio tests is still valid for HMMs
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and Pettitt (2005) develop an autoregressive HMM with a fixed number of

(hidden) states; they assume that the probability of the current observation

given previous observations and the current state can be modeled by different

parametric expressions (that could assume a known parametric form) and,

hence, the posterior distribution of model parameters is obtained alternately

sampling from the hidden states and from the full conditional .

Interestingly, the key paper of Scott (2002) provides some background on

HMMs, including two closely linked recursive procedures for evaluating the

likelihood function and the posterior distribution of hidden states given ob-

served data and model parameters. Further, he discusses methods for sam-

pling Markov model parameters from their posterior distribution given ob-

served data, with particular emphasis on two Gibbs sampler based proce-

dures: the forward-backward Gibbs sampler and the direct Gibbs sampler,

which samples each state in the hidden Markov chain given the most recent

draws of its neighbors. Scott (2002) shows that MCMC procedures allow

implementation of HMMs without using recursive computing, while the like-

lihood, forward-backward, and Viterbi recursions bring a richness that would

not otherwise exist. Forward-backward recursions lead to a Gibbs sampler

that mixes faster than its natural competitor, and the likelihood recursion

opens the door to more general samplers that would be impossible without

a tractable method for computing HMM likelihoods.
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4.2 Parametric Mixed Hidden Markov Mod-

els

4.2.1 Model specification

The addition of individual-specific random effects is a natural extension of

HMMs to account for dependence between longitudinal observations. In this

context, HMMs with random effects have been proposed only recently. For

instance, Humphreys (1997, 1998) suggests a HMM where the transition

probabilities matrix depends on subject-specific random effects. Seltman

(2002) proposes a complex biological model to describe cortisol level dynam-

ics in a group of patients, where the baseline concentration of cortisol for each

patient is modeled as a subject-specific random effect. In a recent key paper,

MacKay (2007) develops a new class of models, mixed hidden Markov models

(MHMMs), which unify existing HMMs for multiple processes and provide

a general framework to work in this context. These models extend the class

of HMMs by allowing the incorporation of fixed and random effects in the

conditional and the hidden parts of the model. The advantages of MHMMs

are numerous; first, simultaneous modeling multiple processes allows for the

estimation of outcome-level effects, as well as for a more efficient estimation

of parameters that are common to all processes. Second, these models are

relatively easy to interpret and allows for a greater flexibility in modeling

dependence structures by relaxing the assumption that the observations are

independent given the hidden states.

Let us start describing the work of MacKay (2007) fixing notation. Yit

represents the observation process and Sit is the hidden state variable asso-
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ciated to individual i, i = 1, . . . , n, at time t, t = 0, . . . , T , defined on a finite

set of m states, where m is known. Conditional on subject-specific random

effects the observed process for the i-th individual is a HMM and the hidden

process is a Markov chain. The hidden process is a homogeneous Markov

chain with common transition probabilities qjk = Pr(Sit = k | Si,t−1 = j)

and initial probabilities δj = Pr(Si0 = j). Thus, conditional on the random

effects and the hidden process, Yit are independent random variables with

distribution in the exponential family, i.e. Poisson:

Yit ∼ Poisson(θitj)

where

log(θitj) = xT
itβj + zT

itbi. (4.3)

where βj and bi represent, respectively, fixed and random parameters.

Assuming that random effects and hidden states are independent, the

likelihood function can be written as

L(·) =
n∏
i=1

∫
B

∑
ST

{
T∏
t=0

f(yit | sit,xit,bi)δsi0
T∏
t=1

qsi,t−1sit

}
dH(bi)

=
n∏
i=1

∫
B

{∑
ST

f(yi0 | si0,xit,bi)δsi0

T∏
t=1

f(yit | sit,xit,bi)qsi,t−1sit

}
dH(bi) (4.4)

where B represents the support for the distribution of the random effects,

H(·)

While the expectationmaximization (EM) algorithm has been used to es-

timate the parameters of a HMM, the estimation of MHMMs poses a more
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challenging problem. The random effects are assumed to follow a log-Gamma

distribution, and the complementary log-log link is used. Typically, expres-

sion (4.4) does not have a closed form; thus Seltman (2002) describes a

Bayesian approach claiming that frequentist approach is intractable. On the

other hand, MacKay (2007) improve frequentist approach estimation meth-

ods for parameters estimation. In the following section we will discuss the

latter approach in greater detail.

4.2.2 Computational details: the EM algorithm and

Monte Carlo methods

Now, we give the steps of the EM algorithm required to estimate the param-

eters of model (4.3), assuming that the initial probabilities, δj, are unknown

parameters to be estimated. Now, thinking of both the hidden states and

the random effects as missing data, the complete data log-likelihood corre-

sponding to (4.3) is

`c(·) = log δsi0 +
T∑
t=1

log qst−1,st +
T∑
t=0

log f(yit | sit,bi) + log h(bi) (4.5)

Before deriving the conditional expectation of the complete loglikelihood,

let us denote with

γijt = Pr(Sit = j | yi,0:T ) (4.6)

the posterior probability, given observed data, that the i-th unit is in state

j at time t and with

ξijkt = Pr(Sit = k, Si,t−1 = j | yi,0:T ) (4.7)
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the posterior probability that the i-th unit visited state j at time t− 1 and

made a transition to state k at time t, given the observed individual sequence.

Using the fact that individual responses are conditionally independent,

the Q function is

Q(·) =
n∑
i=1

E[log `c(·) | yi,0:T ] =
n∑
i=1

T∑
t=0

m∑
j=1

∫
B

log f(yit | Sit = j,bi)γijth(bi | yi,0:T )dbi

+
n∑
i=1

∑
j∈S

log δjγij0 +
n∑
i=1

T∑
t=1

∑
j∈ST

∑
k∈ST

log qjkξijkt

+

∫
B

n∑
i=1

log h(bi)h(bi | yi,0:T )dbi (4.8)

Given this factorization, we may proceed maximizing each term of (4.5)

separately. Adapting the forward and the backward variables defined in

(2.17) - (2.21) to longitudinal case, we obtain

αit(j,bi) = Pr(yi,0:t, Sit = j | bi) (4.9)

and

τit(j,bi) = P(yi,t+1:T | Sit = j,bi) (4.10)

Adopting the method of Langrenge multipliers, we obtain that the estimate

of the initial probabilities occurs at

δ̂j =
1

n

n∑
i=1

∫
B
αi0(j,bi)τi0(j,bi)h(bi)dbi∑

k∈S

∫
B
αi0(k,bi)τi0(k,bi)h(bi)dbi

(4.11)

Similarly, the transition probability estimates are

q̂jk =

n∑
i=1

T∑
t=1

∫
B
αi,t−1(j,bi)τit(k,bi)f(yit | Sit = k,bi)h(bi)dbi

n∑
i=1

T∑
t=1

∫
B
αi,t−1(j,bi)τit(k,bi)h(bi)dbi

(4.12)
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In general, the first and the last term of (4.5) can be maximized numer-

ically using a Gaussian quadrature technique. However, the EM algorithm

is known to be slow to converge, and thus, in this setting, direct maximiza-

tion of the likelihood function could be faster (MacKay, 2007). For larger

numbers of random effects, numerical integration methods are no longer ap-

propriate; for such complex models, estimation can be significantly complex.

Of existing estimation methods, the Monte Carlo expectation-maximization

(MCEM) algorithm (McCulloch, 1997) seems to be the most feasible in this

context. Drawing R samples from the random effects distribution h(bi), we

obtain the approximation

Q(·) ≈ 1

R

R∑
r=1

∑
ST

`c(·)gr(sit) (4.13)

where

gr(sit) =
f(yit | sit,b(r)

i )f(sit | b(r)
i )

R∑
r=1

∑
ST
f(yit | sit,b(r)

i )f(sit | b(r)
i )

(4.14)

Through function gr(sit), we can obtain

δ̂j =

n∑
i=1

R∑
r=1

m∑
j=1

gr(j)1(si0 = j)

n
(4.15)

where 1(si0 = j) = 1 if (si0 = j) and 0 otherwise (MacKay, 2007). Numerical

maximization would ordinarily be required in order to obtain updates for the

other parameters. Other estimation methods are briefly reviewed in MacKay

(2007).
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4.3 Semi-Parametric Mixed Hidden Markov

Models

4.3.1 Model specification

We start with a formal definition of Poisson HMMs for panel observations,

extending the Markov Poisson regression model proposed by MacDonald and

Zucchini (1997) to a finite mixture HMM (also referred to mixed hidden

Markov model, MacKay, 2007). To describe a standard HMM, let us assume

yit, i = 1, . . . , n, t = 0, . . . , T , are realizations of count random variables, that

we aim to model, recorded on n individuals (in the cross-sectional dimension

of the data) over a period of length T , i = 1, . . . , n. Let sit be the unobserved

realizations of a homogeneous Markovian random hidden variable (state),

Sit. The dependent variable is thus influenced by a sequence of unobserved

realizations, sit and, given the current state for individual i, sit, the observed

counts are realizations of i.i.d. random variables.

