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SUMMARY

A linear regression model with imprecise response and p real explanatory variables is
analyzed. The imprecision of the response variable is functionally described by means
of certain kinds of fuzzy sets, the LR fuzzy sets. The LR fuzzy random variables are
introduced to model usual random experiments when the characteristic observed on each
result can be described with fuzzy numbers of a particular class, determined by 3 ran-
dom values: the center, the left spread and the right spread. In fact, these constitute
a natural generalization of the interval data. To deal with the estimation problem the
space of the LR fuzzy numbers is proved to be isometric to a closed and convex cone of
R3 with respect to a generalization of the most used metric for LR fuzzy numbers. The
expression of the estimators in terms of moments is established, their limit distribution
and asymptotic properties are analyzed and applied to the determination of confidence
regions and hypothesis testing procedures. The results are illustrated by means of some
case-studies.

KEY WORDS Least-squares approach; Asymptotic distribution; LR fuzzy data; Interval data;
Regression Models

1 Introduction

Different elements of a statistical problem may be imprecisely observed or defined. This
has led to the development of various theories able to cope with an uncertainty which
is not necessarily due to randomness: e.g. the methods based on imprecise probabilities
(see, for instance, Walley [31]), or on the use of subjective probabilities (see, for instance,
Singpurwalla & Booker [30]) or diverse approaches for fuzzy statistical analysis (see, for
instance, Coppi [4], Colubi [5] or Denoeux et al. [7]). In this paper we will consider a
regression problem for a random experiment in which a fuzzy response and real-valued
explanatory variables are observed.
Actually, in many practical applications in public health, medical science, ecology, social
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or economic problems, many useful variables are vague, and the researchers find it easier
to reflect the vagueness through fuzzy data than to discard the vagueness and obtain pre-
cise data. In addition it is often less expensive to obtain an imprecise observation than
to look for precise measurements of the variable of interest (see, for instance, Heagerty &
Lele [15]).
In order to handle a typical kind of imprecision the so-called LR fuzzy sets are often used.
They are determined by three values: the center, the left spread and the right spread. For
example, in agriculture quantitative soil data are unavailable over vast areas and impre-
cise measures, that can be modelled through LR fuzzy sets, are used (see Lagacherie et al.
[21]). Also in medical science symptoms, diagnosis and phenomena of disease may often
lead to LR data (see, for instance, Di Lascio et al. [6]). LR-type fuzzy data may also arise
in other contexts, like image processing or artificial intelligence (see, for instance, Sezgin
& Sankur [29], Ranilla & Rodŕıguez-Muñiz [28]).
The LR fuzzy sets are a generalization of the intervals. Epidemiological research often
entails the analysis of failure times subject to grouping, and the analysis with interval-
grouped data is numerically simple and statistically meaningful (see Pipper & Ritz [26],
Gil et al. [12], Billard & Diday [2]).
Several regression studies involving fuzzy random variables to model imprecise data have
been developed (see, for instance, Näther [25], Krätschmer [19], González-Rodŕıguez et al.
[14], etc).
Coppi et al. [3] have proposed a linear regression model with LR fuzzy response. The
basic idea consists in modelling the centers of the response variable by means of a clas-
sical regression model, and simultaneously modelling the left and the right spread of the
response through simple linear regressions on its estimated centers. The study in Coppi
et al. [3] is mainly descriptive, and the authors impose a non-negativity condition to
the numerical minimization problem to avoid negative estimated spreads. In this work
we propose an alternative model to overcome the non-negativity condition, because the
inferences for models with non-negativity restrictions are more complex and less efficient
(see, for instance, Liew [22] and Gallant & Gerig [10]).
In Section 2 the way of modelling the imprecise response through LR fuzzy random vari-
ables is formalized. In Section 3 the variance of an LR fuzzy random variable is defined
and some properties are proved. In Section 4 the new linear regression model is introduced,
and the least squares estimators of the parameters are found and analyzed. Section 5 deals
with asymptotic confidence regions and asymptotic hypothesis tests for the regression pa-
rameters. In section 6 a real-life example with LR fuzzy data and another with interval
data are illustrated. Finally, Section 7 contains some remarks and future directions.
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2 Modelling the imprecise data

2.1 Fuzzy sets

In this work a fuzzy set A of R will be simply defined as a mapping A : R → [0, 1]
verifying some conditions. Let Kc(R) be the class of nonempty compact convex subsets
of R, we will consider the class of fuzzy sets Fc(R) = {A : R → [0, 1]|Aα ∈ Kc(R)}, where
Aα is the α-level of fuzzy set A, that is, Aα = {x ∈ R|A(x) ≥ α}, for α ∈ (0, 1], and
A0 = cl({x ∈ R|A(x) > 0}) (Zadeh [33]).
In practice there are some experiments whose results can be described by means of fuzzy
sets of a particular class, determined by 3 values: the center, the left spread and the right
spread. This type of fuzzy datum is called LR fuzzy number and it is defined such that
(see Fig. 1)

A(x) =

{
L

(
Am−x

Al

)
x ≤ Am

R
(

x−Am

Ar

)
x ≥ Am

where Am ∈ R is the center, Al ∈ R+ and Ar ∈ R+ are, respectively, the left and the right
spread, L and R are functions verifying the properties of the class of fuzzy sets Fc(R),
such that L(0) = R(0) = 1 and L(x) = R(x) = 0, ∀x ∈ R \ [0, 1].
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Figure 1: Examples of LR membership functions

Remark 1. An interval I is a particular kind of LR fuzzy set where the membership
function is the characteristic function 1I , that is equal to 1, for all x ∈ I, and 0 otherwise
(L = R = I[0,1], Am = (inf I + sup I)/2 and Al = Ar = (sup I − inf I)/2).

