
A polynomial algorithm for partitioning a tree

into single-center subtrees to minimize flat service

costs

N. Apollonio∗ I. Lari∗ J. Puerto† F. Ricca‡

B. Simeone∗

In memory of Stefano Pallottino

Abstract

This paper deals with the following graph partitioning problem: given
a graph with n nodes, p of which are prescribed to be centers (the re-
maining nodes are called units), the goal is to find a partition of the set
of nodes into connected components containing only one center each, so
as to minimize the total assignment cost of units to centers. This prob-
lem is known to be NP-hard in general graphs, and it is shown here to
remain such even if the assignment cost is monotone and the graph is bi-
partite. Therefore, we specialize on tree graphs to derive polynomial time
algorithms. For this class of graphs we provide several reformulations of
the problem as integer linear programs. Moreover, we develop a dynamic
programming algorithm, whose recursion is based on solving sequences
of minimum weight closure problems, that solves the problem on trees in
O(n2p).

1 Introduction

The problem of assigning units to centers arises in many applications where a
facility must be located in different sites or centers of a territory in order to
serve a set of customer points (units). In this paper we consider a set of units
and a set of already fixed centers, and we study the problem of assigning each
unit to exactly one center. Given a cost function which associates a service
cost to each possible unit-center pair, our aim is to find an assignment of units

∗Università di Roma ”La Sapienza” Dip. Statistica, Probabilità e Statistiche Applicate
†Universidad de Sevilla Dep. Estad́ıstica e Investigación Operativa. The research of

this authors is partially supported by Spanish research grants numbers: MTM2004:0909,
HA2003:0121.

‡Università de L’Aquila Dip. Sistemi e Istituzioni per l’Economia

1

to centers which minimizes the total cost. Actually, this problem can be for-
mulated as a graph partitioning problem. Consider a territory divided into n
elementary units (small portions of land) and represent it by a connected n-
vertex graph G = (V,E), where each vertex corresponds to an elementary unit
and an edge between two vertices exists if and only if the two corresponding
units are neighboring. The graph G is called the contiguity graph. Let S ⊂ V
be the set of fixed centers and U = V \S be the set of units that must be served.
Let n denote the total number of vertices of G and p the number of centers.
Then, |S| = p and |U | = n − p. A connected partition of G is a partition of V
into nonempty subsets, called components, such that each component induces
a connected subgraph of G. A legal partition of G is a connected partition of
G where each component contains exactly one center. Each unit in the same
component as s is said to be served by s. Let c : U ×S −→ R be a cost function
which associates a cost cis to each pair (i, s), i ∈ U , s ∈ S. In real applications
cis is a flat service cost due to the assignment of unit i to center s. Then, we
define the cost of a legal partition of G as the sum of all the service costs cis,
i ∈ U , s ∈ S, such that in the partition i is assigned to s.
In this paper we deal with the following problem:

Minimum Cost Legal Partition Problem (MCLP) - Given a connected graph G,
find a legal partition of G with minimum cost.

In the following, given the graph G, the set of centers S and the flat service cost
function c, we will denote an instance of problem MCLP by (G,S, c).

Notice that, given a cost function c, a minimum cost legal partition with
respect to c remains optimal when a positive constant M is added to the costs,
since in each feasible solution the resulting increase of the total cost is Mp(n−p),
a constant. Thus, without loss of generality, in the following we will assume that
the service costs are strictly positive.

