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Abstract In this paper we deal with Mellin convolution of generalized Gamma densities which
brings to integrals of modified Bessel functions of the second kind. Such convolutions allow us to
write explicitly the solutions of the time-fractional diffusion equations involving the adjoint oper-
ators of a square Bessel process and a Bessel process.
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1 Introduction

We study the role of the Mellin convolution formula in finding solutions of fractional diffusion
equations. In particular, our result allows us to write explicitly the distribution of both stable
subordinator and its inverse process. By so doing we find out the explicit solution to space-
fractional or time-fractional equation governing respectively stable or inverse process. This result
turns out to be useful for representing the solutions to the following fractional diffusion equations

Dν
t ũ

1,µ
ν =

(
x
∂2

∂x2
− (µ− 2)

∂

∂x

)
ũ1,µ

ν , x ≥ 0, t > 0, µ > 0 (1.1)

and

Dν
t ũ

2,µ
ν =

1
22

(
∂2

∂x2
− ∂

∂x

(2µ− 1)
x

)
ũ2,µ

ν , x ≥ 0, t > 0, µ > 0. (1.2)

We present, for ν ∈ 1/(2n+1), n ∈ N, the explicit solutions of (1.1) and (1.2) in terms of integrals
of modified Bessel function of the second kind (Kν) whereas, for ν ∈ (0, 1), we obtain the solutions
of (1.1) and (1.2) in terms of Fox’s functions.

2 Preliminaries

Let us introduce the Fox’s H-functions as the class of functions uniquely identified by their Mellin
transforms. A function f for which the following Mellin transform exists

M[f(·)](η) =
∫ ∞

0

xηf(x)
dx

x
, <{η} > 0 (2.1)

can be written in terms of H-functions by observing that∫ ∞

0

xηHm,n
p,q

[
x

∣∣∣∣ (ai, αi)i=1,..,p

(bj , βj)j=1,..,q

]
dx

x
= Mm,n

p,q (η), <{η} > 0 (2.2)

where

Mm,n
p,q (η) =

∏m
j=1 Γ(bj + ηβj)

∏n
i=1 Γ(1− ai − ηαi)∏q

j=m+1 Γ(1− bj − ηβj)
∏p

i=n+1 Γ(ai + ηαi)
. (2.3)
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The inverse Mellin transform is defined as

f(x) =
1

2πi

∫ θ+i∞

θ−i∞
M[f(·)](η)x−ηdη (2.4)

at all points x where f is continuous and for some real θ. For an extensive discussion on this
function see Fox [5]; Mathai and Saxena [10]. For the Mellin convolution

f1 ? f2(x) =
∫ ∞

0

f1(x/s)f2(s)
ds

s
, x > 0 (2.5)

we have (the Mellin convolution formula)

M [f1 ? f2(·)] (η) = M [f1(·)] (η)×M [f2(·)] (η). (2.6)

Also, we recall the following connections between Mellin transform and both integer and fractional
order derivatives. In particular, we consider a rapidly decreasing function f : [0,∞) 7→ [0,∞), if
there exists a ∈ R such that

lim
x→0+

xa−k−1 d
k

dxk
f(x) = 0, k = 0, 1, . . . , n− 1, n ∈ N, x ∈ R+ (2.7)

then we have

M
[
dn

dxn
f(·)

]
(η) =(−1)n Γ(η)

Γ(η − n)
M [f(·)] (η − n) (2.8)

and, for 0 < α < 1

M
[
dα

dxα
f(·)

]
(η) =

Γ(η)
Γ(η − α)

M [f(·)] (η − α) (2.9)

(see [8] for details). The fractional derivative appearing in (2.9) must be understood as follows

dα

dxα
f(x) =

1
Γ (n− α)

∫ x

0

(x− s)n−α−1 d
nf

dsn
(s) ds, n− 1 < α < n (2.10)

that is the Caputo sense. Consider the Riemann-Liouville fractional derivative

Dα
xf =

1
Γ (n− α)

dn

dxn

∫ x

0

(x− s)n−α−1f(s) ds, n− 1 < α < n. (2.11)

Gorenflo and Mainardi (see e.g. [6]) have shown that

Dα
xf =

dα

dxα
f −

n−1∑
k=0

dk

dxk
f

∣∣∣∣∣
x=0+

xk−α

Γ(k − α+ 1)
, n− 1 < α < n. (2.12)

3 Mellin convolution of generalized Gamma densities

In this section we introduce and study the Mellin convolution of generalized gamma densities. In
the literature it is well-known that generalized Gamma r.v.’s possesses density laws given by

Qγ
µ(z) = γ

zγµ−1e−zγ

Γ (µ)
, z > 0, γ > 0, µ > 0. (3.1)

