
A Dynamic Threshold Acceptance Approach to

On-Line Management of Production Workload

Massimiliano Caramia ∗ Paolo Dell’Olmo †

Abstract

In this paper we analyze the problem of balancing the load of n machines (plants)

in on-line scenarios. We describe known techniques and propose a new algorithm in-

spired by a metaheuristic approach. The novelty of the approach also stems from the

fact that the algorithm is still an on-line constructive algorithm, and thus guarantees

reduced computing times, but acts as a more sophisticated approach, where a neigh-

borhood search has to be made in the same way as with a local search method. We

show how the proposed algorithm can be implemented both in a single objective and

in a multi-objective scenario, producing better results than the greedy, semi-greedy

and Robin-Hood algorithms.

keywords: Metaheuristic Algorithm, Production Planning, On-line Algorithm.

1 On-Line Workload Management of Production Facilities

In production systems, without proper scheduling and resource allocation, large queues

at each processing operation cause an imbalanced production system: some machines are

overloaded while some are starved. With this perspective, the mean cycle time will rise

due to local starvation even though the total system inventory stays approximately the

same, and it will rise due to the waiting time in the queue for those overloaded processing

machines. Hence, the goal is to balance the production facilities to reduce work in progress
∗Istituto per le Applicazioni del Calcolo “M. Picone”, Viale del Policlinico, 137 - 00161 Rome, Italy.

E-mail: caramia@iac.rm.cnr.it
†Dipartimento di Statistica, Probabilità e Statistiche applicate, University of Rome “La Sapienza”,

Piazzale Aldo Moro, 5 - 00185 Rome, Italy. E-mail: paolo.dellolmo@uniroma1.it.

1

variability. In this scenario production managers are asked to find an allocation strategy

so that the workload among the production facilities is distributed as fairly as possible.

This problem is known as load balancing and is the main topic of this paper.

Formally, the load balancing problem is defined as the problem of the on-line assign-

ment of tasks to n machines; the assignment has to be made immediately upon the arrival

of the task, increasing the load on the machine the task has been assigned to for the du-

ration of the task. We consider only nonpreemptive load balancing; i.e., the reassignment

of tasks is not allowed. The goal is to minimize the maximum load, or, equivalently, to

minimize the sum of the absolute values of the difference between the load of each machine

and the average load of the system.

Two main analyzes can be done in this direction: the first one is related to the so called

“temporary tasks” problem and the other is the so called “permanent tasks” problem.

The first problem refers to the case in which tasks have a finite duration, i.e., during

task arrivals one can observe also task departures from the machines. In the latter problem,

tasks are “permanently assigned” to machines, i.e., only task arrivals are observed over

time. This can also be interpreted as a problem in which the task duration is very large

with respect to the time horizon where tasks arrive over time.

The other type of distinction can be made according to the duration of the task. In

fact, we can have either known duration scenarios or unknown duration scenarios.

The on-line load balancing problem naturally arises in many applications involving the

allocation of resources. In particular, many cases that are usually cited as applications for

bin packing become load balancing problems when one removes the assumption that the

items, once “stored”, remain in the storage forever. As a simple concrete example, consider

the case where each “machine” represents a plant and a task is a work order. The problem

is to assign each incoming order to one of the plants which is able to process that work

order. Assigning an order to a plant increases the load on this plant, i.e., it increments

the percentage of the used capacity. The load is increased for the duration of the request.

Formally, each arriving task j has an associated load vector, pj = {p1j , p2j , . . . , pnj}, where

pij defines the increase in the load of machine i if we were to assign task j to it. This

increase in load occurs for the duration dj of the task.

The problem of allocating tasks to facilities has been widely studied in the management

science arena (see, e.g., [8, 11, 13]), but aspects like the on-line characterization and the

2

multi-objective analysis were missing, even though they represent relevant production

management issues. In this work, we are interested in the algorithmic aspects of on-line

load balancing of production facilities, trying to show to practitioners how to improve on

first to come strategies like greedy, or more sophisticated algorithms like Robin-Hood. The

novelty of the proposed approach also stems from the fact that the algorithm is still an

on-line constructive algorithm, and thus guarantees reduced computing times, but acts as

a more sophisticated approach, where a neighborhood search has to be made in the same

way as with a local search method.

In the next section we revise previous work in this direction and then provide a novel

algorithm based on the threshold acceptance paradigm. Since the problem is an on-line one

we consider for the comparison only fast algorithms, and provide extensive computational

results on both single-objective and multi-objective scenarios.

2 Previous Work and Existing Approaches on On-line Load

Balancing

On-line load balancing has been widely investigated in terms of approximation algorithms

(e.g., see [1, 2, 3, 4, 5, 6, 7, 12, 14]). Since the arriving tasks have to be assigned without

knowledge of the future tasks, it is natural to evaluate performance in terms of the com-

petitive ratio. For this problem, the competitive ratio is the supremum, over all possible

input sequences, of the maximum (over time and over machines) load achieved by the

on-line algorithm to the maximum load achieved by the optimal off-line algorithm. The

competitive ratio may depend, in general, on the number of machines n, which is usu-

ally fixed, and should not depend on the number of tasks that may be arbitrarily large.

Similar to the way scheduling problems are characterized, load balancing problems can be

categorized according to the properties of the load vectors. The simplest case is where the

coordinates of each load vector are equal to some value that depends only on the task. It

is easy to observe that Graham algorithm [9], applied to this kind of load-balancing pro-

blem, leads to a (2-(1/n))-competitive solution. Azar et al. [3] proposed studying a less

restricted case, motivated by the problem of the on-line assignment of network nodes to

gateways (see also [7]). In this case, a task can represent the request of a network node to

be assigned to a gateway; machines represent gateways. Since, in general, each node can

3

be served by only one subset of gateways, this leads to a situation where each coordinate

of a load vector is either ∞ or equal to a given value that depends only on the task. In

this case, which we will refer to as the assignment restriction case, the paper in [3] shows

an Ω(
√

n) lower bound on the competitive ratio of any load balancing algorithm that

deals with the unknown duration case, i.e., the case where the duration of a task becomes

known only upon its termination. The same authors also present an O(n2/3)-competitive

algorithm. The work in [3] opens several new research ideas. The first is the question of

whether there exists an O(
√

n)-competitive algorithm for the assignment restriction case

when the duration of a task becomes known only upon its termination. Secondly, the

Ω(
√

n) lower bound for the competitive ratio in [3] suggests considering natural variations

of the problem for which this lower bound does not apply. One such candidate, considered

in this paper, is the known duration case, where the duration of each task is known upon

its arrival.