Let F be a spanning forest of G, and let F(G) be the set of all the spanning
forests of G. Let Ts(F) denote the subtree of F which contains the center s.
In the following, in order not to make the notation heavier, we shall identify
the tree Ts(F) with either its set of vertices or its set of edges, whichever is
appropriate. This set will be denoted simply by T when additional specification
is not necessary. Notice that, each spanning forest of G is a connected partition
of G, and each connected partition of G can be represented as a spanning forest
of G. Then, problem MCLP can be formulated as the problem of finding a
spanning forest of G such that each tree in F contains exactly one center and
the total service cost is minimized. We can formulate this problem as follows:

min
∑

s∈S

∑
i∈Ts(F) cis

F ∈ F(G)
|T ∩ S| = 1 ∀T ∈ F

(1)

2

Among the many possible applications of this problem, MCLP is strictly related
to districting problems. In particular, we consider the political districting prob-
lem which consists of drawing a district map to be used in a political election.
This problem is of particular importance especially when a majority voting rule
is adopted because it interferes in the translation of votes into seats. It can
be formulated as an MCLP if the territory involved in the political elections is
represented by a graph-theoretic model.

The fact that one looks for a connected partition of the contiguity graph
reflects the usual requirements of integrity (no unit should be split between any
two or more districts) and contiguity (each district should consist of geographi-
cally contiguous units). Traditionally, population equality and compactness are
the main and widely accepted criteria for political districting [1, 5]. In general,
population equality can be taken into account by a constraint which forces the
population of each district between fixed upper and/or lower bounds [7]. Let p
be the average district population and α a given real in [0, 1]. Then, one may
require the population of each district to be at most equal to (1+α)p. Moreover,
compactness can be considered in the objective function by minimizing a suit-
able measure of the dispersion of the units of each district around their center.
If the distances between each unit and each center are available, the total inertia
can be used to this purpose (see, for example, [4]). Let pi denote the population
of territorial unit i and let dis be the distance between unit i and center s. If
the territory is represented by the contiguity graph G, and a weight equal to pi

is associated to each vertex i, the districting problem can be formulated as an
MLCP with a side constraint due to the population equality criterion as follows:

min
∑

s∈S

∑
i∈Ts(F) pid

2
is

F ∈ F(G)
|T ∩ S| = 1 ∀T ∈ F
p(T) ≤ (1 + α)p ∀T ∈ F

(2)

where the weight p(T) associated to the tree T ∈ F is given by the sum of all
pi’s for i ∈ T . Problem (2) differs from problem (1) only for the population
equality constraints. If we include the population equality constraints into a
lagrangean objective function we obtain problem (1) with cis = pi(d2

is + λs),
where the λs’s are the non negative lagrangean multipliers of the population
equality constraints.

In [2] it has been shown that problem MCLP is NP-hard on general graphs
even in the case of two centers. The natural question that arises is whether the
same problem is polynomially solvable in simpler graph topologies. For some
well-known problems in location analysis, as the p-center or p-median [8, 9], this
is the case when the model is restricted to tree networks. Thus, the main goal
in this paper is to answer whether MCLP is polynomially solvable on trees.

Looking for an answer to our question, the reader may notice that the feasi-
ble solutions of MCLP correspond to the bases of a matroid on the set of edges
of the input graph. Nevertheless, the greedy algorithm does not work in general.

3

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

3

3
10

10

1 2

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

(a) (b) (c)

Figure 1: Consider the tree in (a), where black vertices are fixed as centers and
the numbers refer to the costs cis for each unit-center pair (i, s). In (b) the
solution found by the greedy algorithm is shown, while (c) shows the optimal
solution.

The trouble is that the costs are defined on unit-center pairs, rather than on
the elements of the ground set, namely, the edges (see Fig. 1). This situation
makes this problem even more challenging.

The main goal of this paper is to give an affirmative answer to the above ques-
tion. We show that MCLP is solvable in polynomial time on trees, describing
an O(n2p) algorithm for this case that combines dynamic programming tech-
niques with algorithms for the maximum closure. Analyzing MCLP on trees we
will also describe several interesting reformulations as binary integer program-
ming programs, as well as some more advanced issues on the complexity of the
problem.

In order to attain the above aims the paper is organized as follows. In Section
2 we provide two Binary Linear Programming models for problem MCLP on
trees. Section 3 describes the polynomial time algorithm for trees, whereas
Section 4 is devoted to give some further complexity results on the problem
under consideration.

