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Abstract

In this paper a semion-line algorithm for scheduling multiprocessor tasks

with partial information is proposed. We consider the case in which it is
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possible to exploit probabilistic information and use this information to ob-

tain better solutions in comparison with standard non clairvoyant on-line

algorithms. A wide computational analysis shows the effectiveness of our

algorithm. Moreover, we also consider a test framework with a continuous

generation of tasks in order to study the behavior of the proposed approach

in real applications, which confirms the efficiency of our approach.

Keywords: Multiprocessor Task Scheduling, Semion-line algorithm, Compu-

tational Analysis.

1 Introduction

Several applications in the field of telecommunications, Internet and computer sci-

ence are calling for new paradigms of decision-making, mathematical models which

formalize properly the problems and appropriate algorithms to quickly compute the

effective allocation of resources to tasks over time. In particular, a new demand

is arising for the development of representative and realistic models of real world

scheduling systems. For instance, many real communication services are character-

ized by a demand which is generally subject to fluctuations. For these problems

even though some specific trends might be detected over the long run, fluctuations

of arrivals or requests for services generate an overload of the system in the short

run. To insure the quality of services, it is fundamental to recover quickly from

these fluctuations, keeping the load variations of the system as smooth as possible.

For this class of problems, dynamic models which are able to capture this specific

aspect can be one key of success.

2



Note that information on the demand and its trends over time are now available

for many real problems. For instance, referring to the telecommunication and In-

ternet applications, dozens of network management tools are available to monitor

telecommunications systems and these might be used to detect traffic volume fluc-

tuations. They are designed to provide automated support for some or all network

management functions. They enable the network manager to monitor important

devices and typically report configuration information, traffic volumes and error

conditions for each device. All of this information can be analyzed to diagnose

patterns [14]. Combining data bases and data mining techniques with these tools

allows us to acquire information on patterns of demand and, in some special cases,

to find a good approximation of the complex stochastic processes which provide the

information.

To address the above problems, in this paper we study a semion-line multiproces-

sor task scheduling (MTS) problem. The MTS problem deals with the scheduling of

a set T = {1, . . . , n} of multiprocessor tasks on a set M of m dedicated, independent

parallel processors necessary for their execution. In particular, we consider instances

where tasks are generated by known stochastic processes (we have information on

the process of arriving tasks). To each task is associated a release time (ready time,

rj), i.e., the task’s arrival time in the system, and a unitary task processing time

(pj = 1, ∀j ∈ T ). We minimize the makespan Cmax = maxj Cj, where Cj denotes

the completion time of task j under the assumption that preemption is not allowed.

Each task requires a subset of processors fixj drawn from M for its execution. Each

processor can work on at most one task at a time, and each task j ∈ T must be
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simultaneously processed by all the processors in fixj. We can denote the described

problem with P |semion-line, f ixj, pj = 1, rj|Cmax. To the best of our knowledge,

this version of the semion-line multiprocessor task scheduling problem is new in the

literature.

To give an example of how the proposed model represents the class of problems

here described, we consider the Wavelength Division Multiplexing (WDM) decision

problem. In WDM network technology, there is a coordination problem among

nodes of the network that wish to communicate with each other. The main feature

of broadcast WDM local area networks is the so-called one-to-many transmission or

multicasting ability [1], as depicted in Figure 1. That is, a transmission by a node

of the network on a given channel (wavelength) is received by all nodes listening

simultaneously to that channel at that point in time [19]. Since the number of

channels may be less than the number of nodes and two or more nodes may want

to send data packets to the same destination node, coordination among nodes that

wish to communicate with each other is required.

Workstation

Multicast

Unicast

1
2

3

5 4

Figure 1: A passive-star-based local optical WDM network

4



Figure 2: Multi-destination data packets and a transmission schedule.

The correspondence between the WDM decision problem and multiprocessor

task scheduling is given: nodes correspond to processors, and multi-destination data

packets to dedicated tasks(for an illustration see Figure 2). The objective function

of minimizing the schedule makespan of dedicated tasks corresponds to minimizing

the overall transmission time, i.e. the time needed to send all data packets out.