All the results in this paper, as well as in the papers mentioned above, concentrate on

nonpreemptive load balancing; i.e., the reassignment of tasks is not allowed. Another very

different model, is when reassignment of existing tasks is allowed. For the case where the

coordinates of the load vector are restricted to 1 or ∞, and a task duration is not known

upon its arrival, Phillips and Westbrook [14] proposed an algorithm that achieves an

O(logn) competitive ratio with respect to load while making O(1) amortized reassignments

per job. The general case was later considered in [2], where an O(logn)- competitive

algorithm was designed with respect to a load that reroutes each circuit at most O(logn)

times. Finally, we note that the load balancing problem is different from the classical

scheduling problem of minimizing the makespan of an on-line sequence of tasks with known

running times see [10, 15] for a survey. Intuitively, in the load balancing context, the notion

of makespan corresponds to maximum load, and there is a new, orthogonal notion of time.

See [1] for further discussion on the differences.

2.1 The Greedy Approach

When speaking about on-line algorithms, the first that come to mind is the greedy ap-

proach. In fact, it is straightforward to allocate an incoming task to the lightest machine.

In more detail, one can do as follows:

1. Let f(s(t)) be a function defining the maximum load over all the machines at time

4

t, i.e., it returns the weight of the heaviest machine in solution s(t).

2. When a task arrives, let N(s(t)) be the neighborhood of current solution s(t);

3. Choose the best solution in N(s(t)), i.e., the one that produces the smallest increase

of f(s(t−1)).

Note that in Line 3 there could be many ties when there is more than one machine for

which either the incoming task does not produce any increase in f(s(t−1)), or the same

smallest positive increment in f(s(t−1)) is achieved. In this case one can choose at random

the machine in the restricted neighborhood formed exclusively by these solutions.

The greedy algorithm is also known as the Slow-Fit algorithm; it is essentially identical

to the algorithm of Aspnes, Azar, Fiat, Plotkin and Waarts for assigning permanent tasks

[1]. Roughly speaking, the idea (which originated in the paper by Shmoys, Wein, and

Williamson [15]) is to assign the task to the least capable machine while maintaining that

the load does not exceed the currently set goal. However, the analysis in [1] is inapplicable

for the case where tasks have limited duration. It is known that Slow-Fit is 5-competitive

if the maximum load is known. The Slow-Fit algorithm is deterministic and runs in O(n)

time per task assignment.

Although this is the simplest way to proceed, both in terms of implementation and in

terms of computing times, the lack of knowledge about future incoming tasks can produce

the effect of obtaining good solutions in the first algorithm iterations, but may return very

low quality solutions after these initial stages.

Thus, one can improve the greedy algorithm by using semi-greedy strategies. At

each construction iteration, the choice of where the incoming task has to be allocated

is determined by ordering all the candidate elements (i.e., the machines) in a candidate

list C with respect to a greedy function g : C → R. This function measures the (myopic)

benefit of selecting such an element. In our case g corresponds to f and C contains all

the solutions in the neighborhood. Thus, contrary to what the greedy algorithm does,

i.e., select the first element in list C which locally minimizes the objective function, the

semi-greedy algorithm randomly selects an element from the sublist of C formed by the

first r elements, where r is a parameter ranging from 1 to C. This sublist, formed by the

first r elements of C, is denoted as the Restricted Candidate List (RCL).

5

It is easy to verify that if r = 1 then the semi-greedy algorithm becomes a greedy

algorithm, and if r = |C| then the semi-greedy algorithm behaves like a random algorithm,

i.e., a machine is chosen at random and the incoming task is allocated to this machine

regardless of how large the increase in f becomes.

For the construction of the RCL, considering the problem of minimizing the maximum

load over all the machines at time t, we denote as ∆(s(t)
i) the incremental load associated

with allocating the incoming task to machine i, i.e., with the solution s
(t)
i ∈ N(s(t−1))

under construction. Let ∆min and ∆max be, respectively, the smallest and the largest

increment.

The restricted candidate list RCL is made up of elements s
(t)
i with the best (i.e., the

smallest) incremental costs ∆(s(t)
i). This list can be limited either by the number of

elements (cardinality-based) or by their quality (value-based).

In the first case, it is made up of the r elements with the best incremental costs,

where r is the aforementioned parameter. In the latter case, we can construct the RCL

considering the solutions in the neighborhood whose quality is superior to a threshold

value, i.e., [∆min;∆min + α(∆max −∆min)], where 0 ≤ α ≤ 1. If α = 0, then we have a

greedy algorithm, while if α = 1, we obtain a pure random algorithm.

2.2 The Robin-Hood Algorithm

In this section we describe a (2
√

n+1)-competitive algorithm that also works with assign-

ment restriction, where the task duration is unknown upon its arrival. Task j must be

assigned to one of the machines in a set Mj ; assigning this task to a machine i raises the

load on machine i by wj . The input sequence consists of task arrival and task departure

events. Since the state of the system changes only as a result of one of these events, the

event numbers can serve as time units; i.e. we can view time as being discrete. We say

that time t corresponds to the t-th event. Initially, the time is 0, and time 1 is the time at

which the first task arrives. Whenever we speak about the “state of the system at time t”,

we mean the state of the system after the t-th event was been handled. In other words, the

response to the t-th event takes the system from the state at t-1 to the state at t. Let OPT

denote the load achievable by an optimum off-line algorithm. Let li(t) denote the load on

machine i at time t, i.e., after the t-th event. At any time t, we maintain an estimate L(t)

for OPT satisfying L(t) ≤ OPT . A machine i is said to be rich at some point in time t if

6

li(t) ≥
√

nL(t), and is said to be poor otherwise. A machine may alternate between being

rich and poor over time. If i is rich at t, its windfall time at t is the last moment in time

at which it became rich. More precisely, i has windfall time t0 at t if i is poor at time

t0 − 1, and is rich for all times t′ where t0 ≤ t′ ≤ t.

The Robin-Hood (RH) algorithm is simple, deterministic, and runs in O(n) time per

task assignment. Interestingly, its decision regarding where to assign a new task depends

not only on the current load on each machine, but also on the history of previous assign-

ments (see e.g. [4, 6]).

Assign the first task to an arbitrary machine, and set L(1) to the weight of the first

task. When a new task j arrives at time t, set:

L(t) = max {L(t− 1), wj , µ(t)}

The latter quantity, µ(t), is the aggregate weight of the tasks currently active in the

system divided by the number of machines, i.e., µ(t) = 1
n(wj +

∑
i li(t−1)). Note that the

recomputation of L(t) may cause some rich machines to be reclassified as poor machines.