Let FLR be the class of LR fuzzy numbers. Since any A ∈ FLR can be represented
by means of a 3-tuple (Am, Al, Ar), we define the mapping s : FLR → R3 such that
s(A) = sA = (Am, Al, Ar).
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In what follows we use without distinction A ∈ FLR or its s-representation (Am, A,l , Ar).
The natural sum and the product by a scalar in FLR extend the Minkowski sum and the
product by a positive scalar for intervals, that is, for all α ∈ [0, 1] we have:

(A + B)α = {a + b | a ∈ Aα, b ∈ Bα}, (γA)α = {γa|a ∈ Aα},

These operations can be alternatively expressed considering the s-representation, that is,
A + B is the fuzzy set in FLR such that

(Am, Al, Ar) + (Bm, Bl, Br) = (Am + Bm, Al + Bl, Ar + Br),

and γA is the fuzzy set in FLR such that

γ(Am, Al, Ar) =


(γAm, γAl, γAr) γ > 0

(γAm,−γAr,−γAl) γ < 0
1{0} γ = 0

The function s is obviously semi-linear, because s(A) + s(B) = s(A + B) and γs(A) =
s(γA), if γ > 0.
Yang and Ko [32] have defined a distance D2

LR between two LR fuzzy numbers A, B ∈ FLR

as follows

D2
LR(A,B) = (Am −Bm)2 + ((Am − λAl)− (Bm − λBl))2 (1)

+ ((Am + ρAr)− (Bm + ρBr))2,

where λ =
1∫
0

L−1(ω)dω and ρ =
1∫
0

R−1(ω)dω represent the influence of the shape of the

membership function on the distance. As a result (FLR, D2
LR) is a metric space.

2.2 The isometry

In order to embed the space FLR into R3 by preserving the metric, we will define a metric
in R3 and we will show that this metric endows R3 with a Hilbertian structure.

Proposition 1. Given a = (a1, a2, a3), b = (b1, b2, b3) ∈ R3 and λ, ρ ∈ R+, (R3, Dλρ) is
a metric space, where

D2
λρ(a, b) = (a1 − b1)2 + ((a1 − λa2)− (b1 − λb2))2 + ((a1 + ρa3)− (b1 + ρb3))2

takes inspiration from the Yang-Ko distance. Moreover

〈a, b〉λρ = 〈a1, b1〉R + 〈(a1 − λa2), (b1 − λb2)〉R + 〈(a1 − λa3), (b1 − λb3)〉R

is an inner product.
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The next proposition states that FLR is isometric to a closed convex cone of the Hilbert
space (R3, 〈·, ·〉λρ).

Proposition 2. We consider the space FLR, λ =
1∫
0

L−1(ω)dω and ρ =
1∫
0

R−1(ω)dω. Then

FLR is isometric to a closed convex cone of R3 endowed with the inner product 〈·, ·〉λρ.

From now on, we will consider the operation 〈A,B〉LR = 〈sA, sB〉LR, which is not
exactly an inner product due to the lack of linearity, but it has interesting properties.

2.3 Fuzzy random variables

Kwakernaak [20], Puri & Ralescu [27] and Klement et al. [16] have introduced the concept
of Fuzzy Random Variable (FRV) as an extension of both, random variables and random
sets.
Let (Ω,A, P ) be a probability space. According to Puri and Ralescu, the mapping X : Ω →
FLR is an FRV if for any α ∈ [0, 1] the α−cut Xα is a convex compact random set. This is
equivalent to requiring that the s-representation of X, (Xm, X l, Xr) : Ω → R× R+ × R+

be a random vector. It should be noted that in our approach X is not an ill-measured
real random variable but a random element assuming “purely” fuzzy values (see, also,
González-Rodŕıguez et al. [13]),

Example 1. An example of FRVs is introduced in Colubi [5]. In a recent study about the
reforestation in a given area of Asturias (Spain), carried out in the INDUROT institute
(University of Oviedo), the quality of the trees has been analyzed. This characteristic
has not been assigned on the basis of an underlying real-valued magnitude, but rather
on the basis of subjective judgements/perceptions, through the observation of the leaf
structure, the root system, the relationship height/diameter, and so on. The experts used
a fuzzy-valued scale to represent their perceptions, besides linguistic labels, because the
usual categorical scale (very low, low, medium, high, very high) was not able to capture
the perceptions. The considered support goes from 0 (absence of quality) to 100 (perfect
quality). It is possible to have different values for the same linguistic label. Some possible
fuzzy values are represented in Fig. 2. This variable has been observed on 238 trees. Thus
Ω = {sets of trees in a given area of Asturias} endowed with the Borel σ-field. Since the
observations were arbitrarily chosen, P is the uniform distribution over Ω. For any i ∈ Ω,
several characteristics are to be observed. In particular, the quality, Yi, has been considered
as an LR triangular fuzzy variable (λ = ρ = 1/2) (see Table 1).