Our discussion here concerns the function

gγ
µ(x, t) =

1
t
Q|γ|µ

(x
t

)
, x > 0, t > 0, γ 6= 0, µ > 0

for which we define the convolution

gγ1
µ1
? gγ2

µ2
(x, t) =

∫ ∞

0

gγ1
µ1

(x, s)gγ2
µ2

(s, t)ds =
1
t

∫ ∞

0

Q|γ1|
µ1

(x/s)Q|γ2|
µ2

(s/t)
ds

s
. (3.2)
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Formula (3.2) is a Mellin convolution in the sense that

M
[
gγ1

µ1
? gγ2

µ2
(·, t)

]
(η) = M

[
gγ1

µ1
(·, t1/2)

]
(η)×M

[
gγ2

µ2
(·, t1/2)

]
(η) (3.3)

as a straightforward calculation shows. Throughout the paper we also deal with the integral

f1 ◦ f2(x, t) =
∫ ∞

0

f1(x, s)f2(s, t)ds (3.4)

(for some well-defined f1, f2) which is not, in general, a Mellin convolution.

We now introduce the generalized Gamma process. Roughly speaking, the function

gγ
µ(x, t) = |γ|x

γµ−1 e−
xγ

tγ

tγµΓ(µ)
, x ≥ 0, t > 0, γ 6= 0, µ > 0 (3.5)

can be viewed as the distribution of a generalized Gamma process {Gγ,µ
t , t > 0} in the sense that

∀t the distribution of the r.v. Gγ,µ
t is a generalized Gamma distribution. Thus, we make some

abuse of language by considering a process without its covariance structure. In the literature there
are several non-equivalent definitions of the distribution on Rn

+ of Gamma distributions. See e.g.
Kotz et al. [9] for a comprehensive discussion. Distribution (3.5) satisfies the p.d.e.

∂

∂t
gγ

µ = |γ| tγ−1 Gγ,µg
γ
µ, x ≥ 0, t > 0 (3.6)

where

Gγ,µf =
1
γ2

{
∂

∂x
x2−γ ∂

∂x
f − (γµ− 1)

∂

∂x
x1−γf

}
, x ≥ 0, t > 0 (3.7)

and γ 6= 0 (see D’Ovidio [4]). For γ = 1 and γ = 2 in (3.5) we obtain respectively the density
law of a 2µ-dimensional squared Bessel process {BESSQ(2µ)

t/2 , t > 0} and a 2µ-dimensional Bessel

process {BES(2µ)
t/2 , t > 0} both starting from zero. Some interesting distributions can be realized

through Mellin convolution of distribution gγ
µ. Indeed, after some algebra we have

gγ
µ1
? g−γ

µ2
(x, t) =

γ

B(µ1, µ2)
xγµ1−1tγµ2

(tγ + xγ)µ1+µ2
, x > 0, t > 0, γ > 0 (3.8)

and

g−γ
µ1

? gγ
µ2

(x, t) =
γ

B(µ1, µ2)
xγµ2−1tγµ1

(tγ + xγ)µ1+µ2
, x > 0, t > 0, γ > 0 (3.9)

where B(·, ·) is the Beta function (see e.g. Gradshteyn and Ryzhik [7, formula 8.384]). Moreover,
in the light of the Mellin convolution formula (2.6), the following holds

M
[
gγ

µ1
? g−γ

µ2
(·, t)

]
(η) = M

[
g−γ

µ1
? gγ

µ2
(·, t)

]
(η). (3.10)

A further density arising from convolution can be presented. In particular, for γ 6= 0, we have

gγ
µ1
? gγ

µ2
(x, t) =

2|γ| (xγ/tγ)
µ1+µ2

2

xΓ(µ1)Γ(µ2)
Kµ2−µ1

(
2

√
xγ

tγ

)
, x > 0, t > 0 (3.11)

which turns out to be very useful later on. The function Kν appearing in (3.11) is the modified
Bessel function of imaginary argument (see e.g [7, formula 8.432]). For the sake of completeness
we write down the following Mellin transforms

M
[
gγ

µ(·, t)
]
(η) =

Γ
(

η−1
γ + µ

)
Γ (µ)

tη−1, t > 0, <{η} > 1− γµ, γ 6= 0, (3.12)
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and

M
[
gγ

µ(x, ·)
]
(η) =

Γ
(
µ− η

γ

)
Γ (µ)

xη−1, x > 0, <{η} > γµ, γ 6= 0. (3.13)

Formula (3.13) suggests that

M
[
gγ1

µ1
? gγ2

µ2
(x, ·)

]
(η) = M

[
gγ1

µ1
(x1/2, ·)

]
(η)×M

[
gγ2

µ2
(x1/2, ·)

]
(η). (3.14)

For the one-dimensional GGP depicted above we are able to define the inverse generalized Gamma
process {Eγ,µ

t , t > 0} (IGGP in short) by means of the following relation

Pr{Eγ,µ
t < x} = Pr{Gγ,µ

x > t}.