Another field where there is a need for efficient algorithms with the above de-

scribed characteristics is the replication of data in different storage systems in Data

Grid Environments [12]. In fact, in such problems, it could be necessary to make

several replicas of a dataset available to the Grid, and such data should be synchro-

nized and consistent, i.e., up to date. An efficient replication system should send,

on request, a dataset (i.e., tasks) to a number of sites (i.e., processors), listed in a

replica catalogue, maintaining synchronization.

The main point of this paper is to introduce new aspects in the multiprocessor

task scheduling model in order to capture the main features of the real applications

described above, which are inherently dynamic and stochastic. In particular, we
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propose a simple algorithm to handle the fluctuations of the demand for services

as efficiently as possible. Especially in Internet applications where customers are

spread out all over the world and may request services at any time, the aspect of

recovering from these fluctuations is really relevant.

In §2, we describe the different paradigms for MTS decision problems with re-

spect to the information available. The state of the art for all the paradigms we

introduce is also given. In §3 we present an algorithm, named SDSAT UR, to solve

instances of the semion-line version of the MTS problem. This algorithm has as its

core subroutine a modified version of the DSATUR algorithm proposed by Brelaz [6]

to solve the coloring problem. The quality of solutions computed by our algorithm

is evaluated by comparing it with a lower bound based on a maximal clique [9]. To

verify the advantages of exploiting information, we also provide a comparison with

an existing algorithm for on-line MTS proposed by Caramia et al. [7] in §4. Finally,

in § 5, we give some final remarks.

2 MTS models with respect to available informa-

tion: state of the art

We here highlight the different strategies and decision-making processes for sched-

uling tasks in view of the information available over time. Any MTS problem can

be either a one-stage or a multi-stage decision problem. In the former case, all the

decisions regarding tasks to be scheduled are taken at a single point in time. This

is the case of the deterministic off-line version of the MTS problem. In this version
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of the problem, the decision maker knows about all the tasks to be scheduled and

their features (processing and ready times and the subset of requested processors)

in advance.

There is an extensive literature on multiprocessor task problems with the fixj

option, see [11] for a complete survey on results. Hoogeveen et al. [16] proved that

the version of the problem P3|fixj|Cmax is already strongly NP-hard. Moreover,

even in the case of tasks with unitary processing times (P |fixj, pj = 1|Cmax) there

is no polynomial approximation algorithm with a performance ratio smaller than

4/3 (unless P = NP). However, if the number of processors m is not part of the

problem, i.e., Pm|fixj, pj = 1|Cmax, then the problem is solvable in polynomial

time. Later, Amoura et al. [2] proposed a polynomial time approximation scheme

for Pm|fixj|Cmax and Bampis et al. [4] extended this result to a polynomial time

approximation scheme for Pm|fixj, rj|Cmax. In this framework, the best approxi-

mation algorithm for the P3|fixj|Cmax is the 9/8-approximation algorithm by Chen

and Huang [10]. Recently, Fiskin et al. [13] extended the negative results presented

in [16] proving that P |fixj, pj = 1|Cmax cannot be approximated within a factor of

m
1

2
−ǫ, for some ǫ > 0, unless P = NP.

In the multi-stage decision problem, the allocation of tasks to processors is de-

cided dynamically at different points in time. At each point in time, the decision

maker has complete information only on the tasks available in the scheduler and

none on those not available yet. Moreover, decisions on scheduled tasks cannot be

reconsidered in later stages. This version of the problem is known as on-line MTS.

More formally, given an input instance T ={1, 2, . . . , n} of tasks to be scheduled,
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ordered according to a non decreasing order, an algorithm A is said to be on-line in

processing T if all the following conditions hold:

1) A processes tasks in the order given by the list T ;

2) A processes each task i without knowledge of any task j, j ≻ i;

3) A never re-processes a task which has already been processed.

Obviously, we cannot expect to minimize the makespan scheduling tasks on-line

as in the case of the off-line decision problem.

