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Abstract

The biproportional apportionment problem (BAP) must be faced in many proportional electoral
systems where seats must be allocated to parties within regions. In Italy for instance, the electoral law
contains incorrect procedures for solving this problem, which have resulted in inconsistent outcomes
and violations of the Constitution in 3 out of the 5 last political elections. The fact is that BAP is
non trivial, and only mathematically sophisticated algorithms relying on the machinery of network
optimization and matrix scaling are currently avaible for solving it. The issue is: can they become
an actual law? Citizens rightly demand simple, easy to understand, voting systems. However, the
task of finding simple algorithms for solving BAP is quite challenging. The alternative seems to
have simple, but unsound electoral laws. We propose the following way out of this dilemma: leave
to a mathematically sophisticated algorithm the task of producing an optimal apportionment, but
attach to it a “certificate of optimality”, that is, describe a simple procedure whereby anybody can
check, through some elementary operations, that the seat allocation output by the algorithm indeed
satisfies all the requirements for an apportionment, and that it is “as proportional as possible” to the
vote matrix. We discuss one such certificate, based on the max flow-min cut Theorem, relative to a
strongly polynomial parametric max flow method of ours for solving BAP.

1 Introduction

Electoral systems are usually quite complex, and they are assembled out of many interacting components,
which must be properly designed in order to achieve consistency and efficiency in the overall system.
Sometimes it happens that designing a certain component is a highly nontrivial task. Mathematics can
be of invaluable help in providing sound designs whose complexity escapes simple-minded procedures. As
a matter of fact, when the latter are employed in order to solve an inherently difficult problem, severe
inconsistencies and anomalies may occur. Therefore, there are actual cases where the use of mathematics
is unavoidable.

However, it may happen that only mathematically sophisticated algorithms are available for solving
a certain design problem. Are they “writable” as an actual law? Citizens rightly demand simple, easy
to understand, voting systems (Principle 1 in the so-called “Erice Decalogue” [17]). Then the following
dilemma may arise:

Which is better? To have simple, but unsound electoral laws, or sound, but complex ones?

In this paper, we propose the following way out:
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Leave to a mathematically sophisticated algorithm the task of PRODUCING a sound
solution, but attach to it a certificate of guarantee, that is, describe a simple procedure
whereby ANYBODY CAN CHECK, through some elementary operations, that the
solution output by the algorithm indeed satisfies all the requirements sought for.

In the present paper we shall demonstrate this “third way” on a specific electoral design problem:
biproportional apportionment. In many proportional electoral systems where several parties are in com-
petition and the territory is subdivided into constituencies or regions, it is important to know how the
seats are allocated to the parties within the regions. The problem of seat allocation to the parties within
the regions is present in several countries, e.g. Germany, Italy, Mexico, Switzerland, Belgium, Denmark,
Iceland, Faroe Islands, etc.

A well-known formulation of the above seat allocation problem (see, e.g., [2]) is as follows. Each region
is granted a certain number of seats. This number is determined before the election on the basis of the
region’s population. Then each party is granted a certain number of seats at the national level. This
number is determined after the election on the basis of the total number of votes obtained by the party.
Then, given

(a) a matrix of votes obtained by each party in each region;

(b) the total number of seats apportioned to each region;

(c) the total number of seats granted to each party;

one has to find a matrix of seats allocated to each party within in each region. Such matrix must satisfy
the following conditions:

(i) all of its entries must be nonnegative integers;

(ii) the sum of the seats assigned to all parties within a given region must be equal to the number of
seats in the region;

(iii) the sum of the seats awarded to a given party in all regions must be equal to the total number of
seats for the party.

(iv) if a party receives no vote in some region, it cannot receive seats in that region;

(v) the matrix of seats should be “as proportional as possible” to the matrix of votes.

A matrix satisfying conditions (i)–(iv) is called an apportionment. The requirement (v) needs a formal
specification. The way this is done leads to different approaches in the literature. The above stated
problem is called a biproportional apportionment problem (BAP).

Perhaps not suprinsingly, there are some electoral laws which fail to produce a correct procedure for
solving BAP. For instance, Balinski and Ramı́rez [5] discovered a bug in the Mexican electoral law, which
was later fixed. A similar bug turns out to occur in the current Italian law and this has not been fixed yet
[11, 12, 13, 14].

On the other hand, mathematically sound procedures for BAP are indeed available. In two milestone
papers [3, 4], Balinski and Demange characterized proportionality between real or integral matrices in
terms of a set of axioms. It turns out that, for any given rounding rule, there is a unique apportionment
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satisfying the stated axioms. The algorithm for computing the apportionment calls for a sequence of
scaling and rounding operations on the vote matrix, where rounding usually means to the lower, to the
upper, or to the closest integer.

There are many sound procedures for BAP which have been later proposed. We mention the Dis-
crete Alternate Scaling Method (DAS)[15, 9], the convex separable formulation of BAP by Gaffke and
Pukelsheim [7, 8], the minimax parametric network flow method by Serafini and Simeone [16]. All these
procedures share quite a degree of mathematical sophistication and so it is problematic to embody them
in a real-life electoral law.

