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CHAPTER 1

Introduction

1.1 Introduction

Over the last years much research has been conducted in a number of related subjects to handle the problem of

formulating suitable procedures to recognize a class label attributed to objects through automatic algorithms.

Depending on the basic assumptions adopted various approaches have been formulated and the problem of

recognition gives slightly different results, depending on the approach applied.

Thus it is important to analyze exactly what is involved in the main approaches to this problem that will

be considered:

• Classification or Machine Learning

• Pattern Recognition

and this will be carried out in the coming chapters.

As is usual in methodological expositions, the various technical terms to be used will be defined precisely

in the following chapters, when their meaning cannot be taken in line with common usage, while in this

chapter the reader may interpret all technical terms in their common sense connotation.

Further, for the convenience of the reader, again in line with common usage, the aim of this chapter is to
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1.1. INTRODUCTION

summarize the main methodological and applicative conclusions that will be reached and indicate the main

background elements of this exposition, so that the reader may determine the elements of greater interest, or

the controversial aspects that he would like to study in depth.

The two approaches emphasize different aspects of the learning methodology, similar to a distinction

often made in Numerical Analysis between interpolation and extrapolation [138].

In numerical analysis, interpolation is the process by which new points are constructed from a given

discrete set, so that they belong to that given set. Thus it is often considered as learning from examples (the

given points) and it is also presumed that in this way, it is possible to learn how new points in the given

discrete set can be generated [121]. On the other hand, extrapolation is the process of constructing new

data points outside a discrete set of known data points [24]. Typically, the quality of a particular method of

extrapolation is limited by the assumptions about the function made by the method. If the method assumes

the data is smooth, then a non-smooth function will be poorly extrapolated.Even for proper assumptions

about the function, the extrapolation can diverge exponentially from the function, because of nonlinearities.

Taking more terms in the approximation of the function will produce better agreement in a neighborhood

of the points considered, but away from that region, the approximation may still produce extrapolations that

diverge. This divergence is a specific property of extrapolation methods and is only circumvented when the

functional forms assumed by the extrapolation method, accurately represent the nature of the function being

extrapolated. For particular problems, this additional information may be available, but in the general case, it

is impossible to satisfy all possible function behavior with a limited set of known points.

Thus the field of Classification and Machine Learning tends to be focused on the capabilities of classifica-

tion algorithms to generalize from a given, limited, training samples. What is actually involved in the concept

of Learning from examples as this is commonly indicated, is to learn the class label of new objects, which are

contained in a discrete set of objects, but whose class label is for the time being unknown, while some of the

other objects in the same set are of known class label and can be used as examples in the learning process.

It is stated for this approach that a learning machine should identify the relationship between the classes

and the objects from a small amount of information. This process is typically one of interpolation and is

an inductive process in a limited sense, but in as much as it ’learns’ the structure of the discrete set, this

recognition is extremely important in describing certain aspects of a phenomenon which have not previously

been contemplated.

The field of Pattern Recognition tends to be concerned with the formulation of extrapolation methods and

will consider once more a discrete set, but it is proposed to determine the learning algorithm in such a way
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1. Introduction

that the objects, subject to the process of recognition, will come from a population which is much greater

than the sample or discrete set, considered for learning. So given a certain population, however defined, it

is desired to determine firstly whether an object belongs to this population and then if it does, determine its

class label.

The population can of course be defined so restrictively, that it can be considered a discrete set, in which

case this approach is reduced to the former, but usually the population is considered in a wider sense than

the discrete set or sample on which the algorithm is trained and therefore a general induction or inference

problem is posed.

In pattern recognition, given a specification of a population, it is desired that all objects which belong to

that population be recognized with an acceptable small error, as the paramount aspect is to determine the class

label of the given object and proceed to fulfill the required actions. This for instance is extremely important in

medical diagnosis [100], where it is not of interest to be able to diagnose correctly 99% of the patients which

may suffer from a certain pathology, but to diagnose correctly all the patients that suffer from that pathology

and not diagnose incorrectly those that do not suffer from that pathology.

The concept of a correct diagnoses regarding all those who suffer from the pathology is called sensitivity,

while the diagnosing, as afflicted by that pathology, people who do not suffer from it are called false negative

and the frequency measures the specificity of the diagnosis procedure.

In a diagnosis, complicated factors may arise, so that a given diagnostic procedure has a very high sen-

sitivity, say, only when certain complicating factors are not present. In this way, the generalizability of the

pattern recognition procedure may be limited to a population of patients who do not have any of those com-

plicating factors.

The terminology, under the Pattern Recognition approach, in fact, reflects a statistical methodology, since

one tries to infer characteristics of the population from a given limited sample.

While it may be acceptable to provide a description of the relationships of the given discrete set, with

some error and expect that as time goes on this description will be improved, because eventually the class

labels of the unknown objects will become known and so the learning algorithm can be iteratively improved,

this may not be acceptable for the Pattern Recognition approach.
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1.2. REVIEW OF THE LITERATURE

1.2 Review of the literature

Pattern Recognition problems have been posed as statistical problems since the first half of the 20th century.

One of the first approach to solve a classification problem has been a statistical procedure termed Discriminant

Analysis [50].

Discriminant Analysis has been formulated in several variants [82] [124] [93], as pattern recognition

methods, usually under the assumption of a population describable by a gaussian distribution. Also classifi-

cation methods have been proposed, such as [61].

Linear Discriminant Analysis can be applied to calculate a hyperplane that separates points of two (or

more) different classes. This approach requires of course that the two classes can be linearly separable, to

obtain an accurate classifier.

An extension of these methods have been recently developed, known as Kernel methods, by considering

non linearly separable classification problems. It can be proved that for any non linear separating hyperplane

a suitable transformation can be defined from the input space of the problem to a Hilbert space such that

in the resulting feature space the problem is linearly separable [122] [26] [25] [129] [36] [125]. Any linear

discrimination algorithm can be used on a nonlinearly separable data set, by applying an implicit mapping

of the data into higher dimensional space where it is possible to define a linear separation to the objects

with different class labels and so determine a linear discrimination function to solve the problem. This linear

function in the so called ”kernel space” will be a nonlinear function in the starting space obtaining a nonlinear

discrimination function. This approach has been applied, among others, to:

• SVM [136] [36]

• Kernel Fisher Discriminant [95] [28] [11] [141]

• Multisurface Proximal Support Vector Classification [55] [56] [90]

The idea of these methods is to exploit the efficiency and the statistical properties of a linear formulation

by applying linear methods in a different space to where the input data is nonlinearly embedded in order to

obtain a nonlinear classification in the input space carried out by a linear classification in the feature space.

These approaches can be considered the main objects of current research to classification algorithms and

depending on the assumptions made, there can be difficulties in generalizing these to consider extrapolation

in the solution process, which would be required by pattern recognition methods..
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1. Introduction

A statistical theory methodology to both approaches to be considered can be formulated also through the

Bayes classifier, formulated as a Maximum Likelihood problem [43] , which constitues a widely used method

to solve both types of problems.

The major drawback is that some restrictive hypotheses are need in order to use these methods, which

may not be fulfilled in practice. The main assumption for the maximum likelihood estimates to be valid is

that the variables must be normally distributed. It is clear the difficulties that unwarranted assumptions can

give in applications where a high nonlinearity of the relationships between the variables is common.

The Bayes classifiers requires the knowledge of the a priori probability distribution of the entities in each

class, so that the elements to be classified will be assigned to that class, for which the posterior probability is

a maximum [44] [39]

More general Non parametric methods have been proposed. Methods such the Nearest Neighbor algo-

rithm [34] do not assume any distribution regarding the data sets and accurate classification can be obtained

in many applications [100]. Since no assumptions are introduced on the discrete set considered, which may

also be very large, depending on how the underlying population is defined, this procedure may be applied in

many different variants, to both approaches.

A different approach is considered with the Neural Networks method, obtained by generalising the

method of linear classification, known as the perceptron [13, 117] that was developed. This approach can

be really precise, performing with a high classification accuracy, but it can be also difficult to define the al-

gorithm parameters in order to obtain good results. The optimal number of layers, neurons, the parameters

of the activation function can be very difficult, given a problem, to determine so that the results are satisfac-

tory. For each application an intense research for the correct parameters must be performed in order to obtain

good results. Since the parameters and the structure of the Neural networks are vital to the success of the

method, this procedure is usually considered not to have a very high generalizability and so is limited to the

classification and Machine Learning approach.

Centroid methods have also been proposed under both approaches. The earliest centroid approach was

[49], indicated purely as a heuristic. A convergence proof to a variant of this method was proposed [105] and

numerous applications were presented [18, 19, 100, 112, 63, 111, 99, 92, 108, 113, 109, 110].

Centroid methods are also suitable for clustering when the class membership of the objects is not known,

or known only as relative frequencies, or is subject to uncertainty. One such method is the k-means clustering

method [87], in which the data set is partitioned into a given number of subsets, so as to minimize the

aggregate squared distance of the data points from the given number of centroids, where each centroid is the
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mean of the data points that have been assigned to it. Clearly as the number of centroid increases the aggregate

distance will decrease, until when the number of centroids is taken as equal to the number of data points, the

aggregate squared distance will be minimum. Thus there is only one finite minimum to the problem with

value zero. Instead as it has been shown [23] cluster centers can be generated by specifying the partitions by

hyper-planes, derived from the centroid points, so that the proximity measures of the point from the hyper

planes are altered with respect to the centroid points. In this way an algorithm is formulated which has a finite

termination before reaching the upper bound in the number of centroids, which the k-means algorithm does

not have.

Further if class membership is defined for the data points, as in the problems described here, then the

centroids can be determined on the basis of a double criterion: the class membership of the data points

considered in the centroid and that each data point is closer to a centroid with the same class label than to one

with a different class label. Such an algorithm can be formulated as a pattern recognition algorithm [105]. It is

truly a pattern recognition algorithm, as the centroids form means for the homogeneous subsets (with respect

to class membership) and, as it is well known from the theorem of central tendency [136], these sub-class

means will be robust and thus allow to carry out the extrapolation process and classify unknown data points

even under varying distributions of the data points.

1.3 Aim of the work

The aim of this exposition is to present the Pattern Recognition and the Classification problems and consider

methods to solve problems under both approaches.

To demonstrate how the definitions of Pattern recognition and Classification can be identified also from an

algorithmic point of view two approaches have been developed. In the first approach we have borrowed the so

called kernel trick [131] from standard kernel techniques and improved a kernel classification algorithm based

on the solution of only one Generalized eigenvalue problem [66]. Further, this methods can be efficiently

implemented for Parallel Computing structures in order to address classification problems on massive data

sets [65]. The second approach, defined as Locally adaptive, has been developed formulating a classification

algorithm as a Nonlinear Complementarity Problem [109] performing a partition of the space subject to the

minimum number of barycenters.

The study of these two approaches demonstrates how it is possible to determine a wide overlapping

working area, which in fact stems also from the analysis of the literature proposed above. Furthermore, locally
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1. Introduction

adaptive algorithms using the kernel transformations [33] have been developed in order to take advantage of

the properties of a greater separability of the classes, obtainable by using a suitable kernel function, which

will make the problem linearly separable in the enhanced feature space.

This will allow an important property of centroid methods to apply also to this linear separable problem,

which ensures that the training set is correctly classified. Two aspects should be noted:

• Since the training set becomes linearly separable in the enhanced space, when the correct kernel is

applied, completely correct classification must follow without any problem of overfitting and this will

extend to the unknown population, if the same kernel applies.

• This completely correctly classified training set will avoid arbitrarily bad classification under actual

experimental conditions. For, if we suppose that the object of the training set have been classified with

10% error, and the algorithm is then applied to new data, nothing ensures that the new data consists

purely of objects similar to those which have been misclassified. Thus arbitrarily bad performance can

ensue. Note that this will apply also to the classification problem, constrained to a given discrete subset,

in particular if duplicate objects are allowed.

The theoretical analysis which will be conducted must be followed by a thorough experimental analysis,

to demonstrate that the theoretical assumptions introduced in the algorithms do not introduce imprecisions or

make the applications unrealizable.

Trough a extensive experimental analysis formed from several well known examples and a number of new

applications, it will be shown under what circumstances a particular algorithm fails or for which approach it

is better to consider it.

It should be recalled that throughout this work, the aim of the classification task is to obtain a precise

classification or a correct recognition and not just on the basis of the speed of the algorithm in obtaining a

solution. The fastest algorithm which gives wrong answers can never be preferred to a slow algorithm which

gives the correct answer.

However In order to obtain faster versions of the locally adaptive approach methods an incremental learn-

ing technique has been developed. With this application it will be demonstrated how this algorithm can

perform adequately also in task defined as Classification problems. This technique allows to select a small

training subset to train the algorithms without excessive errors and thus permit generalizabilty even for clas-

sification problems.
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1.4 Outline of the work

The plan of the exposition is the following.

In the next chapter an analysis of theory required to formulate classification and pattern recognition prob-

lems is presented. The required definitions are given and some general results are formulated so as to char-

acterize both approaches and make clear their differences. As for both the classification approach and the

pattern recognition approach, kernels can be extremely useful, the presentation of the theory of kernels and

the required results will be given.

In chapter three a classification method suitable also for kernels based implementations is introduced

and its mathematical formulation is given. A presentation of the basic concepts underlying this based on

the generalized eigenvalue problem and a regularization technique, which will also be specified to solve

this problem. It will be argued, consistently, that the proposed routine is more general than other existing

eigenvalue routines. A Further speed up of the algorithm is obtained formulating the algorithm as a parallel

implementation.

Thus in this chapter a novel routine for the classification problem is described and the convergence results

are proved.

In chapter four a locally adaptive approach for pattern recognition is considered and three variants of the

algorithm are considered. In all these algorithms a partition is obtained by defining suitable centroids for the

input space. Each partition is assigned to only one class and a set of barycenter for each class in the training

set are calculated.

The three variants that are considered are two iterative implementations, the first in the natural pattern

space of the problem, while the second considers a kernel implementation of the algorithm. The third variant

considers an optimization problem to solve the partition by using assignment variables to determine the

necessary centroids, while minimizing their number.

If this is should be used with a kernel method, then of course, rather than using a nonlinear optimization

routine to solve the problem, it is sufficient to use a simple linear program as in the transformed space the

objects should be separable [8].

In chapter five, experimental comparisons will be made regarding the various routines proposed. First

a number of benchmark data sets are described and classification accuracy on these data is given for the

algorithms considered. A second comparison is given for a number of artificial data sets to illustrate the

characteristics of the two approaches in order to solve a Classification or a Pattern recognition problem as

10



1. Introduction

defined in Chapter 2. Limits and advantages of each approach are illustrate trough a test on these ad hoc data

sets.

Finally an implementation on a number of real data sets are given to examine the robustness of the

approaches and the possibility of every algorithm to be used in an extrapolative context.

In this chapter a procedure will be also presented to obtain a subset of training elements that allows to

define a classification function which uses a small fraction of training data. This data reduction scheme, while

decreasing the the cost of an eventual retraining stage, allows the algorithms formulated to work with ”good”

points thus requiring less time to obtain solutions with the same or with a slight reduction in the efficiency of

the solutions. Further, this technique allows the algorithms based on the Locally adaptive approach to achieve

a higher generalization power in classification problems

The conclusions on the whole work are given in the last chapter.

1.5 Conclusions

Different classification methods can be formulated to compare and evaluate two main classification ap-

proaches to the recognition problem: kernel methods and pattern recognition.

Further, Kernel methods try to define a suitable mapping that will obtain a grater separability of the

data ion order to perform successfully a linear classification. The nonlinear embedding allows to exploit the

efficiency and the strong statistical properties of linear methods.

The definition of a suitable kernel function can be much harder than determining a nonlinear classifier

directly in the input space. In short Kernel functions can be very useful as long as the relationship between

data and classes falls into specifiable relationships.

Non parametric Locally adaptive approaches explore the whole input space without any transformation

of the input variables. The classification boundaries are dependent from the local relationship between the

classes and the data. These approaches can be computationally expensive but no preliminary embedding

function is needed and no parameter has to be tuned.

Hybrid approaches can be suggested to take advantage of the possible data manipulation. In fact a general

embedding can be used to obtain an approximate data separation and a local approach can then be applied if

the embedding function does not give suitable results, either on the original data set or on the pre-classified

data set that will result from the first stage.
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CHAPTER 2

Approaches to the Learning methodology

2.1 Introduction

As a basic process of human understanding and learning, the problem of recognition, which includes Clas-

sification and Machine Learning and the more general approach of Pattern Recognition, as characterized in

section 1.1, is a set of algorithms and procedures which are required to determine precisely whether an object

is a member of a given class in a given collection.

The data set may be discrete, in which case a part of the objects contained in the set, whose class member-

ship has been assigned, is used as a training set and it is desired to determine the classification of the rest of

the objects in the discrete data set in such a way that the class memberships assigned to these is consistent and

undistinguishable attribute wise from the objects of the training set. To use the concept proposed by Turing,

an expert in the field of this data set can not distinguish the objects that formed the training set, whose class

membership is given a priori from those that form the classification set [133].

Often to determine the reliability of the algorithm, the class membership of all the objects is known, but

some are assigned to a verification set, and classified with the given algorithm without using in any way their

class membership, except to check on the accuracy of the classification determined with the given algorithm.

A more general setting is to consider a collection of objects, formed by selecting the objects with a certain
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2.1. INTRODUCTION

set of criteria and a training set formed of objects that hopefully are similar to those in the collection, but this

may not be necessarily so. Again it is desired to classify the objects in the collection on the basis of the

classifier determined from the training set. The problem of Pattern Recognition is to determine the most

general conditions under which this can be done for any collection.

The problem of recognition must therefore consider

• the collection of objects to examine, both the training set available for learning the classification and

the collection of objects whose class membership will have to be recognized,

• their attributes that can be defined,

• the precision in recognition required, as well as possible structures defined on the data sets, which

belong to the classes.

All these aspects interact synergically and assume involved nonlinear relationships [138]. Thus, whether

or not a better algorithm can be formulated is an interesting methodological speculation, if it is not carried

out at the expense of one of these aspects. Instead, it is necessary, to proceed, whatever algorithm is used,

to consider the population to be covered, the data set and its classes and also the attributes to be used in

selection. Moreover, given a transformation from the set of attributes to a set of features, some algorithms

may be more suitable than others on the transformed data. Thus the type of transformation of the attribute set

should be depend on the algorithm to be used [5].

Pattern Recognition and Classification procedures form complex classes of scientific problems. The col-

lection that is considered, the way the data is represented and its structural aspects interact and cannot be

separated from the mathematical aspects and therefore from the formulation of the solution algorithm to

separate the data sets in accordance with their class membership.

Thus the aim of this chapter is to study the available methods by considering their semantic, syntactic

and the pragmatic aspects so as to present the theoretical background and formal definitions of the pattern

recognition and classification problems. All three dimensions of a scientific theory must be considered to

obtain a satisfactory derivation and relevant application results, while mathematics is concerned only with

the syntactic dimension [10].

Often in mathematical formulations of such problems only the syntactic dimension is analyzed, while

suitable characterizations of the other two dimensions, are assumed ’for convenience’ or ’to simplify’, without

studying the effects of different formulations. Thus these aspects are treated as constant. It is obvious that if
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all three aspects interact synergetically, all must be considered in deriving a solution to the problem, so as to

avoid sub-optimization, dominated or trivial solutions.

Approaches which isolate only one aspect of the problem are limited, and often unwarranted unless it

can be shown that the neglected aspects enter only linearly into the problem. Particularly in applications

this will give rise to relevant inaccuracies in the classification. Precision in classification will depend on the

convergence or the asymptotic convergence of the algorithm and ensuring that the syntactic, semantic and

pragmatic assumptions introduced effectively apply. To propose a procedure for a recognition problem all

these aspects must be shown to hold.

The ultimate aim of recognition problems is to determine as precisely as possible to which class an un-

known object belongs. In applications this recognition is important in order to determine what consequences

should follow, for example, from the recognition of a particular pathology in Medicine, from determining the

owner of the fingerprints in Forensic Science and from the recognition from a face image of the individual

and countless other applications.

Thus the principal objective in formulating a classification algorithm or tuning it for a particular appli-

cation is usually to obtain the higher average classification accuracy on a given number of trials. This is an

important evaluation criterion of the method both from a practical and a theoretical point of view. But, to

achieve purely a higher average accuracy may not be in all cases a correct strategy, because some particular

behavior which could be important is instead treated as noise and misclassified. Instead, if an attempt is made

to determine the members of these rare classes, there may be some confusion between objects which belong

to other classes and the net result may be a lower precision.

For some applications it may be extremely important to focus one’s attention on that part of the population

that is under represented or represents rare events. Treating this elements as just noise may not be the right

choice. This is especially true when training is carried out with error, as it was indicated in section 1.3.

Consider for example a decision based classifier for some particular disease. A correct classification of the

patients afflicted with the pathology could be of extreme importance to recognize future patients even if the

incidence of the pathology is very low and could be considered a rare event. This consideration is extremely

important in medical research. Usually the set of tests for a medical diagnosis are reliable classification

procedure tuned on years of studies and research, but may have less than optimal sensitivity and specificity.

Increasing these capabilities means to focus attention on that part of the population that may be out of the

main trend, but who could be cured easily if they were diagnosed correctly. The problem described above

reflects the need in many applications to have completely correct results in training.
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With a pattern recognition problem, it may be possible to satisfy this requirement and a solution can be

determined by these algorithms by considering all the possible relationships between the measurements and

the classes on the given examples without ignoring the rare behavior in the population.

However, noise may intervene in the measurements of the objects and in the classification of the objects

in the training set, so suitable methods must be devised to remove these effects as much as possible, which

will depend on how the attributes of the objects are defined and the membership classes adopted.

Under the two sets of paradigms that compose the general recognition problem: pattern recognition and

classification much effort has gone into formulating suitable methodologies and application procedures.

Many important implementation of classification or machine Learning procedures have been proposed,

starting from the important monograph [96], while the pattern recognition approach has been formulated in

various monographs [44] [94] [134].

The essential difference between the classification approach and the pattern recognition approach is that

the latter is a generalization of the former to infinite data sets. More specifically, the training set, if it is a proper

subset of the data set when considering classification problems, it is assured that the probability distribution of

the training set and the data set are identical, often assumed identically independently distributed and usually

the latter is finite, but this is not an essential requirement. For a pattern recognition problem the training set

must be a proper subset of the data set and the probability distributions defined on each set may be different

and may be infinite.

Therefore the distinction hinges on the definition of the data set and how objects are ’recognized’ to

belong to it, in the classification case, while in the pattern recognition case how objects are ’associated’ to the

data set.

Nevertheless, a number of procedures are common to both approaches, since the distinction regards the

data set and not the solution technique, while obviously, because of the inevitable interaction of all the ele-

ments of the problem, the distinction on the data set will have important repercussions on the performance in

classification.

Thus the procedures available may be grouped into two main classes:

• Parametric methods, which assume that there exists an underlying probability distribution of the pat-

terns per class, which is known ( e.g. gaussian). These methods are mainly statistical as discrimination

analysis,

• nonparametric methods, which assume no knowledge of any a priori probability distribution and which

16



2. Approaches to the Learning methodology

achieve the classification through some kind of least distance criterion. These methods include statisti-

cal, optimization and neural network approaches as well as some ad hoc methods.

Parametric methods include the original method of linear discrimination analysis, [50], which assumes

that the patterns in a class are distributed in the form of a normal distribution around the mean and with

a common covariance matrix for the whole population. This leads to linear discriminant functions. As the

distributions have limits extending to infinity, it follows that there is usually an overlap or region of confusion

between the distributions.

To be able to classify adequately, it is assumed that there are a sufficient number of patterns from every

class, such that the class mean is an efficient estimate to represent the class.

Since the original formulation many extensions and developments of the original theory have been under-

taken [82] [124] [93] [141] [95] [11] and the references therein.

As the algorithms indicated determine class means for the input space or for the transformed space,

nevertheless these means will asymptotically approach the population means, so that if the objects of different

classes are defined in terms of features that are well separated, these algorithms can be used under both

approaches.

The model is often generalized somewhat, by applying Bayesian analysis. Instead of assuming a normal

distribution, the training sample allows the calculation of the parameters of the posterior distribution, given

a prior distribution. It is easy to show that if the prior distribution is determined correctly then the error

classification rate or bayesian error is a minimum error rate, given the prior distribution and given the pattern

space considered, [44].

Again these parametric procedures may be generalized somewhat, by determining the class densities

through non linear discriminant analysis, which assumes that both the means and the variances may change

from class to class, [77].

These methods reflect an epicentric conception of the pattern recognition problem and are very suitable,

usually among the best, when the assumptions of the methods are met. There are some generalizations for

the cases in which the attributes are highly correlated, [69], or the sample is composed of gaussian mixtures,

[70], or for the cases in which there are additional similarity relationships, [71].

Of course the distributional properties of the patterns, whatever they are, may be lost if a humean approach

is used to juggle the pattern space for better discrimination and so these methods are often poor in actual

applications, [85] of the pattern recognition approach.

Non Parametric methods are much more flexible and can be used with a humean approach. Essentially it
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is attempted to separate the patterns into homogeneous groups, based on a least distance criterion and class

membership constraints. There are two main categories of non parametric methods:

• Statistical methods where no assumption is required on the eventual distribution of patterns but patterns

are allocated on a least distance criterion, perhaps under a set of constraints. Methods in this category

include:

– k nearest neighbor methods, where k = 1, 2, .... The pattern in verification is assigned to the class

of the nearest k patterns available in training. If k > 1 then the pattern is assigned on a majority

vote. The method works well if the patterns are not noisy. Note that a given pattern vector of the

training set may be assigned to many clusters composed of the nearest k patterns, so the concept

of the formation of class means does not hold here. Nevertheless, it can be shown that this method

can be, under some mild assumptions, universal consistent [39], which as we shall see makes it

suitable to solve pattern recognition problems.