The quality of an on-line or semi-online algorithm A is measured by its com-

petitive ratio c, defined as the smallest number such that for every list of tasks I,

A(I) ≤ c · OPT (I), where A(I) denotes the makespan achieved by algorithm A

for scheduling the tasks in I and OPT (I) denotes the corresponding makespan of

some optimal schedule.

Few results are known for on-line MTS. Bampis et al. [3] presented a 2
√

m-

competitive algorithm for P | online, f ixj, pj = 1|Cmax and a (2
√

m + 1)-competitive

algorithm for P | online, f ixj, pj = 1, rj|Cmax if the maximum number of processors

requested by a task is bounded by a given constant, and Caramia et al. proposed

some algorithms evaluated by computer simulations [7] and some lower bounds [8].

Among the two paradigms of decision-making described above, many others

could be specified according to the information available. As mentioned in § 1, in

many real practical problems, we have neither complete knowledge of tasks, as in

the off-line MTS, nor complete ignorance of tasks as in the on-line MTS. Often

the decision maker has a certain degree of knowledge on tasks. Indeed, current
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technologies allow us to record the arriving tasks and store this large amount of

data in databases. Using statistical and data mining techniques is then possible to

ascertain probability distributions on the tasks’ arrival time. Therefore, with respect

to the on-line problem, some further information on tasks is available which allows

us to design algorithms which perform better. This class of problems, where at least

one of the on-line conditions is relaxed, is usually called ”semion-line”.

Few semion-line algorithms have been considered in the literature. For example,

in [18] and [20] the algorithm schedules tasks ordered by processing times, and

in [15] some knowledge on the processing times is used. In both the mentioned

cases, condition 2 is violated. In order to confirm the vagueness of the semion-line

concept, a problem which belongs to neither of the above conditions is considered

in [17]. Herein, we violate condition 2, introducing the following hypothesis:

Semion-line hypothesis Probability distributions on the arrival time of tasks

are known. We also suppose that for certain tasks such probabilities are negligible,

i.e., it is unlikely that they will arrive in the scheduler. F = {τ1, ..., τ|F |} is the set

of tasks which have a significant probability.

Then we define a probability distribution p1, ..., p|F | and we assume that each

of the tasks arriving in the system in the future has probability pj to be equal to

τj, independent of other arrivals. The number nt of tasks arriving in the system

at time t is moreover distributed in a memoryless way, i.e. assuming a Poissonian
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distribution with parameter λ for each time t:

P (nt = n) =
λn

n!
e−λ ∀t < Rmax

where Rmax is a given fixed parameter, equal to the maximum ready time allowed

for the task arrival process. Hence the number of tasks in each instance is not fixed.

Note that in many practical contexts (mainly in telecommunications problems) the

Poisson distribution is a good approximation of the real distribution of arrivals.

3 An algorithm for the semion-line MTS problem

In this section we present an algorithm to solve the semion-line MTS. The core sub-

routine of this algorithm is a modified version of the DSATUR algorithm proposed

by Brelaz [6] to solve the coloring problem (see Table 1 for a brief description). In

MTS problems it is common to represent the relationship between tasks and proces-

sors by means of an undirected graph in which each node is associated with a task

and an edge between two nodes exists if, and only if, tasks associated with those

nodes share at least one (equal) processor. More formally, we introduce a graph

G(VG, EG), VG being its node set and EG its edge set, where (i, j) ∈ EG if, and

only if, fixi ∩ fixj 6= ∅, ∀i, j ∈ VG. The graph G is usually called an incompatibility

graph. From now on, we will use T and VG (or task and node) interchangeably when

no confusion arises.

For the semion-line MTS, as well as for the on-line version, the incompatibility

graph becomes available over time, since we do not know which tasks will come
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Procedure DSATUR

1 Arrange vertices by decreasing order of degrees
2 Color a vertex of maximal degree with color 1
3 Choose a vertex with a maximal saturation degree. If there is an equality,

choose any vertex of maximal degree in the uncolored subgraph.
4 Color the chosen vertex with the least possible (lowest numbered) color.
5 If all vertices are colored, stop. Otherwise return to 3.