Formally the problem we want to solve is as follows. Before the elections the following data are given:
a set M of electoral regions, integer numbers ri, i ∈ M , (seats assigned to region i), with H :=

∑
i∈M ri

(house size), a set N of parties. After elections integer numbers pj , j ∈ N , and rational numbers qij ,
i ∈ M , j ∈ N , are computed from the votes. Let also Z be the set of pairs (i, j) such that party j has
received zero votes in region i. The numbers pj are the seats assigned to party j at national level and
the numbers qij , called target quotas, correspond to the ideal seats to be assigned in region i to party j.
We do not make any assumption on how the target quotas are computed, apart from setting qij = 0 if
(i, j) ∈ Z. Similarly we do not make any assumption on how the seats pj are computed, apart from the
condition

∑
j pj = H.

From these data we have to compute the actual seats xij to be assigned in region i to party j such that∑
i∈M

xij = pj , j ∈ N,
∑
j∈N

xij = ri, i ∈M, xij = 0, (i, j) ∈ Z. (1)

and the error, defined as the maximum absolute deviation from the target quotas,

τ := max
ij
|xij − qij | (2)

is minimized. Any solution satisfying (1) is obviously a biproportional apportionment. The apportionment
is optimal if it minimizes (2). The problem of finding an optimal biproportional apportionment problem
can be modeled as the following parametric capacitated transportation problem.

τ∗ = min τ

dqij − τe+ ≤ xij ≤ bqij + τc (i, j) /∈ Z
xij = 0 (i, j) ∈ Z∑
i∈M

xij = pj j ∈ N∑
j∈N

xij = ri i ∈M

(3)

where dae+ = max {0, dae}. As explained in [16] the solution of (3) can be efficiently computed by solving
a sequence of Max Flow problems. In this paper we are not concerned with algorithmic issues related to
solving (3). Rather we want to develop a “certificate of optimality” for the optimal apportionment of (3).
Even a layman with some very elementary computing skills can ascertain that the seat allocation produced
by the above algorithm is indeed a feasible apportionment, and that there is no feasible apportionment
with a smaller error (defined as in (2)), i.e. it minimizes the maximum absolute error of the apportionment
w.r.t. some pre-specified (but arbitrary) “target quotas”. Our certificate relies on the Max flow–Min cut
Theorem of network flows, but this fact can be totally ignored by the layman.
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Our paper is structured as follows. In Section 2 we provide an informal introduction to the notion of
certificate of optimality under the form of a medieval tale. Section 3 lays out the theoretical foundations
of our certificate and provides an example referring to the Italian political elections in 2008. The notion
of certificate can be extended to all region-party pairs and this will be discussed in Section 4. Section 5
finally, briefly offers some conclusions.

2 A medieval tale

Virgil: It was brought to my knowledge that you have been appointed by the Township of Siena as the
Official Verifier of their next elections.
Dante: You speak the truth, but I fear that also this time the electoral system adopted by the Township
will produce inconsistencies and paradoxes.
Virgil: What happened?
Dante: Last time the Contrada (ward) Bruco got 4 seats, instead of the 5 granted to it by the Township
Edict, while Contrada Oca got 2 seats instead of 1.
Virgil: I think I can do something for you. I know that one Pisan mathematician, named Leonardo
Fibonacci, has left a booklet where he describes a correct method for your type of elections. Surely, his
method will not give rise to the inconveniences you have complained about.
Dante: Looks interesting, but I am worried that the mathematical subtleties of his method will make the
Elders of the Township quite suspicious and that eventually they will refrain from approving it.
Virgil: Don’t worry. I happen to own a secret manuscript where Leonardo gives detailed explanations
about how even a layman can check that the outcome of his method is correct.

Three months later

Dante: As instructed by you, I have handed you the table of votes obtained by the 6 parties in the 5
wards of Siena, together with the number of seats at stake in each ward (Table 1), and I got back from you
a table of seats allocated to the parties in the wards according to Leonardo Fibonacci’s method (Table 2).

Bottai Cestari Fabbri Mugnai Sediari Vasari Seats

Aquila 4960 4350 850 4970 4940 4930 5

Bruco 2300 2900 4955 4965 4945 4935 5

Civetta 0 0 0 4950 0 50 1

Drago 0 0 0 2205 0 2795 1

Oca 0 0 0 700 4300 0 1

Table 1:

Virgil: The last row of the table shows, for each party, the total number of seats attributed to the party
in the whole township. It was obtained through a preliminary computation prior to the distribution of
seats to parties within the wards.
Dante: No objection to the last row. In order to check it, I have completed my table (Table 3) with the
total number of votes in each ward (row-sums) and for each party (column-sums).
Then the Bottai party, with its 7260 votes, gets almost 11.17 % of the votes, since 7260/65000 = 11.1692;
thus, it should get also 11.17 % of the 13 seats, that is, 1.452 seats. Proceeding this way, I have computed
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Bottai Cestari Fabbri Mugnai Sediari Vasari Seats

Aquila 1 2 1 1 5

Bruco 1 1 1 1 1 5

Civetta 1 1

Drago 1 1

Oca 1 1

Seats 1 1 1 4 3 3 13

Table 2:

Bottai Cestari Fabbri Mugnai Sediari Vasari Total Seats

Aquila 4960 4350 850 4970 4940 4930 25000 5

Bruco 2300 2900 4955 4965 4945 4935 25000 5

Civetta 0 0 0 4950 0 50 5000 1

Drago 0 0 0 2205 0 2795 5000 1

Oca 0 0 0 700 4300 0 5000 1

Total 7260 7250 5805 17790 14185 12710 65000 13

Table 3:

the exact number of seats that each party deserves (Table 4)