The density law eγ
µ = eγ

µ(x, t) of IGGP can be carried out by observing that

eγ
µ(x, t) = Pr{Eγ,µ

t ∈ dx}/dx =
∫ ∞

t

d

dx
gγ

µ(s, x) ds, x > 0, t > 0 (3.15)

and

M
[
eγ
µ(·, t)

]
(η) =

∫ ∞

t

M
[
d

dx
gγ

µ(s, ·)
]

(η) ds, <{η} < 1

=− (η − 1)
∫ ∞

t

M
[
gγ

µ(s, ·)
]
(η − 1) ds = [by (3.13)]

=− (η − 1)
∫ ∞

t

Γ
(
µ− η−1

γ

)
Γ (µ)

sη−2 ds =
Γ
(
µ− η−1

γ

)
Γ (µ)

tη−1

where we have used formula (2.8). From (2.3) and the fact that

Hm,n
p,q

[
x

∣∣∣∣ (ai, αi)i=1,..,p

(bj , βj)j=1,..,q

]
= c Hm,n

p,q

[
xc

∣∣∣∣ (ai, cαi)i=1,..,p

(bj , cβj)j=1,..,q

]
(3.16)

for all c > 0, we have that

eγ
µ(x, t) =

γ

x
H1,0

1,1

[
tγ

xγ

∣∣∣∣∣ (µ, 0)
(µ, 1)

]
, x > 0, t > 0, γ > 0. (3.17)

By observing that M
[
eγ
µ(·, t)

]
(1) = 1, we immediately verify that (3.17) integrates to unity. The

density law gγ
µ can be expressed in terms of H functions as well. We have

gγ
µ(x, t) =

γ

x
H1,0

1,1

[
xγ

tγ

∣∣∣∣∣ (µ, 0)
(µ, 1)

]
, x > 0, t > 0, γ > 0. (3.18)

In view of (3.17) and (3.18) we can argue that

Eγ,µ
t

law= G−γ,µ
t

law= 1/Gγ,µ
t , t > 0, γ > 0, µ > 0

and eγ
µ(x, t) = g−γ

µ (x, t), γ > 0, x > 0, t > 0.

Remark 1. We notice that the inverse process {E1,1/2
t , t > 0} can be written as

E
1,1/2
t = inf{s; B(s) =

√
2t}

where B is a standard Brownian motion. Thus, E1,1/2 can be interpreted as the first-passage time
of a standard Brownian motion through the level

√
2t.
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In what follows we will consider the Mellin convolution e?n
µ̄ (x, t) = eµ1 ? . . . ? eµn

(x, t) (see
formulae (2.6) and (3.2)) where µ̄ = (µ1, . . . , µn), µi > 0, i = 1, 2, . . . , n and for the sake of
simplicity, eµ(x, t) = e1µ(x, t). For the density law e?n

µ̄ (x, t), x > 0, t > 0 we have

M
[
e?n
µ̄ (·, t)

]
(η) =

n∏
i=1

M
[
eµi(·, t1/n)

]
(η) =

n∏
i=1

Γ (µi + 1− η)
Γ (µi)

tη−1 (3.19)

with <{η} < 1. Furthermore, for the Mellin convolution gγ,?n
µ̄ (x, t) = gγ

µ1
?, . . . , ?gγ

µn
(x, t) we have

M
[
gγ,?n

µ̄ (·, t)
]
(η) =

n∏
i=1

M
[
gγ

µi
(·, t1/n)

]
(η) =

n∏
i=1

Γ
(

η−1
γ + µi

)
Γ (µi)

tη−1 (3.20)

with <{η} > 1−mini{µi}.

4 Stable subordinators

The ν-stable subordinators {τ̃ (ν)
t , t > 0}, ν ∈ (0, 1), are defined as non-decreasing, (totally)

positively skewed, Lévy processes with Laplace transform

E exp{−λτ̃ (ν)
t } = exp {−tλν} , t > 0, λ > 0 (4.1)

and characteristic function

E exp{iξτ̃ (ν)
t } =exp{−tΨν(ξ)}, ξ ∈ R (4.2)

where
Ψν(ξ) =

∫ ∞

0

(1− e−iξu)
ν

Γ (1− ν)
du

uν+1
(4.3)

(see Bertoin [3]; Zolotarev [15]). After some algebra we get

Ψν(ξ) =σ|ξ|ν
(
1− i sgn(ξ) tan

(πν
2

))
= |ξ|ν exp

{
−i πν

2
ξ

|ξ|

}
.