The generic steps of the RH algorithm are the following:

1. If possible, assign j to some poor machine i.

2. Otherwise, j is assigned to the rich machine i with i being the most recent windfall

time.

Lemma 1 At all times t, the algorithm guarantees that L(t) ≤ OPT .

Proof: The proof is immediate since all three quantities used to compute L(t) are less

than or equal to OPT .

The following lemma is immediate since nL(t) is an upper bound on the aggregate

load of the currently active tasks.

Lemma 2 At most
√

n machines can be rich at any point in time.

Theorem 1 The competitive ratio of the RH algorithm is at most 2
√

n + 1.

7

Proof: We will show that the algorithm guarantees that at any point in time t, li(t) ≤
√

nL(t) + OPT) + OPT for any machine i. The claim is immediate if i is poor at t.

Otherwise, let S be the set of still active tasks at time t that was assigned to i since its

windfall time t. Let j be some task in S. Since i is rich throughout the time interval

[t0, t], all the machines Mj that could have been used by the off-line algorithm for j must

be rich when j arrives. Moreover, each machine in M(j) − {i} must have already been

rich before time t, since otherwise, the RH algorithm would have assigned j to it. Let k

be the number of machines to which any of the tasks in S could have been assigned; i.e.,

k = | ∪j∈S Mj |. Lemma 2 implies that k ≤ √
n.

Let q be the task assigned to i at time t that caused i to become rich. Since wq ≤ OPT ,
∑

j∈S wj ≤ kOPT and k ≤ √
n we conclude that

li(t) ≤
√

nL(t) + wq +
∑

j∈S

wj ≤
√

nL(t) + OPT +
√

nOPT.

3 A Metaheuristic Approach

As can be inferred from the previous section, due to the on-line nature of the load balanc-

ing problem (as happens for the greater part of on-line problems), the approaches used

to optimize the system are one-shot algorithms, i.e., heuristics that incrementally build

a solution over time; we recall that no reallocation is allowed. Nonetheless, we can rein-

terpret the RH algorithm as a sort of Stochastic hill-climbing method and, in particular,

as a special class of Threshold Acceptance (TA) algorithm, which belongs to the class of

metaheuristics.

The novelty of what we propose in the following stems also from the fact that the

algorithm is still an on-line constructive algorithm, and thus guarantees reduced computing

times, but acts as a more sophisticated approach, where a neighborhood search has to be

made as for a local search method.

The striking difference between RH-like algorithms and metaheuristics lies in the fact

that the former do not use an objective function to optimize explicitly, but use thresh-

olds, e.g., see L(t), to distinguish between “more profitable” solutions/choices and “less

profitable” solutions/choices. This is why the RH algorithm can be associated with the

TA algorithm.

8

Table 1: Metaheuristic template

1. Let s(0) be an initial solution; t = 0.

2. Repeat until a stopping criterion is satisfied:

2.1. Find a local optimum sl with local search starting from s(t).

2.2. Decide whether s(t+1) = s(t) or s(t+1) = s(t−1).

2.3. t = t + 1.

Table 2: SA template; max it is a limit on number of iterations

1. Choose (random) initial solution s0.

2. Choose initial temperature T0.

3. For i = 0 to max it− 1

3.1. Choose random neighbor solution s′ ∈ N(si).

3.2. If f(s′) < f(si) then si+1 = s′

3.3. else si+1 = s′ with Pr = exp((f(si)− f(s′))/Ti).

3.4. Ti+1 = next(Ti).

4. Return si, 0 ≤ i ≤ max it, such that f(si) is minimum.

The general framework in which a metaheuristic works is depicted in Table 1.

where s(0) is the initial solution and s(t) is the current solution at timestep t.

Stochastic hillclimbing methods escape from local minima by probabilistically accept-

ing disimprovements, or “uphill moves”. The first such method, Simulated Annealing

(SA), was proposed independently by Kirkpatrick et al. [25] and Cerny [6] and is motivated

by analogies between the solution space of an optimization instance and the microstates

of a statistical thermodynamical ensemble. Table 2 summarizes the functionalities of the

SA algorithm, which uses the following criteria for Line 2.2 of Table 1. If s′ is a candidate

solution and the function f has to be minimized, and f(s′) < f(si), then si+1 = s′, i.e., the

new solution is adopted. If f(s′) ≥ f(si) the “hillclimbing” disimprovement to si+1 = s′

still has a nonzero probability of being adopted, determined both by the magnitude of the

disimprovement and the current value of a temperature parameter Ti. This probability is

given by the “Boltzmann acceptance” criterion described in Line 3.3 of Table 2.

9

Table 3: TA template; max it is a limit on the number of iterations.

1. Choose (random) initial solution s0.

2. Choose initial threshold T0.

3. For i = 0 to max it− 1

3.1. Choose random neighbor solution s′ ∈ N(si).

3.2. If f(s′) < f(si) + Ti then si+1 = s′

3.3. else si+1 = si.

3.4. Ti+1 = next(Ti).

4. Return si, 0 ≤ i ≤ max it, such that f(si) is minimum.

In contrast to SA, TA relies on a threshold Ti, which defines the maximum disimprove-

ment that is acceptable at the current iteration i. All disimprovements greater than Ti

are rejected, while all improvements less than Ti are accepted. Thus, in contrast to the

Boltzmann acceptance rule of annealing, TA offers a deterministic criterion as described

in Line 2.2 of Table 1.

At timestep i, the SA temperature Ti allows hillclimbing by establishing a nonzero

probability of accepting a disimprovement, while the TA threshold Ti allows hillclimbing

by specifying a permissible amount of disimprovement. Typical SA uses a large initial

temperature and a final temperature of zero (note that T = ∞ accepts all moves; T =

0 accepts only improving moves, i.e., the algorithm behaves like a greedy algorithm).

The monotone decrease in Ti is accomplished by next(Ti), which is a heuristic function

of the Ti value and the number of iterations since the last cost function improvement

(typically, next(Ti) tries to achieve “thermodynamic equilibrium” at each temperature

value). Similarly, implementations of TA begin with a large initial threshold T0 which

decreases monotonically to Ti = 0. Note that both SA and TA will in practice return the

best solution found so far, i.e., the minimum cost solution among s0, s1, . . . , smax it; this

is reflected in Line 4 of Tables 2 and 3.

Going back to the analogy between the RH algorithm and Stochastic hill-climbing, we

can in more detail associate the former algorithm with a particular class of TA algorithms

denoted as Old Bachelor Acceptance (OBA) algorithms.