Bottai Cestari Fabbri Mugnai Sediari Vasari Total

Exact quotas 1.452 1.45 1.161 3.558 2.837 2.542 13

Table 4:

Virgil: The numbers you have computed are actually known as exact (or natural) quotas. Unfortunately,
you cannot assign to a party a fractional number of seats. So, your exact quotas must be replaced by
integer approximations.
Dante: That part is clear, and I see also how it is done in Leonardo’s method. Each party is preliminarly
assigned the integer part of its exact quota, for a total of 10 seats. The 3 remaining seats are assigned to
the 3 parties with the largest decimal parts, that is, to the Sediari party with decimal part 0.837, to the
Mugnai party with decimal part 0.558 and to the Vasari party with decimal part 0.542. In this way, one
obtains the total number of seats attributed to the individual parties as shown in Table 2. It looks quite
reasonable to me.
Virgil: What you have just described is known as the Largest Remainders Method.
Dante: I have tried to apply this method ward by ward. For example, in the Aquila ward the Bottai
party gets 19.84 % of the votes, since 4960/25000 = 0.1984; so it should obtain 19.84% of the 5 available
seats, that is, 0.992 seats. In this way I have computed the table of (wardwise) exact quotas (Table 5).
From that table I went on and computed, ward by ward, the number of seats to be assigned to the 6
parties by what you call the Largest Remainders method (Table 6).
But I was very disappointed, since some column sums were wrong: not always the sum of the seats given
to a party in the different wards did match the total number of seats granted to that party. Actually, the
Cestari party got one seat in excess, while the Mugnai party got one seat less. I can also add that I did
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Bottai Cestari Fabbri Mugnai Sediari Vasari

Aquila 0.992 0.870 0.170 0.994 0.988 0.986

Bruco 0.460 0.580 0.991 0.993 0.989 0.987

Civetta 0 0 0 0.990 0 0.010

Drago 0 0 0 0.441 0 0.559

Oca 0 0 0 0.140 0.860 0

Table 5:

Bottai Cestari Fabbri Mugnai Sediari Vasari Seats

Aquila 1 1 1 1 1 5

Bruco 1 1 1 1 1 5

Civetta 1 1

Drago 1 1

Oca 1 1

Seats 1 2 1 3 3 3 13

Granted Seats 1 1 1 4 3 3 13

Table 6:

again this computation proceeding party by party and assigning the seats to the wards. Yet, I could find
the same type of wrong sums, this time on the rows.
On the other hand, I have checked that in the Leonardo’s table both row- and column-sums are indeed
correct. Namely, I have verified that such table meets the following requirements:
(i) For each ward, the sum of the seats attributed to the 6 parties within that ward (row-sum) is equal to
the number of seats at stake in that ward;
(ii) For each party, the sum of the seats attributed to the party in the 5 wards (column-sum) is equal to
the number of seats granted to that party;
(iii) If a party gets no votes in a ward, it cannot receive any seat in that ward.
Virgil: For the sake of brevity, let us refer to a table of (integer) seats satisfying properties (i), (ii), and
(iii) as an apportionment.
Dante: But I am puzzled by something strange. All exact quotas lying between 0 and 1, I would expect
to see an apportionment where each entry is rounded either down to 0 or up to 1. Instead the exact quota
of the Mugnai party in the Aquila ward, i.e. 0.994, is approximated by 2 !
Virgil: There is no mistake. As a matter of fact, no matter how the exact quotas of Table 5 are rounded
up or down, one can never get an apportionment satisfying all the requirements (i), (ii), and (iii).
Dante: How can you possibly make such a statement? The number of alternative ways to round up or
down the 18 fractional entries of Table 5 is a huge number! How can you be sure that none of them gives
rise to an apportionment?
Virgil: Be patient, and I will offer you an indisputable argument. But allow me to preliminarly make
some simple considerations about approximating fractional numbers by integer ones. If you approximate
the number 5 by 8 (which is 3 units above 5) or by 2 (which is 3 units below 5), in both cases the error
you make amounts to 3. Prescribing a maximum error of 3 with respect to 5 is tantamount to require that
the approximating number lies in the interval between 2 and 8. Similarly, prescribing a maximum error
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of 4.25 w.r.t. 9.5 is equivalent to require that the approximating number lies in the interval 5.25 – 13.75.
If in addition you know that the approximating number is an integer, you can restrict the interval to 6 –
13. Are you following me?
Dante: Perfectly.
Virgil: Now, suppose I claim that the maximum error of Leonardo’s apportionment (Table 2) w.r.t. the
exact quotas (Table 5) is 1.006. How would you check my claim?
Dante: That’s easy! Comparing Tables 2 and 5, I would compute a table of errors (Table 7), which shows
that the maximum error is indeed 1.006.

Bottai Cestari Fabbri Mugnai Sediari Vasari

Aquila 0.008 0.870 0.170 1.006 0.012 0.014

Bruco 0.460 0.420 0.009 0.007 0.011 0.013

Civetta 0 0 0 0.010 0 0.010

Drago 0 0 0 0.441 0 0.441

Oca 0 0 0 0.140 0.140 0

Table 7:

Virgil: For future purposes, let us double check on that. If the maximum error is 1.006, then in each cell
of Table 2 the entry should lie in the interval between (exact quota − 1.006) and (exact quota + 1.006).
Notice that since in this case all fractional entries are smaller than 1.006, and since on the other hand
seats are always nonnegative, we can safely set to 0 the lower extreme of the interval. Hence all entries of
Table 2 should lie in the intervals indicated in Table 8, and there should be at least one entry with error
1.006, making the entry coincide with its upper limit. and, since the seats must be integers, one can get
the following tighter limits (Table 9).