For the density law of the ν-stable subordinator {τ̃ (ν)
t , t > 0}, say hν = hν(x, t), x > 0, t > 0 we

have the t-Mellin transforms

M
[
ĥν(ξ, ·)

]
(η) = |ξ|−ην exp

{
i
πην

2
ξ

|ξ|

}
Γ (η) (4.4)

and
M
[
h̃ν(λ, ·)

]
(η) = λ−ηνΓ (η) (4.5)

where ĥν(ξ, t) = F [hν(·, t)] (ξ) is the Fourier transform appearing in (4.2) and h̃ν(λ, t) = L [hν(·, t)] (λ)
is the Laplace transform (4.1). By inverting (4.4) we obtain the Mellin transform with respect to
t of the density hν which reads

M [hν(x, ·)] (η) =
1
2π

∫
R
e−iξxM

[
ĥ(ξ, ·)

]
(η)dξ (4.6)

=
Γ (η) Γ (1− ην)

2π

{
ei πην

2

(ix)1−ην
+

e−i πην
2

(−ix)1−ην

}
=

Γ (η) Γ (1− ην)
2π x1−ην

{
exp

{
−iπ

2
+ iπην

}
+ exp

{
i
π

2
− iπην

}}
=

Γ (η) Γ (1− ην)
π x1−ην

sinπην =
Γ (η)
Γ (ην)

xην−1, x > 0, ν ∈ (0, 1)
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where <{ην} ∈ (0, 1). Formula (4.6) can be also obtained by inverting (4.5). We are also able to
evaluate the Mellin transform with respect to x of the density law hν . From (4.4) and the fact that∫ ∞

0

xη−1e−iξxdx =
Γ(η)
(iξ)η

, where (±iξ)ν = |ξ|ν exp
{
±iνπ

2
ξ

|ξ|

}
, ν ∈ (0, 1) (4.7)

we obtain

M [hν(·, t)] (η) =
Γ (η)
2π

∫
R
|ξ|−η exp

{
−iπη

2
ξ

|ξ|
− tΨν(ξ)

}
dξ

=
Γ(η)
2π

{
e−i πη

2

∫ ∞

0

ξ−ηe−tΦν(ξ)dξ + ei πη
2

∫ ∞

0

ξ−ηe−tΦν(−ξ)dξ

}
=

Γ(η)
2πν

Γ
(

1− η

ν

)
t

η−1
ν

{
eiπ(1−η) + e−iπ(1−η)

}
=Γ
(

1− η

ν

)
t

η−1
ν

ν Γ (1− η)
, <{η} ∈ (0, 1), t > 0. (4.8)

We investigate the relationship between stable subordinators and their inverse processes. For
a ν-stable subordinator {τ̃ (ν)

t , t > 0} and an inverse process {L(ν)
t , t > 0} (ISP in short) such that

Pr{L(ν)
t < x} = Pr{τ̃ (ν)

x > t}

we have the following relationship between density laws

lν(x, t) = Pr{L(ν)
t ∈ dx}/dx =

∫ ∞

t

d

dx
hν(s, x)ds, x > 0, t > 0. (4.9)

The density law (4.9) can be written in terms of Fox functions by observing that

M [lν(·, t)] (η) =
∫ ∞

t

M
[
d

dx
hν(s, ·)

]
(η) ds = [by (2.8)]

=− (η − 1)
∫ ∞

t

M [hν(s, ·)] (η − 1) ds = [by (4.6)]

=−
∫ ∞

t

Γ (η)
Γ (ην − ν)

sην−ν−1ds

=
Γ (η)

Γ (ην − ν + 1)
tν(η−1), <{η} < 1/ν, t > 0. (4.10)

Thus, by direct inspection of (2.3), we recognize that

lν(x, t) =
1
tν
H1,0

1,1

[
x

tν

∣∣∣∣∣ (1− ν, ν)
(0, 1)

]
, x > 0, t > 0, ν(0, 1). (4.11)

Density (4.11) integrates to unity, indeed M [lν(·, t)] (1) = 1. The t-Laplace transform

L[lν(x, ·)](λ) = λν−1 exp {−xλν} , λ > 0, ν ∈ (0, 1) (4.12)

comes directly from the fact that∫ ∞

0

e−λtM [lν(·, t)] (η) dt =
Γ (η)

λην−ν+1
=
∫ ∞

0

xη−1L [lν(x, ·)] (λ) dx.