OBA uses a threshold criterion in Line 2.2 of Table 1, but the threshold changes

10

Table 4: OBA template; max it is a limit on the number of iterations.

1. Choose (random) initial solution s0.

2. Choose initial threshold T0.

3. For i = 0 to max it− 1

3.1. Choose random neighbor solution s′ ∈ N(si).

3.2. If f(s′) < f(si) + Ti then si+1 = s′ and Ti+1 = Ti − decr(Ti)

3.3. else si+1 = si and Ti+1 = Ti + incr(Ti).

4. Return si, 0 ≤ i ≤ max it, such that f(si) is minimum.

dynamically – up or down – based on the perceived likelihood of it being near a local

minimum. Observe that if the current solution si has lower cost than most of its neighbors,

it will be hard to move to a neighboring solution; in such a situation, standard TA will

repeatedly generate a trial solution s′ and fail to accept it. OBA uses a principle of

“dwindling expectations”: after each failure, the criterion for “acceptability” is relaxed

by slightly increasing the threshold Ti, see incr(Ti) in Line 3.3 of Table 4 (this explains

the name “Old Bachelor Acceptance”). After a sufficient number of consecutive failures,

the threshold will become large enough for OBA to escape the current local minimum.

The opposite of “dwindling expectations” is what we call ambition, whereby after each

acceptance of s′, the threshold is lowered (see decr(Ti) in Line 3.2 of Table 4) so that OBA

becomes more aggressive in moving toward a local minimum. The basic OBA is shown in

Table 4.

Let us now examine what happens if we translate the RH algorithm in the realm of

OBA (in Table 5 we show the RH algorithm modified in terms of OBA, which we have

denoted as OBA-RH).

The first key-point to be addressed is how to take into account the objective function

f(si) that is not considered by the RH algorithm, and is an important issue in OBA.

Denote at timestep t the load l of machine i as l
(t)
i and let µ(t) be the average load of

the system at time t, i.e., µ(t) = (
∑

i l
(t−1)
i + wj)/n. Moreover, let us define a candidate

solution at timestep t as s(t). Thus, we can define

f(s(t)) =
∑

i

|l(t)i − µ(t)|,

11

Table 5: OBA-RH template; max it is a limit on the number of iterations.

1. The initial solution s(0) is the one where all the machines are empty;

set T (0) = ∞.

2. For t = 1 to max it− 1

2.1. Let j be the task arriving at time t.

2.2. Evaluate the neighboring solutions s
(t)
i ∈ N(s(t−1)).

2.3. If there are poor machines, then choose at random a

neighboring solution s′ corresponding to a poor machine;

this will satisfy f(s′) < f(s(t−1)) + T (t−1);

set T (t) ≤ max{0, f(s′)− f(s(t−1))};

2.4. else choose threshold T (t) ≥ max{0, f(s(t)

î
)− f(s(t−1))},

where î is a rich machine whose windfall time is the smallest.

2.5. s(t) = s(t−1).

3. Return f(s(t)).

i.e., the sum of the absolute deviation from the average load of the system of each machine

load. Similarly to how we have denoted a solution, let us denote the acceptance threshold

at time t as T (t).

Following Line 1 of the algorithm in Table 4 we have to choose an initial solution.

Solution s(0) in Line 1 of the OBA-RH algorithm is the empty solution, i.e., the one in

which all the machines are unloaded.

Without loss of generality, let us assume we are at timestep t, with solution s(t−1) of

the previous step (t − 1). Following Line 3.1 of Table 4, we have to generate the set of

neighboring solutions N(s(t−1)) from s(t−1). Let us encode a solution in the neighborhood

as follows: s
(t)
1 is the neighboring solution at timestep t that allocates incoming task j of

weight wj on machine 1, s
(t)
2 , similarly, is the solution obtained by charging machine 2,

and so on until the n-th solution in which machine n’s load is increased by wj .

Solution s
(t)
i can be represented by vector (l(t−1)

1 , . . . , l
(t−1)
i + wj , . . . , l

(t−1)
n), where the

generic component k represents the load of machine k when j is assigned to such a machine;

thus, it is clear that in s
(t)
i all machine loads remain the same as in the previous iteration,

12

except for machine i which is increased by wj . Hence, the neighborhood of the problem

is formed by n possible solutions, i.e., the solutions obtainable by the current one adding,

respectively, the new incoming task j to each of the n machines. In this case, choosing

a solution at random (see Line 3.1 of Table 4) means choosing a machine at random and

then adding the incoming task to that machine.

For instance, at timestep t = 1, the solution s(1) can be chosen among the following n

candidate solutions in N(s(0)):

s
(1)
1 = (wj , 0, . . . , 0),

s
(1)
2 = (0, wj , . . . , 0),

. . .

. . .

s(1)
n = (0, . . . , 0, wj).

Define a machine ĩ poor if f(s(t)

ĩ
) < f(s(t−1)) + T (t−1), and rich otherwise. Note that,

since f(s(0)) is 0 (all the machines are empty) and µ(0) = 0, all the machines at time 1

will be rich if threshold T (0) is greater than wj + wj

n (n − 2). To let OBA-RH act as RH,

we initially set T (0) = ∞; in this way, all the machines are initially poor.

Thus, if one, or more than one, poor machine exists, a neighboring solution s′ cor-

responding to a poor machine is chosen at random; according to the definition of a

poor machine, this solution would also be accepted by the OBA algorithm. After so-

lution acceptance, the threshold is decreased (see Line 2.3 of Table 5) by a quantity

decr(T (t)) = T (t−1) − f(s′) + f(s(t−1)).

If in the neighborhood there is not a solution obeying Line 3.2 of Table 4, and, thus, in

terms of OBA-RH a poor machine does not exist, we have to keep the previous solution;

therefore, in the next iteration, the threshold is raised as done in Line 2.4 of Table 5 and

the new solution is searched for among the same neighboring solutions (see Line 2.5 in

Table 5).

In this case, it should appear clear why we have changed the notation, using t rather

than i to indicate the timestep of the algorithm: in fact, when a solution is discarded, the

algorithm cannot allocate the incoming task, since it has to modify the threshold in such

a way that in the next iteration there is more chance of accepting a neighboring solution.

13

Table 6: OBA-RH revised template; max it is a limit on the number of iterations.

1. The initial solution s(0) is the one where all the machines are empty;

set T (0) = ∞.