We assume that the sequence of hidden state variables, generating the

observed sequence, can take only discrete values; therefore, we have the fol-

lowing structure:

qjk = Pr(Sit = k | Si,t−1 = j) is the transition probability from time t − 1

being in state j to time t being in state k; we assume that these prob-

abilities common to all individuals;

δj = Pr(Si0 = j) is the initial probability of the Markov chain;

Pr(yit | sit) represent conditionally independent Poisson distributions for the
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observed sequence within a given parametric family with parameter

θ ∈ Θ, where Θ is a subset of the n-dimensional Euclidean space.

Hence, we obtain a hidden Markov model (HMM) describing the observed

time sequence. The joint probability given the model {δ,Q, λ} is

Pr(y1:n,0:T | ·) =
n∏
i=1

∑
ST

δsi0

T∏
t=1

qsi,t−1sit

T∏
t=1

e−θsitθyitsit
yit!

, (4.16)

where y1:n,0:T represents the n×T -dimensional matrix of all observations and

f(yit | sit) =
e−θsit θ

yit
sit

yit!
is the conditional distribution of yit.

We extend the traditional HMM in a regression context. In regres-

sion analysis, the interest is usually focused upon the parameter vector

θ = (θ1, . . . , θm)T, which is modelled by defining a linear predictor as a

function of a set of p covariates xit = (xit1, . . . , xitp):

log[E(yit | xit, Sit = j)] = log(θitj) = β0j + β1jxit1 + · · ·+ βpjxitp, (4.17)

where βj is the vector of regression parameters for all individuals being in

state j.

This specification of the canonical parameters could be restrictive; in fact,

count data often exhibits substantial overdispersion, in the sense that data

shows greater variability than the one postulated by the Poisson model and,

therefore, conditional equality of mean and variance of θsit is violated. Vari-

ous reasons, i.e. unobserved heterogeneity or missing covariates, could make

counts overdispersed. To account for zero-inflated counts, Wang and Alba

(2006) propose a negative binomial HMM regression where the distribution

of the observed counts changes according to an underlying two-state Markov

chain and a comparison with the zero-inflated Poisson and the zero-inflated
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negative binomial regression model is shown. In this paper, we suggest to

represent this extra variation by adding an unobserved random effect, bi, to

the linear predictor. Assuming log-gamma distributed random effects, the

proposed model would collapse to an HMM with NB kernel (state specific)

distribution. The extra variation is modeled on the same scale as for the

linear predictor, which is a natural choice if overdispersion arises from unob-

servable heterogeneity due to omission of one or more explanatory variables.

Following this approach, the linear predictor becomes

log(θitj) = xT
itβj + bi, (4.18)

where bi represents individual-specific features varying over the dataset in an

unknown way; they are usually considered as drawn from n i.i.d. variables

Bi with a common, unknown, density function h(·). As can be seen from

equation (4.18), an additional model restriction has been imposed: bi appears

additively in the model. This assumption can be easily relaxed by associating

random parameters to some elements of the adopted covariate set. Let us

assume that variables whose effects are fixed and variable across subjects are

collected in xit and in zit, respectively. The previous model can be easily

generalized to the following random coefficient model:

log(θitj) = xT
itβj + zT

itbi. (4.19)

Obviously equation (4.19) leads to equation (4.18) if a random intercept is

adopted, i.e. zit ≡ 1.

The observed counts are also assumed to be independent conditional on

the random vector bi, and we assume that the random effects are indepen-

dent of the hidden states. Overdispersion could not be the only result of the
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adopted modeling assumptions; modeling longitudinal data we take into ac-

count the usually positive correlation among repeated measures on the same

individual. The hidden states model the dynamics of the process, while the

random effects models its ”size”.

The likelihood (4.16), given the assumption of conditional independence,

can be written as (MacKay, 2007)

L(·) =
n∏
i=1

∫
B

∑
ST

{
T∏
t=1

f(yit | sit,xit,bi)δsi0
T∏
t=1

qsi,t−1sit

}
dH(bi)

=
n∏
i=1

∫
B

{∑
ST

f(yi0 | si0,xit,bi)δsi0
T∏
t=1

f(yit | sit,xit,bi)qsi,t−1sit

}
dH(bi)(4.20)

where B represents the support for H(·).

From equation (4.20) it becomes clear that the random coefficient model

differs from the standard HMM in the complexity of the likelihood evaluation,

where integration reveals the impact of random coefficients, is done with

respect to the random coefficient distribution and may not be available in

closed form. The EM algorithm is required to estimate model parameters;

as noted by MacKay (2003), the convergence properties of the sequence of

estimators produced by the EM algorithm in the context of HMM under

longitudinal data are provided by Wu (1983).

Several alternatives have been proposed for the random terms, within the

framework of generalized linear models: parametric examples are provided by

Poisson-log-normal (Munkin and Trivedi, 1999) and latent Poisson-Normal

(van Ophem, 2000) models. In this context, if the hidden chain is not station-

ary, numerical maximization is required to compute model parameters using,

for example, Gaussian quadrature techniques. Furthermore, as pointed out
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by MacKay (2007), the EM algorithm should be applied to random effect

HMMs only if the conditional distribution of the observed process has a

”nice” form (i.e. exponential). In MacKay (2007), random effects are as-

sumed to follow a known distribution (e.g. log-Gamma) and the evaluation

of the likelihood is computed directly. In the case where there are only a few

random effects, a numerical integration method (e.g Gaussian Quadrature

or Adaptive Gaussian Quadrature, if random effects are Gaussian random

variables) could be applied; on the other hand, for large numbers of random

effects, numerical integration methods are no longer appropriate and simu-

lation methods (e.g. Monte Carlo Expectation Maximization, MCEM) seem

to be more feasible.

Alfò and Trovato (2004) propose a semiparametric model with unspeci-

fied density for random effects distribution H(·) in a finite mixture context.

The choice of a flexible specification is preferred to parametric alternatives,

as suggested by Heckman and Singer (1984). Moreover, parametric alter-

natives could often result in oversmoothing (Knorr-Held and Raßer, 2000)

while the marginal maximization through numerical approximation or sim-

ulation methods can be very intensive (Crouch and Spiegelman, 1990 and

Gueorguieva, 2001).

Using simple geometric results, Lindsay (1983a and 1983b) showed that

ML estimation of H(·) involves the standard problem of maximizing a con-

cave function over a convex set. As long as the likelihood is bounded, it

is maximized with respect to h(·) by a discrete distribution hL(·) with at

most L ≤ n support points. Let us suppose that this discrete distribution

puts masses πl on locations rl, l = 1, . . . , L. Since the NPML estimate of a
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mixing distribution is a discrete distribution on a finite number of locations,

the likelihood can be expressed as:

L(·) =
n∏
i=1

L∑
l=1

∑
ST

{
δsi0

T∏
t=1

qsi,t−1sit

T∏
t=0

f(yit|sit,xit,Bi = rl)

}
πl

where πl = P (Bi = rl). The term f(yit|sit,xit,Bi = rl) denotes the response

distribution in the lth component of the finite mixture, which is assumed to

be Poisson with canonical parameter given by:

log(θitj) = xT
itβj + zT

itrl. (4.21)

Locations rl and corresponding masses πl represent unknown parameters,

as well as L, which should be estimated along with other model parameters

via selection model techniques (see e.g. Böhning, 2000).

4.3.2 Computational details

In the following we treat the case where a random intercept model (i.e.

zit ≡ 1) is adopted. In this section we develop the modified EM algorithm,

discussed by Aitkin (1996) and Alfò and Trovato (2004), for the MLE in

a semiparametric framework, to mixed hidden Markov models. If we leave

H(·) unspecified, the proposed model for the observed process reduces to a

finite mixture model, where the number of components L is unknown and

has to be estimated along with all other model parameters; in other words,

each unit can be thought of as drawn from an HMM modelled as a mixture

of L components on each hidden state.