– Parzen windows approaches consist of building probability density from samples and using well

chosen potential functions to build up such probabilities. These include histogram rules and kernel

like methods. The fundamental difficulty is to expect to be able to build up a probability density

distribution of the objects in each class from the limited samples usually available, [136].

– Decision trees approaches proceed by subdividing the sample training set into two subsets on

the basis of an attribute and of a split value of the attribute. The process is continued until a

stopping criterion is met, in which case the leafs obtained indicate the appropriate classification

groupings. This process is usually implemented through verification samples to determine the

best dichotomization process. It is clearly applicable only to the classification approach, as the

results are dependent on the elements used in the training set and no accuracy in extrapolation

can be envisaged.

• Separation methods consist in constructing partitions on the pattern space by using the patterns in the

training set. The principal methods are:

– optimization methods, an objective function is defined to minimize some misclassification crite-

rion and constraints are defined suitably on the objects. The methods considered may be:

∗ Linear programming methods [89]
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∗ Quadratic problems with linear constraints, basically the Support Vector Machine approach

(SVM) [136]

∗ Fractional quadratic programming, solved through a generalized eigenvalue problem [55]

[56] [91], see also ReGEC (Regularized Generalized Classifier) in chapter 3.

∗ Nonlinear programming methods, as (C.A.S.T.O.R. Complementarity Algorithm System for

Total Recognition, see section 4.4). There are also a number of other separation methods,

see [100]. A general algorithm indicated as T.R.A.C.E. ( Total Recognition by Adaptive

Classification Experiments) see section 4.2 may be implemented as an optimization problem,

see [105].

– Neural network methods, a set of very popular methods, will achieve the separation through the

definition of a network where at each node a criterion function separates the objects into 2 or

more subsets [12].

There are some important aspects which differentiate the statistical, and other separation methods from the

neural network algorithms, see [100], especially with regard to the two approaches that are being considered.

It is possible to derive, for most of the variants of these methods, proof of their convergence and finite

termination of the algorithm. However, in most cases the algorithm is made to stop near convergence, because

convergence may be very slow in the final stages, [12]. The error, small as it may be, will have an effect in

classification, where errors similar to the ones incurred in training are likely to occur, as it must be assumed

that the training set is composed of objects, which occur in these experiments with high frequencies. Often

however, a training set is given and from this a verification set is formed. Owing to the experimental nature of

the activity, the training set is pruned of identical or similar instances, so that when verification is performed,

little repetition is endured. In this approach, the small error in training will be avoided in verification, because

the verification sample is very similar to the training sample, but will not contain objects that have been

misclassified. However, this is a cause for statistical bias and results will appear better than they really should

be.

With neural networks the architecture of the network and the topology of connection as well as the number

of units used are crucial elements which have a significant impact on the results of the classification, [12].

However, with neural networks, the choice of the network architecture is considered to be a subjective or a

decision by experts and very few rules are given regarding this choice. This means that experiments conducted

by different people on the same data set may yield very different results and in actual applications, there are
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never circumstances in which one is sure to have the best result possible obtainable from applying neural

networks, without trying them all.

This objection is similarly encountered in SVM applications where the determination of an appropriate

kernel is basically left to the experience of the researcher. Often it is advised to use a small tuning sample, but

this being a small sample which must be chosen from the training set will have great variability and therefore

lead to choose very different kernels by different researchers.

On the other hand with algorithms as C.A.S.T.O.R. or T.R.A.C.E, given the attribute set and a data set any

classification will always give the same result, independently from the user. Thus the number of separating

hyperplanes constructed by these methods is univocally determined from the data and will depend only on the

position in the attribute space of the patterns in that experiment. If exception is made for the spurious case,

these positions are relatively well defined, if suitable measures for their membership are formulated. Thus

by defining the minimum number of barycenter vectors to achieve a correct separation in training, given the

properties of central tendency of these estimates, they will tend to be well defined and robust.

By construction these algorithms do not lead to the formulation of any superfluous barycenters and there-

fore the number of separating hyperplanes will be minimal. Of course, the presence of random noise could

create abnormal patterns which could result in a discrepancy between the training set and the data set, in as

much as the piecewise linear separation will not be mutually exclusive and collectively exhaustive as between

the training and verification set.

Instead for neural networks, the partition defined will depend on the architecture of the network, which

is chosen by the user with help from small calibration samples. The choice of a non suitable architecture

may bring about overfitting and low precision in classification, even though the data set may not be spurious.

Of course the imprecision will be compounded if there are spurious aspects to the classification problem

considered.

Finally, the dependency of the network architecture on the user’s choice of modeling elements and there-

fore on the results of classification, imply that an epicentric viewpoint is the correct interpretation in this

case. This choice can only be justified in a neokantian environment, but this should be always suspect, unless

there is clear evidence of learning by experience. However, this should be demonstrated through classification

experiments, which must not rely on epicentric assumptions. .

The outline of the chapter is the following. In the next section the recognition problem is defined in terms

of its constituent elements and various definitions and results are considered.

In the following section the analysis of kernel methods is undertaken. Kernel methods can, in fact, be
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considered as an implicit feature extraction technique in order to transform a ”difficult” classification problem

in an ”easier” one and as it will be seen lead to some quite unexpected results.

In the fourth section the theory of pattern recognition is formulated and the problem is characterized in

terms of its salient features,and the various approaches that have been formulated will be examined. In the

subsequent section the theory is specialized to handle the problem of Machine Learning or Classification and

the various approaches of this methodology will be presented.

In the sixth section the problem of the generalizability of the classifier under the classification and the

pattern recognition models will be examined and the related important problem called overfitting.

Finally, in section six the opportune conclusions will be drawn.

2.2 Learning by examples

Pattern Recognition (excluding clustering) consists in assigning an object of an unknown class to the class

that it should belong, once the class has been identified by seeking a few objects that are known to belong

to that class and some objects which do not belong to that class, so that a classifier may be defined over the

training set [44] [94] [134]. Together with clustering these processes are basic to human knowledge, [138].

It is usual to restrict the identification to objects which belong to a given collection and to use the classifier

to determine in which class of the collection the objects belong. The collection may consist of equine and

the classes may consist of their sex in which case mules, definitely equine, would raise ambiguities in their

classification, if only 2 classes are considered. Another example would be to recognize ponies and horses, in

which case zebras and asses would give rise to ambiguity unless the attributes which must be used to define

the specimens are not defined carefully.

A data consistency problem arises in all cases where the classes considered are not mutually exclusive

and collectively exhaustive of the groups of objects which belong to the collection considered and this may

happen at various stages in the determination of the classification rules. In many instances, the existence of

other classes may not be known. Obviously unless this inconsistency is resolved there can be no accurate

classification of the objects as their class membership is ambiguous.

A partition over a set is a subdivision of the set into classes such that they are mutually exclusive and

collectively exhaustive.

Suppose that a certain partition of these entities into equivalence classes is selected, as the desired clas-

sification for the given entities, which implies that this classification into equivalence classes is consistent,
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then it is required to use other particulars available or to be identified from these entities to partition them in

classes, which will result in the self same classification.

Thus a set of entities may be characterized by any number of particulars, called attributes, which differ

among the members of the set. An attribute or a subset of attributes can be used to form the classification

criterion, so that the objects will be partitioned into appropriate classes.

Notice that the set of attributes may be very large, so that the ones used to define the class membership of

the object may be not generally known. As the attributes may even be dynamic attributes, at a given point in

time, the attributes which, if known would determine the class of an object, may not be ascertainable.

Definition 2.2.1 An entity is a set of measures of different aspects of an object, indicated as its attributes.

The set of attributes considered in a pattern recognition problem forms a Cartesian product of p sets S ⊆

S1 × S2 × . . .× Sp and is termed a pattern.

Definition 2.2.2 Suppose there is a set of entities E and a set P = P1, P2, ..., Pn of subsets of the set of

entities, i.e. Pj ⊆ E, j ∈ J = {1, 2, ..., n}. A subset Ĵ ⊆ J forms a cover of E if
⋃

j∈Ĵ Pj = E. If, in

addition for every k, j ∈ Ĵ , j 6= k Pj ∩ Pk = ∅ it is a partition.

From a set of entities or objects, certain attributes may be selected to characterize each individual entity.

The attributes may be viewed as providing an epicentric or aggregative definition of the entities. Plato’s the-

ory of form and the concept of ideal types may be considered as constituting the epicentric view, in which

each entity is defined by a set of attributes or qualities given a priori, i.e. their intrinsic properties, so that their

recognition is innate. In this view, obviously, the possibility of their being objects in a population belonging

to an unknown class is not envisageable. However, the characteristics required to determine the class mem-

bership of a given object may be so extensive that for most objects their class is unknown, so a classification

problem arises. Often, the determination of the class membership of an object may be destructive, as for

instance to determine defective items in Quality Control.

An alternative viewpoint, indicated originally by Hume, [73], is to consider the classes of the objects as

based on similarity considerations of the chosen attributes, as an association formed from mental habit and

here entities must be based on particulars, [138], [100].

Definition 2.2.3 A set of entities forms an epicentric population, if the number of attributes considered is

finite (p <∞) and the class is a defined property of each entity.
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Definition 2.2.4 A set of entities forms an aggregative population, if the number of attributes considered

is not finite (p < ∞) and a given set of attributes are selected to define the equivalence classes of this

population.

In the epicentric classification, objects are gathered into suitable collections through taxonomic criteria

and then their class membership is determined possibly by pattern recognition techniques to make the process

automatic or to enable a quick prediction or to hasten the class membership assignment, which will eventually

be manifest. Thus, histopathologists claim that their determination of the class of given biopsies is very

precise, but time consuming and difficult to automate, while the diagnosis of Alzheimer’s disease can only

be confirmed with certainty after death, by examining the patient’s brain.

As sensation and perception do not constitute passive and unbiased transmission of physical stimuli, but

are instead active processes for selective formation of concepts and of valuable information. The active aspect

of these processes are emotion dependant and value dependant mental constructs, which cast uncertainty

regarding the possibility of a correct applicability of the epicentric viewpoint.

Instead in the aggregative view, a set of particulars, large as desired are used to represent the objects

considered, which can then be gathered into suitable collections and classes, through any suitable taxonomic

process. In this view, the aim of Pattern Recognition is to determine the recognition rule used in the taxonomy.

Hume stressed the fact that similarity is a product of association formed from mental habit and developed

a theory of general concepts based on the similarity of attributes of objects. Thus, those holding this view

agree on, [73]:

• what really exists and can be recognized are particulars of objects, i.e. observable attributes,

• objects which are members of a class covered by a general concept have a set of common attributes or

relationships among them which objects not belonging to that class do not share.

• the attributes of objects of a class are bound together by a similarity relationship.

While the first view does not really allow one to modify the attributes of the objects, which are considered,

no such difficulty arises with the second view and so the attribute space may be juggled around until sufficient

attributes are included so that instances belonging to different classes have different attribute vectors, to ensure

precise recognition [138].

Any pattern recognition problem has a semantic dimension, which is concerned with the structure of the

specific problem to be analyzed, or with the particular features of the problem posed. The semantic dimension
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is thus concerned with all the aspects of the problem the expert is likely to know about and this information

can be used to define a specific procedure to solve just that application. Thus the semantic dimension of the

problem uses expert knowledge and special and often heuristic routines are applied [54]. This approach is

eminently reconcilable with the epicentric view.

On the other hand, all pattern recognition problems, unless they are spurious, have also a syntactic dimen-

sion, which concerns the formal properties valid for all entities, belonging to the same class, with regard to

the phenomenon considered. This has been indicated above by the similarity relations that tie some attributes

of objects which belong to the same class. Among these properties special consideration will be given to these

relations, whatever they are, which characterize the object of each class, if they exist. These relationships de-

fine the syntactic dimension of the problem and since one need not be concerned with the actual relationships,

but just with some algebraic and topological properties, this allow a general algorithm for Pattern Recognition

to be defined and applied [100].

Definition 2.2.5 A classification or a pattern recognition problem is:

• linearly separable if there exist linear discriminant functions such that the entities belonging to each

class are separated from the other entities belonging to the other classes,

• pairwise linearly separable, if every pair of classes is linearly separable.

• piecewise linearly separable if every element of each class is separable from all the other elements of

all the other classes by a set of linear functions.

Clearly if a set is linearly separable, it is pairwise linearly separable and piecewise linearly separable, but

the converse is not true, [142].

Classification or pattern recognition problems are characterized by a data set of objects.

Definition 2.2.6 A data set is a set of entities on which certain relations may be defined.

A collection of objects is of course a data set, which may be discrete or infinite and may or may not include

only homogeneous objects or entities. Of course, if pattern recognition problems are being considered, a

relation that will subsist is the one defining class membership, but there may be others, as there must be, if it

is desired to use some of the attributes to predict the membership class of the entities considered.

Definition 2.2.7 A subset of a data set is termed a training set if there exists a partition defined on it.
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Definition 2.2.8 A subset of a training set is termed a verification set if the training set determined by re-

moving the verification set has a empty intersection with the verification set.

Definition 2.2.9 A subset of a data set is termed a classification set if it has an empty intersection with the

training set..

Definition 2.2.10 [126], [105] The data set of a Pattern Recognition Problem is coherent if there exists a

partition of it, which satisfies the following properties:

1. The relations defined on the training set and in particular the membership classes, defined over the

data set, consisting of disjoint unions of the subsets of the partition;

2. Stability: the partition is invariant to additions to the data set. This invariance should apply both to

the addition of duplicate entities and to the addition of new entities obtained in the same way from the

objects under consideration,

3. Extendibility: if the dimension of the set of attributes is augmented, so that the basis will be composed

of p+1 attributes, then the partition obtained by considering the smaller set, will remain valid even for

the extension, as long as this extension does not alter the relations defined on the data set.

It is important to notice that if the data set is limited to the training set, then for the latter each of these

properties can be checked. If these properties hold for the training set then, once the training has been com-

pleted, classes can be assigned to entities in the data set. This now becomes a new larger training set and

these properties can be checked again, so that we can establish this property empirically. Of course this will

be necessary only if an aggregative or humean definition of the entities is envisioned, since in the epicentric

view their recognition is innate.

It is easy to prove that the data set is coherent if it is piecewise linearly separable and that in this case a

piecewise linear correct classifier can be obtained, which realizes, on the data set, the partition defined by the

training set, [100].

Any new data set, thought to belong to a given phenomenon, may be coherent, or it may not be, because

it may not belong to the phenomenon, although it appears so, or because there are dynamic modifications. In

the epicentric view the problem of recognizing the new data set as belonging to that collection is not posed,

since the data set can be so recognized eventually by definition, while in the aggregative view this may require

careful checking.
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In fact, it is held that the epicentric view or neokantian conception is simplicistic and contradictory. For,

consider the A.I.D.S. virus which mutates in time. The attributes to recognize it will by assumption change

through time, but how is this reconcilable with an epicentric viewpoint? Or, to put it in another way, how can

it be hoped that the expert will continue to recognize it? It may have a subset of invariant attributes, but this

would be begging the question.

In Medicine the sensitivity of a diagnostic procedure is very important and it is hoped to provide, through

research, suitable methods to determine if the entity belongs to that phenomenon, for which it is desired to

formulate a decision procedure to determine its class. Thus this problem should not be dismissed because of

a simplistic assumption. Hence in Medicine the epicentric view is untenable.

Many other important properties of the data set with regard to the training set can be obtained [100].

Firstly it can be shown that if the Humean similarity view is adopted, an attribute space can always be

constructed, by defining new attributes or non linear combinations of existing attributes, such that the training

set will be piecewise linearly separable and on this basis the data set can be classified. It will of course be

also piecewise linearly separable, since no two entities, which lie on the same point in space, will be assigned

to different classes by the classification algorithm.

Further, this dimensional increase of the attribute space is not achieved without pain. As the dimensions

of the space grows larger, it may well be that the representation space is defined constructively by logically

combining the original attributes without defining weights on the attribute or a priori elements, which would

consist of a return to epicentricity. Then it may result that any arbitrary two objects are equally similar so

no classification can be effected and this is a consequence of the ”ugly duckling” theorem, [138], which

is particularly important in this context, [100]. Thus, although the dimensions of the representation space

can be increased to force piecewise linear separability of the entities, the problem becomes more and more

difficult to solve and eventually ends up as a spurious problem.

From the properties of a data set and the properties of separability certain results can be indicated

Theorem 2.2.1 A data set is coherent if and only if it is piecewise linearly separable.

Proof: (⇒) Suppose the data set is coherent then there exists a partition, as indicated in definition 2.2.7,

which satisfies the conditions of the definition 2.2.10. By the mutually exclusive condition, no entity can

belong to two classes. Therefore the data set is piecewise linearly separable.

(⇐) Consider a set which is piecewise linearly separable, then two entities belonging to two different

classes cannot coincide in the space of the attributes. By selecting this piecewise linear separation and con-
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sidering the whole data set as the training set, it is easily seen that the partition will satisfy the relationships

on the training set and the set will be vacuously stable and extendable.

Corollary 2.2.1 Given that a training set does not contain two or more identical patterns assigned to differ-

ent classes, the given partition yields a completely correct classification of the patterns

Theorem 2.2.1 is intuitively satisfactory. It is reasonable to wish to be able to separate, according to

a suitable criterion, which defines a specific partition, any data set in which no two elements of different

classes coincide in the space of the attributes.

This theorem indicates that if no two elements of the data set assigned to different classes coincide in the

space of the attributes, then the data set can be partitioned by defining appropriate piecewise classifiers.

The analysis has been conducted in terms of attributes, rather than patterns and features, as is usual in

this field. The sets which form the subset of the Cartesian space of the attributes may have elements defined

on categorical, ordinal or quotient scales and therefore its elements may be not comparable. It is possible to

effect transformations so as to unify the scales used on the attribute space, usually by reducing it to one scale.

Thus quotient scales can be transformed into ordinal scales which can be transformed into nominal scales

[114].

For the first two types of scales, it is easy to show that a similarity measure can be defined, so that the

distance between two such arrays is meaningful, [105] and a classifier may be constructed. For data over a

nominal scale a set of binary sets must be used, so that for the nominal elements in such a scale the subsets

constitute a mutually exclusive set and include all nominal criteria. This will of course define a much larger

set of transformed attributes. Thus consider the following:

Definition 2.2.11 [105] A pattern set is obtained from an attribute set by a transformation of its elements so

as to render the structure a vector space, with a similarity measure defined on it or a binary relation defined

on its components.

The difference between the two vector spaces is that the former satisfies the triangular inequality, while

the latter does not and two vectors may be incommensurable [105] .

Depending on the structure that has been defined, a similarity measure composed of the Euclidean dis-

tance between two vectors, or a city-block distance or even a distance formed by a binary relation component

by component may be used to create the classifier. As an example, consider the similarity between bibli-

ographic items in terms of key words and the Dewey decimal system classification. Dewey’s classification
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index although it was proposed as defining an association index on the contents of the bibliographic material,

must be defined in terms of the binary relation with equality, as this is the only binary relation definable on

nominal scales [107] .

Notice, that such binary relations should result, unless other reasons come into play, whenever nominal

scales are involved, even though they are transformed into subvectors with binary elements. The numerical

aspect of the pattern, in this case, is purely nominal and therefore the similarity definition must enforce it.

Thus a pattern vector is the transformation of an attribute array so that some kind of similarity measure

may be defined on the set to enable comparisons of the likeliness of two or more objects or conclude that they

are different, because they are incomparable over the constructed pattern space. As we shall see the pattern

space which emerges from these transformations may be too large, for recognition purposes or in many other

ways not suitable. It is therefore customary to define a feature space and the consequent feature vectors of the

entities, to indicate the vector of elements actually used in the classification algorithm.

Definition 2.2.12 A feature vector is obtained from a pattern vector by a (non)linear transformation, which

is applied to all entities of the data set. When the linear transformation is just a selection of certain elements

of the pattern vector, then it is called feature selection, otherwise it is known as feature extraction.

Thus pattern recognition and classification problem determine from the input space, or attribute space,

in which they are defined a suitable transformation to a feature space, which supposedly will have certain

characteristics which will allow a better classification of the objects considered. The analysis of these trans-

formation methods is the object of the next section.

2.3 Feature Transformation Analysis

Data transformation to increase the separability of the objects in a data set has enticing prospects, so at first

sight the transformation of the data from the given attribute or pattern space to a feature space seems to be

worthy to be considered. This may take the form of feature selection or feature extraction as the case may be

and it is important to determine conditions under which each one is appropriate [44] [94] [142].

Thus the aim of this section is to examine the possible feature transformation methods that can be invoked

and examine their efficiency for classification and pattern recognition.

As it has been repeatedly argued, the distinction between the classification approach and the pattern

recognition approach lies in the properties of the data set, so in this section, as we shall not be concerned with
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the data set directly we can consider just the more general problem, to avoid tiresome repetitions.

A pattern vector in the training set is an (m+1)-dimensional vector consisting ofm attribute elements and

its class membership, so that for pattern i belonging to class j, it is represented as (xi, cij) ∈ R
m+1, ∀i =

1, 2, · · · , n, j = 1, 2, · · · , C, the patterns lie in an input space denoted by X such that xi ∈ X ⊂ R
m.

Further a feature vector of the training set is a finite dimensional or infinite dimensional vector fi ∈ F

obtained from the pattern vector by considering an appropriate mapping from the pattern space to the feature

space F . Thus the pattern recognition problem may be stated as a composite mapping of pattern vector into

feature vectors and from feature vectors to an integer set of class labels.

Denote the mapping from the pattern space to the feature space as : ρ : X → F and the feature space

from the class feature space to the class membership set C as γ : F → C then the pattern recognition problem

may be formalized having determined suitable mappings, as:

fi = ρ(xi) (2.1)

yi = γ(fi) (2.2)

Traditionally the feature extraction or selection algorithm has been regards as a mapping from a larger

dimensional space to a smaller one, so as to render the classification mapping of lower dimensions and

therefore more appropriate to numerical calculation [44] [94] [142]. A further use of the feature extraction

procedures is to remove eventual noise in the patterns by performing appropriate noise reduction, through

algorithms such as the Karhunen-Loève expansion [80] [53] [44] [94] [142] [19].

Well known linear feature extraction algorithms consist of linear discriminant analysis [115] and Principal

Component analysis [78].

The drawback of independent feature extraction algorithms is that their optimization criteria are different

from the classifier’s minimum classification error criterion, which may cause inconsistency between the fea-

ture extraction and the classification stages of a pattern recognition procedure and consequently degrade the

obtainable performance.

A direct way to overcome this problem is to carry out the feature extraction and the classification jointly,

with consistent criteria. For instance it has been proposed that a Minimum Classification Error procedure

can be formulated [79] and its extension as the Generalized Minimum Classification Error procedure [137].

Others have instead proposed feature extraction or selection procedures that can be shown to be independent

of the classifier used [5].
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Per contra, feature extraction algorithms have been designed to project the pattern into a higher dimen-

sional space, through suitable nonlinear mappings of the constituent pattern elements, such as defining a

feature vector formed from all the possible combinations of the pattern elements.

So as not to project and amplify also random disturbances or noise, which may be intrinsic in the mea-

surement of pattern elements, the feature extraction algorithm may consist again of a double mapping: one

to remove part of the random disturbances, by applying for instance a Karhunen-Loève expansion and then

projecting the transformed elements into an appropriate feature space of much larger dimensionality.

Kernel methods are implementations of this type of feature extraction algorithms [122] [136] [36] [125].

Whether the feature extraction procedure is a dimensionality reducing or a dimensional increasing pro-

cedure, from a formal point of view, it is a redundant mapping [94] [142], since a composite mapping can be

defined such that:

yi = γ (ρ(xi)) (2.3)

Nevertheless although feature extraction may be considered a redundant operation, it may be conveniently

applied to those pattern recognition problems for which feature extraction algorithms exist and created fea-

tures that are linearly separable. It would then be very easy, once the feature extraction algorithm has been

formulated to apply a classifier for a linearly separable set, to achieve very precise classification [44] [94]

[142] [39].

However, much research has been undertaken to determine suitable feature extraction algorithms for

general classes of pattern recognition problems, but no general algorithms have been proposed [103][57]

[86], while a classifier-independent feature selection algorithm can be formulated for some problems [5].

Kernel methods have been proposed, especially in conjunction with support vector machine and Neural

Networks procedures. The essence of this approach is to apply a kernel transformation to the input data to

extract a set of features, which are linear or almost linearly separable and to which neural networks or a

support vector machine implementation can be applied, which constitutes an algorithm for linear separation

of data sets [136] [36] [125].

With a suitable choice of kernel the data can become separable in the feature space despite being not

separable in the original input space. Hence kernel substitution becomes a route to obtain nonlinear algorithms

from algorithms previously restricted to handling linearly separable data sets [32] [122].

This approach doesn’t suffer from increasing computational complexity and/or curse of dimensionality

that arise when an expansion of dimension is carried out in many other feature extraction algorithms [131]. A
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kernel method, in fact, use this expansion of dimensionality only implicitly and the variables components in

the features do not have to be calculated singularly. It has been applied to linear classification algorithms to

improve their generalization properties. In fact, a linear function can’t solve even a simple problem like the

XOR problem. The formulation of kernel methods allows to extend linear model with controllable complexity

using a very rich set of nonlinear decision functions. Linear methods like Support Vector Machines take

advantage of this approach to obtain good classification results maintaining the original simplicity of the

algorithm when applied to linearly separable data sets.

Kernel functions can be derived from the formulation of a Reproducing Kernel Hilbert Spaces and Mer-

cer’s Theorem [21]. They were introduced [1] but with the development of Support Vector Machines [135]

have become one of the most powerful tools in classification [143, 144, 118].