2. For t = 1 to max it− 1

2.1. Let j be the task arriving at time t.

2.2. Evaluate neighboring solutions s
(t)
i ∈ N(s(t−1)).

2.3. If there are poor machines then choose at random a

neighboring solution s′ corresponding to a poor machine;

this will satisfy f(s′) < f(s(t−1)) + T (t−1);

set T (t) = max{0, f(s′)− f(s(t−1))};

2.4. else choose threshold T (t) = max{0, mini{f(s(t)
i)− f(s(t−1))}}+ ε,

where î is a rich machine whose windfall time is the smallest.

2.5. s(t) = s
(t)

î
.

3. Return f(s(t)).

Thus, it could happen that at timestep t the number of tasks processed till t by the

algorithm could be lower than t due to a possible rejection of allocation.

Setting the next threshold in the interval

f(s(t)

î
)− f(s(t−1)) ≤ T (t) ≤ f(s(t)

ˆ̂i
)− f(s(t−1))

where ˆ̂i is the next rich machine after î, allows one to select, in the next iteration, among

the subset of poor machines that will be created having the same windfall time, and, in

the case of a tie, the same minimum objective function increment; thus, if such a choice

of the threshold is made, one can directly allocate task j to machine î without generating

the successive neighborhood. In this case, we are doing exactly what RH does, by means

of OBA. Note that to achieve such a condition, we can set the new threshold equal to

T (t) = f(s(t)

î
)− f(s(t−1)) + ε

where ε is a positive sufficiently small quantity, i.e., ε ≤ f(s(t)
ˆ̂i

)− f(sî).

This version of OBA-RH, denoted OBA-RH revised, is depicted in Table 6.

14

Remark 1 Note that we have considered only the instants of time related to a task arrival,

since a task departure is not a decision stage; it just decreases the machine load by a value

wj if j is the outcoming task.

4 Example

In the following, we provide an example of RH and OBA-RH to compare how they work.

Let us assume to have 4 machines and 5 incoming tasks. For the sake of simplicity,

let us also assume that the departure dates of the tasks are all equal to 6 and that tasks

arrive one by one at time 1, 2, 3, 4, and 5, respectively. Moreover, assume that the weights

are as follows: w1 = 2, w2 = 5, w3 = 14, w4 = 14, w5 = 4.

Assume task 1 is the first incoming task in the system; since L(0) = 0, we have that

L(1) = max{L(0), w1, (w1 +
∑

i

li(0))/4} = 2.

Thus, all the machines are poor, since their load is initially zero, and
√

nL(1) = 4.

We choose a poor machine at random, say machine 3; therefore, the current load vector

is p1 = (0, 0, 2, 0). When task 2 arrives,

L(2) = max{L(1), w2, (w2 +
∑

i

li(1))/4} = 5.

Since
√

nL(2) = 10, all the machines are again poor and we can proceed by randomly

choosing a machine, e.g., machine 2. Our load vector is now p2 = (0, 5, 2, 0).

When task 3 enters the system, L(3) = max{5, 14, 21/4} = 14, and again all the

machines are poor since
√

nL(3) = 28. We then randomly assign task 3 to a machine, say

machine 2. The new load vector is p3 = (0, 19, 2, 0).

In the next iteration, task 4 arrives and L(4) is equal to 14. Again, it is easy to verify

that all the machines are poor and let us suppose randomly choosing machine 2, whose

load increases to 33.

Now, when task 5 arrives, L(5) = 14 and machine 2 is rich. Thus, we have to choose

one poor machine, at random, among machines 1, 3 and 4. Let us suppose we choose

machine 1 and the load vector p5 is (4, 33, 2, 0).

Let us now consider the OBA-RH algorithm. Since T (1) = +∞, all the machines are

initially poor and thus we can allocate task 1 as we did for the RH algorithm, at random;

15

as in the previous scenario, we choose machine 3. This corresponds to choosing a solution

s′ = s
(1)
3 in the neighborhood N(s(0)) of s(0). Thus, the current load vector is the same as

the load vector p1 computed before.

Now, following Line 2.3 of Table 6, we set T (2) = max{0, f(s′)− f(s(1))} = max{0, 3−
0} = 3.

The next task to be considered is task 2. Evaluating the neighborhood of s(1) we obtain

the following:

f(s(1)
1) = (5− 7/4) + 7/4 + (2− 7/4) + 7/4 = 7,

f(s(1)
2) = 7/4 + (5− 7/4) + (2− 7/4) + 7/4 = 7,

f(s(1)
3) = 7/4 + 7/4 + (7− 7/4) + 7/4 = 21/2,

f(s(1)
4) = 7/4 + 7/4 + (2− 7/4) + (5− 7/4) = 7.

Thus, we have

f(s(1)
1)− f(s(1)) = 7− 3 = 4,

f(s(1)
2)− f(s(1)) = 7− 3 = 4,

f(s(1)
3)− f(s(1)) = 21/2− 3 = 15/2,

f(s(1)
4)− f(s(1)) = 7− 3 = 4.

It is easy to verify that all the machines are rich, since f(s(1)
i)−f(s(1)) ≥ T (2) for each

machine i = 1, . . . , 4.

Thus, we cannot accept any solution, and have to increase the threshold and then

repeat the neighborhood search for a new possibly acceptable solution.

The new threshold is

T (3) = max{0,min
i
{f(s(2)

i − f(s(2))}}+ ε = max{0, 7− 3} = 4 + ε, (1)

where, according to our definition of ε, we have that ε ≤ f(s(t)
ˆ̂i

) − f(sî), i.e., ε ≤
15/2 − 4 = 7/2, and machines {1, 2, 4} allow the achievement of T (3). Suppose we set

ε = 7/2.

Thus, we allocate task 2 to one of the rich machines in the set {1, 2, 4} since they all

have the same minimum difference among f(s(1)
i) and f(s(1)).

We choose machine 2, set s′ = s
(1)
2 and s(2) = s

(1)
2 , and the new load vector is p2 =

(0, 5, 2, 0). Note that this choice of T (3) follows the same rationale as the one behind

16

the OBA algorithm since we observe an increment in the threshold with respect to the

previous iteration when a solution rejection occurs.

When task 3 arrives, we have the following situation:

f(s(2)
1) = (14− 21/4) + (21/4− 5) + (21/4− 2) + 21/4 = 35/2,

f(s(2)
2) = 21/4 + (19− 21/4) + (21/4− 2) + 21/4 = 55/2,

f(s(2)
3) = 21/4 + (21/4− 5) + (16− 21/4) + 21/4 = 43/2,

f(s(2)
4) = 21/4 + (21/4− 5) + (21/4− 2) + (14− 21/4) = 35/2.