From (4.12) we recognize that L [lν(·, t)] (λ) = Eν(−λtν) where Eβ is the well-known Mittag-Leffler
function which can be also written as follows

Eν(−λtν) =
1
π

∫ ∞

0

exp
{
−λ1/νtx

} xν−1 sinπν
1 + 2xν cosπν + x2ν

dx, t > 0, λ > 0 (4.13)
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Distribution lν satisfies the fractional Cauchy problem ∂ν

∂tν lν = ∂
∂x lν , x > 0, t > 0 subject to

lν(x, 0) = δ(x) and lν(0, t) = 0 where the fractional derivative must be understood as in (2.10).
The governing equation of lν can be also presented by considering the Riemann-Liouville derivative
(2.11) and the relation (2.12) (see e.g. Meerschaert and Scheffler [11]; Baeumer et al. [1]). It
is well-known that the ratio involving two independent stable subordinator { 1τ̃

(ν)
t , t > 0} and

{ 2τ̃
(ν)
t , t > 0} has distribution, ∀t, given by

Pr{ 1τ̃
(ν)
t / 2τ̃

(ν)
t ∈ dw}/dw =

1
π

wν−1 sinπν
1 + 2wν cosπν + w2ν

, w > 0, t > 0. (4.14)

Here we study the ratio of two independent inverse stable processes { 1L
(ν)
t , t > 0} and { 2L

(ν)
t , t >

0} by evaluating its Mellin transform as follows

E
{

1L
(ν)
t / 2L

(ν)
t

}η−1

=M [lν(·, t)] (η)×M [lν(·, t)] (2− η) =
1
ν

sin νπ − ηνπ

sin ηπ
(4.15)

with <{η} ∈ (0, 1). By inverting (4.15) we obtain

1
νπ

sin νπ
1 + 2x cos νπ + x2

=
1

2πi

∫ θ+i∞

θ−i∞

sin νπ − ηνπ

sin ηπ
x−ηdη (4.16)

for some real θ ∈ (0, 1). From (4.14) and (4.16) we can argue that(
1τ̃

(ν)
t / 2τ̃

(ν)
t

)ν law= 1L
(ν)
t / 2L

(ν)
t , ∀t > 0. (4.17)

We notice that the equivalence in law (4.17) is independent of t as the formulae (4.14) and (4.16)
entail. The distribution hν ◦ lν(x, t) of the process {τ̃ (ν)

L
(ν)
t

, t > 0} has Mellin transform (by making

use of the formulae (4.8) and (4.10)) given by

M [hν ◦ lν(·, t)] (η) =M [hν(·, 1)] (η)×M [lν(·, t)]
(
η − 1
ν

+ 1
)

=
1
ν

sinπη
sinπ 1−η

ν

tη−1, t > 0 (4.18)

with <{η} ∈ (0, 1). Thus, we can infer that

τ̃
(ν)

L
(ν)
t

law= t× 1τ̃
(ν)
t / 2τ̃

(ν)
t t > 0 (4.19)

and hν ◦ lν(x, t) = t−1r(x/t) where r(w) is that in (4.14). For the process {L(ν)

τ̃
(ν)
t

, t > 0} with

distribution lν ◦ hν(x, t) we obtain (from (4.10) and (4.8))

M [lν ◦ hν(·, t)] (η) =M [lν(·, 1)] (η)×M [hν(·, t)] (ην − ν + 1) =
1
ν

sinπν − πην

sinπη
tη−1 (4.20)

with <{η} ∈ (0, 1) and thus

L
(ν)

τ̃
(ν)
t

law= t× 1L
(ν)
t / 2L

(ν)
t , t > 0. (4.21)

We have that lν ◦ hν(x, t) = t−1k(x/t) where k(x) is that in (4.16).

5 Main results

In this section we consider compositions of processes whose governing equations are fractional dif-
fusion equations. These processes represent anomalous diffusions. When we consider compositions
involving Markov processes and stable subordinators we still have Markov processes. Here we study
Markov processes with random time which is the inverse of a stable subordinator. Such a process
is not belonging to the family of stable subordinators (see (4.13)) and the resultant composition
is not, in general, a Markov process. This somehow explains the role of the fractional derivative
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appearing in the governing equations. Such governing equations and the compositions governed
by them, have been studied by various authors, see e.g. Orsingher and Beghin [14], Baeumer et al.
[1, 2]. Hereafter we exploit the Mellin convolution of generalized Gamma densities in order to write
explicitly the solutions of fractional diffusion equations. We firstly present a result which relates
the density law hν with the convolution e?n

µ̄ introduced in Section 3. To do this we also introduce
the time-stretching function ϕm(s) = (s/m)m, m ≥ 1, s ∈ (0,∞). We state the following Lemma.

Lemma 1. The Mellin convolution e?n
µ̄ (x, ϕn+1(t)) where µi = i ν, for i = 1, 2, . . . , n is the density

law of a ν-stable subordinator {τ̃ (ν)
t , t > 0} with ν = 1/(n+ 1), n ∈ N.