Table 1: The procedure DSATUR

afterwards. Therefore, we define the incompatibility subgraph Gt of G at each time

t, corresponding to those tasks j ∈ N with rj ≤ t and not yet scheduled. This

implies that the set VGt
⊆ VG of tasks in the system must be updated dynamically,

adding tasks as they arrive and deleting those already scheduled at each point in

time.

The Brelaz’s algorithm has already been used for the on-line MTS presented in

[7]. This algorithm, that we will simply call DSAT UR from now on, finds a feasible

coloring of Gt at each iteration, i.e., it finds an admissible partition of Gt in stable

sets. At each point in time (iteration), DSAT UR schedules all the tasks which

belong to the highest cardinality stable set.

3.1 Algorithm SDSAT UR

As mentioned in Section 2, we select in the set of the possible choices C, a subset

F ⊂ C of tasks with an associated distribution probability for each task and we

suppose that their arrivals are independently distributed with the above mentioned

probability distribution.
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Hence, each task j has a probability pj, with
∑

j∈F pj = 1. Once such values are

stated, we can define the weight wmi of a machine i as the sum of the probabilities

that such machine will be requested by the tasks in F :

wmi =
∑

j∈F

pj · x(i)
j (1)

with x
(i)
j a vector of length |F |, with x

(i)
j = 1, if mi ∈ fixj, x

(i)
j = 0 otherwise.

We define the weight wj of each task j as the sum of the weights of the machines

i ∈ fixj requested by the task j:

wj =
∑

i∈fixj

wmi (2)

Example 3.1. Let us consider a simple on-line instance composed by tasks A, B and

C, with processor requirements as fixA = {m1,m2,m3,m5}, fixB = {m1,m2,m4}

and fixC = {m3,m6}. If F is composed of only the three tasks, i.e. F = {fixA, f ixB, f ixC}

and they have a probability pA = 0.35, pB = 0.40 and pC = 0.25 respectively, then

wm1 = (pA + pB) = 0.75, wm2 = 0.75, wm3 = 0.60, wm4 = 0.40, wm5 = 0.35,

wm6 = 0.25. With these values it is possible to compute the weights of the tasks as

wA = wm1 + wm2 + wm3 + wm5 = 2.7, wB = 1.9 and wC = 0.85.

Considering this set of values, we could imagine a scheduler that knows F and

the distribution of probability for each task. The scheduler computes the r stable

sets Cl, with l = 1, . . . , r at each point in time and evaluates the weights W (Cl) for

each of such sets. The set of tasks with the highest value of such weight among all

the stable sets is scheduled.
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Note that, in order to avoid unnecessarily idle machines, we compare only the

color classes with maximum cardinality, so among classes with the same maximum

cardinality, it selects the heaviest. The idea underlying this procedure is the fact

that a task with a high weight requires machines which will be requested by future

tasks with a higher probability, and therefore it is better to schedule it first.

The algorithm we introduce to solve the semion-line MTS, called SDSAT UR

(Semion-line DSATUR), comes from DSAT UR plus the probabilistic knowledge of

the arrival process. Algorithm details are described in Table 2.

Algorithm SDSAT UR
0 Load the weights of the tasks in F ;
1 t = 0, St = ∅;
2 If St = V (G) then stop, i.e., all the tasks have been scheduled;
3 Compute Gt where V (Gt) = j ∈ V (G)|rj ≤ t \ St is its node set;
4 Color Gt by means of the procedure DSATUR, obtaining p

color classes C1, . . . , Cp and compute
the weights W (Cl) for l = 1, ..., p (weighted stable sets);

5 Define Ct as the maximum weighted stable set Cl,
with l = 1, . . . , p. Schedule Ct at time t;

6 t = t + 1, St = St−1 ∪ Nt−1, go to 2.

Table 2: The Algorithm SDSAT UR

The main differences between the two algorithms DSAT UR and SDSAT UR

are in Step 4 and 5 in which instead of computing and selecting the maximal car-

dinality color class, we compute and select the highest weighted color class, where

weights are loaded at the first step.
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4 Computational Experience

In this section, the computational results of the algorithm on instances of different

sizes of MTS problem are given.