2 Two Binary Linear Programming models for
trees

In this section we present two Binary Linear Programming formulations for
problem MCLP on trees. Consider a tree T = (V,E) and, as before, let S ⊂ V
be the set of centers and U = V \ S. Notice that in a tree, removing (cutting)
p−1 edges results into a connected partition of T into p components, and every
connected partition can be obtained in this way.

In the first formulation we use the following binary variables:

4

yis =
{

1 if unit i is assigned to center s
0 otherwise. (3)

In the following model we use order constraints, so that the partition is con-
nected, and semiassignment constraints so that each unit is assigned to exactly
one center. These constraints guarantee that the partition is legal. The Binary
Linear Programming model based on the order constraints is the following:

min
∑

i∈U

∑
s∈S cisyis

yis ≤ yjs ∀i ∈ U, j ∈ U, s ∈ S such that j lies in Pis∑
s∈S yis = 1 ∀i ∈ U

yis ∈ {0, 1} ∀i ∈ U, s ∈ S

(4)

where Pis is the unique path from i to s in the tree T . This model has O(np)
variables and O(n2p) constraints. Notice that if the semiassignment constraints
are deleted, the constraint matrix of the resulting model is totally unimodular.

An alternative Binary Linear Programming model for problem MCLP on
trees can be obtained on the basis of the notion of legal orientation, which
provides a different, but useful, perspective on the problem. Given an instance
(T, S, c) of MCLP, a legal orientation of T is an orientation of some of the edges
of T such that:

(i) for each undirected edge ij, at most one of the two arcs (i, j) and (j, i) is
present;

(ii) the outdegree of each unit is 1;

(iii) the outdegree of each center is 0.

Notice that some edges of T remain undirected.

Proposition 1 In any legal orientation of T , the number of undirected edges
is |S| − 1.

Proof. The total number of vertices, centers, and units are equal to n, p, and
n− p, respectively. After property (ii), the total number of arcs is n− p, so the
number of undirected edges is n − 1 − (n − p) = p − 1. �

Proposition 2 There is a one-to-one correspondence between legal partitions
and legal orientations of T .

Proof. With any legal partition π of T , we associate an orientation ω of some
edges of T as follows. For each unit i, let s be the unique center serving i, and
let e be the first edge along the path from i to s. Orient e out of unit i. All the
edges that are cut in π remain undirected. Clearly, ω is a legal orientation, and
one can get back π simply by deleting the undirected edges in ω. �

5

Proposition 3 For any legal orientation and each unit i, there is a unique
directed path from i to a center. Such center s(i) is precisely the center that
serves i in the legal partition associated with ω.

Proof. Consider any legal orientation ω and apply the following simple pro-
cedure:

j := i;
while j has a successor

let j′ be the unique successor of j;
j := j′;

endwhile
s(i) := j;

Since T is finite and acyclic, such a procedure stops after a finite number
of iterations, returning a node s(i), which must be a center after properties (ii)
and (iii) of legal orientations. By the same properties, both s(i) and the dipath
from i to s(i) must be unique. Finally, we show that, when the undirected edges
are deleted, the center s(i) is the same for all the units in the same connected
component as i. Recall that these undirected edges are precisely those that
are cut in the legal partition associated with ω. Suppose then that in the same
connected component there are two units i′ and i′′ such that s(i′) �= s(i′′). Since
i′ and i′′ are in the same connected component, there must be an elementary
path P connecting i′ and i′′. All the edges along P must be directed, since all
undirected edges have been deleted. But then at least one of the vertices along
P (including i′ and i′′) must have outdegree 2, in contradiction with properties
(ii) and (iii) of legal orientations. �

Let s(i), i ∈ U , be the center that serves i in the legal orientation ω. Then, the
cost of any legal orientation ω is given by

∑
i∈U

cis(i).