In a kernel method the data is embedded by some nonlinear mapping φ in a feature space and the classi-

fication algorithms applied. For an appropriate function ρ the transformation of the patterns become linearly

separable or nearly so depending on the transformation mapping applied [131].

The mapping ρ can be defined as follows:

ρRN 7→ F (2.4)

x 7→ φ(x) (2.5)

with the notation as above.

A data set of elements {(x1, y1), ..., (xM , yM )} ⊆ (F × C) is then mapped into

{(φ(x1), y1), ..., (φ(xM ), yM )} ⊆ (F × C (2.6)

In certain cases the information available on the classification problem may allow the formulation of an

appropriate mapping ρ [17], or one may fall back on a kernel which is generally applicable, but does not

guarantee that the resulting features in the feature space will be linearly separable. Thirdly if the mapping

defines an feature space which is not too large for grater mapping ρ, then it can be implemented explicitly

and the possible classification accuracy checked, Thus in some cases, it is possible to compute explicitly the

elements in the feature space and evaluate the results.

A classical example can be given. In order to separate two nonlinearly separable classes, as defined in Fig-
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Figure 2.1: Example on how two classes, nonlinearly separable in the input space, become linearly separable after the application of
a suitable kernel function (second order polynomial kernel)

ure 2.3, by an hyperplane the following mapping, that defines the feature space of second orders monomials

[74] can be defined:

φ : R
2 7→ R

3

(x1, x2) 7→ (z1, z2, z3) := (x2
1,
√

2x1x2, x
2
2)

where (x1, x2) are the coordinates in the input space and (z1, z2, z3) in the transformed feature space.

The explicit transformation required may not always be known or be as tractable as in the example given.

Just consider higher monomial transformations where the number of features very quickly become too large.

In kernel methods, the mapping is not calculated explicitly as shown above but it is determined by com-

puting only the scalar product in the feature space and not on each single component of each pattern. In the

example illustrated above this procedure could be carried out considering the following equation:

〈φ(x), φ(z)〉 = (x2
1,
√

2x1x2, x
2
2)(z

2
1 ,
√

2z1z2, z
2
2)T

= ((x1, x2)(z1, z2)
T )2

= 〈x, z〉2

=: k(x, z)
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This result can be generalized for every order d of monomials between x and z vectors:

k(x, z) = 〈x, z〉d (2.7)

In order to use this technique an algorithm should be reformulated such that only the scalar product

between the elements are considered.

Remark 2.3.1 The formulation of an algorithm in which only scalar products are applied to define similarity

measures between input vectors without having to calculate the measure component by component is called

Kernel Trick [21, 120, 2]

Thus the inner product between two vectors can be calculated directly without any need to calculate

explicitly the elements of the feature vector.

With this approach, not only can linear algorithms be used to classify nonlinearly distributed classification

problems, but it is also possible to handle problems which require huge numbers of features. In fact, after

calculating the inner products, the algorithm is no more affected by the high dimensionality of the problem.

Moreover it is possible to construct different kernel functions k(x, z) that define inner products in some

different feature spaces.

Definition 2.3.1 Given a set of elements {x1, ..., xm} ⊆ X , theM×M matrixK which elements are defined

as Kij = k(xi, xj) is called the Kernel matrix or Gram matrix.

It can be demonstrated that for any positive definite kernel matrix there exist a mapping φ such that the

kernel matrix represents the inner product of the elements in the feature space defined by the mapping φ

[123].

The kernel function should represent appropriately a measure of similarity between the elements of the

input space, i.e. two elements of the same class should be more similar than others of different classes.

The kernel function adopted will therefore have a crucial role for the success of the application. It should

however be noted that determining the best similarity measure may be more demanding computationally than

solving the original classification problem.

An advantage of kernel methods is their modularity. Usually, in kernel methods software implementations

the kernel function between to elements is calculated in advance and is stored in a square symmetric matrix.

A kernel implementation of a classification technique could also benefit from the modularity of these

kernel methods in general. Appropriate kernel functions allow learning algorithms to be formulated and
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applied in many data domains [131] as graph representation, text and structured data as string and trees.

For example, string kernels can be used to cluster and classify string data [76] for information retrieval and

bioinformatics problems as well as for protein folding and DNA data sequences [84].

Once the kernel matrix is calculated the complexity of the algorithm remains the same whatever the

number of elements considered. However, the computation of the kernel function can be expensive and storing

a symmetric matrix H ∈ R
n×n may require large computer resources.

The variety of kernel function that are available is at the same time an advantage and a drawback for

kernel methods.

In equations 2.8 - 2.10 some common Kernel functions used to embed the data points xi, i = 1, ..., N in the

feature space are given. These kernels are called the linear kernel (2.8), the polynomial kernel (2.9) and the

gaussian kernel (2.10).

Kl(xi, xj) = (xi · xj) (2.8)

Kp(xi, xj) = (xi · xj + 1)d (2.9)

Ke(xi, xj) = exp

(

−‖ xi − xj ‖
2

σ

)

(2.10)

Although these kernel functions are among the most frequently used, many other kernel functions avail-

able [59].

Kernel methods permit to transform data which is non linearly separable in the input space into a linearly

separable form in the transformed or feature space, which can then be solved with efficient linear algorithms.

the solution that will be obtained is highly conditioned on the similarity measure adopted with the kernel

method. While this can be an advantage for problems that are frequently implemented, it is a major drawback

to classify new and ever different problems and especially when the data set requires similarity measures

which should differ over the feature space.

An example of this problem will be given in chapter 5 where the relations of the variables will be artifi-

cially modified in order to show how kernel functions can fail.

Further complications arise regarding the ”kernel learning” stage of an implementation. Often in applying

a kernel transformation a suitable parameter value must be selected. Unfortunately, the high nonlinearity

introduced in an algorithm by the kernel functions does not allow to determine this parameter by efficient

techniques. The approach commonly used is to select a kernel parameter by varying it over a grid and solving
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a small classification problem from the given data set and choosing that parameter value which gives the best

results.However, it can be shown that the complexity of such grid search is exponential with respect to the

number of parameters to be optimized.

Several techniques and approaches has been used to improve the performance of a kernel based algorithm

on this point [29, 22]. Also global optimization approaches have been applied to tackle the problem [52] but

there is no guarantees that the optimal solution can found, so that the grid search strategy seems to be still the

most general.

The class of mathematical objects which can be used as kernels is very general [32] and includes scores

produced by dynamic alignment algorithms [72, 139].

Consider a data set that has a finite set of pattern elements all taking binary values. Suppose that an addi-

tional set of pattern elements are included by taking all the possible predicates of the original set of elements

for each pattern, i.e. all the possible propositional logic expressions that can be formed from considering the

initial set of features and their negation.

Since the features are all binary, the number of common features between any two entities can be taken as

a measure of their similarity, so consider this transformation as defining a linear kernel. The following result

then follows:

Theorem 2.3.1 : (The Ugly duckling theorem)[138] Suppose that any two entities of the data set are dis-

tinguishable and the features are binary valued. Let the entities be defined in a new data set composed of

features formed from all the possible predicates of the original ones. Then the number of predicates shared

by any two objects is constant, independent of the choice of the two objects.

The measurement of the degree of similarity of two objects by determining the distance, between the

two feature vectors, formed from all possible predicates of the original features, leads to exactly the same

conclusion.

Also, the result is not tied to the application of discrete predicates, but may also be derived by considering

continuous variables. The result can also be stated in the following way:

Corollary 2.3.1 Any arbitrary two objects, under this given representation, are equally similar.

The significance of this result is that on the one hand, if too few features are considered when forming

the kernel matrix, then the data set may not be piecewise linearly separable, so that good results may not

be obtained. By extending in an obvious way, the feature space to the set of all possible combinations of
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the original pattern elements, all the objects become equally similar and so no meaningful separation can be

obtained.

In conclusion, kernel methods may be important in classification, but must be considered essentially

heuristics. The transformations must be determined by trial and error implementations, since there is no

algorithm which has been specified so far, such that given a pattern recognition or a classification problem

kernel to apply is determined, or the determination of the optimal parameter or the determination of the

required number of terms to use in the approximation of the kernel to ensure linear separability and to avoid

the pernicious working of the ugly duckling theorem.

At the moment classification procedures would have to be used to determine all the required aspects in a

multicategory environment, but this would entail a regression ad infinitum.

2.4 Statistical Pattern recognition

Given a recognition problem defined by a data set and a training set, it is important to be able to determine

if they define a coherent structure or not. More specifically, having transformed the attributes defined on the

data set into patterns and/or feature vectors, it is important to show that a classifier, which realizes the given

partition implicitly defined on the training set, can be constructed on the data set and that it is moreover

correct.

Here, as the analysis will involve necessarily the data set, it is essential that the two approaches be dis-

tinguished, so that the pattern recognition approach will be analyzed in this section and the classification

approach will be examine in the next section.

Thus the aim of this section is to show that for any suitable training set and a data set, which may be

infinite and which can be associated with the training set, the classifier defined by the pattern recognition

approach correctly classifies the elements of the data set which are at the present moment unknown. Then, in

the next section by restricting the association of the two sets to an inclusion relation, the case of a classification

problem may be examined.

If an entity is assigned autonomously to a different class than the one determined by the classifier, then

it means that the classification of the data set has changed and a new partition is required. This is in fact the

principal way that to notice that a classification has become obsolete and a new classification is required for

the data set.

As an example, consider a training set used to classify tax evaders by seriousness of their offence, given
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certain attributes. Obviously, the success of this classification will reduce the evasion and change the attributes

of those that continue to offend. Clearly, the recognition that the classification fails, indicates that an update

of training set and the classifier must be carried out to restore a high level of recognition.

As new data becomes available, the classifier may require changes, not because the data set reflects new

developments, but only because the training set is not stable with respect to the emerging data set. Thus, the

training set taken as a data set is coherent, but when imbedded in its pertinent data set it results unstable and

perhaps not extendable.

As the partition is defined on the training set, as the latter is changed, this could bring about changes in

the classification of the new entities, or equivalently, the classification of new entities depends on the training

set used.

By stability of a data set, it is required that if new entities are added, then the new entities fit in terms of

their attributes in the given partition of the original data set. A data set is obviously stable if in the training

set the whole population of entities is considered. In this case, a partition of the population is effected, which

must be stable vacuously by definition. Again, a subset of the population is stable, if the subset is chosen large

enough and sufficiently representative so as not to alter the partition as new elements from the remaining

population are added.

Therefore any data set is stable with respect to a partition and a population of entities, if the misclassifi-

cation error, on classifying these entities, is very small. More formally:

Theorem 2.4.1 Suppose that the data set is coherent, then the data set can be classified correctly.

PROOF: By theorem 2.2.1 and corollary 2.2.1 the result follows. 2

To obtain correct classification results, it must be ensured that the training set is a representative sample

of the data set and that the data set is coherent. It will now be shown how these aspects can be determined

and a partition defined which will satisfy these conditions.

So consider a data set {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi is the feature vector of pattern i and its

membership class is given by yi.

Without loss of generality assume that classification problems of two classes only are considered, so that

eventually a series of such problems must be solved for a polytomous classification problem. For simplicity

assume, also, that the patterns are independently identically distributed with function F (z), where zi =

(xi, yi) but the whole proof scheme could be carried out without this assumption, at the expense of extreme

complications..
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Let f(x, α) : Rn → {0, 1} α ∈ Γ be the classifier, where Γ is the set of parameters identifying the clas-

sification procedure from which the optimal parameters must be selected. The loss function of the classifier

is given by:

L (y, f(x, α)) =

{

0 if y = f(x, α)

1 if y 6= f(x, α)

}

(2.11)

The misclassification error over the population, in this case, is given by the risk functional:

R(α) =

∫

L (y, f(x, α)) dF (x, y) (2.12)

Thus the value of α ∈ Γ, say α∗ must be chosen which renders minimum the expression (2.12). Hence

for any sample the misclassification error will be:

Rn(α
∗) =

1

n

n
∑

i=1

L (yi, f(xi, α
∗)) (2.13)

which will depend on the actual sample, its size n and the classifier used.

To avoid having to introduce distributional properties on the data set considered, the empirical risk mini-

mization inductive principle may be applied [136]:

1. ) the risk functional R(α) given in equation (2.12) is replaced by the empirical risk functional Rn(α)

given by equation (2.13) constructed purely on the basis of the training set.

2. ) the function which minimizes risk is approximated by the function which minimizes empirical risk

Definition 2.4.1 A data set is stable, according to definition 2.2.10, with respect to a partition and a popula-

tion of entities if the relative frequency of misclassification is Remp (α∗) ≥ 0 and

lim
n→∞

pr{Remp(α∗) > ε} = 0 (2.14)

where α∗ is the classification procedure applied, ε > 0 for given arbitrary small value and pr{.} is the

probability of the event included in the braces.

In some diagnostic studies the set of attributes considered have no significant relationship with the out-

come or the classification of the entity. Typically the classes could be the eye color and the attributes the
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weight, height, sex of a person. Such a classification would be spurious, since there is no relation between the

eye color and the body indices.

A spurious collection of entities, in which there is no similarity relations, may occur and should be rec-

ognized. With a pattern recognition algorithm, this occurrence is easily determined, as the number of subsets

in the partition will be almost as many as the objects in the training set. Such spuriousness may arise even in

the presence of some meaningful relationships in the data, which are however swamped by noise and so data

reduction techniques may be useful, [138], [100].

In general, by considering smaller and smaller subsets of the attribute space X , if there exists a relation-

ship between the attributes and the classes of the entities, the frequency of the entities of a given class, for

certain of these subsets will increase to the upper limit of one, while in other subsets it will decrease to a

lower limit of zero. Thus for a very fine subdivision of the attribute space, each subset will tend to include

entities only of a given class.

Definition 2.4.2 A proper subset Sk of the pattern space X of the data set will give rise to a spurious

classification if the conditional probability of a pattern to belong to a given class c is equal to its unconditional

probability over the attribute space. The data set is spurious if this holds for all subsets of the attribute space

X .

pr{yi = c | (yi, xi) ∩ Sk} = pr{yi = c | (yi, xi) ∩X} (2.15)

Theorem 2.4.2 Consider a training set of n patterns randomly selected, assigned to two classes, where the

unconditional probability of belonging to class one is p. Let a be a suitable large number and let (n > a). Let

the training set achieve a partition with bn subsets, then the training set will provide a spurious classification,

if
bn
n
≥ (1− p) n > a (2.16)

PROOF: From the definition 2.4.2 a classification is spurious if the class assigned to the entity is independent

of the values of the set of attributes considered.

A pattern will be assigned to a subset of the partition, which without loss of generality, may be considered

to be a subset containing objects of class one, as it is a subset of the partition achieved. The probability that

the pattern considered will result not of class one is (1− p) which is the probability that a new subset will be

formed to achieve the partition. As the number of patterns are n, the result follows. 2

Theorem 2.4.3 Let the probability of a pattern to belong to class one be p, then the number of subsets
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required to achieve the partition of a set S, containing ns > a patterns, which is not spurious is bs < ns,

∀ns > a.

PROOF: If the classification is not spurious, by definition 2.4.2, without loss of generality, the following

relationship between the conditional and unconditional probabilities holds for one or more subsets Sk, Sh ∈

X,Sh ∩ Sk = ∅, where X is the pattern space as defined above:

pr{yi = 1 | (xi, yi) ∩ Sk} > pr{yi = 1 | (xi, yi) ∩X} = p (2.17)

pr{yi = 0 | (xi, yi) ∩ Sh} < pr{yi = 0 | (xi, yi) ∩X} = (1− p) (2.18)

Thus on the basis of the algorithm, for the subsets Sk∩X the probability that a new subset of the partition

to achieve the partition, is less than (1 - p). In the set Sh ∩ X , the probability that patterns of class one will

appear, is less than p, so that the probability that another subset of the partition will be formed is less than p.

Thus if the number of patterns present in the subsets Sk ∩X is nk while the number of patterns present

in the subsets Sh ∩ X is nh, the total number of subsets formed to achieve the partition for the patterns of

class one will be:

bs < (1− p)nk + pnh (2.19)

As ns = nk + nh, there results bs < ns, ∀ns > a 2

Corollary 2.4.1 [136] The Vapnik-Cervonenkis dimension (VC dimension), s(C, n) for the class of sets

defined by a suitable partition algorithm restricted to the classification of a non spurious data set which is

piecewise separable, with ns elements, with two classes, is less than 2ns , if ns > a.

PROOF: By theorem 2.4.3 the number of different subsets formed is bs < ns < 2ns whenever ns > a and

the data set is not spurious. 2

Theorem 2.4.4 [39] Let C be a class of decision functions and ψ∗
n be a classifier restricted to the classifi-

cation of a data set which is not spurious and returns a value of the empirical error equal to zero based on

the training sample (z1, z2, ..., zn). Thus Infψ∈CL(ψ) = 0 i.e. the Bayes decision is contained in C. Then

pr {L(ψ∗
n) > ε} ≤ 2s(C, 2n)2

−nε
2 (2.20)

Consistency is an important concept in pattern recognition [39] since it provides guidelines to the out-

of-sample precision of the classifier. There are three types of consistency, depending on the distribution
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assumed. Different concepts of consistency have been defined and are useful to characterize the different

possible behavior of the convergent process.

Definition 2.4.3 [39] A classification rule is consistent (or asymptotically Bayes-risk efficient) for a certain

probability distribution of the class membership with respect to the pattern space, the training sequence being

indicated by Zn = (z1, z2, · · · , zn) if:

E{L} = pr {f(x, α∗) 6= y} → L∗ asn→∞ (2.21)

and strongly consistent if:

Limn→∞L = L∗ with probability one (2.22)

where L∗ is Bayes risk.

Definition 2.4.4 [39] (Universal Consistency): A sequence of decision rules is called universally (strongly)

consistent if it is (strongly) consistent for any distribution of the training set.

Recall that if the training set is classified completely corrected, as with the class of pattern recognition

algorithms formulated here, Bayes risk is zero.

Therefore by calculating bounds on the VC dimension consistency property can be established for this

algorithm applied to the classification of a data set which is not spurious.

Corollary 2.4.2 A non spurious classification problem with a piecewise separable training set is strongly

universally consistent.

Universal consistency is what is aimed at and many research results have shown various pattern recogni-

tion algorithms to be consistent, either weakly or strongly and universally [44] [39]

Unless it is possible to prove for a specific classifier that it is universal consistent, the conclusion that the

classifier is weakly or strongly consistent requires the specification of the form of the distribution function to

which it applies, which consequently poses strict limiting conditions on the data set that can be considered.

These results show, that if the appropriate classifier is used and the training sample is large enough in

relation to the feature space, then the sample estimate for the classifier is sufficiently accurate to render the

data set stable for that partition.

It now remains to show the conditions, under which the data set is extendable, given that it is stable.
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Definition 2.4.5 An augmentation of the attribute set of a data set is called an extension of the dimension of

the feature space, if the feature obtained as a transformation of the extra attribute is linearly dependent on

the other features in the training set.

It is obvious that any data set can be considered extendable, if on augmenting the feature space the

classifier ignores the new element in determining the assignments of the entities. Thus it is required that

when discussing extendibility, the weight given to the new component in the classification is similar to the

weights that the other have received.

The basic transformation theorem follows immediately:

Theorem 2.4.5 Consider a training set which is coherent and stable with a given partition in a p dimensional

feature space. Suppose there is an extension of it into a p+1 feature space by an appropriate transformation

of a new attribute. Then the partition obtained with this new training set is equivalent to the previous one.

Proof: The new feature vector, from the definition of extendability can be rewritten as a linear combina-

tion of the previous feature space.

The partition previously obtained need in no way be altered to accommodate the new features. 2

The next result relates the extendibility of the training set to the data set. The key to the result is the

stability of the training set with regard to the data set and the Vapnik-Cervonenkis dimension, which for

piecewise linear classifier will increase by one, since from the original V c = p+ 1 it becomes V c′ = p+ 2.

If p is large this increase will be negligible in [3.8], so that the bound can be respected.

Corollary 2.4.3 If the training set of p-dimensional feature vectors is of sufficient sample size to be stable,

at the desired level of precision, and is extendable with respect to a new feature vector, then the new partition

classifies correctly the data set.

Proof: Follows from theorems 2.4.2 and 2.4.1. 2

Degradation in the classification precision is to be expected, if the feature vectors contain significant

noise elements, since this renders the stability and extendibility of the given data set with respect to the given

partition improbable. In chapter four, it will be examined how to determine that the given data set satisfies the

definition 2.2.10. Here we sum up this section by pointing out the consequences of significant noise elements.

Theorem 2.4.6 Let a training set have feature vectors of p-dimensions with random binary features and the

class of each entity be assigned randomly, then the data set is incoherent.
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Proof: The training set, under these circumstances cannot be stable nor extendible, thus it cannot be coherent.

2

Thus we conclude that if a data set is coherent, it will not be spurious and objects of the data set can be

classified precisely, given that the training set is large enough and even if the data set is infinitely large, as it

will demonstrated for specific algorithms in chapter four.

2.5 Machine Learning and Classification

Machine Learning or Classification problems may of course be solved by applying to this more restricted class

the procedures indicated in the previous section. However, in this section, the aim is to examine methods to

solve the more limited class of recognition problems, those that arise from epicentric classifications or discrete

data sets or infinite data sets where the objects have given distributions of properties, as described in sections

1.1 and 2.2.

In this context, several problems need to be considered. Given a data set which meets the indications

above, typically, provided by a specialist a number of steps have to be performed before running a classifica-

tion algorithm routine.

Some consideration about the objectives of the research and a preliminary analysis of the data should be

undertaken to determine how to extract the most useful information form the available data representation.

To this end statistical techniques like Principal component analysis, clustering procedures may be used in this

preliminary data analysis and transformation to map the data into a suitable form suitable to be solved by the

selected classification procedure.

Since the structure of the data set, especially in empirical applications, is usually unknown, it would be

desirable to be able to subject the data set, or a given sample of it, to a series of tests in order to determine its

properties. Thus there should be a classification method selection procedure, or essentially a single procedure

to apply in all cases.

In an exactly similar way, given the data set, appropriate procedures should be available to carry out

a suitable feature transformation analysis, see section 2.3, so that the transformed data will result easily

classifiable.

In particular, of great relevance at this stage are the transformation methods based on kernels, but however,

although it is claimed that a few kernel algorithms will solve efficiently most problems, this does not indicate

neither which particular method should be applied in a given instance, nor the value of the parameter that
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must be set, nor the number of approximation terms to be retained in defining the approximate feature space.

Foe all these reasons, kernel methods should be considered as heuristics and the complexity of determining

a suitable kernel method for a particular problem should be included in the complexity measures for solving

the problem.

Definition 2.5.1 Given a data set of objects X defined over a compact metric space {X, d} where d : X ×

X → {0,∞} a suitable distance function, for which X is equipped with a Borel σ-algebra, there will exist

a map x → P (.|x) from X into the set of all probability measures on Y such that P is the joint distribution

of {P (.|x)}x and of the marginal distribution PX of P on X . This is a regular conditional probability , the

supervisor.

Definition 2.5.2 A classifier is an algorithm that constructs, for a data set as in definition 2.5.1 equipped

with a supervisor, and for every training set T = {(x1, y1), (x2, y2), · · · , (xm, ym)} ∈ X × Y , assumed to

be identically independently distributed ( i.i.d.) according to P , a decision function fT : X → Y .

Definition 2.5.3 [136] [36] [129] A classification problem is to construct a classifier which guarantees the

determination with a small probability of misclassification, i.e. f(x) 6= y, of the correct classification of an

instance (x, y) randomly generated according to P

There are a number of properties of the classification problem so defined, which distinguishes it from the

more general pattern recognition problem.

Since by definition 2.5.1 the data set is given, which satisfies certain properties, whether it is finite or

infinite, it must be that it can be specifiable or if some of the objects lie in the future, a criterion indicating

whether they belong to the data set or not must be specified. But then a classification algorithm becomes only

a short hand way to determine quickly with some error, by definition 2.5.3 the class membership of an object.

Since the data set must be determinable, there must be a way to determine if the object belongs to the data set

and by extension its class membership. This requirement will be satisfied if the data set is considered discrete.

For, suppose that this extension does not follow and a data set is formed from the population of equine

in a European Country, so that conceivably by specifying a series of attributes, the data set will contain

horses, donkeys, mules and hinnies, which will be very scarce in the data set. Thus suppose that a very good

classification algorithm is formulated to classify precisely these four classes of equine and suppose that it is

then applied to other countries in other continents. If the data set is specified on the basis of the same criteria,

then probably many equine-like creatures will be included in the data set, such as zebras, Mongolian horse,

Tarpan or Przewalski’s Horse, that are neither a horse, nor a donkey nor a hinny.
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In fact, each class of animals should be defined much more precisely in terms of many characteristics,

confirming the essential vacuity of epicentric definitions, see definition 2.2.3. If data sets can only be specified

by forming aggregative collections as indicated in definition 2.2.4, then the data set of definition 2.5.1 cannot

be specified, it cannot be ascertained whether it is a compact metric space. In this case, a supervisor cannot

be defined nor can a classification problem.

Although classification problems, as defined above result to be logically untenable, nevertheless if the

data set can be considered discrete, then it can be applied.

It is usually accepted that the training of the classifier may be done with some small error, when for in-

stance with a Support Vector Machine procedure the data may be linearly inseparable or with neural networks

procedures to avoid overfitting, see section 2.6. With a discrete data set, duplicates are usually removed, so

that when part of the data set is taken for verification, the misclassification determined will lack the compo-

nent coming from duplicates in the verification set of the objects misclassified in the training set.

In more general circumstances, if training is not completely correct, even if that part of the data set which

was not included in the training set has the same properties as the training set, nevertheless a higher proportion

of objects very similar to those misclassified in the training set may appear in verification, so that arbitrarily

bad results may be returned. Thus it would be very difficult to set performance bounds, to consider acceptable

classification results for objects of unknown classification.