We adopt a step by step algorithm (Böhning, 2003) for joint estimation of

model parameters assuming that: L is fixed and unknown and the random
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variable Bi follows a discrete distribution with L support points rl with

associated mass points πl where πl = Pr(Bi = rl) with
L∑
l=1

πl = 1. Let us

denote by ηi = (ηi1, . . . , ηil, . . . , ηiL) the unobservable vector of component

indicator variables where

ηil =

 1 if Bi = rl

0 otherwise

As pointed out by Alfò and Trovato (2004), should these indicator vari-

ables be known, this problem would lead to a simple HMM Poisson regression

model with component-specific intercept. However, component memberships

are unobservable and therefore have to be treated as missing data. Using a

multinomial distribution for ηi, the log-likelihood for the complete data prob-

lem can be written as:

`c(·) =
n∑
i=1

L∑
l=1

∑
ST

ηil

{
log δsi0 +

T∑
t=1

log qsi,t−1sit

+
T∑
t=0

log f(yit|sit,xit, Bi = rl) + log πl

}
. (4.22)

As usual, within the E-step we replace ηil with its conditional expectation,

η∗il:

η∗il = Pr(Bi = rl | yi,0:T ) =
πlPr(yi,0:T | Bi = rl)∑
k

πkPr(yi,0:T | Bi = rk)
. (4.23)

representing the posterior probability that the i-th unit comes from the l-th

component of the mixture. Before deriving the conditional expectation of

the complete loglikelihood, we define with

γijt = Pr(Sit = j | yi,0:T ) =
L∑
l=1

Pr(Sit = j | Bi = rl, yi,0:T )P (Bi = rl | yi,0:T )

(4.24)
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the posterior probability, given the observed data, of being in state j at time

t for an individual in the l-th component and with

ξijkt = Pr(Sit = k, Si,t−1 = j | yi)

=
L∑
l=1

Pr(Sit = k, Si,t−1 = j | Bi = rl, yi,0:T )Pr(Bi = rl | yi,0:T )(4.25)

the posterior probability that the unobserved sequence visited state j at time

t−1 and made a transition to state k at time t, given the observed individual

sequence for an individual in the l-th component.

Thus, the conditional expectation of the complete log-likelihood is given

by:

Q(·) =
n∑
i=1

∑
j∈S

γij0 log(δj) +
∑
j∈ST

∑
k∈ST

T∑
t=1

ξijkt log qjk


+

n∑
i=1

{
L∑
l=1

ηil

[
log πl +

T∑
t=0

log f(yit|sit,xit, Bi = rl)

]}
(4.26)

Our goal is to update current parameter estimates by using the old pa-

rameter estimates and the data. Thus, we can show that the maximum

likelihood estimates of δj are

δ̂j =
1

n

n∑
i=1

γij0, j ∈ S (4.27)

Similarly, we obtain ML estimates for qsi,t−1sit and πl:

q̂jk =

n∑
i=1

T∑
t=1

ξijkt

n∑
i=1

T∑
t=1

∑
k′∈ST

ξijk′t

, j ∈ S, k ∈ S (4.28)
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and

π̂l =

n∑
i=1

ηil

n
. (4.29)

The estimates of regression parameters, β, are given solving the following

M-step equation:

∂Q

∂β
=

n∑
i=1

T∑
t=0

L∑
l=1

η∗il
∂

∂β
log f(yit|sit,xit, Bi = rl) (4.30)

which are weighted sums of L likelihood equations for standard GLMs and,

therefore, the EM algorithm for finite mixture of univariate distributions

applies. The E- and M-steps are repeatedly alternated until the log-likelihood

(relative) difference changes by an arbitrarily small amount. The number of

components could be chosen using penalized likelihood criteria (such as AIC,

CAIC or BIC, see e.g. Keribin, 2000).

For an easier implementation of the algorithm, we recall the forward and

the backward procedure, which are useful for parameter estimation. We

denote with

αit(j, l) = Pr(yi0, . . . , yit, Sit = j | Bi = rl), (4.31)

the probability of seeing the partial sequence ending up in state j at time t,

given the l-th component. We can efficiently compute αit(j, l) recursively as:

αi0(j, l) = δjf(yi0 | Si0 = j, Bi = rl), (4.32)

αi,t+1(k, l) =
m∑
j=1

αit(j, l)qjkf(yi,t+1 | Si,t+1 = k,Bi = rl), (4.33)

P (y1:n,0:T ) =
n∏
i=1

L∑
l=1

m∑
j=1

πlαiT (j, l). (4.34)
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Furthermore, let us define with

τit(j, l) = P (yi,t+1, . . . , yiT | Sit = j, Bi = rl) (4.35)

the backward probability of the partial sequence yi,t+1, . . . , yi,T given that

we started at state j at time t, given the l-th component. The recursive

procedure is given by:

τi,T (j, l) = 1, (4.36)

τit(j, l) =
m∑
k=1

qjkf(yi,t+1 | Si,t+1 = k,Bi = rl)τi,t+1(k, l). (4.37)

We can express the quantities in equations (6.8) to (6.7), using the forward

and the backward variables:

γijt =
L∑
l=1

αit(j, l)τit(j, l)
m∑
j′=1

αit(j′, l)τit(j′, l)
η∗il (4.38)

ξijkt =
L∑
l=1

αi,t−1(j, l)qjkf(yit | Si,t+1 = k,Bi = rl)τit(k, l)
m∑
j′=1

m∑
k′=1

αit−1(j′, l)qj′k′f(yit | Si,t+1 = k′, Bi = rl)τit(k′, l)
η∗il

(4.39)

where

η∗il =

πl
m∑
j=1

αiT (j, l)

L∑
l′=1

πl′
m∑
j=1

αiT (j, l′)

. (4.40)



Chapter 5

Simulation results and

empirical applications of

MHMMs

5.1 Simulation results

To investigate the empirical behavior of the proposed model, we have defined

the following simulation study. To model overdispersion with respect to the

Poisson distribution and serial dependence for repeated measures over the

same unit we generated R = 250 samples of size n = 100, 500, 1000 and

T = 5, 10 according to the following scheme:

(yit | Sit = j, bi) ∼ Poisson(θitj), j = 1, 2

79
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where the following regression model holds:

log(θitj) = xTitβj + bi,= β0j + β1jxit1 + β2jxit2 + bi

j = 1, 2; i = 1, . . . , n; t = 0, . . . , T.

The covariates were independently drawn from N(0,0.5) densities and

Bi ∼ N(0, σ2), σ2 = 0.1, 0.5.

We assume the following true values for the parameter vectors:

δ =

 δ1

δ2

 =

 0.65

0.35



Q =

 q11 q12

q21 q22

 =

 0.65 0.35

0.2 0.8



β1 =


β10

β11

β12

 =


0.5

0.25

0.75


and

β2 =


β20

β21

β22

 =


-0.5

1.75

1


The simulation was conducted with the aim at investigating the behavior

of the proposed model with respect to both sample sizes (n, T ) and to the



5.1. SIMULATION RESULTS 81

magnitude of the overdispersion (in terms of σ2
b ), compared to the standard

HMM defined in (4.16).

We fitted the corresponding model with a variable number of components,

L = 2, . . . , 6 to data generated according to the previous scheme. The model

has been estimated following the forward-backward algorithm described in

Section 4.3.2.

We used random starting points for Q and δ and retained the model

with the best BIC value according to Keribin (2000) who proved the almost

sure consistency of the maximum likelihood estimator for an appropriate

penalization sequence based on the number of parameters and the number

of units in the analyzed sample. Parameter estimates are shown in Tables

(5.1) to (5.4), together with the mean log-likelihood value ` and the median

value for the number of components, L∗. We treated the (πl, bl) as nuisance

parameters and thus the (estimated) finite mixture is not of direct interest

to us. However, the estimated number of components in the finite mixture

gives a simple measure of the effect of unobservable heterogeneity.

Standard errors for β̂ have been computed through parametric bootstrap

(Efron, 1979) as follows:

ŝeR =


R∑
r=1

[β̂(r)− β̂n(·)]2

R− 1


1
2

(5.1)

where β̂(r) is the statistic calculated from the r-th resample (r = 1, . . . , R),

β̂n(·) =
∑R

r=1 β̂(r)/R and R is the total number of resamples.

As can be noted, Table 5.1 shows a clear and consistent path with respect

to Markov parameters as the sample dimension increases, irrespective of the
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Table 5.1: Simulation results for Mixed HMM - Markov process parameters

n T σ2 δ̂1 δ̂2 q11 q12 q21 q22

100 10 0.1 0.698 0.302 0.648 0.352 0.217 0.783

100 10 0.5 0.674 0.326 0.641 0.359 0.211 0.789

500 10 0.1 0.652 0.348 0.644 0.356 0.197 0.803

500 10 0.5 0.656 0.344 0.655 0.345 0.208 0.792

1000 5 0.1 0.658 0.342 0.659 0.351 0.201 0.799

1000 5 0.5 0.652 0.348 0.655 0.345 0.219 0.781

1000 10 0.1 0.647 0.353 0.639 0.361 0.205 0.795

1000 10 0.5 0.668 0.332 0.650 0.350 0.205 0.795

value of the heterogeneity source, σ2.

Differences can be observed with varying σ2 in the regression parameters,

since parameter estimates seem more stable for σ2 = 0.1, as well as for

the median number of components used to estimate the unknown mixing

distribution, H(·), which increases with increasing σ2 and n.

This implies that the proposed model can be used even in those empirical

situations where a large overdispersion arises, although at the cost of an

increasing number of components in the estimated finite mixtures.