Notice that the cost of ω coincides with the cost of the legal partition π associ-
ated with ω. Then, consider the following problem:

Minimum Cost Legal Orientation Problem (MCLO) - Given a tree T , a set of
centers S and a cost function c, find a legal orientation of T with minimum cost.

In view of Propositions 2 and 3, we obtain the following result.

Theorem 1 In the case of trees, problems MCLP and MCLO are mutually
reducible in polynomial time.

6

Now let us formulate a Binary Linear Programming model for MCLO. Given
a legal orientation ω, for each edge ij of T introduce binary variables xij and
xji; for each unit i and each center s, introduce binary variables yis, with the
following meaning:

xij =
{

1 if (i, j) is an arc in ω
0 otherwise,

yis =
{

1 if s = s(i)
0 otherwise

Thus, the xij ’s are decision variables that define the orientation ω, while the
yis’s are auxiliary variables which are needed in order to compute the cost of ω
as a linear function.

As usual, denote by N(i) the neighborhood of i, i.e., N(i) = {j|ij ∈ E}.
The binary linear programming model is:

min
∑

i∈U

∑
s∈S cisyis

xij + xji ≤ 1 ∀ij ∈ E (a)∑
j∈N(i) xij = 1 ∀i ∈ U (b)

xsf = 0 ∀s ∈ S, fs ∈ E (c)
yfs = xfs ∀s ∈ S, fs ∈ E (d)
yjs + xij − 1 ≤ yis ∀s ∈ S, ij ∈ E (e)
xij ∈ {0, 1} ∀ij ∈ E (f)
yis ∈ {0, 1} ∀i ∈ U, s ∈ S (g)

(5)

Constraints (a), (b), and (c) enforce properties (i), (ii) and (iii) of legal orien-
tations, respectively. In every optimal solution, constraints (d), the transitivity
constraints (e), and the strict positivity of the costs cis force yis to be 1 iff there
is a directed path from i to s. It follows that the objective function represents
the cost of the legal orientation ω. The above model involves O(np) variables
and O(np) constraints.

In the case of trees, it would be interesting to obtain a polynomial time algo-
rithm for MCLP - or, equivalently, for MCLO - exploiting the special structure
of the binary linear programs described in this section. In the next section, we
shall derive an O(n2p) algorithm through a combination of dynamic program-
ming and maximum weighted closure procedures for this problem. The very
existence of such algorithm proves that the above two binary linear programs
are solvable in polynomial time.

7

3 A polynomial algorithm for partitioning prob-
lem on a tree

In this section we describe a polynomial algorithm for partitioning a tree into
single-center subtrees so as to minimize flat service costs. Given a tree T =
(V,E), |V | = n, as before we denote by U the set of all units and by S the set
of all centers. Given a unit i and a center s, let us define a path from i to s to
be free if it does not contain any center but s. For each unit i, we define the
set Ci = {s : the path from i to s is free}. Notice that i may be served only
by the centers in Ci . Moreover, we denote by c(i) = (cis)s∈Ci

the cost vector
restricted to the pairs (i, s), s ∈ Ci.

The following lemma shows that assuming that centers and leaves coincide
causes no loss of generality in the case of trees.

Lemma 1 [Leaf Property] Any instance (T, S, c) of MCLP, where T is a tree
and S, c are arbitrary, can be reduced, preserving optimality, to a set of inde-
pendent instances (Ti, Ci, c(i)), i = 1, 2, ..., k, k ≤ n − p, where the Ti ’s are
subtrees of T such that: (1) the union of all the Ti’s is equal to the whole tree
T ; (2) any pair of subtrees Ti and Tj, i �= j intersects in at most one node, this
node being a center; (3) Ci is the set of leaves of Ti.