Bottai Cestari Fabbri Mugnai Sediari Vasari

Aquila 0 – 1.998 0 – 1.876 0 – 1.176 0 – 2.000 0 – 1.994 0 – 1.990

Bruco 0 – 1.466 0 – 1.586 0 – 1.997 0 – 1.999 0 – 1.995 0 – 1.993

Civetta 0 – 1.996 0 – 1.016

Drago 0 – 1.447 0 – 1.565

Oca 0 – 1.146 0 – 1.866

Table 8:

Bottai Cestari Fabbri Mugnai Sediari Vasari

Aquila 0 – 1 0 – 1 0 – 1 0 – 2 0 – 1 0 – 1

Bruco 0 – 1 0 – 1 0 – 1 0 – 1 0 – 1 0 – 1

Civetta 0 – 1 0 – 1

Drago 0 – 1 0 – 1

Oca 0 – 1 0 – 1

Table 9:

Dante: Yes, I can see that the entries of Table 2 are within the intervals of Table 9, and that the number
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of seats attributed to the Mugnai party in the ward Aquila is equal to the upper limit 2, with an error
1.006 w.r.t. the exact quota 0.994. But couldn’t there exist an apportionment whose maximum error is
below 1.006?
Virgil: Let me convince you that no such apportionment may exist. From this it will ensue that Leonardo’s
apportionment is the best you can get, since it is impossible to decrease the maximum error of an ap-
portionment. The crucial observation is the following. Look at the upper limit for Mugnai party in the
Aquila ward in Table 9. Recall that this upper limit is 2 = 0.994 + 1.006, where 0.994 is the exact
quota. Now, suppose that the maximum error becomes smaller than 1.006. Then the upper limit becomes
smaller than 2, and thus in Table 9 the upper limit of said cell becomes 1. All the other positive upper
limits remain equal to 1. Let me argue that there cannot be any apportionment satisfying all the limits
in Table 9, with the upper limit 2 replaced by 1. Notice that all entries of such an apportionment must
be either 0 or 1, since the only integers in the interval 0 – 1 are 0 and 1. By the way, this will provide a
negative answer to your previous question on whether one can get an apportionment by suitably rounding
down to 0 or up to 1 the fractional exact quotas in Table 5.
Let me distinguish among the wards a set of wards of the Sun and a set of wards of the Moon. The Sun
wards are Aquila and Bruco, the remaining wards are of the Moon. Similarly, let me call parties of the
Sun the Bottai, Cestari, and Fabbri, and the remaining be the parties of the Moon. Now tell me: what is
the largest number of seats within wards of the Sun that can be assigned to parties of the Moon?
Dante: Surely 6, because in either ward of the Sun one can assign at most 1 seat to each of the 3 Moon
parties.
Virgil: Very good. Next: what is the least number of seats that can be attributed in Sun wards to Sun
parties?
Dante: Obviously 4, since out of the 10 seats at stake in the 2 Sun wards at most 6 can go, as I said, to
Moon parties. But now I see the contradiction which does not consent to it, since on the one hand the 3
Sun parties must collectively get at least 4 seats: on the other hand they are altogether granted only 3 seats
(one seat each). Summing up, I agree on the fact that Leonardo’s table provides a best apportionment,
and I will recommend it to the Elders.
Virgil: I am quite confident that the Elders, though not profound in Mathematics as Leonardo, will be
convinced by these common sense arguments. But now tell me: is it true that you are always eager of
complete explanations?
Dante: Yes indeed, I am not satisfied until I have the whole picture in front of me.
Virgil: And is it true that you might be asked again to serve as the Official Verifier in some future
election?
Dante: Yes, it might happen.
Virgil: Then there is one more thing to say.
Dante: What do you mean by this? Are you unfolding some hidden truth?
Virgil: No hidden truth. The only fact is that I applied Leonardo’s arguments to this very special election
in which the Bottai, Cestari and Fabbri parties received no votes in the Civetta, Drago and Oca wards.
But suppose there were some votes and so the possible smallest and largest number of seats could be
different from zero.
Dante: What consequence would this fact provoke?
Virgil: The consequence is that you cannot draw the conclusion that the Sun parties must receive 3 seats
in the Sun wards. You should first consider the least number of seats that the Sun parties can receive
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in the Moon wards. This number would in turn give you the largest number of seats for the Sun parties
in the Sun wards, and, if this number is smaller than the previous number which gave you the smallest
number of seats, this clearly establishes a contradiction. Are you convinced by these arguments?
Dante: Yes, I am convinced.
Virgil: But my impression is that there is still something puzzling you. What are you actually thinking?
Dante: Your explanations are very clear to me, but I am wondering whether it was only a lucky cir-
cumstance that you could find this division of parties and wards into Sun and Moon. I can see that
by renaming Sun and Moon other groups of parties and other groups of wards there is no contradiction
arising. How could I be sure that in another election a similar argument can be presented to the Elders?
I realize that it requires the ability of a mathematician like Leonardo to find the right apportionment and
the division of Sun-Moon parties and wards, but does this division exist in any case?
Virgil: Your intelligence has never disappointed me and I am glad that you have raised this question.
In the secret manuscript by Leonardo it is also proved (and I am afraid it will take centuries before the
mathematicians will rediscover this truth) that such division is always granted.
Dante: Now I am fully satisfied by your explanations and I am very grateful to you. Once more you are
my real Guide and Master.