Comparing our results with the standard HMM defined in (4.16), it is

plain to notice that the MHMM is equivalent to an HMM if overdisperion does

not influence data in a relevant way. In fact, for σ = 0.1 both Markov process

and regression parameter estimates fit well the ”true” parameter values; the

HMM estimates seem to be more stable with respect to the constant term

and, generally, computationally less intensive with respect to MHMM. On
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Table 5.2: Simulation results for standard HMM - Markov process parameters

n T σ2 δ̂1 δ̂2 q11 q12 q21 q22

100 10 0.1 0.657 0.343 0.648 0.352 0.209 0.791

100 10 0.5 0.753 0.247 0.865 0.135 0.080 0.920

500 10 0.1 0.648 0.352 0.646 0.354 0.211 0.789

500 10 0.5 0.794 0.206 0.860 0.140 0.095 0.905

1000 5 0.1 0.652 0.348 0.653 0.347 0.201 0.799

1000 5 0.5 0.800 0.200 0.806 0.194 0.121 0.879

1000 10 0.1 0.654 0.345 0.659 0.341 0.203 0.797

1000 10 0.5 0.794 0.206 0.857 0.143 0.070 0.930

the other hand, if a source of heterogeneity arises, the MHMM outperforms

the HMM: both Markov process and regression parameter estimates are more

accurate and the HMM parameter estimates are strongly biased. Hence, we

can assert that, if overdispersion is present, HMMs are not able to distinguish

between serial dependence and heterogeneity sources, producing biased and

not consistent parameter estimates; while MHMMs, even if computationally

more intensive, provide consistent and stable parameter estimates.

5.2 Empirical applications

5.2.1 RAND Health Insurance Experiment

It is well known that the analysis of the demand of health care depends on

the empirical specification used in the analysis; therefore, if such specification
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Table 5.3: Simulation results for MHMM - Regression parameters

n T σ2 β̂10 β̂11 β̂12 β̂20 β̂21 β̂22
ˆ̀ BIC L∗

(SE) (SE) (SE) (SE) (SE) (SE)

100 10 0.1 0.497 0.235 0.736 -0.487 1.689 1.006 -1487.7 3058.4 2

(0.491) (0.114) (0.089) (0.524) (0.152) (0.230)

100 10 0.5 0.578 0.247 0.744 -0.504 1.661 1.032 -46894 3220.3 2

(0.651) (0.158) (0.380) (0.539) (0.546) (0.825)

500 10 0.1 0.496 0.263 0.754 -0.510 1.753 0.996 -7459.5 15021 2

(0.513) (0.044) (0.031) (0.504) (0.071) (0.126)

500 10 0.5 0.509 0.245 0.747 -0.492 1.736 0.996 -7794.1 15730 4

(0.496) (0.032) (0.045) (0.497) (0.109) (0.070)

1000 5 0.1 0.492 0.247 0.756 -0.485 1.723 1.008 -7343.5 14789 2

(0.478) (0.045) (0.031) (0.500) (0.071) (0.031)

1000 5 0.5 0.545 0.248 0.752 -0.521 1.749 1.011 -7807.8 15747 3

(0.592) (0.118) (0.286) (0.518) (0.379) (0.682)

1000 10 0.1 0.4987 0.249 0.744 -0.5127 0.998 1.763 -14902 29914 2

(0.457) (0.031) (0.022) (0.441) (0.055) (0.045)

1000 10 0.5 0.513 0.245 0.749 -0.485 1.725 1.015 -10766 31419 4

(0.518) (0.089) (0.031) (0.510) (0.089) (0.063)
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Table 5.4: Simulation results for standard HMM - Regression parameters

n T σ2 β̂10 β̂11 β̂12 β̂20 β̂21 β̂22

(SE) (SE) (SE) (SE) (SE) (SE)

100 10 0.1 0.518 0.255 0.735 -0.543 1.763 1.016

(0.245) (0.798) (0.205) (0.063) (0.204) (0.772)

100 10 0.5 1.017 0.455 0.740 -0.254 1.078 0.874

(0.207) (0.436) (0.161) (0.179) (0.126) (0.382)

500 10 0.1 0.528 0.238 0.734 -0.522 1.7618 1.016

(0.089) (0.752) (0.148) (0.024) (0.747) (0.148)

500 10 0.5 1.077 0.548 0.777 -0.165 0.894 0.841

(0.071) (0.281) (0.114) (0.141) (0.044) (0.155)

1000 5 0.1 0.510 0.248 0.751 -0.506 1.752 0.995

(0.071) (0.763) (0.134) (0.032) (0.130) (0.758)

1000 5 0.5 1.087 0.568 0.787 -0.235 0.973 0.874

(0.077) (0.202) (0.055) (0.100) (0.255) (0.077)

1000 10 0.1 0.518 0.253 0.744 -0.511 1.010 1.751

(0.055) (0.683) (0.122) (0.031) (0.689) (0.130)

1000 10 0.5 1.069 0.550 0.776 -0.156 0.856 0.8216

(0.044) (0.145) (0.044) (0.054) (0.137) (0.148)
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does not correspond to the underlying behavioral structures that drive the

demand of health care, the corresponding estimates may be inconsistent.

When defining regression models for the utilization of health care resources,

we have to take into account two main characteristics of analyzed data: first,

the observed outcome (i.e. the number of visits to a general practitioner) can

take only non-negative integer values. This calls for the application of count

data models; Poisson regression models may represent a natural starting

point in such a context. Clearly, this model is restrictive in that it assumes

equality of mean and variance; further, Poisson models are practically not

suitable for data which are characterized by an excess of zeros.

The second characteristic of health care utilization is, in fact, a potential

two-part decision process: the first process entails the decision to contact a

doctor while the second considers the decision about the number of visits. In

Poisson models this two-part feature is ignored and this may lead to model

misspecification and hence to inconsistent parameter estimates. The demand

for medical services is often characterized by a high incidence of zero usage,

therefore two-part models (i.e. hurdle models) have become increasingly pop-

ular in the last years. The appeal of two-part models in health economics is

also based on its connection to a principal-agent model where the physician

(the agent) determines utilization on behalf of the patient (the principal)

once initial contact is made. Recent literature provides comparison between

the relative performance of hurdle models with respect to finite mixture ap-

proaches; Deb and Trivedi (2002) present evidence that finite mixture models

often outperform the hurdle models, but there is no general evidence and in

some cases the hurdle model can better fit the observed data.
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We use data from the Rand Health Insurance Experiment (RHIE) for this

study. The RHIE is a comprehensive study of health care cost, utilization and

outcome in the United States. It is thought to provide the most persuasive

evidence to date on the relative effects of health maintenance organizations

and fee-for-service care on demand for health care and health care outcomes;

in particular it addresses a main topic: evaluation of how much more people

use health services if they are provided free of charge.

RHIE started in 1971 using fundings from the United States Department

of Health, Education, and Welfare. Its aim is to give some policy issue that is

useful for the restructuring of private insurance system and helped increase

the stature of managed care. We consider data recorded on 1164 families

(in Dayton, Ohio) insured by companies randomly assigned to insurance

plans that either had no cost-sharing, 25, 50 or 95% copayment rates and

the sample consists of 4462 observations (individuals in the fee-for-service

plans). Detailed information on the experimental design and data collection

methods are reported in Morris (1979) and Newhouse et al. (1993) and a

summary of the major findings of the RHIE can be found in Keeler (1992).

An important result of the experiment is that people facing higher cost-

sharing (that is, they had to pay a higher proportion of total health care

costs out of their own pockets) had lower health care spending than those

in plans with lower cost-sharing. It is well known that overconsumption of

health services is one of the main causes of the steadily increasing cost of

health care in most countries. This paper examines a mixture model for

unobserved heterogeneity in an HMM context to apply the RHIE results in

health policy analysis. The key variable used to explain health care demand
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in the RHIE is the number of outpatient visits to a physician, mdu; the

adopted covariates and response are defined in Table 5.5.

In the recent literature, RHIE data have been analyzed by Deb and

Trivedi (2002) and Bago d’Uva (2005) comparing finite mixture and two

part models. The empirical analysis provides the distinction between two

sub-population: the healthy and the ill (see Deb and Trivedi, 2002 for more

details).

We model the individual heterogeneity through a set of common random

effects; the choice of a Poisson mixture model versus a Negative Binomial

(NB) model is due by it can be argued the NB model should not consider

two different sources of heterogeneity (the overdispersion parameter in the

NB and the finite mixture) and, therefore, the Poisson distribution should be

used. Some attractive features are due to the utilization of panel data model:

it accounts for individual heterogeneity and it allows for identification of the

mixture. In the following, we propose the results for the panel data model

described in Section 4.3.1.

We consider a two-state MHMM in line with models estimated in Deb

and Trivedi (2002) and Bago d’Uva (2006). The two hidden states can be

seen as low users and high users. Due to the possibility of convergence to

local maxima in mixture models, the estimation should be repeated using

different sets of starting values for the parameters being estimated.

As Table 5.6 the probability of belonging to the state of high users is

0.338 at the beginning of the study and then change with time according

with Q, hence an high user a time t could be a low user at time t + 1 with

probability 0.337; while a low user have an high probability of being again
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Table 5.5: RAND data - Variable definitions and summary statistics

V ariable Definition Mean St.Dev.