The expected value of an FRV is defined by means of the generalized Aumann integral
(Aumann [1]), that is, the expected value of the FRV X is the unique fuzzy set E(X) in
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Figure 2: Values of the “Quality” of three different trees

FLR, s.t., for all α ∈ [0, 1],

(EX)α = EXα,

if E‖X‖2
LR < ∞ (see Puri & Ralescu [27]). Equivalently, E(X) is the fuzzy set in FLR

whose s-representation is equal to (EXm, EX l, EXr).

3 The variance and the covariance

The notion of variance for FRVs has been previously established in terms of several metrics
(see Körner [17] and Lubiano et al. [23]). By following the same ideas, we can also consider
it in the sense of the DLR metric.

Definition 1. The variance of an LR fuzzy random variable X = (Xm, X l, Xr) with
E‖X‖2

LR < ∞ is defined by V ar(X) = ED2
LR(X, EX) = E〈sX − sEX , sX − sEX〉LR.

It can be easily checked that

V ar(X) = E
[
3(Xm − EXm)2 + λ2(X l − EX l)2 + ρ2(Xr − EXr)2

]
+E

[
−2λ(Xm − EXm)(X l − EX l) + 2ρ(Xm − EXm)(Xr − EXr)

]
= 3V ar(Xm)+λ2V ar(X l)+ρ2V ar(Xr)−2λCov(Xm, X l)+2ρCov(Xm, Xr).

This notion of variance satisfies the same suitable properties of the usual variance in R,
that is,

Proposition 3. Let X and Y be LR fuzzy random variables, A ∈ FLR and γ ∈ R+. Then
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1. V ar(X) = E‖X‖2
LR − ‖EX‖2

LR,

2. V ar(γX) = γ2V ar(X),

3. V ar(A + X) = V ar(X),

4. V ar(X + Y ) = V ar(X) + V ar(Y ) if X and Y are independent,

5. if A ∈ FLR, then ∆X(A) = E
[
D2

LR(X, A)
]

= V ar(X) + D2
LR(A,EX).

Property 5 of Proposition 3 shows that V ar(X) verifies the Fréchet principle (see
Fréchet [9]) because E

[
D2

LR(X, A)
]

is minimized, for A = EX, which makes coherent the
application of least-squares techniques in regression problems.
Taking inspiration from the expression of the variance in terms of the inner product we
can also define the covariance as follows.

Definition 2. The covariance between two LR fuzzy random variables X = (Xm, X l, Xr)
and Y = (Y m, Y l, Y r) is defined by Cov(X, Y ) = E〈sX − sEX , sY − sEY 〉LR.

In this case it is easy to prove that

Cov(X, Y ) = 3Cov(Xm, Y m) + λ2Cov(X l, Y l) + ρ2Cov(Xr, Y r)

−λCov(Xm, Y l)− λCov(X l, Y m) + ρCov(Xm, Y r) + ρCov(Xr, Y m).

Due to the lack of linearity of FLR, the covariance does not have the same meaning and
all the properties of the covariance in R.

4 Least squares estimators

Consider a random experiment in which an LR fuzzy response variable Y and p real
explanatory variables X1, X2,...,Xp are observed on n statistical units, {Yi, X i}i=1,...,n,
where Xi = (X1i, X2i, ..., Xpi), or in a compact form (Y ,X). Since Y is determined by
(Y m, Y l, Y r), the proposed regression model concerns the real-valued random variables
in this tuple. The center Y m can be related to the explanatory variables X1, X2, ..., Xp

through a classical regression model. However, the restriction of non-negativity satisfied by
Y l and Y r entails some difficulties (see Coppi et al. [3]). One solution is to consider a model
with the restriction of non-negativity but, when a variable has this kind of restrictions,
the errors of the model may be dependent on the explanatory variable, and the classical
methods are not efficient (see, for instance, Liew [22], Gallant & Gerig [10]). In addition, in
presence of non-negativity restrictions most of works in literature are numerical procedures
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while in this paper the idea is to formalize a realistic theoretical model and to obtain a
complete analytical solution.
We propose modelling a transformation of the left spread and a transformation of the right
spread of the response through simple linear regressions (on the explanatory variables X1,
X2,...,Xp). This can be represented in the following way, letting g : (0,+∞) −→ R and
h : (0,+∞) −→ R be invertible:

Y m = X a
′
m + bm + εm

g(Y l) = X a
′
l + bl + εl

h(Y r) = X a
′
r + br + εr

(2)

where εm, εl and εr are real-valued random variables with E(εm|X) = E(εl|X) = E(εr|X) =
0, am = (am1, ..., amp), al = (al1, ..., alp) and ar = (ar1, ..., arp) are the (1 × p)-vectors of
the parameters related to the vector X. The covariance matrix of the vector of explana-
tory variables X will be denoted by ΣX and Σ will stand for the covariance matrix of
(εm, εl, εr), whose variances are strictly positive and finite.

Remark 2. Since the expected values of εm, εl and εr given X are equal to 0 it results
that εm, εl and εr are uncorrelated with the explanatory variables.

Remark 3. From an econometric point of view the model (2) can be seen as a simultaneous
equation system. It should be underlined that in this case the parameter identification
problem does not affect the model, due to the way it has been defined (see, for instance,
Mardia et al. [24]).

Remark 4. In practice, particularly in the socio-economical domain, it is possible to have
restrictions on the center Y m or on the explanatory variables X1, X2, ..., Xp. In this case
it is possible to transform these variables too. It results a non linear model.