One month later:

Virgil: Have you been able to convince the Elders of the correct seat assignment?
Dante: Yes, everything went smoothly and the Elders praised a lot my arguments. Unfortunately after
one week the Cestari party started complaining about their seat assignment. They were granted only one
seat which, according to Leonardo’s table, was given in the Bruco ward, but due to some obscure reasons
they prefer this seat in the Aquila ward. They argue that having a quota of 0.87 in the Aquila ward and
0.42 in the Bruco ward, their seat should be assigned in the Aquila ward. The question is on the hands of
the Elders which are about to summon me again to settle the question.
Virgil: So, how do you think of settling the matter?
Dante: I do not know really. I thought that I could use the same arguments and so I prepared a new
table of limits, like the one we did before (Table 9). This time however, I thought I had to keep the high
error for the Mugnai party in the Aquila ward and leave the interval as 0–2. Indeed we already proved
that it was not possible to narrow this interval to 0–1.
Virgil: Yes, you did correctly.
Dante: Then in the new table I brought the interval for the Cestari party in the Aquila wards to 1–1,
exactly to meet their request. But at the same time I did not feel like allowing an error of 0.992 to the
Bottai party in the Aquila ward. Since 0.992 is larger than 0.87 it seems unfair to lower one error at the
expense of an even larger error for others. Hence the interval for the Bottai party in the Aquila ward is
1–1.
Virgil: This is perfectly reasonable.
Dante: And the same is true for all other ward-party pairs with error larger than 0.87. So this is the
table (Table 10) I have obtained:
Virgil: It looks correct.
Dante: But now you can see! This time I do no find any contradiction in computing as before the
possible seats. The Aquila and Bruco wards are entitled at least 10-7=3 seats, and this does not lead to
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Bottai Cestari Fabbri Mugnai Sediari Vasari

Aquila 1 – 1 1 – 1 0 – 1 0 – 2 1 – 1 1 – 1

Bruco 0 – 1 0 – 1 1 – 1 1 – 1 1 – 1 1 – 1

Civetta 1 – 1 0 – 0

Drago 0 – 1 0 – 1

Oca 0 – 1 0 – 1

Table 10:

a contradiction.
Virgil: Of course you cannot find the contradiction in this way. You need a different group of Sun and
Moon parties and wards. My suggestion is that you try with only Bruco as a Sun ward and the Bottai
and Cestari as Sun parties.
Dante: So let me try this way. In the Bruco ward 5 seats are at stake. At most 4 seats can be assigned
to the Moon parties (Fabbri, Mugnai, Sediari and Vasari) and therefore at least one seat must be assigned
between the Bottai and Cestari parties. And then ... it looks there is no contradiction because they have
to receive two seats after all.
Virgil: Remember what I have told you last time. There is another symmetrical consideration to take
care of.
Dante: Sure, now I remember. In the Moon wards (Aquila, Civetta, Drago, Oca) at least 2 seats must be
assigned to the Sun parties so the Sun parties can receive in the Sun wards at most 2-2=0 seats. Here there
is the contradiction! Now I can safely report to the Elders that the Cestari request cannot be fulfilled.

3 A global certificate

Let us call ‘Solver’ the person who actually solves the biproportional apportionment problem described in
Section 1 and ‘Verifier’ the person who has to check the validity of the solution provided by the Solver. For
the Verifier to check the validity, the Solver has to provide also a certificate, which consists in a subset I of
regions (let Ī be the complementary subset) and a subset J of parties (let J̄ be the complementary subset).
These subsets, together with the given solution x∗ij and corresponding absolute error τ∗, enable the Verifier
to check the validity of the solution through some elementary steps. Indeed the only mathematical “skills”
required to the Verifier are:

(1) to be able to perform ordinary sums and subtractions;
(2) to be able to compare two numbers to tell whether one of them is smaller than or equal to the

other;
(3) to know the meaning of bac, dae and dae+ for a given (rational) number a and to be convinced of
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the two following simple facts:

(a) for any number a, bac ≤ a and dae ≥ a,

(b) if x is an integer, then a ≤ x ≤ b if and only if dae ≤ x ≤ bbc,
if x is a nonnegative integer, then a ≤ x ≤ b if and only if dae+ ≤ x ≤ bbc,

(c) if a and b are numbers such that a ≤ b, then bac ≤ bbc and dae ≤ dbe,
(it is implied by (a) and (b),

(d) if b is integer and b′ < b, then bb′c ≤ b− 1,

If a is an integer and a′ > a, then da′e ≥ a+ 1.