MDU Number of outpatient visits to an MD 2.861 4.505

LC ln(coinsurance + 1), 0 ≤ coinsurance ≤ 100 1.710 1.962

IDP If individual deductible plan: 1, otherwise: 0 0.220 0.414

LPI ln(max(1, annual participation incentive payment)) 4.709 2.697

FMDE If IDP = 1: 0, otherwise ln(max(1,MDE/(0.01 coinsurance))) 3.153 3.641

LINC ln(family income) 8.708 1.228

LFAM ln(family size) 1.248 0.539

AGE Age in years 25.718 16.768

FEMALE If person is a female: 1 0.517 0.500

CHILD If age is less than 18: 1 0.402 0.490

FEMCHILD FEMALE ∗ CHILD 0.194 0.395

BLACK If race of household head is black: 1 0.182 0.383

EDUCDEC Education of the household head in years 11.967 2.806

PHYSLIM If the person has a physical limitation: 1 0.124 0.322

DISEASE Index of chronic disease 11.244 6.742

HLTHG If self-rated health is good: 1 0.362 0.481

HLTHF If self-rated health is fair: 1 0.077 0.267

HLTHP If self-rated health is poor: 1 0.015 0.121
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a low user (equals to 0.891). It is interesting to compare the estimated

coefficients in the two states; all of them have the same sign in both states

except for the case of the effect of LPI, FMDE and HEALTHG. There

are significant differences in the effects of the covariates in the two states.

Furthermore, it could be interesting to analyze the estimate of H which is

a five point distribution with masses, π = (0.072, 0.520, 0.295, 0.075, 0.038)

on locations [(-5.709,0.514); (-3.596, 0.210); (-2.700, 1.002); (-1.796, 2.141);

(-1.165,-0.471)]. In this way we can suppose to classify in such groups people

who use a certain health care service for specific chronic diseases due to a

case of illness. Furthermore, as a by-product of the analysis we measure

overdispersion in both states, through σ2
b . As can been seen from Table 5.6,

low users show greater dispersion than high users, hence a Poisson kernel is

not suited for fitting data for low users due the presence of excess of zero.

5.2.2 A pharmaceutical study

We briefly mention an example drawn from Min and Angresti (2005), who

evaluated the number of episodes of a certain side effect for a particular dis-

ease; taking as a starting point a pharmaceutical study, they reconstructed

the original dataset keeping the zero inflated structure of data. The study en-

tails 118 patients, with 59 randomly allocated to receive treatment A (TRT1)

and the other 59 receiving treatment B (TRT2). The number of side effect

episodes was measured at each of six visits. About 83% of the observations

were zeros. Table 5.7 shows the frequencies of the side effect for treatments

A and B.

The observed process is fitted through the model described in Section 2
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Table 5.6: RHIE data - MHMM

MDU

Low users (L) High users (H)

V ARIABLE Coef. s.e. Coef. s.e.

δ̂1 0.662

δ̂2 0.338

q̂LL 0.891

q̂LH 0.109

q̂HL 0.337

q̂HH 0.663

CONSTANT -1.683 0.016 0.382 0.049

LC -0.110 0.013 -0.132 0.017

IDP -0.906 0.028 -0.480 0.031

LPI 0.067 0.042 -0.015 0.005

FMDE -0.033 0.031 0.056 0.008

LINC 0.420 0.016 0.062 0.010

LFAM -0.135 0.006 -0.127 0.022

AGE 0.007 0.001 0.000 0.000

FEMALE 0.757 0.039 0.327 0.026

CHILD 0.648 0.061 0.257 0.044

FEMCHILD -0.685 0.033 -0.370 0.043

BLACK -0.588 0.062 -0.062 0.038

EDUCDEC 0.059 0.006 0.023 0.004

PHYSLIM 0.433 0.045 0.346 0.034

DISEASE 0.019 0.002 0.005 0.001

HLTHG 0.006 0.067 -0.084 0.022

HLTHF 0.150 0.131 0.257 0.041

HLTHP 0.286 0.059 0.513 0.069

σ2
b 3.15 0.95

BIC 19693

log−likelihood -9632.1



92 CHAPTER 5. SIMULATIONS AND APPLICATIONS OF MHMMS

Table 5.7: Pharmaceutical study data - Side effect frequencies in treatment

A and treatment B

Frequencies

Treatment 0 1 2 3 4 5 6

A 312 30 11 0 1 0 0

B 278 39 20 6 7 2 2

Total 590 69 31 6 8 2 2

where the Poisson random effects model has the form:

log(θitj) = β0j + β1jTRT2 + β2j log(Time) + bi (5.2)

where bi have a common unknown distribution and the results are obtained

by the NPML approach described in Section 4.3.2; furthermore, as the count

data vary with exposure time between visits, we incorporated time-between-

visit (defined as Time) as a covariate in the model.

The results in Table 5.8 show that not taking into account unobserved

heterogeneity may lead to biased parameter estimates and to an uncorrect

interpretation of the analyzed phenomena.

Adopting the selection criteria described in Section 4.3.2, we identify 2

hidden states in the model. In this application the states are not only a

tool for modelling time-dependence but also have a physical meaning: state

1 includes all the individuals that show a good response to both treatments,

while in state 2 a detrimental effect on the number of episodes due to treat-

ment B characterizes individuals. Most of individuals are modelled in state

1 at the initial time (t = 1, δ1 = 0.920), but individuals move through states

over time and here two mechanisms are at play:
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Table 5.8: Pharmaceutical study data - MHMM vs. HMM

MHMM Mixture of Poisson Mixture of Poisson

(complete sample) (selected sample)

Parameters Estimates Std Err Estimates Std Err Estimates Std Err

δ̂1 0.920 - - - -

δ̂2 0.080 - - - -

q̂11 0.435 - - - -

q̂12 0.565 - - - -

q̂21 0.137 - - - -

q̂22 0.863 - - - -

β̂10 (Intercept) 0.225 0.457 -2.057 0.368 -3.047 0.655

β̂11 (TRT2) -3.98 0.220 0.696 0.184 -0.070 0.242

β̂12 (log(Time)) -0.795 0.195 0.227 0.112 -1.488 0.173

β̂20 (Intercept) -4.682 0.741 -3.286 0.368 -1.066 0.655

β̂21 (TRT2) 1.665 0.766 0.248 0.155 0.133 0.257

β̂22 (log(Time)) 0.583 0.270 -0.616 0.057 -0.609 0.237

σ2
b1

0.88 - - - -

σ2
b2

0.01 - - - -

` -390.21 -836.81 -286.25

BIC 859.17 1724.41 618.43
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• individuals who respond well to treatments at time t may not have

effective improvements in health conditions at time t+ 1 (q̂12 = 0.565)

• ther is a low probability that if the treatment B is not effective at time

t it will be effective in next time t+ 1 (q̂21 = 0.137)

Those conditions induce us to think the treatment B produces a positive

effect, reducing the number of episodes, for a while and a detriment if it is

over-utilized. To prove such conclusion we model a two-state finite mixture

model on the whole sample and considering only the first 3 observations for

all individuals and, hence, compare these results with those provided by the

MHMM. As can been seen, β1, for the selected sample, show a negative coef-

ficient in one of the components, but is not statistically significant; this could

mean that the treatments do not produce any evident changes in the number

of episodes if we give treatments for few times and, on the other hand, it

could be interpreted as a presence of unobserved effects that act along with

the provision of treatments and those effects are keep by β1 showing conflict-

ing coefficients. Furthermore, analyzing the whole sample, we obtain similar

results as Min and Agresti (2005): treatment B has a higher probability of

the side effect and a higher number of episodes than treatment A.

The finite mixture approach seems to be inadequate to estimate model

parameters; adopting MHMM we can model such effects related to the times

of given treatments that influence the number of episodes and that depend

on unobserved factors depending on time too. In fact, it suggest a common

behavior of patients with respect to the response to treatments, with a mini-

mal difference in the size of the effect, measured by β1. In fact, the two state

of the hidden Markov chain can be interpreted as the propensity of a positive
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response to the two treatments. Hence, the MHMM points out an interesting

and undiscovered (till now) behavior: starting from a state where all patients

show a good response to both treatments, patients move to a different state

showing that, with increasing time and the effect of treatment B becomes is

less effective. It means that if we consider, for example, only the first three

observation for each patient, we denote a certain effective influence of the

treatment on the number of the episodes, but the marginal effect decrease

with increasing time.
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Chapter 6

Clustering three-way time

dependent data through

MHMMs

6.1 Introduction

Clustering methods generally aim at partitioning objects into meaningful

classes (also called clusters), maximizing the homogeneity (or similarity)

within a group as well as the difference between groups (Everitt, 1993). Stan-

dard clustering approaches (see e.g. Johnson, 1967 and McQueen, 1967) have

been considerably improved, allowing for solutions to some practical issues

such as the choice of the number of clusters, the allocation to clusters and

the clustering algorithm adopted.