There are many implementations of classification procedures base on kernel methods, which have been

described above in section 2.3. Given a classification problem and a unacceptable level of misclassification,

there is no way to determine whether the data set is spurious and therefore the same results will be obtained

under any procedure or whether the kernel has not been selected satisfactorily or the kernel parameter has not

been chosen appropriately or too few terms are retained in the features approximation.

Moreover, unless training is not completely precise and the verification is not achieved with complete

precision it cannot be determined whether another implementation or an enlargement of the training set is

desirable to increase performance.

It is therefore necessary to conclude that classification algorithms as defined here must be considered

heuristics and thus unreliable, since no bounds on the results can be specified, except under very restrictive

assumptions.
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2.6 Generalizability and Overfitting

It has been shown that pattern recognition algorithms may solve problems with more general data sets than

those that can be handles by classification algorithms, but more importantly, pattern recognition algorithms

can be shown to be universally consistent under some mild conditions while this cannot be shown for the

classification algorithm, for the reasons indicated above.

A consistent rule guarantees that on the classification of more samples essentially suffice to carry out

the extrapolation from the data set X the class membership of each unknown entity so the set Y can be

constructed. Thus “... an infinite amount of information can be gleaned from finite samples....” [39].

Pattern recognition algorithms as defined above can be used to classify entities that stem from data sets

that are coherent with the training set used and are not spurious. As it shall be shown in chapter four algorithms

can be formulated to determine if a data set is coherent and therefore not spurious, as indicated in theorem

2.4.6.

No similar results can be stated for the classification problem, at least under the definition given above.

Nevertheless, even if there are no guarantees of generalizability, still when fast preliminary and temporary

classifications are required, the much faster solution times usually necessary to solve these problems may

weigh heavily in their favor.

An important concern in Pattern Recognition and Classification problems is the occurrence of Over-fitting

[13, 138]. The Over-fitting problem arise when a function describe very well the classes of the elements in

the training set adopted but does not generalize to unseen examples. This happens often in neural networks

and when the pattern vector is strongly affected by noise.

Thus overfitting is an important problem in classification problems where it is often the custom to accept

less than completely precise classification in the training set.

Technically, this means that in-sample and therefore out-of-sample classification is carried out and it is

accepted with some misclassification of instances. As we have seen this is a result of applying classification

heuristics.

Instead in pattern recognition problems the presence of excessive random disturbances or noise will render

the training set incoherent and thus it cannot be used, as it is, to solve a pattern recognition problem. Various

de-noising techniques may be used or more complex feature extraction algorithms may be tried,as indicated

in section 2.3 or as it will be discussed in chapter four.

Obviously, classification procedures may be used, since they are heuristics but no precision bounds can
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be given and it has been shown, [100] that serious consequences may arise since spurious classifications may

be obtained.

2.7 Conclusions

The recognition problem, that is to assign a class membership label to a set of objects whose class membership

is unknown may be solved by a number of methods and obtain different precision results.

When a training set is available and certain mild ascertainable conditions are satisfied by the data set then

precise classification results can be determined and the precision can be bounded below by any given value

by considering a large enough training set. Thus such procedures constitute algorithms, in which effectively

computable procedures can be formulated, which will always terminate, either by giving the proper class

membership to the unknown entities submitted, or giving them with a limited precision if the training sample

is not large enough, but in this case, precise bounds can be given to the results.

Thus such pattern recognition algorithms are very useful in medical diagnoses and many fields where

precise classification of unknown objects are desired.

The recognition problem may also be solved by heuristics, which here have been defined as classification

problems, as is customery. It may occur that some very precise results may be returned, but no lower bounds

to the precision can be defined.

If training is completed with less than full precision, then the verification or classification set may be

classified arbitrarily poorly. However, if full precision is demanded in training this may give rise to overfitting

and thus the verification and classification results may be again arbitrarily bad.

This cannot occur with pattern recognition algorithms, because the data set would result incoherent and

thus it would not meet the mild conditions to apply the algorithm. In this case, if the data set is an empirical

data set, other feature extraction and other de-noising procedures should be tried, so as to obtain a coherent

data set.

Of particular importance are kernel methods, which can be very useful, since if a suitable kernel method

can be determined in the resulting feature space the instances will be linearly separable and so very fast

algorithms can be applied, as linear programming and support vector machines.

However, no algorithm has as yet been devised, given a data set, which determines what kernel method

should be applied, at what values the parameter of the method should be fixed and how many terms in the

approximation of the features should be retained in computation. The solution of these aspects, essentially
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requires to solve a classification problem, so we can imagine a regression ad infinitum.

From the realm of syntactically correct algorithms it is necessary to make compromises to arrive to ad-

equate semantic implementations, which require good computational methods and algorithms to determine

effectively the properties required. To this we now turn.
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CHAPTER 3

ReGEC :

A Classification method based on

a Generalized Eigenvalue Problem

3.1 Introduction

The aim of this chapter is to describe a binary classification algorithm similar to the general proximal

SVMs[90] that exploit the special structure of the optimization problem by defining it as a generalized eigen-

value problem, which will use an innovative formulation, by solving only one eigenvalue problem instead of

the two needed by the previous formulations [55, 46, 130].

The solution of suitable classification problems by this method is particularly advantageous, since meth-

ods to solve eigenvalue problems have been studied in depth [62, 140] and there are many numerical linear

algebra techniques to solve such problems. Thus the method is based on an extensively developed theory

and many robust numerical routines are available, when the problem meets the required conditions, so that a

robust convergence analysis to the classification problem can be formulated, ensuring that this implementa-

tion forms an effective algorithm, providing, when the problem has the required characteristics, that either a

solution to the given problem exists, or no solution can be formulated, as the problem leads to contradictions.
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Proximal support vector classification have been proposed by determining two parallel hyperplanes [55,

46, 130] such that each plane is closest to one of the two data sets to be classified and the two planes are as

far from each other as possible. The parallelism of the two planes can be dropped and it is required that each

plane be as close as possible to one of the data sets and as far as possible from the other. This formulation

leads to the solution of two generalized eigenvalue problems[56].

The proposed algorithm differs from others standard hyperplane based classifier, such as SVMs or lin-

ear discriminant analysis, since instead of finding one separating hyperplane, it finds two hyperplanes that

approximate the two classes in some well designed sense, which will be characterized below.

To obtain the coefficients of these two hyperplanes, an Optimization problem is solved to minimize the

distance of the elements of each class from their respective hyperplanes subject to the distance between the

two hyperplanes being the largest possible.

The problem is stated as a Rayleigh quotient [140] and then is solved as a Generalized eigenvalue problem.

The main issue in obtaining the solution of this problem is the properties that the matrices must satisfy for

the problem to be solvable by this method. In fact, dealing with rank deficient matrices some regularization

techniques have to be applied to solve the Ill-posed problems. Mangasarian, for instance, suggest the use of

the Tikhonov regularization technique [132] and therefore solves two eigenvalues problems [90].

In this chapter a different regularization technique is formulated which determines both hyperplanes,

when the problem has suitable characteristics [66]. Under appropriate circumstances, the problem is, in fact,

reduced to a regularized general eigenvalue classifier which only requires the solution of a single eigenvalue

problem, and thus halves the execution time of previous implementation. This new implementation will be

called Regularized General Eigenvalue Classifier (ReGEC).

This method has been demonstrated to be efficient for linear classification and its nonlinear extension can

be carried out by applying the so called Kernel Trick described in Chapter 2.

In the next paragraph the basic definitions will be given and properties of generalized eigenvalues and

eigenvectors presented, so that in the third paragraph Regularized General Eigenvalue Classifier (Regec) can

be formulated and its convergence results given for suitable linearly separable problems. In the fourth para-

graph the problem will be generalized to nonlinear classification problems which are not linearly separable

by referring to the so called Kernel Trick formulation Then in paragraph five some experimental results will

be presented and an analysis of the performance of the algorithm and its generalization in terms of execution

times will be given. The algorithm has been implemented also for parallel computers and some results about

this new implementation will be discussed.Finally in paragraph six conclusions will be given.
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3.2 Properties of Generalized Eigenvalues and eigenvectors

Consider the generalized eigenvalue problem for two matrices: A,B ∈ R
n×n indicated as:

Ax = λB (3.1)

which are often indicated as a non standard eigenvalue problem [119]. When the matrixB is nonsingular, the

problem may be rewritten as a standard eigenvalue problem:

B−1Ax = λx (3.2)

but it is often not advantageous to solve the original problem in this form.

Thus, rather than solving such non standard problems as standard problems after the transformation, it

may be preferable to formulate special strategies and techniques to solve the original problem directly. For

example, when A is symmetric and B is symmetric positive definite, then an alternative transformation of

(3.2) will lead to a Hermitian problem. Further, when both matrices are singular there is no equivalence

between the generalized eigenvalues and the standard eigenvalues in this context [119].

A pair of matrices A,B in the problem (3.2) is often referred to as a matrix pencil, so that the eigenvalues

of a matrix pencil should be considered as pairs of complex numbers (α, β), so as not to privilege one

particular matrix.

Definition 3.2.1 (α, β) is an eigenvalue of the pair of matricesA,B ∈ R
n×n if there exists a vector u ∈ R

n

called an associated eigenvector such that:

βAu = αBu (3.3)

or equivalently, if and only if det(βA− αB) = 0.

When (α, β) is an eigenvalue pair for (A,B) then (ᾱ, β̄) is an eigenvalue pair for the matrices (AH , BH)

since det((βA− αB)H = 0. The left eigenvector for A,B is defined as a vector for which

(βA− αB)Hw = 0 (3.4)

The extention of the notion of eigenvalues to this generalized case has a number of problems. First the
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trivial pair (0, 0) always satisfies the definition. Also there are infinitely many pairs (α, β) which can be

termed generalized eigenvalues to represent the same standard eigenvalue. In fact the pair can be multiplied by

any complex scalar and still obtain an eigenvalue for the pencil. Thus the standard definition of an eigenvalue

corresponds to the case where B = I and β = 1.

Definition 3.2.2 The set of all pairs (α, β) that satisfy (3.3) is termed a generalized eigenvalue and indicated

by< α, β > and any element of the set, to the exclusion of the pair (0, 0), (α, β) will be termed an eigenvalue

pair of matrices A,B ∈ R
n×n.

In particular, notice that the generalized eigenvalue < 1, 0 > is well defined, given this definition, while

the eigenvalue pair (1, 0) it would become an infinite eigenvalue.

To illustrate the various situations that may occur consider:

•

A =







−1 0

0 1






B =







0 1

1 0






(3.5)

which yields two generalized eigenvalues < 1, i > and < 1,−i >. Notice that eigenvalues of a

symmetric real (or Hermitian complex ) pencil are not necessarily real.

•

A =







−1 1

0 0






B =







0 0

1 0






(3.6)

which yield generalized eigenvalues< 0, 1 > and < 1, 0 >. Notice that both matrices are singular.

•

A =







−1 0

1 0






B =







0 0

1 0






(3.7)

which yield generalized eigenvalues consisting of any two scalars α and β. as det(βA − αB) = 0 for

any pair of scalars whatever. Note that this will occur whenever the two matrices are singular and have

a common null space.In this case any vector of the null space can be viewed as a degenerate eigenvector

associated with an arbitrary scalar. Such pencils are said to be singular.

•

A =







1 0

1 0






B =







0 2

0 2






(3.8)
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which yields again generalized eigenvalues consisting of any two scalars α and β. as det(βA − αB)

= 0 for any pair of scalars whatever. The two matrices are again singular but in this case their two null

spaces do not interact.Here any eigenvalue α and β has the associated eigenvector (2α,−β)H

Definition 3.2.3 [58] A pencil of matrices βA− αB is called regular if:

• A and B are square matrices of the same order n,

• The determinant det(βA− αB) does not vanish identically.

In all other cases if (m 6= n) or m = n but det(βA− αB) = 0, the pencil is called singular.

The generalized eigenvalue for matrices A,B ∈ R
n×n may be an empty set, or the n−dimensional

complex space or a singleton set.

A number of similarity transformations can be applied, however, analogous to the standard eigenvalue

problem [119].

Definition 3.2.4 IfX and Y are two nonsingular matrices, the pencil (Y AX, Y BX) is said to be equivalent

to the pencil (A,B)

Recall that if (α, β) is an eigenvalue pair for (A,B), then (ᾱ, β̄) is an eigenvalue pair for (AH , BH). The

corresponding eigenvector is called the left eigenvector of the pair (A,B)

Eigenvectors of (A,B) are the same as those of (B,A). An eigenvalue pair (α, β) is simply permuted to

(β, α).

Theorem 3.2.1 Let λi =< αi, βi > and λj =< αj , βj > be two distinct generalized eigenvalues of the

pair (A,B) and let ui be a right eigenvector associated with λi and wj a left eigenvector associated with λj .

Then:

(Aui, wj) = (Bui, wj) = 0 (3.9)

Proof: Write λi = (βiAui − αiBui) = 0 we obtain:

0 = (βiAui − αiBui, wj) = (ui, (β̄iA
H − ᾱiBH)wj) (3.10)

Multiply both sides of equation (3.10) by βj and use the fact that (ᾱ, β̄) is an eigenvalue pair for

(AH , BH). with associated eigenvectorwj , to get:
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0 = (ui, β̄i(β̄jA
Hwj − ᾱiβ̄jBHwj)

0 = (ui, (β̄iᾱj − ᾱiβ̄j)BHwj)

0 = (βiαj − αiβj)(Bui, wj)

This implies that (Bui, wj) = 0 since βiαj − αiβj 6= 0 as the eigenvalues are distinct.

Finally the proof can be repeated multiplying (3.10) by αj , interchange the roles of A and B and use the

fact that (A,B) and (B,A) have the same set of eigenvectors. 2

This theorem suggests that when all eigenvalues are distinct, there results:

WHAU = DA, WHBU = DB (3.11)

where DA, DB are two diagonal matrices, U,W are respectively the matrices of the right and left eigenvec-

tors, corresponding to eigenvalues listed in the same order as as the eigenvectors.

When either A or B are nonsingular then the eigenvectors associated with distinct eigenvectors are lin-

early independent, This extends to the case when the pencil is regular [119].

When the pair (A,B) is a regular pair, then there exist two scalars σ∗, τ∗ such that the matrix τ∗A−σ∗B

is nonsingular.

Linearly transformed pairs can be constructed that have the same eigenvectors as (A,B) and such that

one of the two matrices in the pair is nonsingular.

Theorem 3.2.2 [119] Let (A,B) be any matrix pencil and consider the transformed pencil (A1, B1) defined

by:

A1 = τ1A− σ1B, B1 = τ2B − σ2A (3.12)

for any four scalars τ1, τ2, σ1, σ2 such that the 2× 2 matrix

Ω =







σ2 τ1

τ2 σ1






(3.13)

is nonsingular. Then the pencil (A1, B1) has the same eigenvectors as the pencil (A,B). An associated

eigenvalue (α(1), β(1)) of the transformed pair (A1, B1) is related to an eigenvalue pair (α, β) of the original
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pair (A,B) by:






α

β






= Ω







α1

β1






(3.14)

Proof: Let (α(1), β(1)) be an eigenvalue pair of (A1, B1) with an associated eigenvector u, so there

results:

β(1)(τ1A− σ1B)u = α(1)(τ2B − σ2A)u (3.15)

which after regrouping yields:

(τ1β
(1) + σ2α

(1))Au = (τ2α
(1) + σ1β

(1))Bu (3.16)

which shows that u is an eigenvector for the original pair (A,B) associated with the eigenvalue (α, β) with

β = (τ1β
(1) + σ2α

(1)), α = (τ2α
(1) + σ1β

(1)) (3.17)

(α, β) are related by (3.14) and as a result cannot both vanish, unless (α(1), β(1)) are both null, because of

the nonsingularity of Ω.

Conversely, to show that any eigenvector of (A,B) is an eigenvector of (A1, B1) the matrices A,B can

be expressed by relations similar to those of equation (3.12) in terms of (A1, B1), which is immediate as Ω

is non singular. 2

For singular pencils indicated in (3.7) and (3.8) the transformed pair will be constituted by matrices that

are singular for any values of the scalars whatever. Per contra, for the regular pencils indicated in (3.5) and

(3.6), nonsingular matrices may be defined for the transformed pair.

Corollary 3.2.1 Consider a regular pencil A,B then a matrix of the transformed pencil defined according

to theorem 3.2.2 is nonsingular, under the nonsingular transformation Ω.

Proof By definition 3.2.3 the regular problem A,B is one in which det(αA − βB) = 0 does not vanish

identically. Thus there must exist scalars, for instance, σ1 = σ∗, τ1 = τ∗, and σ2 = σ1, τ2 = −τ1 which

yield at least a non zero determinant formed from the regular pencil. Thus the matrix A1 or B1 so defined is

nonsingular. 2

When (A,B) is regular then there are n eigenvalues (counted with their multiplicities).
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3.3 Regularized General Eigenvalue Classifier (ReGEC)

The Regularized General Eigenvalue Classifier (ReGEC) may be formulated to solve a binary classification

problem.

Consider a training set X ∈ Rn×m of n elements belonging to one of two classes yi ∈ (+1,−1). The

data points in the data set are divided in two sets, each containing the elements of one class, respectively, n1

and n2 = n− n1 elements.

Suppose that the patterns are represented by suitable pattern vectors defined

A = {xi ∈ X : yi = 1, i = 1, 2, · · · , n1} and B = {xi ∈ X : yi = −1, i = 1, 2, · · · , n2}

To find the hyperplanes, each closest to one set of points, and furthest from the other a mathematical

formulation can be given as following.

Let x′w − γ = 0 be a hyperplane in Rm. In order to satisfy the previous condition for the points x ∈ A, the

hyperplanes can be obtained by solving the following optimization problem:

min
w,γ 6=0

‖Aw − eγ‖2
‖Bw − eγ‖2 . (3.18)

The second hyperplane for points inB can be obtained by minimizing the inverse of the objective function

in (3.18).

Now, let

G = [A − e]′[A − e], H = [B − e]′[B − e], z = [w′ γ]′, (3.19)

then equation (3.18), becomes:

min
z∈Rm+1

z′Gz

z′Hz
. (3.20)

The expression:
z′Gz

z′Hz
. (3.21)

is the Rayleigh quotient [140] of the generalized eigenvalue problem

Gz = λHz. (3.22)

When H is positive definite, the Rayleigh quotient (3.20) has the following properties:
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• Is bounded and it ranges over the interval determined by minimum and maximum eigenvalues [104].

• The stationary points of the optimization problem (3.18) are obtained at and only at the eigenvectors

of equation (3.22), where the value of the objective function is given by the eigenvalues [140, 62].

Suppose that both matrices G,H are Positive definite, then G and H have Cholesky decompositions. In

particular, H = R′R with R nonsingular. Writing w = Rz gives

z′Gz

z′Hz
=
w′R−TGR−1w

w′w
= (w/‖w‖)′R−TGR−1(w/‖w‖). (3.23)

Thus the Rayleigh quotient is equivalent to a quadratic form restricted to the unit sphere in some coordi-

nate system.

Suppose that G and H are Positive Definite, so R−TGR−1 is Positive Definite, then λmax and λmin

bound the Rayleigh quotient:

λmin ≤ z′Gz/z′Hz ≤ λmax

These bounds are attained byR−1wmax andR−1wmin. More generally if w1, w2, ... are the eigenvectors

of R−TGR−1 associated with eigenvalues λ1, λ2, ... then wk maximizes w′R−TGR−1w/w′w subject to the

constraint w ∈ 〈w1, ..., wk−1〉⊥. Converting back to the original coordinates, since w ∈ 〈w1, ..., wk−1〉⊥ is

equivalent to w′wj = 0 for j < k, we can write that, zk = R−1wk maximizes the generalized Rayleigh

quotient z′Gz/z′Hz over all z such that z′R′Rzj = z′Bzj = 0 for j < k. Equivalently, z maximizes the

Rayleigh quotient over the subspace 〈z1, ..., zk−1〉⊥, where ⊥ represents the orthogonal complement in the

inner-product space defined by H.

Rayleigh quotients are related to the generalized eigenvalue problemGz = λHz. IfH is positive definite

then this problem is equivalent to the standard eigenvalue problem H−1Gz = λz as indicated in section 3.2.

The inverse of the objective function in (3.20) will have the same eigenvectors and reciprocal eigenvalues.

Let zmin = [w1 γ1] and zmax = [w2 γ2] be the eigenvectors related to the smallest and largest eigenvalues

of the Rayleigh quotient (3.21, respectively. Then x′w1− γ1 = 0 is the closest hyperplane to the set of points

in A and the furthest from those in B and x′w2 − γ2 = 0 is the closest hyperplane to the set of points in B

and the furthest from those in A. This is depicted in the examples shown in Figure 3.3.
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Figure 3.1: Hyperplanes in a two dimensional space determined by the minimum and the maximum eigenvectors

A ∈ Rn×m and B ∈ Rn×m are the matrices containing the two classes of training points, with each row

representing points in the feature space. Without loss of generality, it can be assumed that m << n so that

presumably the matrices A,B have full column rank, for non trivial classification problems.

Let G and H be as defined in (3.19), then even if A and B are full column rank, the matrices G ∈

R(m+1)×(m+1) andH ∈ R(m+1)×(m+1) may be singular. For instance if the pattern vectors xi ∈ Rm ∀i =

1, 2, · · · , n may be normalized, so that
∑m

j=1 xi,j = 1, ∀i = 1, 2, · · · , n in which case A′A and B′B may

be positive definite, but G,H will be only positive semidefinite.

Mangasarian et al. [90] propose to use the Tikhonov regularization applied to a two-fold problem,

min
w,γ 6=0

‖Aw − eγ‖2 + δ‖z‖2
‖Bw − eγ‖2 , (3.24)

and

min
w,γ 6=0

‖Bw − eγ‖2 + δ‖z‖2
‖Aw − eγ‖2 , (3.25)

where δ is the regularization parameter and the new problems are still convex. The minimum eigenvalues-

eigenvectors of these problems are approximations of the minimum and the maximum eigenvalues-eigenvectors

of equation (3.20). The solutions (wi, γi), i = 1, 2 to (3.24) and (3.25) represent the two hyperplanes approx-

imating the two classes of training points.

The regularization is only used in the numerator, to make the Rayleigh quotient less ill-conditioned while

assuming that the matrix H will remain positive definite. It is vital that the matrix in the denominator be

positive definite for the problem to be well defined, while the matrix in the numerator could be positive

semidefinite, without giving rise to excessive problems. If the matrix in the numerator is only symmetric then
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as can be seen from example (3.5) then the eigenvalues of the equivalent standard eigenvalue problem may

not be real, because the matrix B−1A may not be symmetric.

Using this approach and assuming the required conditions, two generalized eigenvalue problems need to

be solved. Instead, a different regularization technique can be applied which requires only one generalized

eigenvalue problem to be solved and requires the matrix pencil to be regular, which means that both matrix

G,H could be singular and the problem can still be solved, which is not the case in the above formulation.

Consider the matrix pencil A.B and suppose that it is regular. Then there exist a transformed matrix

pencil A1, B1, by theorem 3.2.2, which satisfies the conditions of the theorem and for which by corollary

3.2.1 the matrix B is nonsingular and therefore positive definite. Should the regular pencil be such that for

the transformed pencil, the matrix A only is nonsingular, then by inverting the role of the matrices A and B,

without loss of generality, a Raleigh quotient (3.21 results with a positive definite matrix in the denominator.

Thus the optimization problem (3.20) is well defined and the eigenvalues and eigenvectors can be obtained

for the transformed pencil A1, B1.

By theorem 3.2.2 the eigenvectors of the matrix pencilA,B are the same as the eigenvectors of the matrix

pencil A1, B1 and if the pair f (α1, β1) is a generalized eigenvalue of the transformed pencil, then the pair

(α, β) is a generalized eigenvalue of the original pencil given by expression (3.14).

So the eigenvalues of the original problem can be determined from the eigenvalues of the transformed

problem by:

λi =
σ2µi + τ1
τ2µi + σ1

(3.26)

where the eigenvalue pairs of the transformed pencils are indicated by µi, 1 since without loss of gen-

erality the Matrix B1 can be considered positive definite by construction and the eigenvalues of the original

problem is given by λi ∀i = 1, 2, · · · , n

By setting τ1 = τ2 = 1 and δ1 = δ2 = δ, the regularized problem becomes

min
w,γ 6=0

‖Aw − eγ‖2 + δ‖Bw − eγ‖2
‖Bw − eγ‖2 + δ‖Aw − eγ‖2 . (3.27)

As long as δ 6= 1, matrix Ω is non-degenerate.

A numerical example can be illustrated in order to give a better idea of the procedure considering the XOR

problem.
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Given the the two matrices A, B:

A =







0 0

1 1






B =







1 0

0 1







Then, for this simple example the matrixes G and H are [90]:

G =













1 1 −1

1 1 −1

−1 −1 2













H =













1 0 −1

0 1 −1

−1 −1 2













And solving the two eigenvalues problem below we have respectively the eigenvectors corresponding to

the minimum eigenvalues [90]:

Gz = λHz

Hz = λGz

λmin = 0, zmin = (−1,−1,−1)

λmin = 0, zmin = (−1, 1, 0)

While, using the regularization considered in this Chapter, with δ = 0.001, the two eigenvectors can be

obtained regularizing only one Generalized eigenvalue problemGz = λHz, obtaining the following results:

λmin = 0.5 , zmin = (1,−1, 0)

λmax = 2 , zmax = (1, 1, 1)

Both of the regularization techniques achieve the two correct hyperplanes to solve the XOR classification

problems but in the last case only one eigenvalue problem has to be solved.
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3.3.1 Proximal classification surfaces

The method described above approximate the two classes with two hyperplanes. It is clear that rarely this

kind of approximation can be enough to explore adequately the data structure and lead to good classification

accuracy and generalization. To extend this algorithm to more complex data structures nonlinear functions

can be used in order to approximate the data.