Then the Verifier, equipped with these basic skills, should first
– check that

∑
i∈M x∗ij = pj ,

∑
j∈N x∗ij = ri, x∗ij = 0 for (i, j) ∈ Z and τ∗ = minij |x∗ij − qij |, that is, x∗ is

a feasible apportionment and its error is the one claimed (skills 1 and 2).
Next the Verifier, in order to be convinced that there can be no apportionment with error τ < τ∗,

should first:
– compute αij := dqij − τe+, with i ∈ Ī and j ∈ J , βij := bqij + τc, with i ∈ I and j ∈ J̄ , if (i, j) /∈ Z
(αij = βij = 0 if (i, j) ∈ Z) (skill 1);
– compute ᾱ :=

∑
i∈Ī

∑
j∈J αij and β̄ :=

∑
i∈I

∑
j∈J̄ βij (skill 1).

and then reason as follows:
– if the maximum absolute error with respect to the target quotas over all seat assignments is τ , then every
seat assignment xij must lie in the interval [qij − τ, qij + τ ] (skill 2) and this interval, due the integrality
and nonnegativity of xij can be equivalently restricted to [dqij − τe+ , bqij + τc] = [αij , βij ] (skill 3(b));
– if an apportionment x with maximum absolute error τ is required, then the largest number of seats
which can be assigned to parties in J̄ in regions in I is β̄ and consequently the smallest number of seats
which can be assigned to parties in J in regions in I is

∑
i∈I ri− β̄ (refer to Fig. 1(a) which represents the

table of seats; the rows are the regions and the columns are the parties; in the figure R :=
∑

i∈I ri) (skills
1 and 2);
– similarly, if an apportionment x with maximum absolute error τ is required, then the smallest number
of seats which can be assigned to parties in J in regions in Ī is ᾱ and consequently the largest number
of seats which can be assigned to parties in J in regions in I is

∑
j∈J pj − ᾱ (refer to Fig. 1(b) where

P :=
∑

j∈J pj) (skills 1 and 2);
– finally, if ∑

j∈J

pj − ᾱ <
∑
i∈I

ri − β̄

that is, the largest number of seats is less than the smallest number of seats, then it is impossible to have
an apportionment with error τ (skill 2). It is also impossible to have an apportionment with any smaller
error because β̄ decreases and ᾱ increases if τ decreases (skill 3(c)).

In order to be convinced of the validity of the previous statements, only elementary reasoning is
required. Note that the mathematical techniques to get the optimal solution can be totally ignored by the
Verifier.

The existence of subsets I and J for which
∑

j∈J pj− ᾱ <
∑

i∈I ri− β̄ if τ < τ∗ is established by Gale’s
theorem [1, 10] which states that there exists a feasible flow in a network if and only if for each subset of
nodes the net flow out of the subset must be not larger than the cut capacity induced by the node subset.

11



(a) (b)

Figure 1:

Since the problem (3) is equivalent to a flow problem with M a set of sources ri and N a set of sinks pj ,
then

∑
i∈I ri −

∑
j∈J pj is the net flow out of the node subset I ∪ J and β̄ − ᾱ is the cut capacity. The

computation of the subsets is carried out by standard max flow techniques.
The above procedure “challenges” the Verifier to check the certificate for any trial τ < τ∗. However,

the Verifier might be still in doubt whether there is a “feasible” error between the largest τ ever checked
and τ∗. The following additional argument shows that it is enough to ascertain the nonexistence of a
feasible apportionment for a single set of bounds.

First the Verifier has to check the feasibility of the given apportionment and that its error is τ∗. During
this computation he has also to list the pairs of indices (h, k), such that τ∗ = |x∗hk− qhk|. Let us call these
pairs critical. For any critical pair we have

either i) x∗hk = qhk − τ∗

or ii) x∗hk = qhk + τ∗

We may say that in case i) the critical pair (h, k) is a lower pair and in case ii) it is an upper pair. In
other words qhk − τ∗ is integral for a lower pair and qhk + τ∗ is integral for an upper pair.

In the medieval tale of Sec. 2, there is only one critical pair (h, k), namely, the upper pair (Aquila,
Mugnai), with 2 = x∗hk = qhk + τ∗ = 0.994 + 1.006. When the maximum error τ becomes smaller than τ∗,
qhk + τ becomes strictly smaller than 2. Therefore, the upper bound on the (integer) number of seats xhk

cannot be larger than 1. But already the upper bound 1, the other bounds being unchanged, makes the
BAP infeasible.

Now the Verifier has to notice that, among the critical pairs, there is one such that, if it is a lower pair
then h ∈ Ī and k ∈ J , whereas if it is an upper pair then h ∈ I and k ∈ J̄ . Let us call any such critical
pair a blocking pair. The Verifier does not need to be convinced that a blocking pair does indeed exist. He
has only to scan all pairs (i, j) until he finds a blocking pair.

Then the Verifier is asked to compute the αij(τ∗) and βij(τ∗) values w.r.t. the error τ∗, for the same
sets I and J . Here we have explicitly denoted the dependance of these values on τ . Now the Verifier is
invited to think what happens to αij(τ) and βij(τ) for an error τ < τ∗. Since αij(τ) = dqij − τe+ and
qij − τ > qij − τ∗, then by skill 3(c) we have αij(τ) ≥ αij(τ∗). Similarly, from βij(τ) = bqij + τc and
qij + τ < qij + τ∗, again by skill 3(c) we have βij(τ) ≤ βij(τ∗). These inequalities are clearly valid for all
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pairs (i, j).
The crucial point concerns the blocking pair. Here the Verifier needs the skill 3(d). Indeed if the

blocking pair is lower, qhk − τ∗ is integral and nonnegative (it is just a seat number and cannot be
negative). Hence for any τ < τ∗, dqij − τe ≥ dqij − τ∗e+ 1, i.e. αhk(τ) ≥ αhk(τ∗) + 1. Then the Verifier
acknowledges that he has to use at least the lower bound αhk(τ∗) + 1 for the lower blocking pair (h, k) if
he wants to consider errors τ < τ∗.