Example 2. We consider a simplification of the data introduced in Colubi [5] (see Table
1). We use the new linear regression model to analyze the part of the quality, Y , of 238
trees explained by the height, X.
In presence of constrained variables, a common approach consists in transforming the
constrained variable into an unconstrained one by means of the logarithmic transformation
(that is g=h=ln). We will use this approach in this example to transform the spreads into
real variables without the restriction of non-negativity.
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Table 1: Quality (Y m, Y l, Y r) and Height (X) of 238 trees in Asturias.

Y m(center) Y l(left spread) Y r(right spread) X(cm)

45 12.5 15 170
25 15 12.5 245
17.5 7.5 12.5 190
20 11.25 15 130
55 15 12.5 230
23.75 11.25 18.75 90
56.25 18.75 13.75 195
13.75 8.75 8.75 75
26.25 13.75 8.75 184
62.5 10 7.5 215
75 12.5 10 245
67.5 12.5 12.5 220
32.5 22.5 10 195
40 15 10 160
52.5 12.5 17.5 213
55 15 17.5 215
77.5 12.5 12.5 370
85 5 5 230
50 20 20 234
... ... ... ...

In Proposition 4 we show that the population parameters can be expressed, as usual,
in terms of some moments involving the considered random variables.

Proposition 4. Let Y be an LR fuzzy random variable and X the vector of p real random
variables satisfying the linear model (2), then we have that

a
′
m =

{
ΣX

}−1
E

[
(X − EX)

′
(Y m − EY m)

]
,

a
′
l =

{
ΣX

}−1
E

[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

a
′
r =

{
ΣX

}−1
E

[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
,

bm = E(Y m|X)− EX
{
ΣX

}−1
E

[
(X − EX)

′
(Y m − EY m)

]
,

bl = E(g(Y l)|X)− EX
{
ΣX

}−1
E

[
(X − EX)

′
(g(Y l)− Eg(Y l))

]
,

br = E(h(Y r)|X)− EX
{
ΣX

}−1
E

[
(X − EX)

′
(h(Y r)− Eh(Y r))

]
,

where ΣX = E
[
(X − EX)

′
(X − EX)

]
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The estimators of the population parameters will be based on the Least Squares (LS)
criterion. As it was above-mentioned, the use of this criterion is justified by the properties
of the variance proved in Proposition 3, among which we find the Fréchet principle. In
addition, it should be remarked that the lack of realistic parametric models for the distri-
bution of FRVs prevents us from using other approaches, as maximum likelihood. In this
case, using the generalized Yang-Ko metric D2

λρ written in vector terms, the LS problem
consists in looking for âm, âl, âr, b̂m, b̂l and b̂r in order to

min∆2
λρ = minD2

λρ((Y
m, g(Y l), h(Y r)), ((Y m)∗, g∗(Y l), h∗(Y r))) (3)

where (Y m)∗ = Xa
′
m + 1bm, g∗(Y l) = Xa

′
l + 1bl and h∗(Y r) = Xa

′
r + 1br are the (n× 1)-

vectors of the predicted values.
The function to minimize

∆2
λρ = ‖Y m − (Y m)∗‖2 +

∥∥∥(
Y m − λg(Y l)

)
−

(
(Y m)∗ − λg∗(Y l)

)∥∥∥2

+ ‖(Y m + ρh(Y r))− ((Y m)∗ + ρh∗(Y r))‖2

becomes

∆2
λρ = 3

(
Y m −Xa

′
m − 1bm

)′ (
Y m −Xa

′
m − 1bm

)
(4)

+ λ2
(
g(Y l)−Xa

′
l − 1bl

)′ (
g(Y l)−Xa

′
l − 1bl

)
+ ρ2

(
h(Y r)−Xa

′
r − 1br

)′ (
h(Y r)−Xa

′
r − 1br

)
− 2λ

(
Y m −Xa

′
m − 1bm

)′ (
g(Y l)−Xa

′
l − 1bl

)
+ 2ρ

(
Y m −Xa

′
m − 1bm

)′ (
h(Y r)−Xa

′
r − 1br

)
.

Proposition 5. The solutions of the LS problem are

â
′

m = (X̃
′

X̃)−1X̃
′

Ỹ m,

â
′

l = (X̃
′

X̃)−1X̃
′

g̃(Y l),

â
′

r = (X̃
′

X̃)−1X̃
′

h̃(Y r),

b̂m = Y m −X â
′
m,

b̂l = g(Y l)−X â
′
l,

b̂r = h(Y r)−X â
′
r,

where, as usual, Y m, g(Y l), h(Y r) and X are, respectively, the sample means of Y m,
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g(Y l), h(Y r) and X,

Ỹ m = Y m − 1Y m

g̃(Y l) = g(Y l)− 1g(Y l)

h̃(Y r) = h(Y r)− 1h(Y r)

are the centered values of the response and

X̃ = X− 1 X

the centered matrix of the explanatory variables.

Proposition 6. The estimators âm, âl, âr, b̂m, b̂l and b̂r are unbiased and strongly con-
sistent.

For inferential purposes it is useful to provide an approximation to the distribution of
the estimators. The above-mentioned lack of realistic parametric models for the distribu-
tion of the FRVs makes worth to look for the asymptotic distribution of the estimators.

Proposition 7. Under the assumptions of model (2), as n →∞,

√
n

 â
′

m − a
′
m

â
′

l − a
′
l

â
′

r − a
′
r

 D−→ N
(
0
′
,
(
ΣX

)−1 Σ
)

. (5)

Since the probability distribution function that has generated the data set is unknown,
in practice we propose to use a bootstrap procedure to evaluate the accuracy of the
estimators, by means of the estimates of the standard errors (see Efron & Tibshirani [8]).