Proof. From (3.19) we have that

M
[
e?n
µ̄ (·, ϕn+1(t))

]
(η) =

∏n
i=1 Γ (1− η + µi)∏n

i=1 Γ (µi)
(ϕn+1(t))

η−1
. (5.1)

From Gradshteyn and Ryzhik [7, formula 8.335.3] we deduce that

n∏
k=1

Γ
(

k

n+ 1

)
=

(2π)
n
2

√
n+ 1

, n ∈ N (5.2)

and formula (5.1) reduces to

M
[
e?n
µ̄ (·, ϕn+1(t))

]
(η) =

∏n
i=1 Γ (1− η + µi)

(2π)n/2
√
ν

(ϕn+1(t))
η−1

. (5.3)

Furthermore, by making use of the (product theorem) relation

Γ(nx) = (2π)
1−n

2 nnx−1/2
n−1∏
k=0

Γ
(
x+

k

n

)
(5.4)

(see Gradshteyn and Ryzhik [7, formula 3.335]) formula (5.3) becomes

M
[
e?n
µ̄ (·, ϕn(t))

]
(η) =

Γ
(

1−η
ν

)
(2π)n/2(n+ 1)η/ν−n

Γ (1− η) (2π)n/2
(ϕn+1(t))

η−1 =
Γ
(

1−η
ν

)
ν Γ (1− η)

t
η−1

ν

(with <{η} ∈ (0, 1)) which coincides with (4.8).

In the light of the last result we are able to write explicitly the density law of stable subordi-
nators. For ν = 1/2, Lemma 1 says that

e?1
µ̄ (x, ϕ2(t)) = e1/2(x, (t/2)2) =

x−1/2−1e−
t2
4x

t−1
√

4 Γ
(

1
2

) , x > 0, t > 0 (5.5)

which is the well-known density law of a 1/2-stable subordinator or the first-passage time of a
standard Brownian motion trough the level t/

√
2. For ν = 1/3, from (3.11), we obtain

e?2
µ̄ (x, ϕ3(t)) =e1/3 ? e2/3(x, (t/3)3) =

1
3π

t3/2

x3/2
K 1

3

(
2

33/2

t3/2

√
x

)
, x > 0, t > 0. (5.6)

For ν = 1/4, by (3.11) (and the commutativity under ?), we have

e?3
µ̄ (x, ϕ4(t)) =e2/4 ? (e1/4 ? e3/4)(x, (t/4)4)

where K1/2(z) =
√
π/2z exp{−z} (see [7, formula 8.469]). We notice that

M
[
e?3
µ̄ (·, ϕ4(t))

]
(η) = M

[
h1/2 ◦ h1/2(·, t)

]
(η)

which is in line with the well-known fact that

E exp
{
−λ 1τ̃

(ν1)

2τ̃
(ν2)
t

}
= E exp

{
−λν1

2τ̃
(ν2)
t

}
= exp{−tλν1ν2}, (5.7)
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0 < νi < 1, i = 1, 2. For ν = 1/5, by exploiting twice (3.11) (and the commutativity under ?), we
can write down

e?4
µ̄ (x, (t/5)5) =(e1/5 ? e2/5) ? (e3/5 ? e4/5)(x, (t/5)5) (5.8)

=
t7/2

53π2 x3/10+1

∫ ∞

0

s−2/5−1K 1
5

(
2
√
s

x

)
K 1

5

(
2

55/2

t5/2

√
s

)
ds

or equivalently

e?4
µ̄ (x, (t/5)5) =(e1/5 ? e3/5) ? (e2/5 ? e4/5)(x, (t/5)5) (5.9)

=
t3

55/2π2 x2/5+1

∫ ∞

0

s−1/5−1K 2
5

(
2
√
s

x

)
K 2

5

(
2

55/2

t5/2

√
s

)
ds.

For ν = 1/(2n+ 1), n ∈ N, by using repeatedly (3.11) we arrive at

hν(x, t) =
xν/2 t1/ν−3/2

ν2−1/νπ1/2ν−1/2
K◦n

ν

(
x, (νt)1/ν

)
, x > 0, t > 0 (5.10)

where
K◦n

ν (x, t) =
∫ ∞

0

. . .

∫ ∞

0

Kν(x, s1) . . .Kν(sn−1, t) ds1 . . . dsn−1 (5.11)

is the integral (3.4) (as the symbol ◦n denote) where n functions are involved and Kν(x, t) =
x−2ν−1Kν

(
2
√
t/x
)
, x > 0, t > 0. We state a similar result for the density law lν and the

convolution gγ,?n
µ̄ (see Section 3). Let us consider the time-stretching function ψm(s) = ms1/m,

s ∈ (0,∞), m ∈ N, (ψ = ϕ−1 where ϕ has been introduced in the previous Lemma).