Proof. We can always assume that in T there is no edge whose endnodes
are both centers, since, in this case, such edge would be necessarily cut when
assigning units to centers. Furthermore, without loss of generality, we may
assume that every leaf l of T is a center. If not, let f be the unique node
adjacent to l . If f is a center, then l is forced to be served by f and thus we can
delete l from T . If f is a unit, then l and f must be assigned to the same center,
so they can be condensed into a single node whose service cost is the sum of
the service costs of l and f . It follows that we can always restrict ourselves to
those instances of MCLP in which all the leaves of T are centers. Next, let us
show that, conversely, we may always assume that every center is a leaf. So,
assume that there exist centers that are not leaves. Let us declare two units i
and j to be equivalent iff Ci = Cj . Then the set U of all units is accordingly
partitioned into equivalence classes Ui. For each i, the subgraph Ti of T induced
by Ui ∪Ci is connected and hence it is a subtree of T . Notice that Ti = Tj iff i
and j are equivalent. On the other hand, if i and j are not equivalent, then Ti

and Tj may intersect in at most one node, which must necessarily be a center.
Furthermore, for each i the set of leaves of Ti coincides with Ci , since removing
Ci leaves Ti connected and each unit in Ui separates at least two centers of Ci.
Since, as noticed above, unit i may be served only by centers in Ci and, on the
other hand, the total service cost is additive with respect to the units, the thesis
follows. �

From now on, we assume that the Leaf Property holds, i.e., the leaves and
the centers coincide.

8

Before describing the algorithm, we introduce some definitions and notation.
Let T = (V,E) be an arbitrary rooted tree. As usual, we denote by (i, j) an
edge directed from node i to node j. Node i is said to be the predecessor
(or the father) of j and node j is a successor (or a child) of i. The two sets
of predecessors and successors of node i are denoted by Pred(i) and Succ(i),
respectively. If there is a directed path from node i to node j, then i is called
an ancestor of j, and j a descendant of i. We regard i to be both an ancestor
and a descendant of itself. The two sets of ancestors and descendants of node i
are denoted by Anc(i) and Desc(i), respectively. For a given node i the closure
of i is any subset of nodes that, whenever it contains node i, it contains all the
predecessors (and hence all the ancestors) of i. If Z is any subset of nodes, the
cocycle ∂Z of Z is the set of all edges with exactly one vertex not in Z. We
call the downtree of T at v, and denote it by Tv , the subtree of T rooted at
v induced by Desc(v). Given an edge (u, v), the partial downtree Tuv is the
subtree of T induced by u ∪ Desc(v). The subtree Tuv is rooted at u and it is
obtained from Tv by the addition of the edge (u, v).

In the following we assume that T is rooted at one of its units, say r. We
are going to describe a polynomial algorithm for solving MCLP which is based
on a bottom-up dynamic programming recursion. In order to implement such a
recursion, a sequence of minimum weight closure problems on trees are solved.
Let i be a unit, Ti the downtree of T rooted at i, and l an arbitrary center (leaf)
of Ti . We define zil to be the minimum service cost of any legal partition of Ti,
subject to the condition that i is served by l; we shall also define

zi = min{zil|l is a center of Ti}.
Thus, zi is just the minimum service cost of any legal partition of Ti. Denote by
Πis the set of all legal partitions of Ti such that i is served by s. The dynamic
programming algorithm starts from those nodes g that are predecessors of leaves
l. Clearly,

zgl = cgl.

Now, consider an arbitrary unit i and assume that, for each child j of i and
each center t in Tj , all values zjt have been previously computed by the dynamic
programming algorithm. Let s be any center in Ti. Then, in any cheapest legal
partition of Ti where i is served by s, all nodes along the directed path Pis, from
i to s, are also being served by s. Moreover, if Tv is an arbitrary downtree whose
root v has its father f in Pis, some units of Tv may also be served by s (see Fig.
2). The set R of all such units must induce a subtree of Tv rooted at v. Notice
that this subtree depends only on Tv and Pis, but is independent of other similar
downtrees Tv′ (where the father of v′ lies in Pis), no matter whether v′ has the
same father as v or not. Indeed, the fact that a certain unit h belongs to R is
influenced only by the nodes along the path from h to s and by the descendants
of h in Tv. Therefore, we can restrict our attention to a single such downtree Tv.