5 Confidence regions and hypothesis testing on the regres-

sion parameters

In addition to the estimation of the regression parameters, the confidence regions and the
hypothesis testing procedures are introduced. Starting from the asymptotic distribution
(5) it is easily obtained the following 100(1 − α) confidence region for the parameters
(a

′
m, a

′
l, a

′
r)

′


 â

′

m

â
′

l

â
′

r

−
cα/2√

n
,

 â
′

m

â
′

l

â
′

r

 +
cα/2√

n


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where cα/2 is a α/2-quantile of a N
(
0
′
,
(
ΣX

)−1 Σ
)
.

In order to test the null hypothesis H0 : (a
′
m, a

′
l, a

′
r)

′
= (k

′
m, k

′
l, k

′
r)

′
against the alternative

H1 : (a
′
m, a

′
l, a

′
r)

′ 6= (k
′
m, k

′
l, k

′
r)

′
, where km, kl, and kr are vectors of constant values in R,

the test statistic Tn = V ′
nVn, where

Vn =
√

n

 â
′

m − k
′
m

â
′

l − k
′
l

â
′

r − k
′
r

 ,

can be used. It is possible to define a rejection region for the null hypothesis, that is

Proposition 8. In testing the above-defined null hypothesis at the nominal significance
level α, H0 should be rejected if Tn > cα, where cα is a α-quantile of the asymptotic
distribution of Tn, that is f1 (V ) (V ∼ N

(
0
′
,
(
ΣX

)−1 Σ
)

and f1(A) = A′A).

The unknown population variance
(
ΣX

)−1 Σ can be approximated by means of the
sample one and the Slutzky’s theorem guarantees the asymptotic convergence of the stan-
dardized statistic to a normal distribution.

6 Empirical results

To illustrate the application of the regression model introduced in this work we consider
the following examples.

Example 3. We consider the data of Example 1. For analyzing the part of the quality
explained by the height of the trees we use the new regression model and we obtain the
following estimated models

Ŷ m = 0.1558X + 18.7497

Ŷ l = exp(−0.00017X + 2.5780)
Ŷ r = exp(−0.00067X + 2.6489)

(6)

The value of the estimated parameter âm equal to 0.1558 represents a positive linear
relationship between the response and the explanatory variable. In particular, the quality
is expected to increase of about 0.16 for any additional cm of the height.
The estimated spreads of the response variable, Ŷ l and Ŷ r, represent the imprecision of
the quality estimated by the new model. In Fig. 3 the extreme values of the 0-level and
the single-value of the 1-level of the quality by the height are indicated, respectively, by
means of the vertical segments and the dots, while the estimated centers and the estimated
spreads are represented by the solid line and the dash line.
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Figure 3: The observed extreme values of the 0-level and the single-value of the Quality by the
Height of the trees, and the estimated linear regression models

To evaluate the accuracy of these estimates we draw 800 bootstrap samples of size n = 238
with replacement from our data set. For each bootstrap replication we calculate the
estimate of the parameters of the linear regression model. By means of the 800 replications
of the estimation procedure we compute the estimate of the standard errors ŝe of the
parameters and we check that

ês(âm) = 0.0210, ês(âl) = 0.0004, ês(âr) = 0.0004,

ês(b̂m) = 3.9745, ês(b̂l) = 0.0821, ês(b̂r) = 0.0839.

Hence two kinds of uncertainty have been taken into account: the imprecision of the
estimated quality and the stochastic uncertainty of the regression model represented by
the above values.
To construct a confidence band for the vector of parameters (am, al, ar), the covariance
matrix of the vector (εm, εl, εr) has been replaced by the covariance matrix of the residuals
ε̂mi = Ŷ m

i − Y m
i , ε̂li = ĝ(Y l

i ) − g(Y l
i ), ε̂ri = ĥ(Y r

i ) − h(Y r
i ), and the variance of the

explanatory variable, σ2
X , has been estimated by means of the sample variance σ̂X

2 =
3715.9. A confidence band of approximate level α = 0.05 has been found, that is,

 −28.9355
−0.0133
−0.0122

 ,

 29.2470
0.0130
0.0109


 .

When testing if the vector of regression parameters (am, al, ar)
′

is equal to (0, 0, 0)
′
, a

p-value equal to 0 is obtained. Hence this hypothesis (related to the linear independence)
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should be rejected.

Example 4. In this example we are interested in analyzing the dependence relationship of
the Retail Trade Sales (in millions of dollars) of the U.S. in 2002 by kind of business on the
number of employees (see http://www.census.gov/econ/www/). The Retail Trade Sales
are intervals in the period: January 2002 through December 2002 (see Table 2). For each
interval we consider the center and the spreads and we apply the new regression model in
order to evaluate the dependence relationship. As in Example 3 we have transformed the
spreads by means of the logarithmic transformation.

Table 2: The Retail Trade Sales and the Number of Employees of 22 kinds of Business in
the U.S. in 2002.