Lemma 2. The Mellin convolution g
1/ν,?(1/ν−1)
µ̄ (x, ψ1/ν(t)) where µi = i ν, i = 1, 2, . . . , (1/ν − 1)

and 1/ν ∈ N, is the density law of a ν-inverse process {L(ν)
t , t > 0}.

Proof. The proof can be carried out as the proof of Lemma 1.

We obtain that l1/2(x, t) = g2
1/2(x, 2t

1/2) = e−
x2
4t /
√
πt, x > 0, t > 0. Moreover, by making use

of (3.11) and (5.2), we have that

l1/3(x, t) = g3
2/3 ? g

3
1/3(x, 3t

1/3) =
1
π

√
x

t
K 1

3

(
2

33/2

x3/2

√
t

)
, x > 0, t > 0 (5.12)

and l1/4(x, t) = g4
3/4 ? g

4
2/4 ? g

4
1/4(x, 4t

1/4) follows (thank to the commutativity under ?) from

g4
3/4 ? g

4
2/4 ? g

4
1/4(x, t) =g4

1/2 ? (g4
3/4 ? g

4
1/4)(x, t) =

23/2

π

x

t

∫ ∞

0

exp
{
−(sx)4 − 2

(st)2

}
ds

where g4
3/4 ? g

4
1/4(x, t) is given by (3.11) and K1/2(z) =

√
π/2z exp{−z} (see [7, formula 8.469]).

In a more general setting, by making use of (3.11) we can write down

g
1/ν,?(1/ν−1)
µ̄ (x, t) =

1
ν1/2ν

( x

π2t3

) 1−ν
4ν Q◦n1−ν

2
(x, t), ν = 1/(2n+ 1), n ∈ N (5.13)

where the symbol ”◦n ” stands for the integral (3.4) where n functions Q 1−ν
2

are involved and

Q 1−ν
2

(x, t) = K 1−ν
2

(
2
√

(x/t)1/ν

)
, x > 0, t > 0. (5.14)

Now, we present the main result of this paper concerning the explicit solutions of fractional
diffusion equations. The solution to ∂α

∂tαu = ∂2

∂x2u, for some 0 < α < 1 where the fractional
derivative is that in (2.10), has been studied in Meerschaert and Scheffler [12], Orsingher and
Beghin [13],Orsingher and Beghin [14]. This is the simplest case of fractional diffusion. Here we
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study a generalized problem which brings to fractional diffusion equations involving the adjoint
operators of both Bessel and squared Bessel processes. Consider the distribution ũγ,µ

ν = g̃γ
µ ◦ lν

where g̃γ
µ(x, t) = gγ

µ(x, t1/γ) and the Mellin transform of ũγ,µ
ν which reads

M [ũγ,µ
ν (·, t)] (η) =

Γ
(

η−1
γ + µ

)
Γ
(

η−1
γ + 1

)
Γ(µ)Γ

(
η−1

γ ν + 1
) t

η−1
γ ν , 1− γµ < <{η} < 1 + γ/ν − γ. (5.15)

We can state the following result.

Theorem 1. Let the previous setting prevail. The solution to

Dα
t ũ

γ,µ
ν = Gγ,µũ

γ,µ
ν , x ≥ 0, t > 0 (5.16)

can be represented, for ν = 1/(2n+ 1), n ∈ N, in terms of generalized Gamma convolution as

ũγ,µ
ν (x, t) = γ

x2µ−1ν
1−3ν
4ν

(π2t3ν)
1−ν
4ν

∫ ∞

0

s
1
4ν−

1
4−µe−xγ/s vν(s, t) ds, x ≥ 0, t > 0 (5.17)

where Gγ,µ is the operator appearing in (3.7) and

vν(s, t) =
∫ ∞

0

. . .

∫ ∞

0

Q 1−ν
2

(s, s1) . . .Q 1−ν
2

(sn−1, t
ν/ν)ds1 . . . dsn−1.

Moreover, for ν ∈ (0, 1), we have

ũγ,µ
ν (x, t) =

γ

xtν/γ
H2,0

2,2

[
xγ

tν

∣∣∣∣∣ (1, ν); (µ, 0)
(1, 1); (µ, 1)

]
(5.18)

in terms of H Fox functions.