If the blocking pair is upper we have that qhk + τ∗ is integral. Hence for any τ < τ∗, bqij + τc ≤
bqij + τ∗c − 1, i.e. βhk(τ) ≤ βhk(τ∗) − 1. Then the Verifier acknowledges that he has to use at most the
upper bound βhk(τ∗)− 1 for the upper blocking pair (h, k) if he wants to consider errors τ < τ∗.

Now the Verifier, equipped with the values αij(τ∗) := dqij − τ∗e+, with i ∈ Ī and j ∈ J , (i, j) not
blocking, βij(τ∗) := bqij + τ∗c, with i ∈ I and j ∈ J̄ , (i, j) not blocking, αij = βij = 0 if (i, j) ∈ Z,
and either αhk(τ∗) + 1 for the lower blocking pair (h, k) or βhk(τ∗)− 1 for the upper blocking pair (h, k),
proceeds with the previous computations of ᾱ and β̄. He will eventually find the contradiction∑

j∈J

pj − ᾱ <
∑
i∈I

ri − β̄

If the Verifier had used αij(τ) and βij(τ) (instead of αij(τ∗), βij(τ∗) and αhk(τ∗) + 1 or βhk(τ∗)− 1) the
contradiction would arise anyway because of the previously found inequalities αij(τ) ≥ αij(τ∗), βij(τ) ≤
βij(τ∗), αhk(τ) ≥ αhk(τ∗) + 1, βhk(τ) ≤ βhk(τ∗)− 1. Notice that these inequalities hold as equalities for
any τ in a suitable left neighborhood of τ∗; but the actual value of τ is irrelevant for the Verifier.

Sometimes the impossibility of an apportionment for a given error is due to a simple fact, which
is almost self-evident and does not require a special mathematical knowledge. Although this kind of
impossibility is only a particular case of the previous general case, it is however more convenient to deal
with it separately, just because it is a certificate that does not need many explanations. Indeed if for a
given party j it happens that

either
∑
i∈M

bqij + τc =
∑
i∈M

βij < pj or
∑
i∈M

dqij − τe+ =
∑
i∈M

αij > pj

then there is clearly no way of assigning seats in the regions for party j and reaching the prescribed
national number of seats pj . Similarly, if for a given region i it happens that

either
∑
j∈N

bqij + τc =
∑
j∈N

βij < ri or
∑
j∈N

dqij − τe+ =
∑
j∈N

αij > ri

then again there is no way of assigning seats in region i to the parties and reaching the prescribed regional
number of seats ri. We leave the reader to check that the four cases correspond to the following subset
specifications:

pj >
∑
i∈M

βij =⇒ I = M, J = N \ {j} ,

pj <
∑
i∈M

αij =⇒ I = ∅, J = {j} ,

ri >
∑
j∈N

βij =⇒ I = {i} , J = ∅,

ri <
∑
j∈N

αij =⇒ I = M \ {i} , J = N.
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We apply these concepts to the results of the Italian political election (April 13-14, 2008) for the
Chamber of Deputies. The target quotas in the 26 districts, already modified to take into account the
majority bonus to the PDL party, are reported in Table 12. The regions are listed by rows and the parties
by columns. The party acronyms are: PDL - Popolo delle libertà, LN - Lega Nord, MPA - Movimento
per le autonomie, PD - Partito democratico, IDV - Italia dei Valori, SVP - Südtiroler VolksPartei, UDC -
Unione di Centro.

The seats assigned by the law to the regions, according to the population, before the elections are

r = {24, 22, 40, 43, 15, 10, 29, 20, 13, 17, 43, 38, 9, 16, 40, 15, 14, 3, 33, 29, 44, 6, 22, 26, 28, 18}

and the seats granted to the parties at the national level (according to the Largest Remainder Rule) are

p = pN = {272, 60, 8, 211, 28, 2, 36}

As already pointed out in [11, 12, 13, 14, 16] the final seats assigned in each region after the election
are different from the ones assigned by the law before the election. But this is only due to a flaw in the
procedure of the Italian law. In our computation we have used the original r values. In the table the
quotas have been rounded to three decimal digits.

We report in Table 13 the apportionment minimizing the maximum absolute error. Indeed we claim
that it minimizes the maximum absolute error and we provide the following certificate to support our
claim:

I = {Piemonte 1, Lombardia 2, Lombardia 3, Trentino-Alto Adige, Friuli-Venezia Giulia,

Liguria, Toscana, Umbria, Lazio 2, Abruzzo, Molise,

Campania 1, Campania 2, Puglia, Basilicata, Calabria, Sicilia 1}

J = {PDL, MPA, PD, IDV, SVP, UDC}

The Verifier can compute the maximum error which is 0.75372 for the lower pair (Veneto 1, UDC) (1 seat
against a target quota of 1.75372). Then, from the subsets I and J the αij and βij values can be computed
by trying for instance an error τ = 0.7537, as in Table 14, with αij , i /∈ I, j ∈ J on the left and βij , i ∈ I,
j /∈ J on the right.

From the table the Verifier can deduce that the largest number of seats in (I, J) is given by 557 (total
seats for parties in J) - 223 (=

∑
αij = ᾱ) = 334, and also that the smallest number of seats in (I, J) is

given by 361 (total seats in regions in I) - 26 (=
∑
βij = β̄) = 335. Therefore it is impossible to have a

solution with error τ = 0.7537.
For the stronger form of verification, the Verifier needs to compute the αij(τ∗) and βij(τ∗) values.