Model based clustering approaches deal with these issues assuming that

the objects under study are drawn from a known probabilistic model with

97



98 CHAPTER 6. CLUSTERING THROUGH MHMMS

the aim at recovering the parameters of such a process. Estimation is usually

obtained through maximum likelihood, with an overfitting penalty.

Standard finite fixture approaches (briefly discussed in section 2.11), see

e.g. McLachlan and Peel (2000a), have been mainly developed with mul-

tivariate normal component-specific distributions, see e.g. McLachlan and

Basford (1988); a notable exception is represented by the work on t-mixture

factor analyzers of McLachlan and Peel (2000b). The importance of mixture

distributions is remarked by a number of recent books on mixtures including

Lindsay (1995), Böhning (2000), McLachlan and Peel (2000a) and Frühwirth-

Schnatter (2006) which update previous books by Everitt and Hand (1981),

Titterington et al. (1985) and McLachlan and Basford (1988).

A further generalization, in such a context, is represented by mixtures-

of-experts models (Jacobs et al., 1991) and their generalization, hierarchical

mixtures-of-expert models (Jordan and Jacobs, 1994), introduced to account

for nonlinearities and other complexities in the data. The problem of model

mixing in time series has been often treated using this approach (Huerta et

al. 2001), that allows for comparisons of arbitrary models, not restricted to

a particular class or parametric form. Additionally, the approach is flexi-

ble enough to incorporate exogenous information that can be summarized

in terms of covariates or simply time, through weighting functions that de-

fine the hierarchical mixture, localizing the comparisons to specific regions

or regimes through the hierarchical structure (Huerta et al., 2003). Recently,

Carvalho and Tanner (2007) study a class of hierarchical mixtures of Pois-

son experts to model nonlinear count time series. Identifiability and max-

imum likelihood estimation via the EM are discussed. Extending previous
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results for independent observations, asymptotic normality of the maximum

likelihood estimator under stationarity and nonstationarity of the covariates

vector (which may include lags of transformations of a response and lags of

external predictors) is provided.

Generally, finite mixture models have been used to cluster two-way data

sets. Recently, three-way data sets have become popular, containing for

example attributes (variables) measured on objects (statistical units) in sev-

eral conditions (occasions, time points, environments, etc.). Basford and

McLachlan (1985) have proposed a finite mixture model for the analysis of

such data, where the aim is to cluster objects by explicitly taking simulta-

neously into account the information on variables and occasions. Hunt and

Basford (1999, 2001) have extended the approach to deal with categorical

variables in unbalanced panels, while Meulders et al. (2002) have proposed a

constrained latent class model for the analysis of three-way binary data. All

these models assume that cases belong to the same cluster in all investigated

situations. Vermunt (2007) proposes an extension of this approach assuming

that objects may be in a different latent class depending on the situation

or, more specifically, objects are clustered with respect to the probability

of being in a particular latent class at a given situation. Relevant work in

this topic include, among others, Böhning et al. (2000) and Knorr-Held and

Raßer (2000). Vermunt (2007) considers the three ways as hierarchically

nested levels and models a mixture distribution at each of the two higher

levels; i.e., one at the object and one at the object-in-occasion level. The

proposed model is an adaptation of the multilevel latent class model by Ver-

munt (2003) to continuous responses and has the advantage that it may yield
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more parsimonious and insightful solutions than the Basford and McLachlan

(1985) model.

We have seen that a natural extension of mixture models for time depen-

dent data is represented by HMMs; thus, a direct generalization in the hier-

archical mixture context for solving the problem of mixing in the time dimen-

sion may be given adapting MHMMs to hierarchical classification. Hence, we

introduce a hierarchical extension of the finite mixture model proposed by

Basford and McLachlan (1985), mimicing the proposal of Vermunt (2007).

In particular we discuss the issue of longitudinal multivariate data allowing

for both time and local dependence.

6.2 Model-based approach to three-way data

clustering

A three-way dataset is often produced as the result of the observation of a

multivariate-multioccasion phenomenon, characterized by various attributes

measured for a set of observational units in different situations; in particular,

we will refer to such data as three-mode three-way data, where a mode is

defined as in Carroll and Arabie (1980). Three-way data can be also treated

as two-mode three-way data; for instance, Vichi (1995, 1998) propose a one

mode classification method of a three-way dataset to cluster the elements of

one mode on the basis of the other two and this method can be seen as a

synthesis of a set of hierarchical classifications, each defined by applying a

hierarchical algorithm to a two-mode matrix of three-way dataset. Another

example of two-mode three-way data is given by data in the form of prox-
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imities between all the elements have to be clustered (see e.g. Bocci et al.,

2006).

Clustering methods for three-mode three-way data are available, which

either combine clustering and ordination, such as those of Ceulemans et al.

(2003), Miyano and Kroonenberg (2003) and Rocci and Vichi (2003); while

applications of three-way cluster methods are discussed in Kroonenberg et

al. (1995; 2004), Basford et al. (1991) and Chapman (1997).

Let yi,1:P,0:T , i = 1, . . . , n, be a PT -dimensional observation corresponding

to the i-th unit. Under the mixture model proposed by Basford and McLach-

lan (1985) and extended by Hunt and Basford (2001), yi,1:P,0:T is assumed to

be drawn from the finite mixture of Gaussian distribution:

f(yi,1:P,0:T ) =
G∑
g=1

πg

T∏
t=1

fg(yi,1:P,t;µgt,Σg) (6.1)

where individuals belong to one ofG possible groups in proportions π1, . . . , πG,

with
G∑
g=1

πg = 1 and πg > 0 for g = 1, . . . , G; µgt is the cluster-time dependent

mean vector and Σg is the cluster dependent covariance matrix. As pointed

out by Vermunt (2007), such modeling approach implicity assumes that the

responses are conditionally (on the cluster) independent and does not take

into account the possibility that individuals may move across clusters.

Developing the multilevel latent class model, Vermunt (2007) relaxes the

assumption of time invariant clustering. In details, yi,1:P,0:T is drawn from one

of G 2nd level component (clusters) and a new element is that conditional

on belonging to g, in situation t cases are assumed to belong to one of l =

{1, . . . , L} groups. In the following, we will assume that, conditional on the

2nd level, the response of case i in situation t has a multivariate normal
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distribution yi,1:P,t ∼MVN(µlt,Σl):

fl(yi,1:P,t | µlt,Σl) =
1√

(2π)P
|Σl|−

1
2 exp

{
−1

2
(yi,1:P,t − µlt)TΣ−1

l (yi,1:P,t − µlt)
}

(6.2)

where the within-class covariance matrix, Σl, is time independent. The hier-

archical mixture model has the following form:

f(yi,1:P,0:T ) =
G∑
g=1

πg

T∏
t=1

L∑
l=1

π∗l|gfl(yi,1:P,t | µlt,Σl) (6.3)

where πg,
G∑
g=1

πg = 1, is the prior probability that the observation yi,1:P,0:T

belongs to the g-th cluster (g = 1, . . . , G), πl|g = Pr(i ∈ l | i ∈ g),
L∑
l=1

πl|g = 1,

is the conditional probability that the i-th observation in situation t belongs

to the l-th component within the g-th cluster (l = 1, . . . , L; g = 1, . . . , G). In

other words the 2nd level cluster control for potential heterogeneity across

statistical units with respect to occasion specific clusters.

It should be noted that this model is equivalent to the model of Basford

and McLachlan (1985) described in equation (6.1) if L = G and if πl|g = 1

for l = g and 0 for l 6= g; that is, if cases belong to the same class in

each situation. This shows that the hierarchical model extends the standard

model by allowing cases to be in a different latent class in each situation.

Parameter estimation is performed through a modified EM algorithm.

wher two vectors of indicator variables are introduced; namely, zi = (zi1, . . . , ziG)′

with zig = 1 if yi,1:P,0:T belongs to the g-th (2nd level) cluster and wit =

(wit1, . . . , witL)′ with witl = 1 if yi,1:P,t belongs to the l-th (1st level) com-

ponent in situation t. By treating these component labels as missing data,
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maximum likelihood estimation can be achieved by means of the EM algo-

rithm.

The log-likelihood for complete data under this model has the following

form:

N∑
i=1

G∑
g=1

zig log πg +
N∑
i=1

G∑
g=1

T∑
t=1

L∑
l=1

zigwitl log πl|g +

N∑
i=1

G∑
g=1

T∑
t=1

L∑
l=1

zigwitl log fl(yi,1:P,t;µlt,Σl) (6.4)

Due to the high dimensionality of the estimation problem, a standard EM

cannot be applied; rather the upward-downward algorithm (Pearl, 1988),

which is similar to the forward-backward algorithm (Baum et al., 1970) used

in the HMM framework, can be used in the implementation of the E-step.