Thus, we have

f(s(2)
1)− f(s(2)) = 35/2− 7 = 21/2

f(s(2)
2)− f(s(2)) = 55/2− 7 = 41/2,

f(s(2)
3)− f(s(2)) = 43/2− 7 = 29/2,

f(s(2)
4)− f(s(2)) = 35/2− 7 = 21/2.

It is easy to verify that, if in (1) we choose ε ≤ 13/2 then all the machines are rich

because f(s(2)
i) − f(s(2)) ≥ T (3) for each i = 1, . . . , 4. Since we chose ε = 7/2, we cannot

accept any of the solutions in the neighborhood, and the next step is to increase the

threshold to T (4) = 21/2 + ε with 0 ≤ ε ≤ 4 and then accept one solution between s
(2)
1

and s
(2)
4 . Suppose we select machine 1, i.e., s′ = s

(2)
1 , s(3) = s′, and the new load vector is

p3 = (14, 5, 2, 0). Note that, also in this case, this choice of T (4) follows the rationale of

the OBA algorithm where we observe an increment in the threshold with respect to the

previous iteration when a solution rejection occurs.

When task 4 arrives, we have the following situation:

f(s(3)
1) = (28− 35/4) + (35/4− 5) + (35/4− 2) + 35/4 = 77/2,

f(s(3)
2) = (14− 35/4) + (19− 35/4) + (35/4− 2) + 35/4 = 31,

f(s(3)
3) = (14− 35/4) + (35/4− 5) + (14− 35/4) + 35/4 = 25,

f(s(3)
4) = (14− 35/4) + (35/4− 5) + (35/4− 2) + (14− 35/4) = 21,

Thus, we have

f(s(3)
1)− f(s(3)) = 77/2− 35/2 = 21,

17

f(s(3)
2)− f(s(3)) = 31− 35/2 = 13,

f(s(3)
3)− f(s(3)) = 25− 35/2 = 15/2,

f(s(3)
4)− f(s(3)) = 21− 35/2 = 7/2.

It is easy to verify that machines 3 and 4 are poor, whatever the value of ε; while

machine 2 is poor if ε ≥ 5/2, and machine 1 is rich regardless of ε. Assuming we have

set ε = 0, we have to choose one poor machine between machines 3 and 4. Suppose we

choose machine 4, i.e., s(4) = s
(3)
4 , our load vector is then p4 = (14, 5, 2, 14) and we set the

threshold at

T (3) = max{0, {f(s(3)
4 − f(s(3))}} = 7/2.

Note that, as with the OBA algorithm, the threshold is decreased due to a solution ac-

ceptance.

When task 5 arrives, we have the following situation:

f(s(4)
1) = (18− 35/4) + (35/4− 5) + (35/4− 2) + (14− 35/4) = 25,

f(s(4)
2) = (14− 35/4) + (9− 35/4) + (35/4− 2) + (14− 35/4) = 175/4,

f(s(4)
3) = (14− 35/4) + (35/4− 5) + (35/4− 6) + (14− 35/4) = 17,

f(s(4)
4) = (14− 35/4) + (35/4− 5) + (35/4− 2) + (18− 35/4) = 25,

Thus, we have

f(s(4)
1)− f(s(4)) = 25− 21 = 4,

f(s(4)
2)− f(s(4)) = 175/4− 21 = 91/4,

f(s(4)
3)− f(s(4)) = 17− 21 = −4,

f(s(4)
4)− f(s(4)) = 25− 21 = 4.

It is easy to verify that only machine 3 is poor, and thus, we allocate task 5 to this

machine to obtain a final load vector equal to p5 = (14, 5, 7, 14).

Note that the vector so obtained is the best possible solution obtainable by an off-line

algorithm; the overall unbalance of the system at the end of the allocation is equal to

(14− 10) + (10− 5) + (10− 7) + (14− 10) = 16,

being that µ(5) = 19.

18

We conclude noting that, based on the hypothesis made at the beginning of the ex-

ample, after the arrival of task 5, the system is emptied since all the tasks leave the

machines.

5 Experimental Results

We have experimented the greedy , the semi-greedy, the RH, and the OBA-RH revised

algorithms on random instances with:

• 100, 150, 200, 250, 300, 350, 400, 450 and 500 tasks,

• a number of machines from 5 to 20,

• weights wj ∈ {1, . . . , 10} assigned at random to each task j,

• arrival date of the tasks is chosen at random in the time interval [1, 360],

• the duration of a task varies at random from 1 to 10 time units.

All the algorithms were implemented in the C language and run on a PC with 2.8 MHz

Intel Pentium processor and 512 MB RAM. In this set of experiments the input to the

algorithms is a list of events, i.e., an ordered sequence of arrival dates and departure dates

of the tasks, that cannot be exploited in advance by the algorithms due to the on-line

nature of the problem. Hence, starting from the first event (that must be an arrival time

of a certain task since we assume the system empty), the algorithms in case of an incoming

task decide the machine onto which allocate such a task, and simply update the load of a

machine when the event to be processed is the departure of a task.

The objective function used to obtain the values given in Tables 7-10 is
∑

i |µ(t)−li(t)|.
These are the values produced by the algorithms at the end of their run. Note that the

results are given as the superior integer part of the objective function. Moreover, note

that the results obtained for the semi-greedy algorithm are achieved by fixing r = d0.2·
number of tasks e.

Results in the tables highlight the behavior of the four algorithms. The greedy al-

gorithm has the worst performance once all the tasks have been processed. This is not

surprising since, as we mentioned in the previous section, the greedy algorithm is able to

do better in the first iterations of the algorithm run, while it tends to jeopardize solutions

19

Table 7: Comparison among different on-line load balancing algorithms. The number of

machines is 5.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 112 108 95 89

150 148 138 122 102

200 201 189 175 140

250 244 225 202 182

300 302 295 255 221

350 341 312 277 256

400 389 365 299 268

450 412 378 325 272

500 478 452 332 289

Table 8: Comparison among different on-line load balancing algorithms. The number of

machines is 10.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 60 54 47 43

150 74 69 61 51

200 100 99 87 120

250 125 112 101 91

300 154 158 128 110

350 178 160 135 128

400 195 182 150 130

450 202 195 161 135

500 235 225 165 147

20

Table 9: Comparison among different on-line load balancing algorithms. The number of

machines is 15.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 43 35 33 27

150 44 43 41 31

200 50 48 47 44

250 68 65 61 60

300 87 80 102 74

350 98 90 111 77

400 112 102 115 79

450 150 142 122 85

500 180 178 125 92

Table 10: Comparison among different on-line load balancing algorithms. The number of

machines is 20.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 35 31 28 21

150 38 34 29 25

200 50 45 32 27

250 52 44 38 34

300 55 50 47 40

350 62 58 48 44

400 68 62 59 51

450 70 72 59 57

500 85 75 59 68

21

over time. To emphasize this, in Table 1 we show the trend of the objective function values

over time. It should be noted how the greedy algorithm is able to maintain a good (low)

objective function value for the first iterations, while this value grows quickly and is not

able to consistently reduce the objective function values.