9

Tv

v

Pis

R

i

f

s

Figure 2: The white vertices are assigned to center s, while the vertices in grey
are assigned to some center different from s.

Finding the above set R efficiently, we would be in position to compute the
value zis (and hence zi) using the dynamic programming recursion. One should
notice that finding R is itself a problem of type MCLP, where T is replaced by
the partial downtree Tfv and f becomes a center with service costs chf = chs

for all the units h of Tfv. In order to find R, consider the subtree induced by
all the units of Tv with root v and denote it by Uv. Associate with each node h
of Uv an upper weight

uh = chs, (6)

a lower weight
lh = zh −

∑
m∈Succ(h)

zm (7)

and a weight
wh = uh − lh. (8)

Remark. In view of the above formulas (6), (7), (8), the weight wh can be
rewritten as

wh = chs − (zh −
∑

m∈Succ(h)

zm). (9)

The above expression has an interesting economic interpretation: at node h
two options are possible: (i) h is served by s, or (ii) h is served by some leaf of
the downtree Th. Then the weight wh is actually the marginal cost of option (i)

10

w.r.t. option (ii).

Lemma 2 For each node h of Uv, one has

zh =
∑

k∈Desc(h)

lk (10)

Proof. By induction on the depth of h. If h is a leaf of Uv, then Desc(h) = {h},
Succ(h) = ∅ and both (7) and (8) amount to lh = zh. Assume that (8) holds
for each node of depth d − 1, and let h have depth d. One has from (7)

zh = lh +
∑

m∈Succ(h)

zm,

and from the inductive hypothesis,

zh = lh +
∑

m∈Succ(h)

∑
k∈Desc(m)

lk.

�

Theorem 2 Let i be any node of T , s a leaf of Ti and Pis the directed path from
i to s in T . Let v be a unit outside Pis whose father f belongs to Pis. Finding
the set S of those units of Tv that are served by s in some cheapest partition
of Πis is reducible to the minimum weight closure problem in the rooted tree Uv

with node weights wh.

Proof. First of all, notice that a subset of nodes of a tree rooted at v is a
closure if and only if it is either empty or it induces a subtree with root v. Let
π be a cheapest partition in Πis, and let R be the set of units of Tv that are
served by s in π. Let ∂R be the cocycle of R in Uv. Since R is either empty or it
induces a subtree of Tv with the same root v, R is a closure of Uv. Furthermore,
the set R must be chosen so as to minimize the overall contribution of Tv to the
service cost of π. Such contribution, in view of the decomposition followed in
the algorithm, is equal to

γ(R) =
∑
p∈R

cps +
∑

(p,q)∈∂R

zq

=
∑
h∈R

uh +
∑

(p,q)∈∂R

∑
k∈Desc(q)

lk by (10)

=
∑
h∈R

uh +
∑

k∈V (Uv)\R

lk since R is a closure in Uv

=
∑
h∈R

wh +
∑

k∈V (Uv)

lk.

Conversely, if R is a closure, then the above identities hold in reverse order.
Therefore, γ(R) and the weight of R differ by a constant, and the thesis follows.

�

11

3.1 Complexity analysis

For each unit i and for each center s in Ti, one has to compute zis. Given the
path Pis from i to s, for each edge uv such that u is in Pis and v is a child
of u not lying in Pis, we need to solve a minimum weight closure problem on
the downtree Tv. Each of these closure problems can be solved in time linear in
the number of vertices of the downtree by an algorithm given in [6]. Moreover,
having already computed by the recursion the values zm for m ∈ Succ(h),
finding the weights wh for each h requires O(|Succ(h)|). Thus, in the dynamic
programming procedure, computing each value zis requires O(n) time. The
resulting overall time complexity is O(n2p).