6.3 Multivariate MHMM for clustering three-

way data

The proposed model aims at extending mixture model for clustering three-

mode three-way data (see e.g. Vermunt, 2007) to longitudinal data, where

situations correspond to times and observations for each unit are likely cor-

related. As before, we adopt a HMM (Cappé et al., 2005) to handle time

dependence where the hidden dynamics of the stochastic process are gov-

erned by a Markov chain. The extension is defined not only to account for

individual dynamics. In fact, since units may be heterogeneous, we adopt

a finite mixture model where components representing clusters show differ-

ent transition matrices for the HMMs. Scott et al. (2005) provides a HMM
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for longitudinal comparison. His most compelling methodological advance

is the hierarchical inhomogeneous model for allowing data to decide the ex-

tent of the compromise between fitting each period’s transition probabilities

independently and fitting a global transition matrix for the entire model.

The HMM approach offers several advantages over the unsupervised learning

approach; in fact, cluster based methods involve assuming that each ob-

servation’s state membership is known rather than estimated, introducing

potential bias into the analysis. By contrast HMM parameters estimated au-

tomatically incorporate all sources of uncertainty, conditional on the model

being correct1.

More generally, we would like to select a multivariate HMM whose latent

states correspond to association structures that receive support from the

data-not always, but at least for considerable periods of time. We remark

that the applicability of multivariate HMMs is quite wide: it applies to any

multivariate time series whose dependency structure is thought to change

considerably over time. Further important examples include, among others,

environmental data, typically multivariate and never measured exhaustively,

and financial times series, where the state of a national economy, e.g., is a

powerful qualitative mechanism that determines changes in the correlation

structure among the considered variables.

Let us define multivariate Gaussian hidden Markov models. Consider an

HMM with Yt being multidimensional and with the conditional distribution

of Yt given St = j being MVN(µj,Σj), i.e., multivariate Gaussian with state

1Scott (2005) makes a comparison between the HMM and the k-means approach (using

Bayesian methods).
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dependent mean and covariance matrix. The unconditional distribution of Yt

is thus a mixture of multivariate Gaussian distributions. Such a multivariate

time series model may be of interest in several areas, as mentioned above.

In such formulation the Markov chain St governs also the precision matrix

(Σj)
−1 (as pointed out by Giudici et al., 2000); hence, St governs the de-

pendence structure within Yt. As St is a random process, this structure may

change over time. Moreover, obviously, the state St, also carries information

about the numerical values of variances and covariances of Yt. It may well

be the case that different values of St, correspond to the same dependence

structure within Yt, although with different variances and/or covariances.

Identifiability of finite mixtures of multivariate Gaussian distributions has

been established by Yakowitz and Spragins (1968), whence those results may

be applied to multivariate Gaussian HMMs. However, an interesting problem

concerns the standard asymptotic theory of likelihood-ratio tests (Giudici et

al., 2000) which is based on the idea we may not compare two models with

a different number of states. A reasonable assumption is that no two states

coincide in the sense of having identical covariance matrices since then we

would effectively have one state less than specified by the model. In such

a context, the maximum likelihood estimator cannot be strongly consistent

(in a simple sense) if the model is overparameterized in the way of specifying

more states than there actually are (m is too large). This is because the true

parameter is then not unique, and there is no unique point around which to

expand the log likelihood when analyzing the log-likelihood ratio tests.

Starting from the usual framework for multivariate Gaussian HMM ,de-

scribed above, we will focus on empirical situations where three-mode three-
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way data are analyzed in a hierarchical framework where one of the mode

indexes time, i.e. longitudinal data.

Recalling the notation we have already introduced before in this thesis;

let us consider a sequence {Sit}, i = 1, . . . , n, t = 0 . . . , T of random variables

whose values are in a finite and enumerable set S = {1, . . . ,m} and let {Sit},

i = 1, . . . , N , t = 0 . . . , T be an homgeneous Markov chain:

Pr(Sit = j | Si0, . . . , Sit−1) = Pr(Sit = j | Sit−1), ∀j ∈ S.

Developing Vermunt (2007), we model time dependence in 1st level clusters

using a HMM framework. In detail, the hierarchical mixture (6.3) can be

rewritten as follows:

f(yi,1:P,0:T ) =
G∑
g=1

πg
∑
ST

{
δ
(g)
si0

T∏
t=1

q(g)
sit−1,sit

T∏
t=0

fsit(yi,1:P,t | µsit ,Σsit)

}
(6.5)

where δ
(g)
si0 = Pr(Si0 = si0 | g); q

(g)
sit−1,sit = Pr(Sit = sit | Sit−1 = sit−1, g) and

fsit is as in (6.2).

As can be easily noted, we introduce a further assumption to accommo-

date time dependence in the multilevel model proposed: we don’t drop the

assumption that the Markov chain is time-homogeneous, but we assume that

the HMM is inhomogeneous in the sense that the Markov process can be mod-

elled as depending on the second level classification (or time-homogeneous

conditional on g, g = 1, . . . , G). Thus different clusters have different propen-

sities to be in a given state, and different transitions from one state to another

one.
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6.4 Computational details

In this section, we discuss a modified EM algorithm for MLE of the multilevel

model parameters. In other words, each unit can be thought of as drawn from

a finite mixture of G HMM.

To introduce the algorithms, let us denote with

γjtg = Pr(Sit = j | g, yi,1:P,0:T ) (6.6)

the posterior probability, given the individual sequence and the g-th compo-

nent, of being in state j at time time t and with

ξjktg = Pr(Sit−1 = j, Sit = k | g, yi,1:P,0:T ) (6.7)

the posterior probability that the unobserved sequence visited state j at time

t− 1 and made a transition to state k at time t, given the g-th component.

The posterior probability that the i-th unit comes from the g-th compo-

nent of the mixture is as follows

ηig = Pr(g | yi,1:P,0:T ) =
πgf(yi,1:P,0:T | θg)∑
g

πgf(yi,1:P,0:T | θg)
. (6.8)

where θg are the parameters of the g-th component.

The expected log-likelihood function for the model described in equation
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(6.5) has the following form:

E[logLC(φ)] =
n∑
i=1

G∑
g=1

ηig log πg +

n∑
i=1

G∑
g=1

m∑
j=1

ηigγj1g log δ
(g)
j +

n∑
i=1

G∑
g=1

∑
j∈ST

∑
k∈ST

T∑
t=1

ηigξjktg log q
(g)
jk +

n∑
i=1

G∑
g=1

∑
j∈ST

T∑
t=0

ηigγjtg log fj(yit | θj) (6.9)

Before deriving the EM algorithm, we recall the forward and the backward

procedure, which is central to parameter estimation. We define with

αit(j, g) = Pr(yi0, . . . , yit, Sit = j | g), (6.10)

the probability of seeing the partial sequence ending up in state j at time

t for a generic unit i in the g-th component. We can efficiently compute

αit(j, g) recursively as:

αi0(j, g) = δ
(g)
j f(yi0 | Si0 = j) (6.11)

αi,t+1(k, g) =
m∑
j=1

αit(j, g)q
(g)
jk f(yi,t+1 | Si,t+1 = k) (6.12)

The backward procedure is similar:

τit(j, g) = P (yi,t+1, . . . , yiT | Sit = j, g) (6.13)

is the probability of the partial sequence yi,t+1, · · · , yi,T given that we started

at state j at time t for a generic unit i in the g-th component. The recursive

procedure is given by:

τi,T (j, g) = 1 (6.14)
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τit(j, g) =
m∑
k=1

q∗jkf(yi,t+1 | Si,t+1 = k)τi,t+1(k, g). (6.15)

We can express the posterior probabilities in equation (6.9) using the

forward and the backward variables:

γjtg =
αit(j, g)τit(j, g)∑
j

αit(j, g)τit(j, g)
(6.16)

ξjktg =
αi,t−1(j, g)q

(g)
jk f(yit | j)τit(j, g)∑

j∈ST

∑
k∈ST

αit−1(j, g)q
(g)
jk f(yit | j)τi,t+1(j, g)

(6.17)

and

ηig =

πg
∑
j∈S

αiT (j, g)

G∑
g=1

πg
∑
j∈S

αiT (j, g)

(6.18)

Our goal is to update current parameters for the proposed model by using

the old parameters and the data. Thus, the maximum value of δ̂
(g)
j is reached

at

δ̂
(g)
j =

N∑
i=1

ηigγj0g

n∑
i=1

ηig

(6.19)

Similarly, we obtain ML estimates for the transition matrix Q(g) and for

the weight of the second level of model, πg:

q̂
(g)
jk =

n∑
i=1

T∑
t=1

ηigξjktg

n∑
i=1

T−1∑
t=0

ηigγjtg

(6.20)

and

π̂g =

n∑
i=1

ηig

n
(6.21)



110 CHAPTER 6. CLUSTERING THROUGH MHMMS

Let us consider a specific state density of the form of (6.2); then, θj =

{µj,Σj} where

µj =

N∑
i=1

G∑
g=1

T∑
t=0

ηigγjtgyit

N∑
i=1

G∑
g=1

T∑
t=0

ηigγjtg

(6.22)

and

Σj =

N∑
i=1

G∑
g=1

T∑
t=0

ηigγjtg[yit − µj][yit − µj]′

N∑
i=1

G∑
g=1

T∑
t=0

ηigγjtg

(6.23)

These steps are alternated repeatedly until the following relative differ-

ence:
|`(r+1) − `(r)|
|`(r)|

< ε, ε > 0 (6.24)

changes by an arbitrarily small amount if the adopted criterium is based on

the sequence of log-likelihood values `(r) at the r-th iteration. Since `(r+1) ≥

`(r), convergence is obtained with a sequence of likelihood values which are

bounded above.