It is possible to represent the problem by formulating it so that the Kernel Trick described in Chapter

2 can be applied. Using this strategy it is not necessary to find in the input space a nonlinear function that

approximate the classes structures, but it is possible to solve the same linear problem in an higher dimensional

feature space, where the data have been embedded by a kernel function. In this way the two hyperplanes that

will be determined in the feature space will allow, given a suitable Kernel function, to approximate also

nonlinearly shaped data structure.

To show how this method can be extended using the one of Kernel functions as described in Chapter 2.

The kernel matrix K can be calculated and each element of the kernel matrix is

K(A,B)i,j = f(Ai, Bj) (3.28)

where, for example, using the gaussian kernel function, described in the previous Chapter, each element

(i, j) of the kernel matrix will be:

K(A,B)i,j = e−
‖Ai−Bj‖2

σ . (3.29)

To use this approach the problem needs to be transformed using only the inner products between elements

avoiding to consider explicitly the features of the data points.

The hyperplanes in the feature space are transformed in nonlinear surfaces, therefore it is necessary to

find the two kernel proximal surfaces, as defined in Mangasarian et al. [9], such that each element is nearest

to the proximal surface of its class an farthest from the other. The formulation of the proximal surface can be

given for a point x ∈ C as follows:

K(x′, C)u1 − γ1 = 0, K(x,C)u2 − γ2 = 0 (3.30)

where

61



3.3. REGULARIZED GENERAL EIGENVALUE CLASSIFIER (REGEC)

C =







A

B






,

Then using the same criteria considered in the previous paragraph the objective function for the kernel

based nonlinear surfaces the problem 3.27, without considering the regularization, becomes:

min
u,γ 6=0

‖K(A,C ′)u− eγ‖2
‖K(B,C ′)u− eγ‖2 . (3.31)

Now the associated eigenvalue problem has matrices of order n + k + 1 and rank at most m. This means a

regularization technique is needed, since the problem can be singular.

We propose to generate the two proximal surfaces by solving the following problem:

min
w,γ 6=0

‖K(A,C ′)u− eγ‖2 + δ‖K̃Bu− eγ‖2
‖K(B,C ′)u− eγ‖2 + δ‖K̃Au− eγ‖2

(3.32)

where K̃A and K̃B are diagonal matrices with the diagonal entries from the matrices KA and KB . The

coefficients of the proximal surfaces are implicitly calculated solving the following eigenvalue problem:

Defined,

G∗ = [K(A,C ′)− e]′[K(A,C ′)− e] + δK̃B (3.33)

H∗ = [K(B,C ′)− e]′[K(B,C ′)− e] + δK̃A (3.34)

solving the eigenvalue problem,

G∗z = λH∗z (3.35)

the coefficient of the eigenvectors corresponding to the minimum and the maximum eigenvalue are cal-

culated.

The perturbation theory of eigenvalue problems [140] tells us that if we call z(δ) an eigenvalue of the

regularized problem, then |z − z(δ)| = O(δ).

As mentioned in the previous section, the minimum and the maximum eigenvalues obtained from the

solution of (3.32) provide the proximal planes Pi, i = 1, 2 to classify the new points. A point x is classified
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using the distance

dist(x, Pi) =
|K(x,C)u− γ|

‖u‖ . (3.36)

and the class of a point x is determined as

class(x) = argmini=1,2{dist(x, Pi)}. (3.37)

The ReGEC algorithm can be summarized by the figure 3.2

Let A ∈ Rm×s and B ∈ Rn×s be
the training points in each class.
Choose appropriate δ1, δ2 ∈ R and σ

% Build G and H matrices
g = [kernel(A,C, σ),−ones(m, 1)];
h = [kernel(B,C, σ),−ones(n, 1)];
G = g′ ∗ g;
H = h′ ∗ h;

% Regularize the problem
G∗ = G+ δ ∗ diag(H);
H∗ = H + δ ∗ diag(G);

% Compute the classification hyperplanes
[V,D] = eig(G∗, H∗);

Figure 3.2: ReGEC algorithm

To have a better understanding how the kernel implementation allow to obtain nonlinear classification

surfaces a graphical representation of the classification surfaces obtained by ReGEC and SVMs is given in

Figure 3.3 relatively to the Banana data set using a gaussian Kernel. It is possible to observe how SVMs

obtains smoother borders and more regular regions. These differences depend upon the fact that in SVMs the

surfaces are characterized by the support vectors and the penalties terms, while in the eigenvalues methods

all the points contribute to the solution surfaces. This behavior depends on the fact that eigenvalues methods

always maximize the classification accuracy on the training set with respect to kernel and regularization

parameters.This problem will be addressed int Chapter 5 where some consideration about point selection

methods will be given.
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Figure 3.3: Separation surfaces obtained with ReGEC and SVM (using the LibSVM implementation) on the Banana
data set

In Tables 3.1 and 3.2 classification accuracy using linear and gaussian kernels have been evaluated. Tables

columns represent: data set name, the number of elements in the training set (n+k), the number of elements

in the test set and the accuracy results for ReGEC and Mangasarian’s algorithm (GEPSVM). In Table 3.1

the accuracy results have been evaluated using ten fold cross validation. In Table 3.2 the random splits of

IDA repository have been used. In the linear case comparable accuracy results have been obtained by the two

methods.

dataset n+k dim ReGEC GEPSVM
NDC 300 7 87.60 86.70

Cleveland Heart 297 13 86.05 81.80
Pima Indians 768 8 74.91 73.60

Galaxy Bright 2462 14 98.24 98.60

Table 3.1: Classification accuracy using linear kernel

3.3.2 Execution times

In this section execution times are analyzed in order to compare the classifier performances. The behavior of

a normal implementation of this algorithm using Matlab routine is examined.

The aforementioned methods have been tested on benchmark data sets publicly available. Results re-

gard their performance in terms of classification accuracy and execution time. We used data from different

repository: UCI repository [15], Odewahn et al. [102], and IDA repository [118]. These repositories offer the
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dataset n+k test m δ σ ReGEC GEPSVM
Breast-cancer 200 77 9 1.e-03 50 73.40 71.73

Diabetis 468 300 8 1.e-03 500 74.56 74.75
German 700 300 20 1.e-03 500 70.26 69.36
Thyroid 140 75 5 1.e-03 0.8 92.76 92.71

Heart 170 100 13 1.e-03 120 82.06 81.43
Waveform 400 4600 21 1.e-03 150 88.56 87.70
Flare-solar 666 400 9 1.e-03 3 58.23 59.63

Titanic 150 2051 3 1.e-03 150 75.29 75.77
Banana 400 4900 2 1.e-05 0.2 84.44 85.53

Table 3.2: Classification accuracy using gaussian kernel

possibility to easily compare the performance of different algorithms. The results regarding the linear kernel

have been obtained using the first two repositories. The third one has been used in the non linear kernel im-

plementation. The latter offers for each data set 100 predefined random splits into training and test sets and

results obtained training on each trial several algorithms, including SVMs, are recorded. In this Chapter the

attention has been devoted only to the algorithmic approach and implementation. The accuracy results for the

linear kernel SVMs and GEPSVM are taken from [90] and for the non linear kernel from [118]. They will be

presented in chapter 5 where a comparison between state-of-the-art algorithms and the algorithms presented

in this work will be given.

In Table 3.3 the elapsed time is reported. ReGEC is at least twice faster then GEPSVM but, using the gaussian

kernel, SVMs implementations achieve better performances with respect to the eigenvalues based methods.

Execution times have been calculated using an Intel Xeon CPU 3.20GHz, 6GB RAM running Red Hat

Enterprise Linux WS release 3 with Matlab 6.5, during normal daylight operations. Matlab function eig for

the solution of the generalized eigenvalue problem has been used for GEPSVM and ReGEC. The latest re-

leases for libsmv [37] and SVMlight [75] have been used to compare these methods with SVMs.

3.3.3 Parallel implementation

In the last decade the amount of information created in the business and scientific areas increased exponen-

tially and very challenging activities to deal with it have been studied and proposed from the simple data

base architecture to the most complex predictive model implementation. New technologies that are emerging

every day make it possible to acquire data in almost every scale from micro to macro in very high resolution.

While storing such large-scale information is a tough task, discovering its knowledge content is much harder
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Dataset ReGEC GEPSVM LIBSVM SVM light
Breast-cancer 0.0698 0.3545 0.0229 0.1188

Diabetis 1.1474 5.8743 0.1323 0.2022
German 3.8177 25.2349 0.2855 0.4005
Thyroid 0.0243 0.1208 0.0053 0.0781

Heart 0.0316 0.2139 0.0172 0.1372
Waveform 0.5962 4.409 0.0916 0.2228
Flare-solar 1.8737 16.2658 0.1429 4.4524

Titanic 0.0269 0.1134 0.0032 7.1953
Banana 0.4989 3.1102 0.0344 1.3505

Table 3.3: Elapsed time in seconds using gaussian kernel

and requires very efficient computational data processing methods. For example, genomic projects, such as

Human Genome Project [48], are highly data intensive with several terabyte content.

Due to the size and efficiency problems, very large databases could only be processed or mined using

a group of connected computers (multicomputers) that run in parallel and communicate among themselves.

Standard data mining algorithms do not achieve a good performance on multicomputers [51, 38], in general.

Therefore, special algorithms must be designed in order to exploit their strong computational infrastructure.

There are a number of comprehensive surveys on parallel implementations of widely used data mining and

knowledge discovery methods and their application spectrum [27, 116, 127, 128].

In the parallel and distributed computation domain, widely used general data mining methods include

classification, clustering, association rules and graph mining, among which classification is the most com-

monly used method, with applications in biomedicine such as identifying cells which are prone to cancer

or tracking DNA sequences of proteins to their origin. In supervised classification, a computational system

learns to differentiate between different classes of data, based on the features of the data elements and their

class membership. After the system is trained, data points whose class memberships are unknown can be

classified as a member of one of the classes with respect to their features.

A parallel implementation of the regularized general eigenvalue classifier is introduced and its scalability

performance are discussed. In fact, the eigenvalue routine used to solve the classification problem benefit

from a high scalability and enhance the performances of the algorithm. The proposed method is tested on a

very large genomic database and the preliminary results regarding its efficiency are reported.
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Implementation Details

Our aim has been to realize an efficient, portable and scalable parallel implementation of ReGEC [65] to

be used on different MIMD distributed memory architectures. As is well known, these are multiprocessor

computers, in which each node has local memory and communicates with the others through message passing.

Let us suppose that each processor executes the same program and the same operations on different data

(SPMD). Given the algorithm structure, a flexible connection topology is supposed to exist among the nodes,

that is, point–to-point communications are allowed, as well as the broadcast and gather of data. Finally, we

suppose to have a network in which the processors are in a mesh topology. With this environment in mind, it

is natural to develop a program in terms of loosely synchronous processes, executing the same operations on

different data, and synchronizing each other through message passing. To clarify the exposition, we suppose

that each node is driven by a single process.

In the ReGEC formulation linear algebra operations are essentially matrix-matrix multiplications and a

generalized eigenvalue problem solution. In order to obtain an efficient, portable and scalable parallel imple-

mentation of ReGEC we decided to use standard message passing libraries, i.e. BLACS [42] and MPI [64],

and de facto standard numerical linear algebra software, PBLAS [30] and ScaLAPACK [14]. Since matrices

involved in the algorithm are distributed among processing nodes, memory is used efficiently and no repli-

cation of data occurs. On single node, the use of optimized level 3 BLAS [31] and LAPACK [6] routines

enables both its efficient use and a favorable computation/communication ratio.

The main routine of PBLAS used in the implementation of Figure 3.2 is PDGEMM to evaluate matrix-

matrix multiplications. The current model implementation of the PBLAS assumes the matrix operands to be

distributed according to the block scatter decomposition of PBLAS and ScaLAPACK.

Routines for eigenvalues problems are not included in PBLAS, but they are covered by ScaLAPACK.

The evaluation of the generalized eigenvalue problem G∗x = λH∗x then performed by using the routine

PDSYGVX. We required machine precision in the computation of eigenvalues and, dynamically allocated

memory for reorthogonalization of eigenvectors. Current version of ScaLAPACK does not permit to reorthog-

onalize eigenvectors against those in different processors memory, which can lead to slightly different results,

with respect to sequential computation.

We developed the auxiliary routines for parallel kernel computation, and for diagonal matrices operations.

Parallel kernel routine is derived by the distribution routine PDMATDIS implemented in HPEC [67], which

loads matrices from files and distributes to processors, accordingly to the block scattered decomposition. It
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permits to appropriately load the matrices A and B and to evaluate the elements of the kernel matrix needed

by each process.

Finally, the operation count of parallel ReGEC is exactly the same as the sequential one. Thanks to

computational characteristics of linear algebra kernels, the parallel implementation of the algorithm described

in Figure 3.2 has a computational complexity on p nodes that is exactly 1/p of the sequential one, and a

communication complexity of one order magnitude less than computational one. This is usually a target in

the implementation of parallel linear algebra kernels, because it assures scalable implementations.

Performance Evaluation

The dataset used in this study consists of the genomic sequences of Translation Initiation Site (TIS), which

is publicly available [4]. The prediction of TIS in a genomic sequence is an important issue in biological

research [3]. This problem can be stated as a classification problem and, although some techniques exist,

there is a great potential for the improvement of the accuracy and speed of these methods. Moreover, it

provides a significant case study for the analysis of genomic sequences. The aforementioned method has

been tested on benchmark data sets obtained from the TIS. Results regard performance in terms of execution

time and efficiency. Execution times and the other accuracy results have been calculated using a Beowulf

cluster of 16 Pentium 4 1.5 GHz, with 512MB RAM, connected with a Fast Ethernet network. Each node

runs a Linux kernel 2.4.20, gcc compiler 2.96, mpich 1.2.5, BLACS 1.1, ScaLAPACK 1.7, LAPACK 3.0,

BLAS with ATLAS optimization. Tests have been performed on idle workstations; the time refers to wall

clock time of the slower executing node and it has been measured with function MPI WTIME() provided by

mpich. The maximum memory available on each node led to the impossibility to run some test cases on a

small number of processors.

The execution times and parallel efficiency are shown in Tables 3.4 and 3.5, using different number of

either training elements and CPU. Tests have been performed on logical 2D meshes of 1(1), 2(1×2), 4 (2×2),

8(2× 4) and 16(4× 4) processors. The training sets have dimensions ranging between 500 and 9000 points.

In table 3.5 the efficiency is calculated using the following formula:

eff =
t1

#cpu ∗ t#cpu
, (3.38)

where t1 is the execution time using only one cpu, t# is the execution time using # number of cpu. In all

cases for which we could not evaluate sequential or parallel execution time on a small number of nodes, we
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set efficiency to 1 on the minimum number of processors on which we could run the application.

1 2 4 8 16
500 2.99 3.59 3.07 3.51 4.00

1000 21.90 17.79 12.29 12.61 12.43
2000 162.12 89.79 55.95 46.59 40.54
3000 532.42 260.39 143.93 109.63 87.30
4000 1487.87 562.70 290.02 205.95 155.39
5000 2887.51 1050.02 641.92 342.22 247.36
6000 - 1921.13 812.64 523.99 365.92
7000 - 3414.97 1298.75 753.63 514.66
8000 - - 1875.02 1046.08 693.84
9000 - - 2733.95 1421.28 913.16

Table 3.4: Execution times: the rows represent the size of the training set and the columns the number of cpu
used to solve the problem. Times are expressed in seconds.

1 2 4 8 16
500 1 0.4175 0.2442 0.1066 0.0468

1000 1 0.6157 0.4458 0.2172 0.1102
2000 1 0.9027 0.7244 0.4349 0.2499
3000 1 1.0223 0.9248 0.6071 0.3812
4000 1 1.3221 1.2825 0.9031 0.5984
5000 1 1.375 2.7146 1.0547 0.7296
6000 - 1 1.182 0.9166 0.6563
7000 - 1 1.3147 1.1328 0.8294
8000 - - 1 0.8962 0.6756
9000 - - 1 0.9618 0.7485

Table 3.5: Efficiency: the rows represent the size of the training set and the columns the number of cpu used
to solve the problem. Efficiency calculated according to equation 3.38

Results show that, for an increasing number of processors, the execution time decreases proportionally,

if the problem to be solved has sufficient computational complexity. Moreover, time reduction increases for

larger problems, with a consistent gain in performance. We note that, in some cases efficiency is above 1, due

to limited memory on each cluster node; nevertheless a sensible execution time reduction is obtained when

the number of processors increases. We can conclude that parallel ReGEC is efficient and scalable on the

target architecture.

3.4 Conclusions

The method discussed above illustrate some of the main problems in the machine learning community. Kernel

implementation of data mining algorithms that can be efficiently solved in the input space and the evaluation
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of their scalability on large problems are widely studied fields. In this chapter an improvement of an existing

classification algorithm has been studied. The introduction of a particular regularization technique allowed

us to half the times of execution of the previous implementation of the Proximal Support Vector Machine

developed by Mangasarian et al. Further we implemented such method using parallel libraries in order to

study on real Data Set the scalability of the method. The results shown illustrate how a great advantage can

be obtained using the parallel implementation.
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CHAPTER 4

Locally Adaptive Techniques

4.1 Introduction

The aim of this chapter is to describe two pattern recognition algorithms and a classification method, all

based on locally adaptive approach. A locally adaptive approach should avoid general assumptions on the

data set and analyze the data considering local relationships between the variables and the classes. Local

assumptions can be introduced to help the classification process and to speed up the algorithm or to obtain a

better classification accuracy and generalization capabilities.

The Nearest Neighbor Algorithms, and its extensions K-Nearest neighbor, is a simple method that belongs

to this approach. The idea of this procedure is to associate each element to the class of the nearest element.

This approach explores the data set without any assumption on the data distribution and can be very accurate

for well represented populations.

The methods presented also adapt the classifier to the whole training set. To obtain this classification

function some objects that allow to represent groups of elements are used. The method that will be analyzed

consist in calculate an optimal number of barycenters using an iterative procedure or solving an optimiza-

tion model and associate at each barycenter a class label. In fact, each barycenter will represent a subset of

elements of the same class.

71



4.2. THE T.R.A.C.E. ALGORITHM

Using this approach a deep exploratory analysis of the data set in relation to the classes distribution is

accomplished and the resulting set of barycenters, in addition to yielding classification criteria, allow to obtain

good insight on the data distribution if the number of elements that compose each barycenter is considered.

Further, zones where classes overlap can be determined detecting where the data set suffer more for noisy

data as in these zones the barycenters will composed by only few elements.

As discussed in Chapter 2, kernel methods can be efficient although there may be difficulties to determine

a suitable kernel function for an accurate solutionis. The choice of the kernel function and its parameters can

be as difficult as solving the classification problem itself. Often too little information on variable distributions

and in general on how the data set has been collected makes it hazardous to apply. Nevertheless some kernel

functions are general enough to allow to catch the information about data structure to a great extent, to obtain

satisfactory results in terms of classification accuracy.

The kernel function, in fact, is selected at the beginning of the procedure and should represent the data

distribution and to fit the class separation boundaries as long as those respect this relation. This will fail when

this relations change drastically in the subregions of the feature space. To give a demonstration of this prob-

lem some numerical results will be given in Chapters 5.

In this Chapter three formulations are given. Fist an iterative version of the algorithm is presented. Sec-

ondly a kernel implementation of this algorithm is described. This extension of the algorithm tries to take

benefit from the property of kernel function to embed the data in a higher dimensional space in order to have

more separable classes. This local approach based on the barycenters set allows to explore the whole data

set exploiting the kernel function. If the kernel is well adapted to data structure the problem is solved easily,

while if there are subregions where the kernel does not fit well, then a good fit may be obtained through the

appropriate barycenters.

In section 4.2 the T.R.A.C.E. algorithm will be presented and described. In section 4.3 the kennel im-

plementation of the algorithm is presented and in section 4.4 an optimization problem based on a nonlinear

complementarity problem is solved to obtain an efficient variation of the approach described.

4.2 The T.R.A.C.E. Algorithm

The T.R.A.C.E algorithm (Total Recognition by Adaptive Classification Experiments) [105, 100] is a super-

vised learning algorithm [138]. This means that the algorithm needs to be trained using a set of data points
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(training set) that has previously been classified by an expert or in some other appropriate way. Once trained,

new data points can be classified whose classes are unknown to the classifier.

The aim of this algorithm is to find subclasses in the data set which can be used to classify new data

points of unknown class. Occurrence of subclasses with only one data point is possible when the data set is

not representative of the population that it is generated from, or the data set is undersampled, or the data set

has outliers. In this case the subclass is represented by the single data point itself that will be called singletons.

The algorithm has been used in many applications always yielding accurate classification results. Some of

the latest results have been obtained in medical diagnosis [108, 113], and also in the field of human assisted

reproduction [111, 63, 92], as well as for protein secondary structure classification [109].

The algorithm is based on a procedure to obtain a partition of the training set by determining the least

number of barycenters to partition correctly the training set [49]. Convergence results and a generalization

of the method were later proposed [105] and much experimentation was conducted, always with very good

results in many fields [19, 20, 107, 18, 111, 63, 112, 92, 108, 100, 108, 113]

The algorithm T.R.A.C.E partitions the input space into the minimal number of subsets such that each

subset contains objects of the same classification class, thus obtaining a completely correct classification of

the training set.

The aim of the T.R.A.C.E algorithm is to calculate a set of barycenters where each subset of the Voronoi

partition generated by these points contains elements of only one class. The algorithm is implemented to

obtain the minimum number of barycenter which realize the partition.

Given a training set X ∈ Rn×m and the corresponding class labels C ∈ Rn T.R.A.C.E algorithm for a

multiclass problem of k classes can be described as follows.

At first the barycenter of each class are computed, resulting in an initial set of k barycenters, where k is the

number of classes to be considered. Then the Euclidean distance of each data point from each barycenter is

computed. If each data point is closer to the barycenter of its class than to any other barycenter, the algorithm

stops.

Otherwise, there is a non empty setM of data points xj which belong to one class, but are closer to a

barycenter of another class. The data point xj ∈ M is selected, which is the farthest from the barycenter of

its own class. This data point is used as a seed for a new barycenter in the class of xj . Then, considering just

that class of objects, all those in that class are assigned to the old or to the new barycenters on the basis of the
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Step1 Let

– xj , j = 1, . . . , n be the data points in the training set
– B0 be the set of k initial barycenters bi, i = 1, . . . , k

Step2 Compute the distances of each xj from all the bi ∈ Bt

LetM be the set of xw that are closer to a barycenter of a class different from their own.
t← 0

Step3 while M 6= ∅

– Let xs ∈ M be the data point with the greatest distance from its own barycenter.
– c← ψ(xs) be the class label of the data point xs

– Let Bt+1 ← Bt ∪ xs

– for all the elements of class c perform a k-means-like routine using the barycenters of Bt+1 that belong to class c as
starting points

– t← t+ 1

– Compute the distances of each xj from all the bi ∈ Bt

– UpdateM

end

Figure 4.1: Algorithm in meta-language

relative distance from each. Finally both barycenters are recalculated on the basis of the objects assigned to

each,

The procedure is restarted considering the new barycenter and the subclass of one of the classes and is

continued until all objects are nearer to a barycenter of its own class than to a barycenter of another class.

Special safeguards are considered to avoid the dependence of the formation of the barycenters on the

order of processing, which is always a possibility when iterative assignment procedures are carried out and a

typical example of this problem is the well known k-means like algorithm. By defining a selection procedure

( greatest distance) and imposing that a minimum number of barycenters are formed to obtain a correct

partition, much of the arbitrariness that befalls a typical implementation of the k-means like algorithm are

avoided. However this problem can only be solved by an optimization formulation that will be described in

section 4.4.

The procedure T.R.A.C.E iterates until set M becomes empty. The convergence of the algorithm in a

finite number of steps is proved in a number of ways [105, 100]. The pseudo-code of the algorithm is given

in Figure 4.1.

After convergence, this algorithm produces a set of barycenters, whose cardinality is bounded below by

the number of classes, and above by the number of data points.

The properties and convergence results for the T.R.A.C.E algorithm can be formulated as follows and
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constitute, essentially, a specialization of the results given in section 2.4.

Suppose a training set is available, defined over a suitable representation space, which is piecewise sepa-

rable and coherent see as defined in 2.2.5 and 2.2.10.

The algorithm T.R.A.C.E. will determine a classification rule to apply, on the data set, just that partition

which has been found for the training set, so that to each entity in the data set a class is assigned. If the training

set forms a random sample and the data set which includes the training set is coherent, then this classification

can be performed to any desired degree of accuracy by extending the size of the training sample. Sufficient

conditions to ensure that these properties hold are given by selecting the data set and the verification set

by non repetitive random sampling, as it will be shown below, after having derived the properties of this

algorithm.

In classification, instead, it is advisable that the whole data set be used to train the classifier, so that when

a new set of patterns of unknown class belonging to a protein of unknown structure is given, the distance of

each pattern from each of the available barycenter vectors is determined and the pattern is assigned to the

class of the barycenter which results closest to it.

Theorem 4.2.1 Suppose that the data set is coherent, then the data set can be classified correctly.

PROOF: By theorem 2.2.1 and corollary 2.2.1 the result follows. 2

To obtain correct classification results, it must be ensured that the training set is a representative sample

of the data set and that the data set is coherent.

So consider a data set {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi is the feature vector of pattern i and its

membership class is given by yi.

Without loss of generality assume that classification problems of two classes only are considered, so that

eventually a series of such problems must be solved for a polytomous classification problem. Assume, also,

that the patterns are independently identically distributed with function F (z), where zi = (xi, yi).