0

20

40

60

80

100

120

140

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134

Iterations

O
bj

ec
ti

ve
 f

un
ct

io
n

va
lu

es

Figure 1: The trend of the objective function of the greedy algorithm over time: the

instance with 100 tasks and 5 machines.

The semi-greedy algorithm is able to perform better than the greedy algorithm. For

the sake of completeness, in Figure 2 we show the trend of the objective function values

obtained at the end of the algorithm run, varying the values of r, i.e., the cardinality of

the restricted candidate list, for the case of 100 tasks and 5 resources. As can be seen, the

95

100

105

110

115

120

125

130

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

r values

O
bj

ec
ti

ve
 f

un
ct

io
n

va
lu

e

Figure 2: The trend of the objective function of the semi-greedy algorithm

22

Table 11: Comparison among different on-line load balancing algorithms. The average

case with 5 machines.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 89.6 86.4 76.0 71.2

150 118.4 110.4 97.6 81.6

200 160.8 151.2 140.0 112.0

250 195.2 180.0 161.6 145.6

300 241.6 236.0 204.0 176.8

350 272.8 249.6 221.6 204.8

400 311.2 292.0 239.2 214.4

450 329.6 302.4 260.0 217.6

500 382.4 361.6 265.6 231.2

best values are obtained in correspondence to 0.2, and this justifies our choice of r.

When using the RH and the OBA-RH revised algorithms, we observe a further decrease

in the objective function value in the last stage of the algorithm; in particular, we see that

the latter algorithm beats the former, producing results that are up to about 40% better.

To allow a fair comparison, in Tables 11-14 we showed the average objective function

values over the number of iterations. We observe that the general behavior does not

change, while the performance gap among the algorithms is enforced.

In Figures 3-6, we showed the shape of the load of the machines for instances with

200 and 500 tasks, respectively, and 10 machines, for the greedy and the OBA-RH revised

algorithms.

6 A Multi-objective Approach in the Case of Known Task

Departure Dates

As for the case of known durations, we can improve the OBA-RH revised algorithm, by

considering a new multi-objective function.

In fact, contrary to the previous case, when the duration of a task is known upon its

arrival, we can adopt the following objective function:

23

Table 12: Comparison among different on-line load balancing algorithms. The average

case with 10 machines.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 49.6 46.4 46.0 41.2

150 72.4 60.4 58.6 41.6

200 80.8 78.2 70.0 65.0

250 92.2 86.0 81.6 75.6

300 120.6 112.0 102.0 89.8

350 135.8 124.6 118.6 104.8

400 165.2 144.0 125.2 114.4

450 178.6 165.4 136.0 117.6

500 200.4 189.6 150.6 131.2

Table 13: Comparison among different on-line load balancing algorithms. The average

case with 15 machines.
Greedy Semi-greedy RH OBA-RH revised

tasks: 100 39.6 36.4 36.0 31.2

150 48.4 42.4 37.6 31.6

200 54.8 51.2 46.0 42.0

250 65.2 62.0 61.6 55.6

300 71.6 66.0 70.0 66.8

350 82.8 79.6 71.6 70.8

400 91.2 92.0 89.2 84.4

450 109.6 102.4 100.0 97.6

500 122.4 121.6 115.6 111.2

24

Table 14: Comparison among different on-line load balancing algorithms. The average

case with 20 machines.

Greedy Semi-greedy RH OBA-RH revised

tasks: 100 29.6 26.4 21.0 19.2

150 38.4 35.4 28.6 25.6

200 40.8 38.2 35.0 32.0

250 52.2 46.0 37.6 34.6

300 60.6 52.0 40.0 43.8

350 65.8 56.6 44.6 55.8

400 75.2 65.0 48.2 70.4

450 87.6 77.4 65.0 72.6

500 98.4 85.6 80.6 75.2

min
i

α ·Mi(t) + β · M̄i(t + 1, ∆t)

where:

• Mi(t) is the load of machine i once the incoming task is associated with i.

• M̄i(t + 1,∆t) is the the average load of machine i in the interval [t + 1, ∆t].

• α and β are two parameters in [0, 1] whose sum is 1.

Note that in case β = 0 the objective function reduces to minimize the maximum load.

Suppose that the system has three machines and that at time t the incoming task j

has weight wj = 2 with duration equal to dj = 2; moreover, assume that assigning task j

to machine 1, 2 or 3 produces the situation in Figure 7.

It is easy to see that if ∆t = 2:

α · 7 + β · 4

α · 6 + β · 6

α · 8 + β · 2.

Based on the values of α and β we have a different machine choice. For instance if

we have β = 0.8, we have that the objective function is min{4.6, 6, 3.2} = 3.2 and the

25

85

90

95

100

105

110

115

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6 machine 7 machine 8 machine 9 machine 10

Figure 3: Schedule shape produced by the greedy algorithm on an instance with 200 tasks

and 10 machines

choice is that of machine 3. On the contrary, if β = 0.2 then the objective function is

min{6.4, 6, 7.6} = 6, and the choice is machine 2.

In Tables 15-18 we compare the results obtained by OBA-RH revised implemented with

the multi-objective function (denoted as OBA-RHrm), and the greedy, semi-greedy, and

RH algorithms, with α = 0.7, β = 0.3 and ∆t = 3. The latter values of the parameters

α, β and ∆ are those that gave on average the better results for all the algorithms as

suggested by the tuning reported in Figure 8 for the case of 100 tasks and 10 machines.

Results on the multi-objective scenario show that OBA-RHrm is able, as in the single-

objective case, to perform better than the competing algorithms.

26

Table 15: Comparison among different on-line load balancing algorithms with a multi-

objective approach. The average case with 5 machines.

Greedy Semi-greedy RH OBA-RHrm

tasks: 100 121.5 120.7 118.2 117.1

150 178.4 176.5 173.4 169.6

200 238.6 236.3 233.6 226.9

250 296.8 293.2 288.8 284.9

300 358.0 356.6 349.0 342.4

350 415.5 409.9 403.2 399.2

400 474.7 470.1 457.4 451.5

450 529.1 522.6 512.4 502.2

500 591.8 586.8 563.7 555.5

Table 16: Comparison among different on-line load balancing algorithms with a multi-

objective approach. The average case with 10 machines.