The above algorithm gives better complexity bounds on some particular
important classes of trees. The reader may easily check that for spiders (trees
with at most one node of degree larger than two; such node is called the body
of the spider) the implementation that considers the allocation of the body of
the spider to the different centers, rather than considering all the possible unit-
center pairs, results in an algorithm with complexity O(np). It is also easy
to verify that on paths just by traversing twice the units we get a linear time
algorithm. (Notice that the näıve application of the general algorithm to the
case of spiders will result in O(n2p) and on paths in O(n2)).

4 Further Complexity Results

The aim of the present section is to give more insights on the hardness of MCLP
on a general graph G = (V,E). Any instance of MCLP takes the form (G,S, c).
In [2] it has already been shown that bounding |S| does not lead to easier
solvable instances (clearly, if |S| = 1 the problem is trivial). Unfortunately,
as shown below by Theorem 3.(a), enlarging the class of input graphs leading
to polynomial time solvable classes of MCLP, looks hopeless, even if strong
conditions are imposed on c. Actually, in view of Theorem 3.(b), the main
source of difficulty in solving MCLP lies in the costs structure: requiring c to be
metric makes the problem easy to solve essentially through a min cost bipartite
assignment algorithm. So both MCLP on trees and MCLP with metric costs
barely lie within the boundary, so as to speak, separating easy instances from
hard ones. This is confirmed by 3.(c) where, even when G is a tree and c is
metric, requiring some further conditions makes the problem NP-complete.

In order to proceed with the section we need some definitions. Let w :
E → Z+ be a weighting of the edges of a graph G and, for u, v ∈ V denote
by dw(u, v) the length of a shortest uv-path with respect to w and by d(u, v)
the geometric distance between u and v (the minimum number of edges of
an uv-path). Given the service cost function c we say that it is monotone, if
d(u, s) ≤ d(v, s) ⇒ cus ≤ cvs. The service cost function is said to be metric, if c
is proportional to dw for some w. Functions b1, b2 : S → Z, with b1 ≤ b2 are also
given. They are regarded as capacity functions. A capacitated legal partition

12

(with respect to b1 and b2) is a legal partition π = {C1 . . . , Cp} such that

b1(t) ≤
∑
v∈Ct

cvt ≤ b2(t), where t is the center in Ct.

The following theorem collects the above mentioned results on the complexity
of the problem.

Theorem 3 Let G be a connected graph, S a set of p centers and c a cost
function. Then,

(a) Problem MCLP is NP-complete even if c is monotone and the input graph
is bipartite.

(b) Problem MCLP can be solved in strongly polynomial time if the input graph
is arbitrary and c is metric (compare with our main result for trees).

(c) It is NP-complete to decide if a spider (hence a tree) whose legs have at
most two vertices admits a feasible capacitated partition. Therefore, the
capacitated version of MCLP is NP-hard even for trees and even for metric
assignment functions.

Proof. (a). Reduction from SAT. Let C1 . . . , Cm be m clauses on the set of
variables {u1, . . . , un}. Construct a bipartite graph as follows. For each clause
Ci, i = 1, . . . , m there is a node vi. For each variable uj , j = 1, . . . , n there is
a node zj . There is an edge joining vi to zj if and only if clause Ci contains
variable uj . (The graph built so far is just the bipartite graph representing
clause-variable incidence). For each node zj take two more vertices sj and tj
and connect them to zj ; sj represents literal uj while tj represents literal uj .
The resulting graph is bipartite with shores {v1, . . . , vm}∪ {s1, t1} . . .∪{sn, tn}
and {z1, . . . , zm}. Let S = {s1, t1} ∪ . . . ∪ {sn, tn} and define the assignment
cost as follows:

- if variable uj occurs in clause Ci as uj set cvisj
= 0;

- if variable uj occurs in clause Ci as uj set cvitj
= 0;

- set cvisj
= cvitj

= 0, for j = 1, . . . , n;

- set the assignment costs equal to 1 otherwise.

The function c is monotone. Moreover, there is a legal partition of cost zero if
and only if the formula is satisfiable.