Proof. By exploiting the property (2.8) of the Mellin transform and the fact that∫ ∞

0

xη−1xθf(x)dx = M [f(·)] (η + θ),

for the operator (3.7) we have that

M [Gγ,µũ
γ,µ
ν (·, t)] (η)

=− 1
γ2

(η − 1)M
[
∂

∂x
ũγ,µ

ν (·, t)
]

(η − γ + 1) +
1
γ2

(γµ− 1)(η − 1)M [ũγ,µ
ν (·, t)] (η − γ)

=
1
γ2

(η − 1)(η − γ)M [ũγ,µ
ν (·, t)] (η − γ) +

1
γ2

(γµ− 1)(η − 1)M [ũγ,µ
ν (·, t)] (η − γ)

=
1
γ2

(η − 1)(η − 1 + γµ− γ)M [ũγ,µ
ν (·, t)] (η − γ)

where M [ũγ,µ
ν (·, t)] (η) is that in (5.15). We obtain

M [Gγ,µũ
γ,µ
ν (·, t)] (η)

=
1
γ2

(η − 1)(η − 1 + γµ− γ)
Γ
(

η−γ−1
γ + µ

)
Γ
(

η−γ−1
γ + 1

)
Γ(µ)Γ

(
η−γ−1

γ ν + 1
) t

η−γ−1
γ ν

=
1
γ

(η − 1)
Γ
(

η−1
γ + µ

)
Γ
(

η−1
γ

)
Γ(µ)Γ

(
η−1

γ ν − ν + 1
) t η−1

γ ν−ν

=
Γ
(

η−1
γ + µ

)
Γ
(

η−1
γ + 1

)
Γ(µ)Γ

(
η−1

γ ν − ν + 1
) t

η−1
γ ν−ν = Dν

tM [ũγ,µ
ν (·, t)] (η)
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and ũγ,µ
ν (x, t) solves (5.16) for ν ∈ (0, 1). In view of Lemma 2 we can write

ũγ,µ
ν (·, t) =

∫ ∞

0

g̃γ
µ(x, s) g1/ν,?(1/ν−1)

µ̄ (s, ψ1/ν(t)) ds (5.19)

and by means of (5.13) result (5.17) appears. Formula (5.18) follows directly from (2.3) by con-
sidering formula (3.16) and the fact that

Hm,n
p,q

[
x

∣∣∣∣ (ai, αi)i=1,..,p

(bj , βj)j=1,..,q

]
=

1
xc

Hm,n
p,q

[
x

∣∣∣∣ (ai + cαi, αi)i=1,..,p

(bj + cβj , βj)j=1,..,q

]
(5.20)

for all c ∈ R.

We specialize the previous result by keeping in mind formula (2.12).

Corollary 1. Let us write ũµ
ν (x, t) = ũ1,µ

ν (x, t). The distribution ũµ
ν (x, t), x > 0, t > 0 µ > 0,

ν ∈ (0, 1), solves the following fractional equation

∂ν

∂tν
uµ

ν =
(
x
∂2

∂x2
− (µ− 2)

∂

∂x

)
uµ

ν . (5.21)

In particular, for ν = 1/2, we have

ũµ
1/2(x, t) =

xµ−1

√
πtΓ(µ)

∫ ∞

0

s−µ exp
{
−x
s
− s2

4t

}
ds, x > 0, t > 0, µ > 0 (5.22)

which can be seen as the distribution of the process {G1,µ
|B(2t)|, t > 0} where B is a standard

Brownian motion run at twice its usual speed and Gγ,µ is a GGP. We notice that the governing
equation of the process {BG1,µ(t), t > 0} is given by (see D’Ovidio [4])

∂

∂t
q =− 1

22

∂

∂x

(
x
∂2

∂x2
− (2µ− 2)

∂

∂x

)
q, x > 0, t > 0. (5.23)

Corollary 2. The distribution ũ2,µ
ν = ũ2,µ

ν (x, t), x > 0, t > 0, µ > 0, ν ∈ (0, 1) solves the following
fractional equation

∂ν

∂tν
ũ2,µ

ν =
1
22

(
∂2

∂x2
− ∂

∂x

(2µ− 1)
x

)
ũ2,µ

ν . (5.24)

In particular, for ν = 1/3, we have

ũ2,µ
1/3(x, t) =

2x2µ−1

πΓ(µ)
√
t

∫ ∞

0

e−
x2
s

sµ−1/2
K 1

3

(
2

33/2

x3/2

√
t

)
ds, x > 0, t > 0, µ > 0. (5.25)

and for µ = 1/2 we obtain

ũ
2,1/2
1/3 (x, t) =

2
π3/2

√
t

∫ ∞

0

e−
x2
s K 1

3

(
2

33/2

x3/2

√
t

)
ds, x > 0, t > 0. (5.26)

References

[1] B. Baeumer, M. Meerschaert, and E. Nane. Space-time duality for fractional diffusion. Journal
of Applied Probability, 46:1100 – 1115, 2009.

[2] B. Baeumer, M. Meerschaert, and E. Nane. Fractional cauchy problems on bounded domains.
Ann. of Probab., 37(3):979 – 1007, 2009.
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