We generated different sets of instances by varying the following problem input

parameters: n ∈ {50, 100, 200}, m ∈ {20, 30}, |F | = 40, Rmax ∈ {6, 12, 20, 25}

and k ∈ {6, 8, 12, 16}, where Rmax and k are respectively the maximum ready time

for a task, and the maximum number of processors that can be associated with a

task. In particular, we implemented the following instance generator, which works

as described in Table 3.

Algorithm GEN

1 Set the four parameters n, m, Rmax and k;
2 Create the tasks in F and generate probabilities and weights;
3 For i = 1 to 100 do

- extract n tasks, randomly chosen in F , according to the probability
distribution pj;

- assign to each task j a ready time rj, with 0 ≤ rj ≤ Rmax,
according to a Poisson distribution;

- build the incompatibility graph Gi.

Table 3: The instance generator

For every choice of n, m, Rmax and k, we generated one hundred graphs (see 4.1

for a discussion on this choice) using only tasks extracted from F and we assigned to

each of them a ready time with independently distributed values, which means that

they are generated according to a classical Poisson distribution. The parameter λ

(the average rate of arrivals of the Poisson distribution) introduced in Section 2 is

clearly related to Rmax by λ = n
Rmax

.
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When all the data are collected, the program generates the one hundred graphs,

stored in the well known DIMACS format files. As we said at the beginning of this

Section, we considered several test problems, and for a fixed data set, the algorithms

were all tested on the same instances. In particular, for its computation DSAT UR

considers only the incompatibility graph, instead, SDSAT UR, considers also the

weights of each task.

The algorithms were implemented in the C language, compiled with the GNU

compiler GCC 3.4.1 with the -o3 option switched on and tested on a PC Pentium 2

GHz with Linux OS.

4.1 Computational results

In this section we present the results of the SDSAT UR algorithm. We compare our

results with those provided by the DSAT UR algorithm and the first fit algorithm

(FFS)) presented in Bampis et al. in [3], which is a greedy on-line algorithm

and schedules tasks following a FIFO rule. The authors proved that the FFS

algorithm has a guaranteed performance when |fixj| is bounded by some constant

k, more precisely is k-competitive for P | online, fixj, pj = 1|Cmax. Moreover, for

each instance, we compute a lower bound LB based on the algorithm of Carraghan

and Pardalos [9] with a stopping criterion based on halting the algorithm at 10,000

iterations. Then, LB is taken as the largest maximal clique computed within these

iterations. The lower bound is considered in order to make the comparison more

meaningful.

Selected experiments on the values achieved by the four algorithms are reported
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from Table 4 to Table 7, where in the first three columns the makespan achieved by

the algorithms FFS, DSAT UR (CD
max) and SDSAT UR (CSD

max) is reported. LB

is the lower bound and in the next two columns we show the absolute differences

CD
max−CSD

max and, finally, the relative improvement achieved with respect to the lower

bound.

As general remarks about the numerical results we obtained, we want to outline

that the makespan achieved by SDSAT UR is slightly better than the makespan of

DSAT UR, but the absolute difference is in general small. However, also the abso-

lute differences between DSAT UR and the two bounds (FFS and LB) are already

quite small. Therefore, we listed the relative improvement due to SDSAT UR. This

improvement is in some cases really dramatic. Such improvement is bigger when

the number of maximum value k of requested machines in each task is bigger. This

has a quite evident intuitive counterpart: the more the single task tends to require a

large number of machines, the more effective a strategy that takes into account the

probability of the future arrivals. In many cases the performance of SDSAT UR

are really near to the lower bound when k is large.

For the sake of completeness, we report in Table 8 the CPU times achieved for

each run performed. As was predictable, harder instances take more CPU time

to complete the whole set of tasks. Nevertheless, each decision stage is always

performed instantaneously, so, such long times refer only to the length of the exper-

iments.