Kind of Business Retail Trade Sales Number of Employees

Automotive parts, acc., and tire stores 4638-5795 453468
Furniture stores 4054-4685 249807
Home furnishings stores 2983-5032 285222
Household appliance stores 1035-1387 69168
Computer and software stores 1301-1860 73935
Building mat. and supplies dealers 14508-20727 988707
Hardware stores 1097-1691 142881
Beer, wine, and liquor stores 2121-3507 133035
Pharmacies and drug stores 11964-14741 783392
Gasoline stations 16763-23122 926792
Men’s clothing stores 532-1120 62223
Family clothing stores 3596-9391 522164
Shoe stores 1464-2485 205067
Jewelry stores 1304-5810 148752
Sporting goods stores 1748-3404 188091
Book stores 968-1973 133484
Discount dept. stores 9226-17001 762309
Department stores 5310-14057 668459
Warehouse clubs and superstores 13162-22089 830845
All other gen. merchandize stores 2376-4435 263116
Miscellaneous store retailers 7862-10975 792361
Fuel dealers 1306-3145 98574



A linear regression model for imprecise response 15

By means of the least squares estimation we obtain the following predicted values

Ŷ m = 0.0181X − 672.731

Ŷ l = exp(0.000002482X + 5.9244)

Ŷ r = exp(0.000002482X + 5.9244)

The value 0.0181 indicates the strength of the relationship between the response and the
explanatory variable, in particular, the retail trade sales are expected to increase of about
18.100 dollars for any additional employee.
Also in this case we evaluate the accuracy of the estimators by means of a bootstrap
procedure with 800 replications. It is easy to check that

ês(âm) = 0.0015, ês(âl) = 0.0000, ês(âr) = 0.0000,

ês(b̂m) = 412.0407, ês(b̂l) = 0.2151, ês(b̂r) = 0.2151.

The intercept term b̂m is affected by a high degree of uncertainty, while the uncertainty
of âl and âr, which represent the relationship between the explanatory variable and the
logarithmic transformation of the spreads of the response, is practically equal to 0. As Fig.
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Figure 4: The observed interval Retail Trade Sales by Number of Employees and the
estimated linear regression models

4 shows, the predicted values of the spreads grow as the number of employees increases.
Also in this case the null hypothesis that all the regression parameters are equal to 0
should be rejected.
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7 Concluding remarks

When modelling statistical relationships between imprecise and real elements by means
of classical techniques, one of the main difficulties is related to the condition of non-
negativity of the spreads. In this paper by means of the introduction of the functions g

and h which transform the spreads into real numbers and through an appropriate metric,
we have obtained a simple solution, expressed as a function of the sample moments, which
furthermore is unbiased, consistent and useful in practice.
Based on an asymptotic distribution of the parameters, confidence regions have been con-
structed and hypothesis testing procedures have been analyzed. Since the asymptotic
procedures work suitably for samples with very large size, it could be interesting to de-
velop bootstrap procedures.
This new linear regression model can be used for all kinds of LR functional data and in
particular for interval-grouped data.
The linear regression model proposed in this paper can be generalized to other useful types
of random sets, e.g. trapezoidal fuzzy sets, or considering nonlinear regression.
A further field of research consists in the study of appropriate functions g and h that can
be used for a wide class of practical problems, by considering the model, for instance, in
a semiparametric setting.

Appendix
Proof of Proposition 1. It is clear that, Dλρ(a, b) = Dλρ(b, a) ≥ 0 and it is null if and
only if a = b. Concerning the triangle inequality we have that

D2
λρ(a, b) = (a1 − b1)2 + ((a1 − λa2)− (b1 − λb2))2 + ((a1 + ρa3)− (b1 + ρb3))2

= (a1 − c1 + c1 − b1)2 + ((a1 − λa2)− (c1 − λc2) + (c1 − λc2)− (b1 − λb2))2

+((a1 + ρa3)− (c1 + ρc3) + (c1 + ρc3)− (b1 + ρb3))2

= D2
λρ(a, c) + D2

λρ(c, b) + 2(a1 − c1)(c1 − b1)

+2[(a1 − λa2)− (c1 − λc2)][(c1 − λc2)− (b1 − λb2)]

+2[(a1 + ρa3)− (c1 + ρc3)][(c1 + ρc3)− (b1 + ρb3)].

By Cauchy-Schwarz inequality, we obtain

D2
λρ(a, b) ≤ D2

λρ(a, c) + D2
λρ(c, b) + 2D2

λρ(a, c)D2
λρ(c, b) = (Dλρ(a, c) + Dλρ(c, b))2.

Thus Dλρ(a, b) ≤ Dλρ(a, c) + Dλρ(c, b).
As a result we obtain that Dλρ(a, b) is a metric in R3.
Since the terms defining 〈·, ·〉λρ are based on 〈·, ·〉R, it is easy to check that 〈·, ·〉λρ verifies
all the properties of an inner product.
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Proof of Proposition 2. As S = {s(A) : A ∈ FLR} is R× [0,∞)× [0,∞), S is clearly a
closed convex cone.
Proof of Proposition 3. Since the variance and the covariance in FLR can be expressed
in terms of the usual variance and covariance of real-valued variables, we can derive the
thesis of this proposition through the basic properties of the variance and the covariance
for real-valued random variables. In particular, we have that

V ar(X) = 3V ar(Xm)+λ2V ar(X l) + ρ2V ar(Xr)− 2λCov(Xm, X l) + 2ρCov(Xm, Xr)

= 3(E(Xm)2 − (EXm)2) + λ2(E(X l)2 − (EX l)2) + ρ2(E(Xr)2 − (EXr)2)

−2λ(E(XmX l)− EXmEX l) + 2ρ(E(XmXr)− EXmEXr)

= E‖X‖2
LR − ‖EX‖2

LR.