Greedy Semi-greedy RH OBA-RHrm

tasks:100 57.7 56.5 55.5 52.1

150 84.4 82.5 81.4 77.1

200 110.1 108.9 107.3 103.3

250 135.9 134.5 133.1 128.8

300 163.0 161.4 159.7 154.5

350 189.2 187.3 185.9 180.2

400 216.4 213.8 211.4 205.7

450 242.4 240.4 238.2 230.9

500 269.0 267.2 263.3 256.6

27

Table 17: Comparison among different on-line load balancing algorithms with a multi-

objective approach. The average case with 15 machines.

Greedy Semi-greedy RH OBA-RHrm

tasks: 100 40.3 39.1 38.0 34.9

150 57.6 56.2 54.8 51.6

200 74.8 73.5 72.1 68.8

250 92.2 91.0 90.0 86.1

300 109.4 108.0 107.3 103.3

350 126.9 125.6 124.0 120.2

400 144.2 143.2 142.0 137.6

450 162.2 160.7 159.5 154.9

500 179.8 178.8 177.3 172.2

Table 18: Comparison among different on-line load balancing algorithms with a multi-

objective approach. The average case with 20 machines.

Greedy Semi-greedy RH OBA-RHrm

tasks: 100 27.2 27.0 26.6 26.0

150 44.4 43.2 41.6 38.8

200 57.1 55.9 54.6 51.6

250 70.4 69.0 67.3 64.2

300 83.5 81.9 80.0 77.2

350 96.4 94.7 92.8 90.3

400 109.6 107.9 107.6 103.5

450 123.1 121.3 119.4 116.1

500 136.4 134.4 133.0 128.8

28

0

20

40

60

80

100

120

140

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6 machine 7 machine 8 machine 9 machine 10

Figure 4: Schedule shape produced by the OBA-RH revised algorithm on an instance with

200 tasks and 10 machines

0

50

100

150

200

250

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6 machine 7 machine 8 machine 9 machine 10

Figure 5: Schedule shape produced by the greedy algorithm on an instance with 500 tasks

and 10 machines

29

0

50

100

150

200

250

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6 machine 7 machine 8 machine 9 machine 10

Figure 6: Schedule shape produced by the OBA-RH revised algorithm on an instance with

500 tasks and 10 machines

30

0

1

2

3

4

5

6

7

8

t t+1 t+2 t+3

L
oa

d

0

1

2

3

4

5

6

7

t t+1 t+2 t+3

L
oa

d

0

1

2

3

4

5

6

7

8

9

t t+1 t+2 t+3

L
oa

d

Figure 7: Load shape of machine 1 (up), 2 (middle) and 3, (down), over time interval

[t, t + 3]

31

50

51

52

53

54

55

56

57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OBA-RH_rm Delta=1
RH Delta=3
OBA-RM_rm Delta=5
RH Delta=1
OBA-RH Delta=1
RH Delta=5

Figure 8: Tuning of the multi-objective parameters

32

7 Conclusions

In this paper, we have studied a well known problem in production processes: the bal-

ancing of the work load over a set of facilities. This problem is highly dynamic, that

is, in practice, the assignment of an incoming task to a machine must be done during

process execution without any knowledge of future tasks. We proposed and compared

four algorithms. Starting from the simplest greedy heuristic algorithm to a more struc-

tured meta-heuristic approach. Improvements in solution quality were very significant in

all instances, achieving, for example, almost 40% when comparing the OBA-RH revised

algorithm solution to the one produced by the greedy procedure for the instance of 500

tasks and 5 machines.

References

[1] Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O., 1993, On-line machine schedul-

ing with applications to load balancing and virtual circuit routing, in “Proc. 25th

Annual ACM Symposium on Theory of Computing”, 623–631.

[2] Awerbuch, B., Azar, Y., Plotkin, S., Waarts, O., 1994, Competitive routing of virtual

circuits with unknown duration, in “Proc. 5th ACM SIAM Symposium on Discrete

Algorithms”, 321–327.

[3] Azar, Y., Broder, A., Karlin A., 1992, On-line load balancing, in “Proc. 33rd IEEE

Annual Symposium on Foundations of Computer Science”, 218–225.

[4] Azar, Y., Broder, A., Karlin A., 1994, On-line load balancing, Theoretical Computer

Science, 130 (1), 73–84.

[5] Azar, Y., Epstein, L., 2004, On-line Load Balancing of Temporary Tasks on Identical

Machines, SIAM Journal on Discrete Mathematics, 18 (2), 347–352.

[6] Azar, Y., Kalyanasundaram, B., Plotikin, S., Pruhs, K.R., Waarts, O., 1997, On-line

load balancing of temporary tasks, Journal of Algorithms, 22 (1), 93–110.

[7] Azar, Y., Naor, J., Rom, R., 1992, The competitiveness of on-line assignment, in

“Proc. 3rd ACM SIAM Symposium on Discrete Algorithms”, 203–210.

33

[8] Benjaafar, S., ElHafsi, M., de Vericourt, F., 2004, Demand Allocation in Multiple-

Product, Multiple-Facility, Make-to-Stock Systems, Management Science, 50 (10),

1431–1448.

[9] Graham, R. L., 1996, Bounds for certain multiprocessing anomalies, Bell Syst. Tech.

J., 45, 1563–1581.

[10] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979, Optimiza-

tion and approximation in deterministic sequencing and scheduling: A survey, Ann.

Discrete Math., 5, 287–326.

[11] Green , L. V., Guha, D., 1995, On the efficiency of imbalance in multi-facility multi-

server service systems, Management Science 41, 179187.

[12] Lam, W.T., Wong, P., Ting, H.F., To, K.K., 2002, On-line Load Balancing of Tem-

porary Tasks Revised, Theoretical Computer Science, 270 (1-2), 325–340.

[13] Liu , Z., R. Righter, 1998, Optimal load balancing on distributed homogenous unre-

liable processors, Operations Research, 46(4), 563-573.

[14] Phillips S., Westbrook, J., 1993, Online load balancing and network flow, in “Proc.

25th Annual ACM Symposium on Theory of Computing”, 402–411.

[15] Shmoys, D., Wein, J., Williamson, D. P., 1991, Scheduling parallel machines on-

line, in “Proc. 32nd IEEE Annual Symposium on Foundations of Computer Science”,

131–140.

34