Chapter 7

Simulations of Multivariate

MHMMs for clustering

three-way time dependent data

7.1 Simulation results

To investigate the empirical behavior of the proposed MHMM in clustering

multivariate three-way (time dependent) data, we have defined the following

simulation study. We generate R = 250 samples of size n = 100, 500, 1000

and T = 10 from a MVN(µj,Σj), j = 1, . . . ,m. In detail, we focus on

bivariate hierarchical mixtures of HMMs according to the following scheme:

(yi,1:2,t | Sit = j) ∼MVN(µj,Σj), j = 1, 2.
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where j indexes states of the chain; while

µ1 =

 0.2

0.7



µ2 =

 0.5

0.4

 .
The covariance matrices are defined as follows

Σ1 = {σp1,p2,j=1} =

 σ111 σ121

σ211 σ221

 =

 1 0.5

0.5 1



Σ2 = {σp1,p2,j=2} =

 σ112 σ122

σ212 σ222

 =

 0.5 0.15

0.15 0.5


Further, according to the model described in section 6.3 we consider the

following true values for the parameter vectors, assuming g = 1, 2:

π =

 π1

π2

 =

 0.5

0.5



δ(1) =

 δ
(1)
1

δ
(1)
2

 =

 0.8

0.2



δ(2) =

 δ
(2)
1

δ
(2)
2

 =

 0.4

0.6
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Q(1) =

 q
(1)
11 q

(1)
12

q
(1)
21 q

(1)
22

 =

 0.8 0.2

0.2 0.8



Q(2) =

 q
(2)
11 q

(2)
12

q
(2)
21 q

(2)
22

 =

 0.4 0.6

0.25 0.75


We used random starting points for Q(g) and δ(g), g = 1, 2,; µj has been

drawn from a Gaussian distribution with mean zero and unit variance one,

N(0, 1). Finally, to estimate covariance matrices, we start from

Σ1 = Σ2 =

 1 0

0 1

 .
Parameter estimates are shown in 7.1 to 7.7 for n = 100, in 7.8 to 7.14 for

n = 500, in 7.15 to 7.21 for n = 1000, together with corresponding variances

(within the brackets).

As can be noted, results show a clear and consistent path for Markov and

state-specific density parameters as the sample size increases: parameter bias

decreases and corresponding estimates show a lower variability as the sample

size increases.
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Table 7.1: Parameter estimates for n=100

µ̂1 =

 0.275 (0.041)

0.846 (0.084)

 µ̂2 =

 0.643 (0.049)

0.590 (0.119)

 (7.1)

Σ̂1 =


0.897 0.399

(0.041) (0.036)

0.399 0.855

(0.036) (0.053)

 Σ̂2 =


0.583 0.235

(0.044) (0.026)

0.235 0.642

(0.026) (0.062)

 (7.2)

π̂ =

 0.538 (0.048)

0.462 (0.048)

 (7.3)

δ̂(1) =

 δ̂
(1)
1

δ̂
(1)
2

 =

 0.636 (0.099)

0.364 (0.099)

 (7.4)

δ̂(2) =

 δ̂
(2)
1

δ̂
(2)
2

 =

 0.424 (0.116)

0.576 (0.116)

 (7.5)

Q̂(1) =

 q̂
(1)
11 q̂

(1)
12

q̂
(1)
21 q̂

(1)
22

 =


0.747 0.253

(0.038) (0.038)

0.252 0.748

(0.043) (0.043)

 (7.6)

Q̂(2) =

 q̂
(2)
11 q̂

(2)
12

q̂
(2)
21 q̂

(2)
22

 =


0.456 0.544

(0.070) (0.070)

0.431 0.569

(0.057) (0.057)

 (7.7)
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Table 7.2: Parameter estimates for n=500

µ̂1 =

 0.221 (0.012)

0.836 (0.022)

 µ̂2 =

 0.571 (0.012)

0.437 (0.023)

 (7.8)

Σ̂1 =


0.977 0.482

(0.012) (0.009)

0.482 0.968

(0.009) (0.015)

 Σ̂2 =


0.526 0.172

(0.012) (0.007)

0.172 0.531

(0.007) (0.015)

 (7.9)

π̂ =

 0.529 (0.050)

0.471 (0.050)

 (7.10)

δ̂(1) =

 δ̂
(1)
1

δ̂
(1)
2

 =

 0.722 (0.054)

0.278 (0.054)

 (7.11)

δ̂(2) =

 δ̂
(2)
1

δ̂
(2)
2

 =

 0.425 (0.053)

0.575 (0.053)

 (7.12)

Q̂(1) =

 q̂
(1)
11 q̂

(1)
12

q̂
(1)
21 q̂

(1)
22

 =


0.770 0.230

(0.015) (0.015)

0.200 0.800

(0.018) (0.018)

 (7.13)

Q̂(2) =

 q̂
(2)
11 q̂

(2)
12

q̂
(2)
21 q̂

(2)
22

 =


0.413 0.587

(0.041) (0.041)

0.314 0.686

(0.025) (0.025)

 (7.14)
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Table 7.3: Parameter estimates for n=1000

µ̂1 =

 0.207 (0.005)

0.804 (0.010)

 µ̂2 =

 0.590 (0.005)

0.414 (0.010)

 (7.15)

Σ̂1 =


0.989 0.491

(0.005) (0.004)

0.491 0.985

(0.004) (0.007)

 Σ̂2 =


0.509 0.158

(0.005) (0.003)

0.158 0.511

(0.003) (0.006)

 (7.16)

π̂ =

 0.511 (0.052)

0.489 (0.052)

 (7.17)

δ̂(1) =

 δ̂
(1)
1

δ̂
(1)
2

 =

 0.748 (0.035)

0.252 (0.035)

 (7.18)

δ̂(2) =

 δ̂
(2)
1

δ̂
(2)
2

 =

 0.436 (0.038)

0.564 (0.038)

 (7.19)

Q̂(1) =

 q̂
(1)
11 q̂

(1)
12

q̂
(1)
21 q̂

(1)
22

 =


0.785 0.215

(0.012) (0.012)

0.208 0.792

(0.012) (0.018)

 (7.20)

Q̂(2) =

 q̂
(2)
11 q̂

(2)
12

q̂
(2)
21 q̂

(2)
22

 =


0.387 0.613

(0.031) (0.031)

0.283 0.717

(0.014) (0.014)

 (7.21)



Chapter 8

Final remarks

Our first contribution is to provide a rigorous and flexible approach to esti-

mation in MHMMs. When a longitudinal study is considered, it is important

to take into account that individuals do not only differ in their preferences at

a specific time-point but also in the way they change their preferences over

time. Discrete-time HMMs have been used to understand preference changes,

due to the relatively easy interpretation and tractability of Markov chains.

However, these preferences may depend on unobservable individual-specific

factors; therefore, the random effect extension leads to a more adequate

specification of such preference structures by modeling individual-specific

variation in the regression parameters, keeping a readily interpretation and

estimation of the results. We discuss this extension of HMMs in a semi-

parametric ML framework, which is alternative to the model discussed by

MacKay (2007). Efficient numerical methods to compute MLE for this kind

of models is of primary interest. With respect to the numerical computa-

tion of MLE, two ways are possible. The first could be based on standard
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(stochastic or deterministic) likelihood maximization techniques, using re-

cursive forward-backward algorithm. The second one could be based on an

adaptation of the EM algorithm.

We apply this proposal to overdispersed (i.e. zero-inflated) count data

where an unobserved source of heterogeneity arises. To model such overdis-

persion, the use of finite mixtures have some significant advantages over para-

metric mixture models. First, the discrete nature of the mixing distribution

estimate help classify subjects in clusters characterized by homogeneous val-

ues of regression parameters, and this is particularly important in behavioral

sciences, where components can be interpreted as groups with similar fea-

tures. Second, since locations and corresponding probabilities are completely

free to vary over the corresponding support, the proposed approach can read-

ily accommodate extreme departures from the basic (i.e. Poisson) regression

model.

Furthermore, a novel mixture clustering model is presented for the anal-

ysis of three-way data, where the third way represents time occasion. The

proposed method presents a possible solution to the problem of time depen-

dence in hierarchical mixture models; particularly, it overcomes some limits

of previous solutions proposed for time-dependent data, i.e. longitudinal

data. Its structure allows class membership change over time through a hid-

den Markov chain. Here a bivariate case with two groups and two states has

been discussed, but we are working on extension to multivariate, multigroups

and multistates models.
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