Furthermore, the variance and the covariance in R satisfy simple properties in connection
with the product by scalars and the sum that lead to

V ar(γX) = 3V ar(γXm) + λ2V ar(γX l) + ρ2V ar(γXr)

−2λCov(γXm, γX l) + 2ρCov(γXm, γXr)

= 3γ2V ar(Xm) + λ2γ2V ar(X l) + ρ2γ2V ar(Xr)

−2λγ2Cov(Xm, X l) + 2ργ2Cov(Xm, Xr) = γ2V ar(X)

and

V ar(A + X) = 3V ar(Xm + Am) + λ2V ar(X l + Al) + ρ2V ar(Xr + Ar)

−2λCov(Xm + Am, X l + Al) + 2ρCov(Xm + Am, Xr + Ar)

= 3V ar(Xm) + λ2V ar(X l) + ρ2V ar(Xr)

−2λCov(Xm, X l) + 2ρCov(Xm, Xr) = V ar(X)

By means of similar reasoning, it is easy to check that

V ar(X + Y ) = V ar(X) + V ar(Y )

when X and Y ∈ FLR are independent. The quantity ∆X(A) can be expressed as sum of
terms that depend on real-valued random variables in the following way

∆X(A) = 3E
[
(Xm −Am)2

]
+ λ2E

[
(X l −Al)2

]
+ ρ2E

[
(Xr −Ar)2

]
−2λE

[
(Xm −Am)(X l −Al)

]
+ 2ρE [(Xm −Am)(Xr −Ar)] .

Since the second moment of a real-valued random variable attains the minimum value
when taken around the mean, we can easily obtain that

E
[
(Xm −Am)2

]
= V ar(Xm) + E

[
(EXm −Am)2

]
,

E
[
(X l −Al)2

]
= V ar(X l) + E

[
(EX l −Al)2

]
,

E
[
(Xr −Ar)2

]
= V ar(Xr) + E

[
(EXr −Ar)2

]
.
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In an analogous way we can check that

E
[
(Xm −Am)(X l −Al)

]
= Cov(Xm, X l) + E

[
(EXm −Am)(EX l −Al)

]
,

E [(Xm −Am)(Xr −Ar)] = Cov(Xm, Xr) + E [(EXm −Am)(EXr −Ar)] .

By the composition of all these terms and taking into account that V arX = 3V ar(Xm)+
λ2V ar(X l) + ρ2V ar(Xr)− 2λCov(Xm, X l) + 2ρCov(Xm, Xr), we obtain the thesis

E
[
D2

LR(X, A)
]

= V ar(X) + D2
LR(A,EX).

Proof of Proposition 4. Under the assumptions in this theorem, it can be simply
checked that

E
[
(X−EX)

′
(Y m−EY m)

]
= E

[
(X − EX)

′
(X a

′
m + bm + εm − EX a

′
m + bm + Eεm)

]
= E

[
(X − EX)

′
(X − EX)a

′
m + (X − EX)

′
(εm − Eεm)

]
= E

[
(X−EX)

′
(X−EX)a

′
m

]
+E

[
(X−EX)

′
(εm−Eεm)

]
.

Since εm is uncorrelated with the vector of explanatory variables X, it results that

a
′
m =

{
ΣX

}−1
E

[
(X − EX)

′
(Y m − EY m)

]
and

bm = E(Y m|X)− EX
{
ΣX

}−1
E

[
(X − EX)

′
(Y m − EY m)

]
.

Analogously, following the same reasoning we obtain the remaining expressions.
Proof of Proposition 5. In order to solve the minimization problem and to check
the parameters estimators, we follow the usual procedure of equating to zero the partial
derivatives of the objective function with respect to (w.r.t.) the parameters to be esti-
mated, although we have to take into account that some of the regression parameters are
related to others. Starting from the estimation of bl and br, we equate to zero the partial
derivatives, respectively, w.r.t bl and br. It is easy to find that the minimum is attained
at

bl = g(Y l)−X a
′
l −

1
λ

Y m +
1
λ

X a
′
m +

1
λ

bm

br = h(Y r)−X a
′
r +

1
ρ
Y m − 1

ρ
X a

′
m − 1

ρ
bm

Since bl and br depend on the term bm, we have to substitute bl and br, as obtained above,
in the objective function before equating to zero the partial derivative of the objective
function w.r.t. bm. As a result it will be obtained

bm = Y m −X a
′
m



A linear regression model for imprecise response 19

Since the parameters bm, bl and br are expressed, respectively, in terms of am, al and
ar, to go on with the estimation procedure it is important to take this into account by
substituting bm, bl and br in the objective function.