(b). The problem reduces to a min-cost assignment problem on a complete
bipartite graph with shores V −S and S. (Recall that in a bipartite graph with
shores A and B an assignment of A into B is a set of edges having degree one
on A). For v ∈ V \ S and s ∈ S the edge vs carries a weight equal to cvs.
Clearly each legal partition defines a feasible assignment. On the other hand,
a minimum cost assignment defines a legal partition with the same cost. To

13

see this consider any optimal assignment and observe that if v is assigned to
s and u lies on the shortest vs-path then also u is assigned to s. Indeed, if
u is assigned to s′ we must have, by optimality, cus′ ≤ cus. Strict inequality
cannot hold because otherwise cvs′ < cvs would hold as well, contradicting the
optimality of the assignment. So cus′ = cus must apply and we can assign u
to s affecting neither feasibility nor optimality. In particular if Cs is the set of
vertices assigned to s then the subgraph induced by Cs ∪ {s} is connected and
the proof follows.

(c). Reduction from SUBSET SUM [3]. Let a1 . . . ap be an instance of
SUBSET SUM. Let M =

∑p
i=1 ai. Let G be a star with p+1 leaves v0, v1, . . . , vp

and let q denote the unique non-leaf node in G. Set S = {v0, v1 . . . , vp} and
define b1, b2 : S → Z as follows: b1(v0) = b2(v0) = M/2 and b1(vi) = 0,
b2(vi) = +1, for i = 1, . . . , p. Insert a new vertex ui on each edge qvi, i = 1 . . . p.
Define edge weights as follows: edges v0q and uivi, i = 1 . . . p, have weight zero;
edges qui, i = 1 . . . p have weight ai. Denote by w this weight function and let
cvt = dw(v, t) the length of a shortest path between v and t, v �∈ S, t ∈ S. Then
every feasible capacitated legal partition defines a partition of {1, . . . , p} into
sets A and B such that

∑
i∈A ai =

∑
i∈B ai and conversely. �

References

[1] B. Bozkaya, E. Erkut, G. Laporte. “A tabu search heuristic and adaptive
memory procedure for political districting”, European Journal of Opera-
tional Research 144: 12-26, 1983.

[2] R. Cordone (2001). “A Short Note on Graph Tree Partition Problems with
Assignment or Communication Objective Functions”, Internal Report DEI
2001, 7, Politecnico di Milano.

[3] M. R. Garey, D. S. Johnson (1999). “Computers and Intractability”, W.
H. Freeman and Company, New York.

[4] R. S. Garfinkel, G. L. Nemhauser. “Optimal Political Districting by Implicit
Enumeration Techniques”, Management Science, vol.16:495-508, 1970.

[5] P. Grilli di Cortona, C. Manzi, A. Pennisi, F. Ricca, B. Simeone (1999).
“Evaluation and Optimization of Electoral Systems”, SIAM Monographs
on Discrete Mathematics and Applications, SIAM, Society for Industrial
and Aplied Mathematics, Philadelphia.

[6] P.L. Hammer, B. Simeone. “Order relations of variables in 0-1 program-
ming”, in: S. Martello, G. Laporte, M. Minoux, C.C. Ribeiro (eds.) Sur-
veys in Combinatorial Optimization, Annals of Discrete Mathematics 31:
83-112, 1987.

[7] S.W. Hess, J.B. Weaver, J.N. Siegfeldt, J.N. Whelan, P.A. Zhitlau. “Non-
partisan political districting by computer”, Operations Research 13:998-
1006, 1965.

14

[8] O. Kariv and S.L. Hakimi. “An algorithmic approach to network location
problems I: The p-centers.” SIAM Journal of Applied Mathematics, 37:513–
538, 1979.

[9] O. Kariv and S.L. Hakimi. “An algorithmic approach to network loca-
tion problems II: The p-medians.” SIAM Journal of Applied Mathematics,
37:539–560, 1979.

15