Since we are evaluating the performance of the algorithm on random generated

instances, one question remains open: do the completion times CD
max and CSD

max have
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Rmax k FFS CD
max CSD

max LB CD
max- CSD

max
CSD

max−LB

CD
max−LB

6 6 38.66 37.26 37.14 36.68 0.12 0.21
12 6 37.63 36.01 35.66 34.38 0.35 0.21
20 6 40.07 38.52 38.15 36.85 0.37 0.22
25 6 36.90 35.78 35.22 32.77 0.56 0.19
6 8 46.51 44.52 44.29 43.63 0.23 0.26
12 8 44.17 43.17 42.75 42.08 0.42 0.39
20 8 47.17 45.65 44.66 43.17 0.99 0.40
25 8 44.68 43.85 43.13 41.63 0.72 0.32
6 12 58.63 57.42 57.26 56.97 0.16 0.36
12 12 58.60 57.45 57.10 56.83 0.35 0.56
20 12 67.04 66.67 66.11 65.58 0.56 0.51
25 12 72.16 71.64 71.09 70.68 0.55 0.57
6 16 86.64 86.57 86.43 86.38 0.14 0.74
12 16 71.17 70.22 69.64 69.51 0.58 0.82
20 16 76.34 75.96 75.15 75.06 0.81 0.90
25 16 76.58 76.54 75.68 75.65 0.86 0.97

Table 4: Results for makespan for n = 100, m = 20 (average value of 100 instances).

the same probability distribution? If this is the case, then the observed discrepancies

between the two completion times is the effect of a statistical fluctuation. We show

how the choice of the number of tasks we made (one hundred, see above) is such that

the probability of observing our results assuming the same probability distribution

for CD
max and CSD

max is negligible for all the values of the parameters. Hence, we give

evidence that the two algorithms have different completion times.

To do this, observe that if CD
max and CSD

max have the same probability distribution

we have to assume that there exists a probability p defined as

P (CD
max > CSD

max) = P (CSD
max > CD

max) = p
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Rmax k FFS CD
max CSD

max LB CD
max- CSD

max
CSD

max−LB

CD
max−LB

6 6 29.43 28.04 27.94 27.22 0.10 0.12
12 6 32.55 31.21 30.66 28.73 0.55 0.22
20 6 33.59 32.70 32.40 31.06 0.30 0.18
25 6 30.60 29.56 29.14 25.84 0.42 0.11
6 8 34.79 33.19 33.01 32.06 0.18 0.16
12 8 33.39 32.21 32.07 31.10 0.14 0.13
20 8 43.40 42.09 41.57 40.20 0.52 0.28
25 8 45.10 44.43 43.98 42.56 0.45 0.24
6 12 54.16 52.56 52.36 51.96 0.20 0.33
12 12 58.00 57.30 56.99 56.76 0.31 0.57
20 12 56.81 56.00 55.44 54.64 0.56 0.41
25 12 49.44 48.53 47.82 46.57 0.71 0.36
6 16 55.87 54.69 54.44 54.05 0.25 0.39
12 16 68.84 68.28 67.95 67.49 0.33 0.42
20 16 77.96 77.81 77.03 76.90 0.78 0.86
25 16 68.14 67.67 67.09 66.87 0.58 0.73

Table 5: Results for makespan for n = 100, m = 30 (average value on 100 instances).

and therefore

P (CSD
max = CD

max) = 1 − 2p

Assuming that the different tasks are independent, we can easily write the prob-

ability of seeing in a series of 100 experiments, that n0 times the two algorithms

have the same completion time, nD times SDSAT UR outperforms DSAT UR, i.e.

CD
max > CSD

max, and nS times DSAT UR outperforms SDSAT UR, i.e. CD
max < CSD

max.

This probability has the following form

P (n0, nD, nS) = pnD+nS(1 − 2p)n0
100!