We consider the centered vectors Ỹ m, g̃(Y l), h̃(Y r) and the centered matrix X̃ to make it
simpler to analyze the objective function that can be expressed as follows

∆2
λρ = 3(Ỹ m − X̃a

′
m)

′
(Ỹ m − X̃a

′
m)

+ λ2

(
g̃(Y l)− X̃a

′
l

)′ (
g̃(Y l)− X̃a

′
l

)
+ ρ2

(
h̃(Y r)− X̃a

′
r

)′ (
h̃(Y r)− X̃a

′
r

)
− 2λ(Ỹ m − X̃a

′
m)

′
(

g̃(Y l)− X̃a
′
l

)
+ 2ρ(Ỹ m − X̃a

′
m)

′
(
h̃(Y r)− X̃a

′
r

)
Following the usual reasoning it is easy to check that

a
′
l = (X̃

′

X̃)−1X̃
′

g̃(Y l)− 1
λ

(X̃
′

X̃)−1X̃
′

Ỹ m +
a
′
m

λ

a
′
r = (X̃

′

X̃)−1X̃
′

h̃(Y r) +
1
ρ
(X̃

′

X̃)−1X̃
′

Ỹ m − a
′
m

ρ

The last part is the estimation of am. Since this vector appears in all the expressions of
the other parameters we have to take this into account, and then by following the usual
steps we can easily find that the minimum is attained at

â
′

m = (X̃
′

X̃)−1X̃
′

Ỹ m

By making all the appropriate substitutions we obtain the other solutions, namely

â
′

l = (X̃
′

X̃)−1X̃
′

g̃(Y l), â
′

r = (X̃
′

X̃)−1X̃
′

h̃(Y r), b̂m = Y m −X â
′
m,

b̂l = g(Y l)−X â
′
l, b̂r = h(Y r)−X â

′
r.

Proof of Proposition 6. To prove the unbiasedness of the estimators we have to analyze
their expected values. Starting from â

′
m we have

E
(
â
′

m|X
)

= E

[
(X̃

′

X̃)−1X̃
′

Ỹ m|X
]

Since Ỹ m = X̃a
′
m + ε̃m, where ε̃m is the (n× 1)-vector of the centered errors, we obtain

E
(
â
′

m|X
)

= E

[
(X̃

′

X̃)−1X̃
′

(X̃a
′
m + ε̃m)|X

]
= E

[
(X̃

′

X̃)−1X̃
′

X̃a
′
m|X

]
+ E

(
(X̃

′

X̃)−1X̃
′

ε̃m|X
)
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and, taking into account that the errors are uncorrelated with the explanatory variables,
the thesis is proved, that is,

E
(
â
′

m

)
= a

′
m

Analogously, it is possible to check that E
(
â
′

l|X
)

= a
′
l and E

(
â
′

r|X
)

= a
′
r.

Furthermore

E
(
b̂m|X

)
= E

[
Y m|X

]
− E

[
X â

′
m|X

]

and since the sample means are unbiased estimators of the expectations, it is checked that
E

(
b̂m|X

)
= bm, and, by means of similar reasoning, the unbiasedness of b̂l and b̂r.

The consistency is easily deduced from the expressions of the estimators and from the
properties of population moments.
Proof of Proposition 7. Starting from the expression of â

′

m, â
′

l and â
′

r in terms of
sample moments

 â
′

m

â
′

l

â
′

r

 =


(X̃

′

X̃)−1X̃
′

Ỹ m

(X̃
′

X̃)−1X̃
′

g̃(Y l)

(X̃
′

X̃)−1X̃
′

h̃(Y r)

 ,

and taking into account that Ỹ m = X̃a
′
m + ε̃m, g̃(Y l) = X̃a

′
l + ε̃l and h̃(Y r) = X̃a

′
r + ε̃r,

it is easy to check that

 â
′

m

â
′

l

â
′

r

 =


a
′
m + (X̃

′

X̃)−1X̃
′

ε̃m

a
′
l + (X̃

′

X̃)−1X̃
′

ε̃l

a
′
r + (X̃

′

X̃)−1X̃
′

ε̃r

 .

In this way, we have that

√
n

 â
′

m − a
′
m

â
′

l − a
′
l

â
′

r − a
′
r

 =
(

(1
′
1)−1X̃

′

X̃
)−1

(1
′
1)−1/2


X̃

′

ε̃m

X̃
′

ε̃l

X̃
′

ε̃r

 ,
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and then,

(1
′
1)−1/2


X̃

′

ε̃m

X̃
′

ε̃l

X̃
′

ε̃r

 = (1
′
1)−1/2

 (X
′ − (1EX)

′
)εm

(X
′ − (1EX)

′
)εl

(X
′ − (1EX)

′
)εm



+ (1
′
1)−1/2

 ((1EX)
′ − (1 X)

′
)εm

((1EX)
′ − (1 X)

′
)εl

((1EX)
′ − (1 X)

′
)εm



− (1
′
1)−1/2

 (X
′ − (1EX)

′
)1εm

(X
′ − (1EX)

′
)1εl

(X
′ − (1EX)

′
)1εr



− (1
′
1)−1/2

 ((1EX)
′ − (1 X)

′
)1εm

((1EX)
′ − (1 X)

′
)1εl

((1EX)
′ − (1 X)

′
)1εr



Furthermore, as n →∞, the last three terms of the sum tend almost sure to 0
′
((3p×1)-null

vector) and 
 (X

′ − (1EX)
′
)εm

(X
′ − (1EX)

′
)εl

(X
′ − (1EX)

′
)εm




i=1,...,n

is a sequence of random vectors i.i.d., centered at 0
′
, whose covariance matrix is ΣXΣ, so

applying the Central Limit Theorem it results that

(1
′
1)−1/2

 (X
′ − (1EX)

′
)εm

(X
′ − (1EX)

′
)εl

(X
′ − (1EX)

′
)εm

 D−→ N(0
′
,ΣXΣ).

Hence

√
n

 â
′

m − a
′
m

â
′

l − a
′
l

â
′

r − a
′
r

 D−→ N
(
0
′
,
(
ΣX

)−1 Σ
)

.
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