Let f(x, α) : Rn → {0, 1} α ∈ Γ be the classifier, where Γ is the set of parameters identifying the clas-

sification procedure from which the optimal parameters must be selected. The loss function of the classifier

is given by:

L (y, f(x, α)) =

{

0 if y = f(x, α)

1 if y 6= f(x, α)

}

(4.1)
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The misclassification error over the population, in this case, is given by the risk functional:

R(α) =

∫

L (y, f(x, α)) dF (x, y) (4.2)

Thus the value of α ∈ Γ, say α∗ must be chosen which renders minimum the expression (2.12). Hence

for any sample the misclassification error will be:

Rn(α
∗) =

1

n

n
∑

i=1

L (yi, f(xi, α
∗)) (4.3)

which will depend on the actual sample, its size n and the classifier used.

To avoid having to introduce distributional properties on the data set considered, the empirical risk mini-

mization inductive principle may be applied [136]:

1. ) the risk functional R(α) given in equation (4.2) is replaced by the empirical risk functional Rn(α)

given by equation (4.3) constructed purely on the basis of the training set.

2. ) the function which minimizes risk is approximated by the function which minimizes empirical risk

Definition 4.2.1 A data set is stable, according to definition 2.2.10, with respect to a partition and a popula-

tion of entities if the relative frequency of misclassification is Remp (α∗) ≥ 0 and

lim
n→∞

pr{Remp(α∗) > ε} = 0 (4.4)

where α∗ is the classification procedure applied, ε > 0 for given arbitrary small value and pr{.} is the

probability of the event included in the braces.

In some diagnostic studies the set of attributes considered have no significant relationship with the out-

come or the classification of the entity. Typically the classes could be the eye color and the attributes the

weight, height, sex of a person. Such a classification would be spurious, since there is no relation between the

eye color and the body indices.

A spurious collection of entities, in which there is no similarity relations, may occur and should be recog-

nized. With this algorithm, this occurrence is easily determined, as very many barycenters are formed, almost

one per object. Such spuriousness may arise even in the presence of some meaningful relationships in the

data, which are however swamped by noise and so data reduction techniques may be useful, [138], [100].
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In general, by considering smaller and smaller subsets of the attribute space X , if there exists a relation-

ship between the attributes and the classes of the entities, the frequency of the entities of a given class, for

certain of these subsets will increase to the upper limit of one, while in other subsets it will decrease to a

lower limit of zero. Thus for a very fine subdivision of the attribute space, each subset will tend to include

entities only of a given class.

Definition 4.2.2 A proper subset Sk of the attribute space X of the data set will give rise to a spurious

classification if the conditional probability of a pattern to belong to a given class c is equal to its unconditional

probability over the attribute space. The data set is spurious if this holds for all subsets of the attribute space

X .

pr{yi = c | (yi, xi) ∩ Sk} = pr{yi = c | (yi, xi) ∩X} (4.5)

Theorem 4.2.2 Consider a training set of n patterns randomly selected, assigned to two classes, where the

unconditional probability of belonging to class one is p. Let a be a suitable large number and let (n > a).

Let the training set form bn barycenters, then under T.R.A.C.E., this training set will provide a spurious

classification, if
bn
n
≥ (1− p) n > a (4.6)

PROOF: From the definition 2.4.2 a classification is spurious if the class assigned to the entity is independent

of the values of the set of attributes considered.

Any pattern will be assigned to the barycenter which is nearest to it, which without loss of generality,

may be considered to be a barycenter of class one, being composed of entities in class one. The probability

that the pattern considered will result not of class one is (1−p) which is the probability that a new barycenter

will be formed. As the number of patterns are n, the result follows. 2

Theorem 4.2.3 Let the probability of a pattern to belong to class one be p, then the number of barycenters

required to partition correctly a subset S, containing ns > a patterns, which is not spurious, formed from

T.R.A.C.E. algorithm is bs < ns, ∀ns > a.

PROOF: If the classification is not spurious, by definition 2.4.2, without loss of generality, the following

relationship between the conditional and unconditional probabilities holds for one or more subsets Sk, Sh ∈
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X,Sh ∩ Sk = ∅:

pr{yi = 1 | (xi, yi) ∩ Sk} > pr{yi = 1 | (xi, yi) ∩X} = p (4.7)

pr{yi = 0 | (xi, yi) ∩ Sh} < pr{yi = 0 | (xi, yi) ∩X} = (1− p) (4.8)

Thus on the basis of the algorithm, for the subsets Sk ∩X the probability that a new barycenter of class

one will be formed, because one or more patterns result closer to a pattern of class zero, is less than (1 - p).

In the set Sh ∩X , the probability that patterns of class one will appear, is less than p, so that the probability

that a pattern will be formed is less than p.

Thus if the number of patterns present in the subsets Sk ∩X is nk while the number of patterns present

in the subsets Sh ∩X is nh, the total number of barycenters for the patterns of class one will be:

bs < (1− p)nk + pnh (4.9)

As ns = nk + nh, there results bs < ns, ∀ns > a 2

Corollary 4.2.1 [136] The Vapnik-Cervonenkis dimension (VC dimension), s(C, n) for the class of sets de-

fined by the T.R.A.C.E. algorithm restricted to the classification of a non spurious data set which is piecewise

separable, with ns elements, with two classes, is less than 2ns , if ns > a.

PROOF: By theorem 2.4.3 the number of different subsets formed is bs < ns < 2ns whenever ns > a and

the data set is not spurious. 2

Theorem 4.2.4 [39] Let C be a class of decision functions and ψ∗
n be a classifier restricted to the classifi-

cation of a data set which is not spurious and returns a value of the empirical error equal to zero based on

the training sample (z1, z2, ..., zn). Thus Infψ∈CL(ψ) = 0 i.e. the Bayes decision is contained in C. Then

pr {L(ψ∗
n) > ε} ≤ 2s(C, 2n)2

−nε
2 (4.10)

By calculating bounds on the VC dimension, the universal consistency property can be established for

this algorithm applied to the classification of a data set which is not spurious.

Corollary 4.2.2 [100] A non spurious classification problem with a piecewise separable training set is

strongly universally consistent.
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To use the T.R.A.C.E. algorithm in applications, it is necessary to determine, first, whether the data set

is spurious or not (4.2.2), for the given problem with the specific pattern vectors adopted. The way that the

pattern vectors are defined based on the data available, may affect strongly the results obtainable.

Further, the coherence of the data set must be tested to ensure that the pattern extracted are sufficiently rich

to ensure proper classification, stability and extendibility of the data set (definition 2.2.10. Then the algorithm

can be applied, but the results will hold if the data set, training set and the verification set are random samples,

taken from the population of proteins, as otherwise the sample may not be representative of the population.

To determine if a training set is spurious 90% of the training set may be resampled a number of times,

say 150 and the number of barycenter vectors that are formed are recorded. If for the training sets, the result

of theorem 4.2.2 is satisfied that training set is spurious. It follows that if the same result holds in more than

5 % of the resampling experiments, the training set and therefore the data set is spurious, since the former is

a random sample of the latter by assumption. Thus the spuriousness of a training set and consequently of a

data set can be easily verified.

To determine the coherence of the training set, consider the same experimental set up as above. If the

resampling occurs 150 times the expected number of times that any pattern appears in verification is 15% if

a 10% verification sample is extracted every time from the training set [18].

The results of this experimentation can be used to determine if all the objects in the training set have

received the correct class membership and if they are coherent. Obviously, if mistakes have been made in

assigning classes, the training set and for that matter the data set cannot be coherent.

Thus to test coherence determine the proportion of times that in verification an object has been assigned

to different classes. If the proportion is statistically significantly different from zero, then the training set is

not coherent. Note that statistical tests of significance are required, since the training set could result coherent

but manifest a certain variability in assigning classes, because of its small size.

If the pattern recognition is considered to be a problem where the class assignments are subject to error,

then it is admissible to change the class assignment of the patterns in this experiment that have been misclas-

sified in a statistically significant proportion. The pattern is then reclassified with the label of the class which

in verification it has been assigned most often.

To test the coherence of a data set, which has a training set which is coherent, prepare a set of subset of

the training set of different dimensions, by excluding say 10 %, 20 % and 30 % of the training set in say 10

different ways, so that there are available 30 different training sets.

Use the whole training set to classify a certain number of objects, whose membership class is unknown,
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so that a class label will be assigned. Now form 30 training sets from the 30 sets originally constructed

increased by the set of newly classified pattern. Repeat the coherence test for this new set of training set and

if the proportion of times, objects in verification are assigned to a different class is statistically significant the

data set with respect to the original data set is not coherent.

Thus having determined that the given pattern recognition problem is coherent and obviously not spurious,

to obtain the required precision the equation (4.10) can be applied to determine the size of the training set

that will be required and various other aspects can be considered or tested.

One of the important properties of the T.R.A.C.E algorithm is its capability in averaging out additive white

noise on the data while computing the barycenters which are in effect arithmetic means.

Moreover, outliers can be detected from the training results. If an outlier happens to be in the training set,

it will most likely forms a singleton set during training. Therefore an accurate study of the barycenters with

few elements (one, two or three elements) may give further insights to the pattern recognition problem.
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4.3 K-t.r.a.c.e.

In this section a kernel version of the T.R.A.C.E. classification algorithm, which was presented in the previous

section 4.2 will be formulated.

Given the quantified features of an object listed in a specific order as a vector, each object can be repre-

sented as a point in a space whose dimension is equal to the number of elements in the pattern vector.

The standard form of the T.R.A.C.E algorithm generates barycenters, i.e., conditional sample means for

each class until the each training set pattern is closer to a barycenter of its own class than to one of another

class, with respect to a suitable distance.

In order to provide better separability of the classes, the kernel implementation modifies the standard

T.R.A.C.E algorithm the data points,that are originally in the input space, are mapped into a higher dimen-

sional space called the feature space as discussed in Chapter 2.

In particular, the kernel trick is applied to calculate the distances between data points and the distances

of data points from barycenters using only their inner products. Similar to several other nonlinear clustering

and classification techniques such as kernel k-means and kernel nearest-neighborhood algorithms [144, 143],

the kernel implementation of the T.R.A.C.E algorithm allows to achieve on a number of experiments a higher

accuracy in the classification rate and computational improvements compared to the standard implementation,

on the data sets considered, at the expense of convergence results for the recognition problem.

In fact, in many empirical applications there is a given training set which must be applied, which may

not be coherent as the classification set. In this case, one must do the best that one can and experimentally

a classification heuristic may classify with a greater precision and certainly much faster than the pattern

recognition algorithm applied to a problem that does not fulfill the required conditions to guarantee a correct

solution.

4.3.1 Kernel Implementation

In section 2.3 it has been already introduced and discussed how suitable kernel function can enhance the

classification performances and accuracy of linear classification algorithms.

In this application a similar approach is formulated. The T.R.A.C.E algorithm in its standard implemen-

tation, generate nonlinear classification boundaries. The kernel implementation is provided in order to take

advantage from a higher separability of the classes when it is possible and the advantage of nonlinear separa-

tion when this is required.
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The use of a suitable kernel function will allow to obtain the classification boundaries with a number of

barycenter not greater than the standard implementation. Also the accuracy results benefit from this greater

separability of the data as for a suitable kernel function the classification task becomes easier.

For a given data set, if a suitable kernels exist, then the initial data can be mapped to a higher dimensional

embedded feature space with increased separability. As a result, the number of barycenters decreases, and the

less number of barycenters yields a more robust classifier. In order to achieve this objective, the classification

problem has to be reformulated using kernels.

It must be pointed out that a kernel implementation does not explicitly uses a mapping φ of a data point

xi from the input space to the feature space (ui = φ(xi)). The mapping is achieved by different functions

applied to inner products between the data points. The matrix that includes all of the inner products between

the data points in the feature space is called the kernel or Gram matrix [1, 35], as discussed in Chapter 2.

In the kernel implementation of the T.R.A.C.E algorithm, data points are implicitly mapped to the feature

space by their inner products. We use two measurements of distances in the feature space: the Euclidean

distance D(ui, uj) between two data points and the Euclidean distance D(ui, zk) between a data point ui

and a barycenter zk of the set that data point in the feature space. A barycenter zk of the set of elements Bk

in the feature space can be represented as follows:

zk =
1

|Bk|

N
∑

j=1

I(ui, Bk)uj

where,

I(ui, Bk) =











1, ui ∈ Bk
0, otherwise

We replace the distances in the input space with the distances in the feature space and we use the kernel

functions to calculate these distances without explicitly using the mapped points in the feature space. The

Euclidean distances between two data points and between a point and a barycenter are given as follows.

1. The Euclidean distance between two elements in the feature space:
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D(ui, uj) = ‖ φ(xi)− φ(xj) ‖= 〈φ(xi)− φ(xj ), φ(xi)− φ(xj )〉

= H(xi, xi) +H(xj , xj)− 2H(xi, xj) (4.11)

2. The Euclidean distance between an element and a barycenter:

D(ui, zk) = ‖ ui −
1

|Bk|

N
∑

j=1

I(ui, Bk)uj ‖

= H(xi, xi) + f(xj , Bk) + g(Bk) (4.12)

where,

f(xj , Bk) = − 2

|Bk|

N
∑

j=1

I(ui, Bk)H(xi, xj)

g(Bk) =
1

|Bk|2
N

∑

j=1

N
∑

l=1

I(uj , Bk)I(ul, Bk)H(xl, xl).

These distance functions are used both in the training and classification phase to transform the standard k-

means procedure to a kernel k-means procedure. This kernel implementation will be referred as K-T.R.A.C.E..

Using this formulation the algorithm obtained can be considered a generalization of the standard formu-

lation as stated by the following remark.

Remark 4.3.1 That K-T.R.A.C.E with linear kernel (2.8) is equivalent to the algorithm in its original ver-

sion because the distances in the feature space are equivalent to the euclidian distances in the input space.

Therefore the kernel version should be considered as a generalization of the original T.R.A.C.E algorithm.

This is easy to be shown as if we consider the linear kernel formula, as shown in Chapter 2:

H(xi, xj) = (xi · xj) (4.13)

the equation 4.11 and 4.12 becomes the Euclidean distance in the input space, therefore, the algorithm clearly
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becomes its standard formulation.

In order to graphically demonstrate how the algorithm works, a toy example is created as shown in Figure

2. This data set is composed of 200 elements and 2 classes. The first plot shows the binary data set consid-

ered, and the second figure shows the 47 subclasses generated by the algorithm with a linear kernel when

convergence is achieved, i.e., that every element is closer to the barycenter of its own subclass. The clusters

generated with the gaussian kernel cannot be represented graphically since the feature space is high dimen-

sional, and the clusters are not convex in the two dimensional input space due to the non-linear mapping.

The kernel version of the T.R.A.C.E algorithm generates only 6 clusters for this problem. The less num-

ber of generated subclasses not only leads to a better generalization and classification, but also manages to

cluster non-linearly related cases that cannot be clustered together in the input space. This result shows the

robustness of the kernel implementation of T.R.A.C.E and the improvements over the standard version.

4.3.2 Experimental Results

The algorithm proposed is evaluated on several benchmark data sets. These data sets are obtained from the

University of California Irvine repository [16] and are widely used to compare the classification performance

of new algorithms with the existing ones. Our algorithm can easily be applied to multi-class classification

problems. However, the majority of the classifiers and classification problems considered involve two-class

classification such as support vector machines (SVMs). Therefore, we used the two-class version of the data

sets from the UCI repository.

We also present the results for the toy example used in the previous section.

In this section the improvements achieved in terms of efficiency and number of barycenters generated are

discussed. The classification accuracy results are discussed in chapter 5 where they will be compared with all

the others approaches. In this section, we are interested in show the improvements in terms of reduction in

the number of barycenter from the standard version of the algorithm.

The result shown is the difference in number of barycenters generated for each data set during the execu-

tion of K-T.R.A.C.E versus the standard T.R.A.C.E algorithms. In Table 4.1, the average number of barycenters

generated from the ten randomly generated training sets are given. In the first column, the number of elements

of each training data set is shown to be compared with the number of barycenters generated by the T.R.A.C.E

and the K-T.R.A.C.E algorithms. K-T.R.A.C.E dramatically reduces the overall number of barycenters in most
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of the data sets. This result shows the improvement in the computational burden over the standard algorithm

improving as well the classification accuracy as demonstrated in Table 5.2 in Chapter 5.

DATA Elements Number of Baricenters
T.R.A.C.E. K-T.R.A.C.E.

Wave 5000 630.7 372.8
Wpbc 194 67.7 4.5

Boubble 400 48.6 6.3
Ionosphere 351 62.2 25.7

Bupa 345 153.8 122.8
Cleveland 297 83.6 71.7

German 1000 321.9 170.1
Wbc 683 54.8 33.5

Table 4.1: Average of the number of barycenters computed to obtain the classification of the training set

In conclusion, it is to be noticed that on these data sets, the k-trace routine is more efficient than the

trace routine, whichfor many experimental instances generates an average of 1 barycentre for every 3 objects,

which is an indication that the data is not spurious but with such small sample it is also not coherent.
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Figure 4.2: Subclasses needed to obtain the correct classification of the training set. The first figure shows the toy data
set used, the second the subclasses obtained using the standard version of the algorithm (linear kernel)
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4.4 A Nonlinear Complementarity Algorithm for Pattern Recognition

In this section a classification algorithm called C.A.S.T.O.R. (Complementarity Algorithm System for TOtal

Recognition) [109] is described.

The aim of this algorithm is to obtain, as in the T.R.A.C.E. algorithm, an optimal set of barycenters that

classify correctly all the elements of the training set. This algorithms is formulated as a nonlinear optimization

problem to avoid the the eventuality of generating local solutions based on the arbitrary order of handling the

individual instances as indicated in the iterative version described above see section 4.2.

Further, its formulation and its convergence results are considered in order to address large classification

problems. The main application developed for this algorithm has been, in fact, the protein secondary structure

classification [109] where the data sets available are quite large and challenging also from a computational

point standpoint.

4.4.1 The Classification Algorithm

The classification algorithm to be formulated may be specified as a combinatorial problem in binary variables

[105].

Suppose that a training set is available with n patterns, represented by appropriate feature vectors indi-

cated by xi ∈ R
p, ∀i = 1, 2, ..., n and grouped in c classes. An upper bound is selected to the number of

barycenters that may result from the classification, which can be taken ”ad abundantiam” as m, or on the

basis of a preliminary run of some classification algorithm.

The initial barycenter matrix will be an p × mc matrix which is set all to zero. The barycenters when

calculated will be written in the matrix by class. Thus a barycenter of class k will occupy a column of the

matrix between (m(k − 1) + 1) and mk.

Since we are considering a training set, the feature vectors can be ordered by increasing class label. Thus

the first n1 columns of the training set matrix consists of patterns of class 1, from n1 + 1 to n2 of class 2 and

in general from nk−1 + 1 to nk of class k.

Thus consider the following inequality constrained optimization problem. Let:

• xi ∈ R
p : the p dimensional pattern vector of pattern i,

• c classes are considered, k = 0, 1, . . . , (c − 1). Let the number of patterns in class ck be indicated by

nk, then the n patterns can be subdivided by class so that n =
∑c−1
k=0 nk,
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• zj ∈ {0, 1} , integer: {j = 1, 2, ..mc} if zj = 1 then the barycenter vector j ∈ {mk + 1}, . . . ,m(k +

1)} belonging to recognition class ck ∈ {0, . . . , c− 1},

• yij ∈ {0, 1}, integer: the pattern i has been assigned to the barycenter j (yij = 1 ),

• tj ∈ R
p : the sum of the elements of the vectors of the patterns assigned to barycenter j = {1, 2, . . . ,mc},

• M a large scalar.

Min Z =
mc
X

j=1

zj (4.14)

s.t.

m(k+1)
X

j=km+1

yij − 1 ≥ 0 ∀k = 0, 1, ..., (c− 1); ∀i = nk−1 + 1, ..., nk (4.15)

−
n
X

i=1

mc
X

j=1

yij + n ≥ 0 (4.16)

Mzj −
n
X

i=1

yij ≥ 0 ∀j = 1, 2, ...,mc (4.17)

tj −
n
X

i=1

xiyij ≥ 0 ∀j = 0, 1, ...,mc (4.18)

−
mc
X

j=1

 

tj −
n
X

i=1

xiyij

!

≥ 0 (4.19)

0

@xi −
th

Pm(l+1)
s=lm+1 ysh

1

A

T 0

@xi −
th

Pm(l+1)
s=lm+1 ysh

1

A−

m(k+1)
X

j=km+1

0

@xi −
tj

Pm(k+1)
r=km+1 yrj

1

A

T 0

@xi −
tj

Pm(k+1)
r=km+1 yrj

1

A× yij ≥ 0

∀i = 1, 2, . . . , n; h = 1, 2, . . . ,mc; k, l = 0, 1, ..., c− 1; (4.20)

zj , yij ∈ {0, 1}integer (4.21)

The solution of this optimization problem assigns each pattern to a mean vector, called a barycenter

(zj , j = 1, 2, ...,mc), whose values are given by the vectors tj ∈ R
p, j = {1, 2, . . . ,mc} divided by the

number of patterns assigned to that barycenter. The least number of barycenters (4.14) which will satisfy the

stated constraints is determined.

The n constraints (4.15) (4.16) state that each feature vector from a pattern in given class must be assigned

to some barycenter vector of that class. As patterns and barycenters have been ordered by class, the summation

should be run over the appropriate index sets.

The mc constraints (4.17) impose that no pattern be assigned to a non existing barycenter.
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Instead, the constraints (4.18) (4.19) determine the vector of the total sum element by element assigned

to a barycenter.. Notice that xi is a vector, so the number of inequalities will be 2mc times the number of

elements in the feature vector.

The last set of inequalities (4.20) indicate that each feature vector must be nearer to the assigned barycen-

ter of its own class than to any other barycenter. Should the barycenter be null, this is immediately verified,

while if it is non zero, this must be imposed.

Finally, (4.21) indicates that the vectors z ∈ Rmc and y ∈ Rnmc are binary.

The solution will determine that each pattern of the training set is nearer to a barycenter of its own class

than to a barycenter of another class. Each barycenter has the class label of the patterns assigned to it, which

will belong by construction to a single class. This defines a partition of the pattern space.

A new pattern can be assigned to a class by determining its distance from each barycenter formed by the

algorithm and then assigning the pattern to the class of the barycenter to which it is nearest.

The nonlinear optimization problem (4.14) - (4.21) in binary values may be solved directly through ap-

plying special nonlinear codes which can handle such problems. Alternatively an iterative version can be used

[105] [100].

The problem can also be formulated as a nonlinear complementarity problem in binary variables, which

will be solved through iterating on a set of linear complementarity problems in binary variables, by using a

linear programming technique with parametric variation in one scalar variable [106] which has given good

results [40].

For simplicity in the representation and analysis, write the constraints (4.20) as:

g(y, x, t) =

0

@xi −
th

Pm(l+1)
s=lm+1 ysh

1

A

T 0

@xi −
th

Pm(l+1)
s=lm+1 ysh

1

A−

m(k+1)
X

j=km+1

0

@xi −
tj

Pm(k+1)
r=km+1 yrj

1

A

T 0

@xi −
tj

Pm(k+1)
r=km+1 yrj

1

A× yij (4.22)

The following additional notation should be adopted to write the optimization problem (4.14)- (4.21) as

a nonlinear complementarity problem:

• e is an appropriate dimensional vector of ones.

• E ∈ R
n×nmc is a matrix composed of mc identity matrices of dimension n× n

• H ∈ R
mc×n matrix of ones.
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• η is a scalar to be assigned by dichotomous search during the iterations.

The data matrix of patterns indicated as X of dimension (p×m× c)× (n×m× c) is written in diagonal

block form with blocks of dimesion p× n elements, containing the original data matrix.

This block is repeated mc times with the first element of the block placed at the position

((j − 1)p+ 1, (j − 1)n) , j = 1, 2, ...,mc

In fact the size of the matrices E, H , and X can be greatly reduced in applications since the patterns in the

training set are ordered conformably with the barycenter vector t = {tj} ∈ R
pmc and each class is of known

cardinality.

The nonlinear complementarity problem can therefore be written as:
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= 0 (4.25)

Binary values to the z, y variables are imposed by the constraints (4.23) and the complementarity condi-

tion (4.25).

It is well known that, the nonlinear complementarity problem is a statement of the Karush-Kuhn-Tucker

condition of the optimization problem [47] and therefore one of the solutions of the nonlinear complemen-

tarity problem will be a solution to the optimization problem (4.14)- (4.21).

4.4.2 Mathematical Properties of the Algorithm

The aim of this section is to prove the convergence of the nonlinear complementarity form of problem (4.23)

- (4.25) that must be solved to determine the least number of barycenters, which will partition the training set

completely accurately.

Consider the domain of the optimization problem to be over RN a convex space. The nonlinear comple-

mentarity problem may be presented synthetically, without loss of generality, in the following way:

F (w) ≥ 0 (4.26)

w ≥ 0 (4.27)

wTF (w) = 0 (4.28)

where w =
(

zT , yT , tT , λT1 , λ2, λ
T
3 , λ

T
4 , λ5, λ

T
6 , λ7

)

.

This problem can be written as a variational inequality:
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F (w)T (u− w) ≥ 0 (4.29)

w ≥ 0 (4.30)

∀ u ≥ 0 (4.31)

The solutions of the two problems are identical.

Theorem 4.4.1 w ∈ RN w ≥ 0 is a solution to the nonlinear complementarity system (4.26)-(4.28) if and

only if

w ≥ 0, F (w)
T

(u− w) ≥ 0, ∀u ≥ 0 (4.32)

Proof: (⇒ ) Let w be a solution to the nonlinear complementarity problem. For (4.29) F (w)
T
u ≥ 0 ∀u ≥

0 since:

F (w)
T

(u− w) = F (w)
T
u− F (w)

T
w ≥ 0 (4.33)

(⇐) Let w ≥ 0 be a solution to (4.29)- (4.31) and consider a vector u = w+ei where ei is the unit vector.