n0!nD!nS!
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Rmax k FFS CD
max CSD

max LB CD
max- CSD

max
CSD

max−LB

CD
max−LB

6 6 71.44 69.09 68.72 67.71 0.37 0.27
12 6 84.12 81.14 80.92 79.84 0.22 0.17
20 6 71.03 69.04 68.56 67.55 0.48 0.32
25 6 86.94 85.37 84.74 83.82 0.63 0.41
6 8 99.08 96.64 96.52 96.14 0.12 0.24
12 8 88.25 85.95 85.52 85.05 0.43 0.48
20 8 75.33 72.84 72.47 71.39 0.37 0.26
25 8 98.96 95.60 95.20 94.18 0.40 0.28
6 12 126.07 125.01 124.75 124.69 0.26 0.81
12 12 109.01 107.51 107.22 107.12 0.29 0.74
20 12 123.08 122.03 121.69 121.60 0.34 0.79
25 12 135.19 134.15 133.55 133.45 0.60 0.86
6 16 139.03 138.20 137.96 137.94 0.24 0.92
12 16 174.44 174.39 174.25 174.25 0.14 1.00
20 16 167.64 167.28 166.92 166.87 0.36 0.88
25 16 158.40 157.44 156.87 156.80 0.57 0.89

Table 6: Results for makespan for n = 200, m = 20 (average value on 100 instances).

As can be seen by our results, the value of nS is always zero, while nD > n̄ = 48.

We will use this value in the following discussion since the probability of obtaining

this kind of result manifestly decreases with nD. Hence, the probability that our

results are the consequence of a statical fluctuation, can be bounded by

P (100 − n̄, n̄, 0) = pn̄(1 − 2p)100−n̄ 100!

(100 − n̄)!n̄!

It can immediately be shown that this probability has its maximum in p for p = p̄ =

n̄/200. Observing now that, by Newton binomial formula, for all p, nD, n0 we have

pnD(1 − p)n0
100!

n0!nD!
≤ 1
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Rmax k FFS CD
max CSD

max LB CD
max- CSD

max
CSD

max−LB

CD
max−LB

6 6 54.63 52.42 52.06 50.66 0.36 0.20
12 6 53.88 52.12 51.65 50.01 0.47 0.22
20 6 51.51 49.80 49.23 46.70 0.57 0.18
25 6 48.59 47.94 47.53 46.05 0.41 0.22
6 8 75.18 71.94 71.74 70.45 0.20 0.13
12 8 72.46 69.12 68.41 65.40 0.71 0.19
20 8 76.91 73.94 73.51 71.21 0.43 0.16
25 8 70.19 68.34 67.92 66.83 0.42 0.28
6 12 101.14 99.84 99.67 99.47 0.17 0.46
12 12 127.08 126.60 126.48 126.45 0.12 0.80
20 12 143.39 143.16 142.93 142.83 0.23 0.70
25 12 105.11 104.01 103.74 103.32 0.27 0.39
6 16 140.04 139.33 139.08 138.93 0.25 0.62
12 16 118.21 116.91 116.68 116.60 0.23 0.74
20 16 136.86 136.16 135.97 135.92 0.19 0.79
25 16 153.94 153.03 152.42 152.38 0.61 0.94

Table 7: Results for makespan for n = 200, m = 30 (average value on 100 instances).

we can write

P (100 − n̄, n̄, 0) ≤
[

1 − 2p̄

1 − p̄

]100−n̄

and this probability is absolutely negligible (< 1.5 · 10−9) for the observed value of

n̄.

Using this result, we could easily compute the expected values of the makespan

CSD
max for a certain test problem, say E[CSD

max], as the difference of the E[CD
max] and

the value of the difference CD
max − CSD

max obtained experimentally. For instance, if

we consider n = 100, m = 30, Rmax = 25 and k = 12 in Table 5, we obtain the

difference CD
max − CSD

max = 1.38 and, finally, that E[CSD
max] = E[CD

max − 0.71]
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Figure 3: Difference between DSAT UR and SDSAT UR values along the 100
instances, for n = 100, M = 20, Rmax = 20 and k = 12.

4.2 Further results with a continuous generation of tasks

We here consider instances where tasks are generated in a continuous fashion with

a wider time horizon.

In order to test this situation, we implemented a simulation framework in which a

continuous process of task generation is created and the three algorithms SDSAT UR,

DSAT UR and FFS are compared on the same generated tasks. Throughput, av-

erage lengths of the queue and average waiting times in the queue are considered as

performance indicators. Moreover, it has the capability of changing the value of λ

during the simulation, i.e., to generate the fluctuation of the arrival rate of tasks.

On the following figures we show the better performances of SDSAT UR in

terms of the queue length and mean waiting time of tasks before being processed.