Thus F (w)i ≥ 0 ∀i and thus F (w) ≥ 0.

Consider now u = 0, there follows:

F (w)
T

(u− w) = F (w)
T
w ≤ 0 (4.34)

As F (w) ≥ 0 and w ≥ 0, it follows that F (w)T w = 0. 2

There exists an equivalence also between a solution to a variational inequality and a fixed point of a

mapping.

Theorem 4.4.2 [98]. Let K ⊆ RN be a closed convex set. Then, for every v ∈ RN there exists a unique

point u such that: ‖v − u‖ ≤ ‖v − w‖ , ∀w ∈ K. The point u is the orthogonal projection of v on K with

respect to the Euclidian norm, i.e. u = PrKv = argminw∈K ‖v − w‖.

Theorem 4.4.3 [98] Let K ⊆ RN be a closed convex set, then u = PrKv if and only if uT (w − u) ≥

vT (w − u) , ∀w ∈ K.

92



4. Locally Adaptive Techniques

Theorem 4.4.4 Let K ⊆ RN be a closed convex set, then w∗ ∈ K is a solution to the variational inequality

if and only if for any γ > 0, w∗ is a fixed point, such that:

w∗ = PrK (w∗ − γF (w∗)) (4.35)

Proof: (⇒) Let w∗ be a solution to the variational inequality F (w∗)
T

(u− w∗) ≥ 0, ∀u ∈ K. Multiply this

inequality by −γ < 0 and add (w∗)T (u− w∗) to both sides of the resulting inequality. There results:

(w∗)
T

(u− w∗) ≥ (w∗ − γF (w∗)) (u− w∗) , ∀u ∈ K (4.36)

and therefore w∗ = PrK (w∗ − γF (w∗)).

(⇐) If w∗ = PrK (w∗ − γF (w∗)) for γ > 0, then

(w∗)
T

(u− w∗) ≥ (w∗ − γF (w∗)) (u− w∗) , ∀u ∈ K (4.37)

and so F (w∗)
T

(u− w∗) ≥ 0, ∀u ∈ K. 2

Theorem 4.4.5 Let K ⊂ RN be a non empty, convex and compact set and let F : K → K be a continuous

mapping. The following are equivalent:

1. There exists a fixed point w∗ ∈ K for this mapping,

2. the variational inequality (4.29) has a solution,

3. the nonlinear complementarity problem (4.26)- (4.28) has a solution

Proof: The proof follows from [68], theorem 4.4.4 and theorem 4.4.1. 2

Consider the nonlinear complementarity problem (4.23) - (4.25) and limit its solution to occur within a

trust region set, defined by a set of linear inequalities which can be so indicated:

Dw ≥ d (4.38)

such that this set defines a bounding polyhedron of appropriate dimension in the given space.

Theorem 4.4.6 [45]. Given the nonlinear complementarity problem (4.26) - (4.28) where F (w) is continu-

ous, there exists a connected set S ⊂ RN such that:
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1. Each w ∈ S is a solution to the nonlinear complementarity problem such that DT
i w = k ≤ di, one of

the trust region constraints, restricted by the scalar k,

2. For each value k ∈ R+, there exists a solution to the nonlinear complementarity problem w ∈ S .

Consider the application F : RN → RN and expand it in a Taylor series around a point w′ ∈ RN to get:

F (w) = F (w′) +∇F (w′) (w − w′) (4.39)

then for any ε > 0 there exists a scalar r > 0 such that:

‖F (w) − F (w′) +∇F (w′) (w − w′)‖ ≤ ε ‖w − w′‖ , ∀ ‖w − w′‖ ≤ r (4.40)

as it has been proved [41].

Thus in a small enough neighborhood, the approximation of the nonlinear complementarity problem by

a linear complementarity problem will result sufficiently accurate, so that instead of solving system (4.26)-

(4.28), the linear complementarity system approximation can be solved, which may be so represented:
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Recall that by construction, the subspace of the Euclidian space is bounded and closed, so that the fol-

lowing corollary to the theorem 4.4.6 can be applied to the linear complementarity approximation of it.

Corollary 4.4.1 [83]. Consider the linear complementarity problem representation of (4.41) - (4.43) and a

set S = {µ(t)|t ∈ R+} where µ : R+ → R is a piecewise continuous mapping then:

1. Each µ ∈ S is a solution to the linear complementarity problem, restricted to the subset DT
i x = k, so

one of the trust region constraints is binding,

2. for each k ∈ R+ there exists an w ∈ S which is a solution to the linear complementarity problem.

Consider the nonlinear complementarity problem optimization problem (4.26) - (4.28) and recall that the

problem is defined over RN a convex space.

The convergence of our algorithm can now be demonstrated. Consider a point x′ ∈ RN such that F (x′) ≥

0 and therefore feasible. Determine a neighborhood, as large as possible, which can be indicated by:

Q = {w | ‖w − w′‖ ≤ r} (4.44)

where r is the coefficient defined above in (4.40).

Suppose that the acceptable tolerance to our solution is ε5 so that if (w∗)TF (w∗) ≤ ε5 then the solution

is accepted. In this case, impose that:

εr ≤ ε5
α

(4.45)

The local convergence of the algorithm is established in the following theorem.

Theorem 4.4.7 If the linear complementarity problem has a solutionw∗ where all the trust region constraints

are not binding, then such a solution is also a solution to the nonlinear complementarity problem (4.26)-(4.28)
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for which F (w∗) ≥ 0 and (w∗)TF (w∗) ≤ ε5

Proof: Consider the solution w∗ of the linear complementarity problem (4.41)- (4.43). Recall that α ≥ eTw∗

by construction and without loss of generality, take α > 1. Consider this solution applied to the nonlinear

complementarity problem, there will result:

‖F (w∗)− F (ŵ) +∇F (ŵ) (w∗ − ŵ)‖ ≤ ε ‖w∗ − ŵ‖ ≤ εr < ε5 (4.46)

For the complementarity condition

(w∗)TF (w∗) = (w∗)T (F (w∗ − F (ŵ) +∇F (ŵ)(w∗ − ŵ)) ≤ ‖w∗‖ εr ≤ ε5 (4.47)

which follows by the complementarity condition of the LCP and the Cauchy-Schwartz inequality. Further,

α > eTw∗ > ‖w∗‖ because of the non negativity of the solution variables. Also εr < ε5
α

so:

(w∗)TF (w∗) ≤ ε5 (4.48)

The problem (4.23) - (4.25) is then solved by expanding the vectorial function g(y, x, t) in a Taylor series

around the iteration point and solving the resulting linear complementarity problem approximation (4.41) -

(4.43) of the given nonlinear complementarity problem within a suitable trust region.

Theorem 4.4.8 The following are equivalent:

1. The nonlinear optimization problem defined by (4.14) - (4.21) has a solution,

2. The nonlinear complementarity problem defined by (4.23) - (4.25) has a solution,

3. The linear complementarity problem defined by (4.41) - (4.43) has a solution,

Proof

(1) → (2) : The nonlinear complementarity problem (4.23) - (4.25) is just a statement of Kuhn-Tucker

necessary conditions for a solution of the nonlinear optimization (4.14) - (4.21).

(2)→ (3) : Let the nonlinear complementarity problem (4.23) - (4.25) have a solution. This solution will

satisfy the LCP (4.41) - (4.43).
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(3) → (1) : Let the LCP (4.41) - (4.43) have a solution with the least number of barycenters, then it

is a liberalization of the necessary Kuhn-Tucker conditions for a minimum solution to the nonlinear binary

problem (4.14) - (4.21). 2

It has been shown that every linear complementarity problem can be solved by an appropriate parametric

linear programming problem in a scalar variable, [106]. The algorithm will find the solution of the linear

complementarity problem, if such a solution exists, such that ‖w‖ ≤ α, for some constant α > 0, or declare

that no solution exists, so bounded. In this case the bound can be increased.

To solve the given classification problem formulated as a nonlinear binary optimization problem (4.23) -

(4.25), the following algorithm may be applied:

C.A.S.T.O.R.
Begin;

• Given: A training set A ∈ Rp×n with n patterns each with p elements belonging to c classes;

• Construct: the matrices E ∈ R
n×nmc, H ∈ R

mc×n, X ∈ R
(pmc)×(mnc), D ∈ R

pmc×pmc;

• Set y0, d0, η0;

For k = 1, 2, ...;

• while zk+1, yk+1, tk+1 is a solution to LCP (4.41) - (4.43) Do;

• Begin: recursion on g(x, y, t)

– while (zk+1, yk+1, tk+1) 6= (zk, yk, tk) Do;
– (zk, yk, tk)← (zk+1, yk+1, tk+1)

– Determine ∇gy(xk , yk, tk, )
∗ Begin: dichotomous search on ηk;
· (zk+1, yk+1, tk+1)← LCP (zk, yk, tk)

∗ end;

• end;

solution is (zk, yk, tk)
end;

The termination of the classification algorithm may now be proved under a consistency condition.

Theorem 4.4.9 Given a set which does not contain two identical patterns assigned to different classes, then

a correct classifier will be determined by Algorithm 4.4.2.

PROOF: If there is no juxtaposition of the patterns belonging to different classes, a feasible solution will

always exist to the problem (4.14) - (4.21). Such a solution is to assign a unique barycenter to every pattern,

with a resulting high value of the objective function.
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Given that a feasible solution exists and that the objective function has a lower bound formed from the

mean vectors to each class, an optimal solution to the problem (4.14) - (4.21) must exist.

From the results derived above, theorem 4.4.8 and the application of algorithm 4.4.2, the result follows.

4.5 Classification Properties of the Algorithm

The requirements that must be met and the proofs that if these conditions are met, then this algorithm will

provide precise classification results to coherent data sets are very similar to the ones formulated in detail

above, for the T.R.A.C.E. algorithm which in their turn are very similar to those presented for the general

pattern recognition problem in section 2.4. Thus they need not be repeated here.

4.6 Conclusions

Locally adaptive approach for classification can be considered as more general classification techniques. In

fact, with this approach a highly nonlinear separation function is achievable that allows to find particular

relations between class and variables without considering restrictive hypothesis on the data distribution.

The over/fitting problems, fit of noisy data may arise only with the k-trace routine, or for the other two

algorithms, in the presence of too small training sets or non coherent data sets.

The kernel implementation of this approach is an interesting blend between the kernel procedure, focused

on using an efficient approach on a strong hypothesis of the data, and the locally adaptive approach, without

assumption but with an higher complexity and fitting of the data.

Moreover in empirical work, when the more stringent conditions required for solving the problem cor-

rectly with one of the two pattern recognition algorithms, it is often worth while to apply kernel-trace, as it

often may produce quite accurate results and quickly, thus providing good approximations.
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CHAPTER 5

Numerical results and Applications

5.1 Introduction

Although a theoretical formulation of the algorithm is the basis for a successful classification procedure, the

test process on known classification problems is important to evaluate the generalization results and eventual

improvements.

The aim of this chapter is to give some numerical results and comparisons between the classification

algorithm studied. Moreover some of their features will be exploited to define heuristic to select a suitable

subset of elements. This will permit to obtain a comparable classification performance, using only a small

amount of training elements and reducing complexity, noise and overfitting problems.

Among this years several classification problems have been studied in different research projects, in dis-

tinct areas and the data are publicly available. This data sets have been widely used by the Machine Learning

community to compare performances of the different classification algorithms, implementations or variants.

This comparison on the same testing problem has been very useful in defining how every approach behave to

different problems and also in obtaining an insight on the problem studied. As matter of fact, as discussed in

this work, some pattern recognition problems may defect of a poor set of measurements, or feature extraction

procedure. Using different approaches these problems may arise, as the information available doesn’t allow
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any approach to obtain a high classification accuracy.

Comparing classification algorithms is a fundamental step in order to obtain an empirical insight on the

problems and on the algorithmic properties of the procedures. Individuating the particular data distribution

for which an algorithm performs better than the others can be used as an interesting starting point in order to

obtain an improved data analysis. Some examples on the basis of this idea will be given.

Several repositories of these data sets are available and the classification results obtained using different

approaches can be found in published papers.

Methods discussed in the previous Chapters have been tested on some of these benchmark data sets

publicly available. In particular, we used data from the following repositories: Univeristy of California Irvine

(UCI) Machine Learning repository [15], Odewahn et al. [102], and IDA repository [118]. These repositories

offer the possibility to easily compare the performance of different algorithms.

Comparing different classification algorithms on a common database can give a better idea about which

algorithms perform better in average. That is why tests of classification algorithms are usually carried out on

commonly accepted benchmark data sets from the machine learning scientific community.

Using these repositories is a shortcut in assessing performance values on different classification strategies

but some particular attention and evaluation of the results are needed.

In fact, these data sets usually arise from some real life application where researchers had the permission to

publish the data for academic research purposes. Each problem has its own particularities and specific data

manipulation could be needed.

Further, some considerations should be done when comparing new algorithms or new approaches on

benchmark data set. In fact, several parameters or improvements can be carried out for a specific classifi-

cation problem starting from the previously published results calculating a better parameters tuning to ob-

tain higher accuracies. The problem of the parameters selection should be considered more carefully while

choosing a pattern recognition approach. Selecting the right parameters for an algorithm can be considered,

in general, a problem as difficult as the whole classification procedure. Algorithms that doesn’t need a long

parameter selection procedure or the ones in which parametric part doesn’t affect too much the classification

performances, can be the best choice.

The most important facts to rely on an algorithm are its statistical and classification properties and its

complexity. Ad hoc examples can then be used to confirm some ideas on how the algorithm can perform in

different, but well defined, situations.
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In the following section, the procedures discussed in the previous chapters will be compared and evalu-

ated with others classification algorithms like SVMs that is considered the state of the art for classification

algorithms on these data sets. In Section 5.2 a comparison of the classification algorithm accuracy on several

benchmark data set will be given. In Section 5.3 heuristics procedures to select a subset of training elements

that allow to obtain higher accuracy and more generalizable results will be discussed.

5.2 Numerical results

In this section the accuracy results obtained applying the T.R.A.C.E., K-T.R.A.C.E. and REGEC algorithms

on benchmark data sets will be given. These data sets are useful to test new classification algorithm because an

approximate classification accuracy is known by previous applications. Their dimension is usually contained,

useful for prototypes algorithms to be tested.

The benchmark comparison will involve the algorithms considered in this dissertation. The results re-

ported in literature [7], [60], [97] of different implementation of SVMs are considered as these algorithms

reach the best results on these binary classification problems.

In order to discuss from a numerical point of view the different behavior of the studied approaches, some

artificial data sets will be described and then the selected algorithm will be tested on this data sets. Mainly,

the discussion will be focused on two artificial data sets: a combination of a bidimensional data set (banana)

and a fractal-like chessboard data set.

The classification rate for all the given accuracy results is determined by comparing the real class labels of

each data point and the labels assigned by the classifier. In order to asses the performance of the algorithm, a

cross validation technique is used. In an n cross validation, the entire data set, whose actual class membership

information is known, is divided into n random subsets of equal cardinality. One of these subsets, say subset

i, is chosen as the test set and the classifier is trained using all of the data points in the remaining subsets,

k = 1, ..., n, k 6= i. Then, all of the data points in the test set i are classified with the trained classifier.

This procedure is repeated for each subset i = 1, . . . , n and all of the cumulative classification results are

compared to the actual labels to find the overall classification rate. Usually has been considered n = 100 and

the dimension of the test sample is indicated for each instance.

In Table 5.2it is given the average accuracy obtained with each algorithm . In the first column the name of

the data set as known in literature, its number of elements, its number of feature and the number of elements
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that composes each training and test set is given. In the others columns it is shown the average accuracy, over

all the n = 100 random sample, of each of the four algorithm considered.

Dataset # data # feat Train Test C.A.S.T.O.R. K-T.R.A.C.E. REGEC SVMs
Banana 5300 2 400 4900 85.06 86.50 84.44 89.15

Breast-Cancer 277 9 200 77 64.51 67.88 73.40 73.49
Bupa 345 6 310 35 65.80 67.10 59.03 70.40

Cleveland Heart 297 13 267 30 73.70 81.90 86.05 86.80
Diabetis 768 8 468 300 67.83 72.36 74.56 76.21

Flare-Solar 666 9 400 266 60.23 61.43 58.23 65.80
Galaxy Bright 2462 14 2222 240 97.69 97.55 98.60 98.30

German 1000 20 700 300 69.50 73.60 70.26 75.90
Haberman 275 4 244 31 63.85 70.44 73.26 71.70

Heart 270 13 170 100 75.62 79.87 82.06 83.05
Ionosphere 351 34 300 51 88.30 94.20 84.77 95.40

Pima Indians 768 8 691 77 62.04 67.55 74.91 75.70
Thyroid 215 5 140 75 94.77 95.10 92.76 95.20

Votes 435 16 391 44 92.70 92.50 95.09 95.60
Waveform 5000 21 400 4600 85.40 92.70 88.56 90.10

WBC 683 9 600 83 95.70 96.60 94.30 96.40
WPBC 194 32 50 144 66.00 74.80 73.40 75.30

Table 5.1: Accuracy results obtained on Benchmark data sets with the considered algorithms. For each data
set the dimension of the entire data set, of the training and test sets are given and for each algorithm the
accuracy estimated with the described n = 100 cross validation procedure.

The results show how the algorithms considered behave, considering the generalization capabilities, sim-

ilarly on this data sets. SVMs almost always reach a slightly higher accuracy demonstrating the power of this

method on this kind of data sets. But, these data set can be considered as a small sample of classification

problems and further analysis should be developed discussing of classification algorithm. A remark should

be done about the kernel function and parameter selection for the kernel based methods. The parameter se-

lection problem can be a very hard task, but the benchmark data sets used are available since several years,

that made possible obtaining very high accuracies especially for the SVMs algorithm. These problems are

widely analyzed [52], but we consider them out of scope and some of best results found in literature are

reported for the SVMs algorithm without considering this aspect, as discussed in Chapter 3. For this reasons

the discussion will be now focused on some particular data sets, where some behavior will be more evident

and some conclusions can be done. In the next subsection we will give examples on how the kernel selection

can be a very difficult task.
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5.2.1 Artificial data sets

Benchmark data sets suffer from their empirical basis. These benchmark data refer to different problems and

data distribution but it is difficult to enlighten particular behavior of variables. In this section we consider

a particular aspect of data distribution and we will illustrate how the different techniques behave. The main

problem that will be considered, is the case in which variables distribution and the relationships with the

classes, change abruptly among the feature space.

The aim is to show a problem where data behave like described above and no prior information is given

about data distribution. The two approaches, kernel family methods and the locally adaptive approach meth-

ods, are compared.

Kernel methods, as described in Chapter 3, need considerably information on data distribution to achieve

good results. In the proposed situation Kernel methods will suffer from this lack of information because, as

mentioned on Chapter 3, kernel functions are strictly related on the problem, and moreover, as no information

is given, a general way to tackle the problem is using a kernel like the gaussian kernel, where we are forced

to keep the same relationship between the variables and the classes. On the contrary, the locally adaptive

approach can handle successfully this problem, because no changes in this relationship make the algorithm

fail. Each local relation between variables and classes is considered in the solution. This will be shown with

some examples. Another aspect to consider is how the K-TRACE procedure behaves. As described in the

previous chapter, this technique can take benefit from both the approaches, handling the data exploiting the

kernel function, where it fits properly the data, and incrementing the barycenter set where a more accurate

data representation is needed because the failure of the kernel function.

Two artificial data sets are considered in this application. The first one is a combination of seven identical

copies of the banana data set already used in the previous applications. This data set is shown in Figure 5.1.

The second application is an artificial data set where the classes are distributes in a chessboard fractal like

shape and, as this data set is two dimensional as well, its class distribution can be shown in Figure 5.4.

For this first example the classification accuracy obtained in the non combined data set are shown in Table

5.2. It is shown as for this data set SVMs outperform the other methods.

Using the combined data set it is necessary to search for the best paramenter for the gaussian kernel used

for training SVMs and k-t.r.a.c.e. In Table 5.3 the average accuracy results for each value of σ of the gaussian

kernel are shown. The value that achieve the best result is considered, in this case σ = 10 for both of the

algorithms.

103



5.2. NUMERICAL RESULTS

Figure 5.1: Combination of 7 scaled copy of the banana data set in randomly chosen part of the space

Classifier Accuracy
SVMs. 89.1

ReGEC 84.4
K-T.R.A.C.E. 86.5
C.A.S.T.O.R. 85.0

Table 5.2: Classification accuracy obtained on the combined banana data set with the considered classification
methods

Given these parameters, the results achieved with the C.A.S.T.O.R. algorithm and the K-T.R.A.C.E. are

given in Table 5.4. In this case the algorithm C.A.S.T.O.R. achieve a better classification accuracy (84.5%)

against K.T.R.A.C.E. (83.7%) and SVMs (77.1%). In this table the number of barycenters is also given in

the last column. As has been shown in Chapter 4 the kernel implementation of the T.R.A.C.E. algorithm has

the main benefit in drastically reducing the number of barycenters. In this case the number of barycenters

is reduced of just a 20% that is very low when compared to the others reduction . This lower reduction is a

good evaluation about the insufficient information tackled by the kernel function chosen. For this reason the

K-T.R.A.C.E. algorithm generate a larger number of barycenter to fit the data and obtain a better classification

accuracy.

In Figure 5.2 the classification surface obtained by the SVMs is shown for the parameter σ = 100. It is

clear that the classification boundaries for this parameter fits adequately some part of the data set and poorly

the rest of it. In this case is shown the surface where the more little scale used is well fitted. This figure shows

the difficulties of the kernel function selected to obtain a good fitting over all the data space.

On the other hand the locally adaptive approach always achieve a good fitting in every part of the space
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σ SVM K-T.R.A.C.E.
0.001 56.5 65.8

0.01 67.0 66.1
0.1 77.1 76.3

1 75.3 78.2
10 77.1 83.7

100 69.3 81.2
1000 65.0 82.0

Table 5.3: Classification accuracy varying the parameter σ for the SVM and K-t.r.a.c.e classifier

Algorithm Accuracy # Bar.
c.a.s.t.o.r. 84.5 194.3
k-t.r.a.c.e. 83.7 152.3

Table 5.4: Accuracy results and size of the barycenter set for the C.A.S.T.O.R. and K-T.R.A.C.E. algorithms

and whatever the relation between the class label and the variables is. In Figure 5.3 is shown as for the whole

space the classification algorithm c.a.s.t.o.r. fits adequately the data space achieving higher classification

results.

The other example given follows the same guidelines. This time the data set is generated using a chess-

board shape repeated in a fractal-like way reducing repeatedly by the half the size of the cell for each class.

This kind of data that are very well tackled by kernel algorithms in their standard form [7], become very

difficult to be correctly classified in this case.

In Table 5.5 the classification accuracy is given for this data set. The same kind of results are achieved.

The locally adaptive algorithms outperform the pure kernel methods. The same considerations can be made

about the size of the barycenter set generated by the two methods.

Algorithm Accuracy # Bar.
C.A.S.T.O.R. 85.31 117.4
K-T.R.A.C.E. 87.5 82.6

sc ReGEC 69.3 -
SVMs 69.5 -

Table 5.5: Classification accuracy on the fractal-like chessboard data set of the considered algorithms.
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Figure 5.2: Classification surface determined by SVM with parameter σ = 1 (the first two images) and
σ = 100. The squared region in the left pictures are zoomed out on their right to illustrate how with this
parameter with the gaussian kernel certain zones of the data set are adequately fitted while other are totally
unrepresented

5.3 Data selection methods

The aim of this paragraph is to study some techniques that allow to exploit specific features of the classifi-

cation problems in order to speed up the classification algorithms and reduce the effect on the classification

of noisy data and overfitting [13]. These techniques evaluate each training point assessing a different role

depending on certain criteria.

Two techniques will be introduced. The first one is a particular stratified sampling procedure of the train-

ing points, in order to have an estimation of the classification accuracy not considering nosy or underestimated

subclasses.

The second procedure is an heuristic approach to determine a suitable subset of the training elements, in
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Figure 5.3: As in Figure 5.2 the classification surfaces are illustrated and a part of the space is zoomed to
illustrate how the c.a.s.t.o.r. algorithm can fit adequately the whole training set without needing the tuning of
a parameter

order to obtain smoother classification boundaries, improving the classification accuracy and the computa-

tional burden of a retraining stage. In fact with this technique a very small subset of training point is chosen

to define the classification boundaries. Retraining an algorithm on such a small number of point will be an

easy task. This technique is interesting in those situation, very common, for example, in the genomic studies,

where the amount of data available is huge and new data comes out very fast, and retraining a classification

algorithm on the whole data set can be very expensive.

5.3.1 Stratified sampling procedure

This technique is strictly related to the locally adaptive approach described in Chapter 4. The basic idea

is to obtain an estimation of the classification accuracy that can be obtained if all the subclasses are well

represented in the data set. The aim of this technique is to give some estimation of the reachable classification

accuracy not considering noisy or undersampled data.

This estimation is carried out in three steps:

1. The T.R.A.C.E. algorithm is trained on the whole data set.

2. Select the elements of the data set that generate singletones.

3. Estimate the classification accuracy randomly, generating training and test set, but never allow the

elements selected in the previous step to be included in the test set.
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Figure 5.4: The fractal-like chessboard artificial data set.

This technique is called labeling in [101]. Its aim is to avoid that elements that can generate singletones,

called ”labeled”, can belong to some test sets. This means that all the elements in the biased test set are

elements that have at least another similar element in the data set. The reasons that underly this procedure

are:

• They can be considered outliers and noisy data, in this case is a good chose to eliminate them from the

test set as they will be easily classified.