The advantage of the SDSAT UR algorithm in terms of queue length is evident.
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n = 100 n = 200
m = 20 m = 30 m = 20 m = 30

Rmax k CD
max CSD

max CD
max CSD

max CD
max CSD

max CD
max CSD

max

6 6 0.055 0.075 0.031 0.053 1.305 1.425 0.503 0.619
12 6 0.042 0.064 0.030 0.051 1.578 1.721 0.272 0.400
20 6 0.029 0.049 0.017 0.041 0.636 0.819 0.188 0.305
25 6 0.017 0.037 0.011 0.033 1.030 1.163 0.093 0.210
6 8 0.131 0.173 0.055 0.077 3.292 3.340 1.363 1.492
12 8 0.065 0.089 0.026 0.047 1.655 1.818 1.349 1.475
20 8 0.058 0.083 0.046 0.075 0.728 0.887 0.845 0.990
25 8 0.001 0.012 0.039 0.070 1.714 1.851 0.335 0.498
6 12 0.242 0.271 0.235 0.255 5.717 6.098 3.070 3.331
12 12 0.164 0.193 0.184 0.220 3.182 3.674 3.874 4.188
20 12 0.177 0.217 0.122 0.143 3.566 3.853 5.012 4.882
25 12 0.172 0.248 0.060 0.088 3.949 4.761 1.781 1.834
6 16 0.599 0.824 0.246 0.284 7.012 8.653 6.989 7.097
12 16 0.286 0.422 0.339 0.396 10.160 14.858 3.916 4.156
20 16 0.246 0.402 0.319 0.485 7.701 12.005 4.569 5.072
25 16 0.209 0.321 0.168 0.228 5.913 8.767 5.431 8.053

Table 8: CPU time (average value on 100 instances).

Differences in queue length between the two models increase steadily over time as

it is possible to see in Figure 4. A similar trend is shown by the waiting times, see

Figure 5. The same statistics are reported in for the case of the variable arrival

rate. In particular, we changed the parameter λ (from 4 to 8) at two different time

instants, t = 300 and t = 600 for 25 time periods. Obviously, the number of tasks

in queue increases significantly during this arrival time peek period (see Figure 6).

Moreover, it is possible to infer from the figure that SDSAT UR is able to reduce

the negative effect of the fluctuation rapidly. With regards to the mean waiting time

of tasks (see Figure 7), there is a reduction during the peek periods because of the

increased number of tasks in queue. However, similar to the queue length statistics,
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Figure 4: Length of the queues for M =
100, k = 16, |F | = 50, λ = 4

Figure 5: Waiting time of the queues
for M = 100, k = 16, |F | = 50, λ = 4

Figure 6: Length of the queues for M =
100, k = 16, |F | = 50, and variable
lambda

Figure 7: Waiting time of the queues
for M = 100, k = 16, |F | = 50, and
variable lambda

with SDSAT UR, tasks wait for a shorter time, on average.

For the sake of completeness, note that the statistics for FFS have not been

reported because they are too poor with respect to the corresponding statistics of

the other two algorithms.

5 Conclusions

In this paper, we show the advantage of exploiting available information in decision

problems. In particular, we give an example with the semion-line multiprocessor
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task problem (MTS) for which we provide a new paradigm for decision-making. We

implement an algorithm (SDSAT UR) which is a modified version of the DSATUR

algorithm proposed by Brelaz [6] to solve the semion-line MTS problem. We showed

the advantage of using the additional information that is available, comparing the

results with those provided by the on-line algorithm, which by definition is an algo-

rithm which does not exploit all the available information.

SDSAT UR provides better performance in terms of makespan, queue length

and mean waiting time. Especially the last two statistics, in real applications,

are considered as measures of efficiency. It is important to note that the makespan

reduction gained with the SDSAT UR algorithm is even more significant if measured

in terms of the percentage deviation of the solution from the lower bound computed

by the Carraghan and Pardalos algorithm [9].

The quality of the results shows the possible benefits that can be acquired for-

malizing new models and paradigms for decisions which exploit all the available

information.
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