• They can be rare cases that are not represented in the data set. In this case having them in the test set

they will always be wrongly classified, instead they can help to generate a more accurate classification

function being in the training set.

Some variants can be considered ”labeling” data not only those one that generate singletone but also

doubletone or more.

The advantage of this technique is to give an estimation of what the classification accuracy would be in

cases where all the elements in verification can be somehow represented by elements in the training set. This

estimation can be interesting when only a small fraction of data can be used in a preliminary phase and the

whole amount of data can be available in a second time.

108



5. Numerical results and Applications

As an example of this procedure some results from the work of Patrizi and others [101] are given in Table

5.6

Data Set Labeling T.R.A.C.E.
Breast Cancer 97.56 95.70

Bupa 75.58 65.80
German Credit 74.10 69.50

Heart 76.44 75.62
Ionosphere 95.42 88.30

Pima Indians 75.19 62.04

Table 5.6: Classification accuracy obtained with the labeling technique compared with the standard algorithm
application [101]

5.3.2 Incremental learning

Massive data set are more and more common in different fields, and so procedures that allow to evaluate only

the data that are informative, are needed. This technique reduce the training data to a substantially smaller

subset of the original size. The proposed method provides a constructive way to understand the influence of

new training data on an existing classification function.

Classification problems require fast and continuous acquisition of data in several fields, which are to be

used in training the learning system. Therefore, maintaining such systems updated may become cumbersome.

Such a reduction of the training set will allow to retrain rapidly the classification function. Further, in real life

applications, data can be affected by errors due to wrong measurements or bad class assignments. Including

high noisy data calculating the classification boundaries can affect the algorithm accuracy and increase use-

lessly the computational time. Using error affected data should be avoid to obtain a better approximation of

the classification function, but defining an element as noisy or not is an hard problem.

A classification focused approach can be defined looking for the points that allow to calculate the more

stable and accurate classification boundaries. An heuristic approach can be defined in order to tackle this

problem. This procedure has been designed as an incremental learning procedure.

The aim is to determine a small training subset that allows to achieve a better or comparable classifica-

tion accuracy, decreasing the number of training elements. This small subset allows to drastically reduce an

eventual retraining stage, when new data arise from further measurements, without having to use the whole

data set.

The incremental procedure starts from a small subset of training points and it considers, at each iteration, a
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new element to be a candidate for the final training subset. If this element allows an increasing of classification

accuracy is included in the subset, otherwise is discarded.

The method can be formally described as follows. Given a training set C ∈ R
n×m of elements belonging

to two classes defined by the labels yi ∈ (+1,−1) we divide them in two sets A = {xi ∈ C : yi = 1} and

B = {xi ∈ C : yi = −1}.

The procedure takes an initial set of points C0 and the entire training set C as input, such that C ⊃ C0 =

A0 ∪ B0, and A0 and B0 are subsets of points in C0 that belong to the two sets A and B. We refer to C0 as

the incremental subset.

Let C0 be the set of points that are selected as the initial the incremental subset and Γ0 = C \ C0 . A

classifier is trained using the subset C0 and assigning the class label to all the points in the training set C.

Let R0 be the classification accuracy and M0 be the points that are misclassified. Then, among the points in

Γ0 ∩M0 ,the point that is the worst misclassified using some distance, is selected. This point is calculated

differently depending on the classifier we are using. We defined two distances suitable for the ReGEC as in

equation 5.1 and for the T.R.A.C.E. algorithm as in equation 5.2.

Let PA0 and PB0 be the hyperplanes found by ReGEC, and Q be the set of barycenters determined by

T.R.A.C.E. trained on the initial incremental subset C0, then the first point selected is x1 such that:

x1 = xi : max
x∈{Γ0∩M0}

{

dist(x, Pclass(x))
}

, (5.1)

x1 = xi : max
x∈{Γ0∩M0}

{

dist(x,Qclass(x))
}

, (5.2)

where class(x) returns A or B depending on the class of x and Pclass(x) represent the hyperplane approxi-

mating the class of the element x and Qclass(x) is the subset of barycenters of the same class of x.

This point is the candidate point to be included in the incremental subset. This choice is based on the idea

that a misclassified point very far from its plane or its barycenter may be needed in the classification subset

in order to improve accuracy, because it can be representing a subpopulation not yet included in the training

set. We update the incremental set as C1 = C0 ∪ {x1}. Then, we classify the entire training set C using the

points in C1 to build the new classifier. Let the classification accuracy be R1. If R1 > R0 then we keep the

new subset; otherwise we reject the new point, that is C1 = C0. In both cases Γ1 = Γ0 \ {x1}. The proce-

dure repeats until the condition |Γk| = 0 is reached. The algorithm can be described in pseudocode as follows:
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Algorithm 1 Incremental Learning(C0, C)
1: Γ0 = C \ C0

2: {R0,M0} = Classify(C,C0)
3: k = 1
4: while |Γk| > 0 do
5: xk = x : minx∈{Mk∩Γk−1}

{

dist(x, Pclass(x))
}

6: {Rk,Mk} = Classify(C, {Ck−1 ∪ {xk}})
7: if Rk > Rk−1 then
8: Ck = Ck−1 ∪ {xk}
9: Γk = Γk−1 \ {xk}

10: k = k + 1
11: end if
12: end while

This procedure has been tested on the benchmark data sets previously introduced and the average classifi-

cation accuracy has been calculated. These results are shown in Table 5.7. For each data set the classification

achieved with the T.R.A.C.E. and REGEC standard techniques and their incremental implementation (called

I-REGEC and I-T.R.A.C.E. in the table) are shown. The incremental versions of the algorithm reach to im-

prove the classification accuracy obtaining an improvement up to 10%.

This improvement in the classification accuracy is due to the achievement of the initial goals of obtaining

smoother and more stable classification boundaries. In Figure 5.5 and 5.6 the classification boundaries are

shown for the two dimensional banana data set. On the left side of each figure it is represented the classifica-

tion boundaries generated by the standard application of the algorithm and on the right side the boundaries

obtained using the incremental procedure, training the algorithm only on the final incremental subset, are

shown. The figures illustrate how for both of the algorithm the boundaries looks smoother and closer to

the data distributions. In Figure 5.5, representing the ReGEC method, on the right side only the points that

represent the final incremental subset are shown. In Figure 5.6, representing the T.R.A.C.E. algorithm, the

Voronoi partition generated by the set of barycenter is drawn. From this figure it is clear how the number of

barycenters generated by the incremental procedure is drastically reduced and the clusters of each barycenter

are composed by a greater number of points.

In Tables 5.8 the results about the size of training set reduction are reported. In the first column,it is given

the name of the data sets used . In the second and third column the results for the REGEC algorithm are

shown and on the last two columns the results of the procedure of the considered locally adaptive procedure
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Dataset REGEC I-REGEC T.R.A.C.E. I-T.R.A.C.E.
Banana 84.44 86.60 85.06 87.26

Breast-Cancer 73.40 72.99 64.51 68.94
Bupa 59.03 64.06 65.80 66.21

Cleveland Heart 86.05 86.67 73.70 82.59
Diabetis 74.56 74.85 67.83 72.55

Flare-Solar 58.23 65.80 60.23 65.81
Galaxy Bright 98.60 98.54 97.69 98.05

German 70.26 73.68 69.50 72.15
Haberman 73.26 73.10 63.85 72.82

Heart 82.06 82.38 75.62 80.01
Ionosphere 84.77 91.77 88.30 89.08

Pima Indians 74.91 75.13 62.04 71.73
Thyroid 92.76 94.41 94.77 94.55

Votes 95.09 95.01 92.70 93.25
Waveform 88.56 88.92 85.40 87.72

WBC 94.30 95.97 95.70 96.63
WPBC 73.40 60.45 66.00 69.78

Table 5.7: Classification accuracy achieved by the incremental procedure applied to the T.R.A.C.E. and the
REGEC algorithms compared to their standard application

is depicted. For the ReGEC algorithm it is shown the exact number of elements that define the final eigenvalue

problem and for the T.R.A.C.E. algorithm the final number of barycenter generated by this procedure is given.

Only this result is given for this second application because the number of barycenter is the real aim for this

algorithm to be reduced. The results show how for the ReGEC procedure the number of training point selected

by the incremental procedure is in average only the 4.20% of the total number of training points available

while for the T.R.A.C.E. procedure the number of barycenter generated by the selected points are only the

16.61% of the number of barycenters generated using the whole training set.

As previously discussed, using the locally adaptive strategy the results achieved are twofold: better classi-

fication boundaries and more consistent barycenters. Having more consistent barycenters can be very useful.

In fact, in many application the number of barycenter is high compared to the number of training points and

only their separation capability can be exploited. Having more consistent barycenter allows to obtain stronger

statistical results and can be exploited also for outlier detection.

Initial points selection

In the previous section, we assumed that we have a starting set of points for the incremental learning proce-

dures. However, we have not mentioned the bias this initial set introduces. Since the initial points permanently

become a part of the incremental subset, it is intuitive that such points should be chosen carefully. In this sec-
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Figure 5.5: Classification surfaces produced by ReGEC and I-ReGEC on the two dimensional data set Banana
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Figure 5.6: Classification surfaces produced by T.R.A.C.E. and I-T.R.A.C.E. on the two dimensional data set
Banana

tion we show how the initial set of points influences the performance of the incremental selection algorithm.

Clustering techniques can be adapted to obtain better data representations [81]. To this end, we compare k

randomly selected starting points for each class, and a set of points determined by a simple k-means method

[88], for each class too. We show that it is possible to reach higher classification accuracy and a more consis-

tent representation of the training set using k-means method.

The two datasets used for the comparison have 2 dimensions, in order to show the consistency of the

k-means method over random selection graphically. From each class k points are chosen for both random and

k-means methods. The first dataset is the Banana dataset with 400 training points and 4900 test points. The

second set of points is the Chessboard dataset. It contains 16 squares, with a total of 1000 training and 5400

test points.
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Dataset REGEC I-REGEC T.R.A.C.E. I-T.R.A.C.E.
# train # train # bar # bar

Banana 129.35 23.56 400 12.70
Breast-Cancer 97.30 11.61 200 11.41

Bupa 153.80 11.79 310 19.82
Cleveland Heart 83.60 9.60 267 12.37

Diabetis 185.60 9.85 468 29.04
Flare-Solar 68.06 4.20 400 12.60

Galaxy Bright 88.70 16.50 2222 7.61
German 268.04 34.11 700 34.09

Haberman 129.22 11.14 244 11.12
Heart 52.29 8.67 170 15.83

Ionosphere 62.20 13.88 300 11.54
Pima Indians 290.92 15.08 691 27.59

Thyroid 21.57 13.41 140 8.35
Votes 60.69 15.12 391 13.45

Waveform 630.70 4.84 400 12.11
WBC 54.8 9.13 600 5.69

WPBC 67.70 22.42 50 4.00

Table 5.8: ReGEC: Number of elements needed in training for the standard ReGEC implementation and its
incremental version. For the standard implementation it is given the total number of element which compose
the training set , and for the incremental variant the average over the trial is shown. T.R.A.C.E. Number of
barycenter, averaged over the trials, calculated using the standard procedure of T.R.A.C.E. and the incremental
variant.

First, classification parameters are determined using a ten fold cross validation technique using the train-

ing and test points. An initial set of starting points is chosen a)randomly, and b)using the barycenters of the

clusters produced by the k-means method. Each set is used as input to the incremental algorithm, which re-

turns a final incremental subset of points C∗, and the final classification accuracy. Using the same parameters

we repeat the procedure of choosing initial points and running the incremental classifier 100 times for both

the random and the k-means methods as the generator of the initial sets. Let C∗
i be the final subset of points

produced in the tth repetition. Then, for each kernel produced by Ci, we classify a dense set of evenly dis-

tributed points in the rectangle that encloses the entire dataset. Let x be one of such points in the rectangle and

yi ∈ {−1, 1} be the classification result using the kernel based on Ci. Then the value ŷ = |∑100
i=1 yi|/100 is

an estimator of the probability that x is always classified in the same class. We can say that the closer ŷ is to

1, the more consistently it is classified. In Figure 5.7, white color is associated to the points for which ŷ = 1

and black for ŷ = .5 The lighter regions in Figure 5.7 are more consistent compared to dark regions, where

the points have the same probability to be classified in one of the two classes.
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In Figure 5.7, the influence of the starting point on resulting classification can be seen clearly. Banana

dataset has few clusters of data and consequently, for a choice of k = 5, the average classification accu-

racy slightly changes between random initial points, which produce a classification accuracy of 84.5%, and

k-means initial points, with accuracy of 86.6%.

In order to compare the consistency of the two initial points selection strategies, we measure the standard

deviation of the ŷ values for the points in the rectangle. The k-means method acieves a standard deviation of

0.01 compared to the standard deviation of 0.05 from the random method, which means that k-means method

has a higher classification consistency then random selection.

For the Chessboard dataset, the clusters are clearly separated for each class when k = 8. The difference

is more pronounced both in terms of classification accuracy and consistency. Random selection of initial

points could only reach a classification accuracy of 72.1 %, whereas k-means reaches 97.6 % accuracy. The

difference in classification consistency is far more evident than in Banana dataset, with a standard deviation

of 1.45 for random selection and 0.04 for k-means. We can empirically infer from the results that a knowledge

regarding the dataset and the choice of initial points influences both classification accuracy and classification

consistency. This influence may be heavier as the number of clusters increases.

We also investigated the effect of the number of initial points k for each class using k-means method on

the Chessboard dataset. In Figure 5.8, the graph on top is the classification accuracy versus the total number

of initial points 2k from both classes. It reaches its peak at 16 (for k = 8), after which it slightly decreases

and continues at a steady state of accuracy for higher values of k. This result empirically shows that there

is a minimum k, with which we reach high accuracy results. Although the decrease in the accuracy is not

significant for larger values of k, the kernel to be used in I-ReGEC unnecessarily increases. This is shown by

the bottom graph in Figure 5.8 which shows the number of points selelcted by I-ReGEC versus the nuber of

initial points.

[ht]

Again, no additional points are added to the initial 16 (for k = 8), and the number of points added are

almost the same beyond. This means that the initial set of points reaches a minimum at an ideal number of k
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5.3. DATA SELECTION METHODS

Figure 5.7: Classification consistency of I-RegGEC: Light regions show higher consistency than darker regions. Top
row shows the results from Banana dataset (k = 5), and bottom row from Chessboard dataset (k = 8). Figures on the left
are produced using a random selection of initial points, and figures on the right using k-means method.

and it grows linearly with k. One simple and practical way of finding a good k is to increase k incrementally

and detecting the lowest value of k with higher classification accuracy.
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Figure 5.8: Performance of I-ReGEC for with respect to k: Top figure shows the k vs. classification accuracy; bottom
figure shows k vs. the number of additional points included on top of the initial points.
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5.4 Conclusions

The comparisons between classification algorithms on known problem is a fundamental step in developing

precise and robust procedures. Achieving a small amount of improvement on a single benchmark data set is

not the main aim in developing a classification procedure, even though it is necessary in order to evaluate a

new procedure to address the well known problems. In this application Chapter the aim was to show how the

algorithms described in Chapters 3 and 4 behave on real data and to show their advantages and their limits.

Further, testing these technique is necessary to determine their behavior and trying to exploit their features in

order to improve the results or to implement interesting variants, focusing our attention on a particular aspect

of the problem.
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CHAPTER 6

Conclusions

6.1 Introduction

In this thesis, a definition of the Pattern Recognition and the Classification problems has been given, studying

two approaches to solve these problems.

A Pattern Recognition problem [138] is a general task where, given a set of entities, each one can be

assigned to a particular group on the basis of some features that should be represented by some measurements.

This problem can be analyzed initially from two perspectives regarding the entities and the class definition.

Each entity will be defined by a set of measurements that can be numerical or categorical, these measurements

compose a vector called pattern vector. The definition of the set of classes is a difficult problem that should

be considered in a Pattern recognition problem. This set, in fact, can be non exhaustive of all the possible

classes and can influence the conclusion of an algorithmic application. Solving a supervised classification

problem, by the other hand, means to obtain the higher classification accuracy on data of unknown class. This

task is carried out first by extracting or transforming the given measurements of the pattern vectors and then

applying the classification algorithm to determine the classification function that achieve the higher accuracy

achievable.
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6.2 Classification algorithms

Two classification approaches has been studied and developed in order to solve the Classification and the

Pattern Recognition problem. Further an hybrid method has been developed.

Kernel methods for Classification problems

A kernel classification algorithm [136] for binary classification called general proximal SVMs[90] has been

studied. The aim of this algorithm is to find the two best hyperplane or proximal surfaces that better ap-

proximate the classes distribution. Each point is then classified by calculating the minimum distance from

these hyperplanes. This method exploit the special structure of the optimization problem by defining it as a

generalized eigenvalue problem [140, 62]. This solution can be obtained solving two eigenvalue problems

[90] but has been demonstrated how it is possible to use a different regularization technique which requires

the solution of a single eigenvalue problem to find both hyperplanes [66]. The problem is, in fact, reduced to

a regularized general eigenvalue classifier which only requires the solution of a single eigenvalue problem,

and thus halves the execution time from previous implementation. This new implementation will be called

Regularized General Eigenvalue Classifier (REGEC) [66]. A parallel implementation of this algorithm [65]

has been studied and its efficiency estimated using standard message passing libraries [42, 64, 30]

Locally adaptive approach

The methods described for the Locally adaptive approach define a classification function that closely match

the whole training set. To obtain this classification function some objects that allow to represent groups of

elements are used. The method that has been described analyzed consist in calculate an optimal number of

barycenters using an iterative procedure or solving an optimization model and associate at each barycenter a

class label. An iterative version of this algorithm is presented [105, 100] and an optimization approach [109]

solving a Nonlinear Complementarity Problem which has been solved through iterating on a set of linear

complementarity problems in binary variables, by using a linear programming technique with parametric

variation in one scalar variable [106].

Hybrid algorithm

An interesting, hybrid method has been developed in order to enhance the classification accuracy and

generalization performance of the locally adaptive approach [33]. As discussed in Chapter 2, kernel methods

can be really efficient and accurate algorithm if a suitable kernel function is adopted [35]. The choice of the

kernel function and its parameters can be as difficult as solving the classification problem itself. To often
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too few information on variable distributions and in general on how the data set has been collected make

an hazardous guess a so strong hypothesis. Nevertheless some kernel functions are general enough to allow

to catch the main information about data structure to obtain satisfactory results in terms of classification

accuracy. The kernel function, in fact, is selected at the beginning of the procedure and should roughly

represent the data distribution and it fits the class separation boundaries as long as those respect this relation

and they fail when this relations change drastically among the feature space.

An interesting result obtained by this approach is that, when the adopted kernel function fitted the data

distribution the number of barycenters drastically drop, otherwise its behavior it is comparable with the non

kernel approach.

6.3 Applications

Although a theoretical formulation of the algorithm is the basis for a successful classification procedure the

test process on known classification problems is important to evaluate the procedures and to evaluate eventual

improvements.

First a comparisons on benchmark data sets has been carried out. Several repositories of this data sets are

publicly available and the classification results obtained using different approaches can be found in published

papers. In particular, we used data from the following repositories: University of California Irvine (UCI)

Machine Learning repository [15], Odewahn et al. [102], and IDA repository [118]. These repositories offer

the possibility to easily compare the performance of different algorithms.

When comparing classification algorithms on benchmark data set some considerations should be done. In

fact, usually several parameters or improvements can be carried out for a specific classification problem. It is

possible to find slightly, or some time more consistent, differences between different application of the same

algorithm because each researcher in its own study can start from the previously published results and can

find better parameters to obtain higher accuracies. The problem the parameters selection should be considered

more carefully in the chose of a pattern recognition approach. Selecting the right parameters for an algorithm

can be considered, in general, a problem as difficult as the whole classification procedure and algorithms that

doesn’t need a long parameter selection procedure or the parametric part doesn’t affect too much the classifi-

cation performances can be the best choice.

Benchmark data sets suffer from their empirical basis. These benchmark data refer to different problems
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and data distribution but it is difficult to enlighten particular but sometimes probable behavior of variables.

The main problem that has been considered is the case where variables distribution and the relationships with

the classes change abruptly among the feature space. Using this approach a comparison between the Kernel

methods and the locally adaptive approach has been carried out. In fact, kernel functions has to be strictly re-

lated on the problem to obtain good classification accuracy. On the contrary the locally adaptive approach can

handle successfully this problem by the fact that no changes in this relationship make the algorithm fail. Each

local relation between variables and classes is considered. The hybrid algorithm, k-t.r.a.c.e., developed con-

firm this results because on this problems the number of barycenters generated by this procedures is almost

equivalent to the number generated by the non-kernel method. In fat, when the considered kernel function

result inadequate to represent a local data structure the procedure generate a suitable number of barycenters

to partition adequately the feature space.

A technique that allow to exploit specific features of the classification problems in order to speed up the

classification algorithms and reduce the effect on the classification of noisy data and overfitting [13] has been

developed. Massive data set are more and more common in different fields and procedures that allow to eval-

uate only the data that are informative are needed. This technique reduce the training data to a substantially

small subset of the original size to train a classifiers. The proposed method provides a constructive way to un-

derstand the influence of new training data on an existing classification function. This procedure is designed

as an incremental learning procedure The aim is to determine a small training subset that allow achieving

a better classification. This small subset allow to drastically reduce an eventual retraining stage when new

data arise from further measurements without having to use the whole data set. The incremental procedure

start from a small subset of training points and consider at each iteration a new element to be candidate in

belonging to the training subset. If this element allow an increasing of classification accuracy is included in

the subset elsewhere is discarded.

6.4 Conclusions

In this work I have given two approaches in order to solve a Classification problem, and more in general

the Pattern recognition problem. It is not possible to rely on only one approach or algorithm to solve these

problems but it is necessary to exploit their features and properties to determine accurately the relations

between the classes and the variable of the elements in the data set.

122



6. Conclusions

Further, the reconciliation of the two approaches has been carried out formulating an applications where

the Pattern recognition algorithm discussed loose its general properties acquiring the power of avoiding over-

fitting issues in classification problems.
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Stenografi, 39:8–14, 1997.

[100] L. Nieddu and G. Patrizi. Formal methods in pattern recognition: A review. European Journal of

Operational Research, 120:459–495, 2000.

[101] L. Nieddu and G. Patrizi. Formal methods in pattern recognition: A review. European Journal of

Operational Research, 120:459–495, 2000.

[102] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zumach. Automated star/galaxy

discrimiation with neural networks. Astronomical Journal, 103(1):318–331, 1992.

[103] C. H. Park and H. Park. Nonlinear feature extraction based on centroids and kernel functions. Pattern

Recognition, 37:801 – 810, 2004.

[104] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia,PA, 1998.

[105] G. Patrizi. Optimal clustering properties. Ricerca Operativa, 10:41–64, 1979.

[106] G. Patrizi. The equivalence of an lcp to a parametric linear program with a scalar paramter. European

Journal of Operational Research, 51:367 – 386, 1991.

[107] G. Patrizi. An implementation of an intelligent library system. European Journal of Operations

Research, 64:21–37, 1993.

[108] G. Patrizi, Gabriella Addonisio, Costas Giannakakis, Andrea Onetti Muda, Gregorio Patrizi, and Tullio

Faraggiana. Diagnosis of alport syndrome by pattern recognition techniques. In Panos M. Pardalos,

Vladimir L Boginski , and Alkis Vazacopoulos, editors, Datamining in Biomedicine, pages 209 – 230.

Springer Verlag, Berlin, 2007.

[109] G. Patrizi and C. Cifarelli. Solving large protein folding problem by a linear complementarity algo-

rithm with 0-1 variables. Optimization Method and Software, 22(1):25–50, 2007.

[110] G. Patrizi, C. Cifarelli, and L. Di Giacomo. E-Service Intelligence, Methodologies, Technologies and

applications, chapter Learning the nonlinear dynamics of cyberlearning, pages 125–256. Springer,

2007.

133



BIBLIOGRAPHY

[111] G. Patrizi, C. Moscatelli, C. Manna, and L. Nieddu. Pattern recognition methods in human assisted

reproduction. International Transaction in Operational research, 11:265 – 379, 2004.

[112] G. Patrizi, L. Nieddu, P. Mingazzini, F. Paparo, Gregorio Patrizi, C. Provenza, F. Ricci, and L. Memeo.

Algoritmi di supporto alla diagnosi istopatologica delle neoplasie del colon. A.I, 2 (june), 2002.

[113] G. Patrizi, Gregorio Patrizi, Luigi Di Ciocco, and Claudia Bauco. Clinical analysis of the diagnostic

classification of geriatric disorders. In Panos M. Pardalos, Vladimir L Boginski , and Alkis Vaza-

copoulos, editors, Datamining in Biomedicine, pages 231 – 258. Springer Verlag, Berlin, 2007.

[114] J. Pfanzagl. Theory of Measurement. Physica-Verlag, Wien, 1971.

[115] W. L. Poston and D. J. Marchette. Recursive dimensionality reduction using fisher’s linear discrimi-

nant. Pattern Recognition, 31:881 – 888, 1998.

[116] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms. Data Min. Knowl.

Discov., 3(2):131–169, 1999.

[117] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Annals of Mathemat-

ical Statistics, 27:832–837, 1956.

[118] J.Weston B. Schlkopf S. Mika, G. Rtsch and K. R. Mller. Fisher discriminant analysis with kernels.

IEEE Neural Networks for Signal Processing, IX:41–48, 1999.

[119] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press, New York, NY, 1992.

[120] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific and Technical,

Harlow, England, 1988.

[121] M. Schatzman. Numerical Analysis: A Mathematical Introduction. Clarendon Pres, Oxford, 2002.

[122] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R.Müller, G. Räsch, and A. J. Smola. Input space
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