These values are the same as in Table 14 with the exception of the lower blocking pair (h, k) =(Veneto 1,
UDC) for which αhk(τ∗) = 1 (instead of 2). Clearly, using in the computation of ᾱ, αhk(τ∗) + 1 = 2
produces the same contradiction.

4 Strongly optimal solutions and individual certificates

By referring to the apportionment reported in Table 2 we may see that it is not the unique optimal solution.
Indeed the solution in Table 11 is also optimal with the same error τ∗ = 1.006. We note that, although
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Bottai Cestari Fabbri Mugnai Sediari Vasari Seats

Aquila 1 2 1 1 5

Bruco 1 1 1 1 1 5

Civetta 1 1

Drago 1 1

Oca 1 1

Seats 1 1 1 4 3 3 13

Table 11:

the solution given in Table 11 cannot be improved for all pairs, it can be improved for some pairs without
worsening the other pairs. In other words it is dominated.

With respect to the Table 2 the pairs which are different are: Aquila-Bottai passing from an error 0.008
to 0.992, Aquila-Fabbri from 0.17 to 0.83, Civetta-Bottai from 0.46 to 0.54, Civetta-Fabbri from 0.009 to
0.991. The other pairs are unchanged. Clearly the solution in Table 2 dominates the one in Table 11.
Minimax solutions are typically non unique and among them there can be dominated solutions.

Hence we need to define a stronger form of optimality and provide a corresponding certificate of strong
optimality for an apportionment x∗ (see [16]). For a given region-party pair (h, k), let τ∗hk := |qhk − x∗hk|
be the error for this pair. Let L(h, k) :=

{
(i, j) 6= (h, k) : τ∗ij ≤ τ∗hk

}
be the set of pairs with error not

larger than τ∗hk, and let U(h, k) :=
{

(i, j) : τ∗ij > τ∗hk

}
be the complement set. Then we say that the

apportionment x∗ is strongly optimal if, for any pair (h, k), there is no apportionment with error τhk < τ∗hk,
τij ≤ τ∗hk for (i, j) ∈ L(h, k) and τij ≤ τ∗ij for (i, j) ∈ U(h, k). Clearly strong optimality implies optimality.

The definition takes care of the fact that, while trying to improve the error for some pair (h, k), it is
not allowed to worsen those pairs which have a larger error than (h, k). On the contrary, those pairs that
have error less than or equal to (h, k) are allowed to worsen the error up to the ‘threshold’ τ∗hk. Note also
that if another pair exhibits the same error as (h, k), the error for (h, k) is allowed to decrease without
any decrease of the error for the other pair.

In [16] the uniqueness of the best apportionment is considered. The proposed procedure finds the so
called unordered lexico-minimal solutions. If the fractional parts of the quotas are all different (or more
exactly the values qij − bqijc and dqije − qij are all different), then the lexico-min procedure described in
[16] yields strongly optimal solutions. As shown in [16] it is highly unlikely that in a normal election two
quotas have equal fractional parts.

Clearly a strongly optimal solution is robust with respect to any criticism and complaint parties might
raise in order to gain more seats for themselves or to reduce seats for the other parties. More importantly,
also strongly optimal solutions can be attached a certificate of optimality which can be checked against
any complaint. We call this an individual certificate, since it is provided for each region-party pair. In
contrast we may call global the certificate introduced in the previous section.

First note that no pair can have error less than τ̄ij := min {qij − bqijc ; dqije − qij}. So, if |qij −x∗ij | =
τ̄ij , or, more simply, if the error is no larger than one half, the apportionment cannot be improved for the
pair (i, j). Since this is obvious we need a certificate only for those pairs exhibiting an error larger than
one half.

The individual certificate has the same features as the global certificate, that is, it specifies two subsets
of regions and parties. It only differs in the way the values αij and βij are computed. According to the
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definition of strong optimality, when we consider the pair (h, k), we set the error values

τhk < τ∗hk, τij = τ∗hk, (i, j) ∈ L(h, k), τij := τ∗ij (i, j) ∈ U(h, k)

from which we compute
αij := dqij − τije+ , βij := bqij + τijc

Since by definition there is no apportionment with this error, in the parametric capacitated transportation
problem (3) with capacities computed from τ there must exist, by Gale’s theorem, a subset of nodes whose
cut capacity is not large enough to accomodate the net flow out of the subset. This subset of nodes is
clearly the certificate.

In the final part of the medieval tale the considerations to show that the Cestari party request cannot be
fulfilled are indeed an individual certificate for the pair (Aquila, Cestari). As a second example reconsider
the solution for the Italian election 2008 reported in Table 13. Although acknowledging that the best
maximum error is 0.75372, the MPA party, having a quota of 1.626076, could claim 2 seats instead of 1 in
the Sicily 1 region. To prove that MPA cannot receive 2 seats within the rules of a strongly optimal solution,
we have in this case a very simple certificate. The MPA party is entitled globally 8 seats. However, it
should receive at least 1 seat in Campania 1 (otherwise it would incur the higher error 1.00179). Similarly
it should receive at least 1 seat in Campania 2, Puglia and Calabria respectively. For the same reason it
has to get at least 3 seats in Sicily. This makes already 7 seats. Therefore it is impossible to have two
seats in Sicily 1.

As a further example suppose that the PDL party is complaining about the 9 seats in Piemonte 2.
Having a quota of 9.59563 the party claims 10 seats. The individual certificate for the pair (Piemonte 2,
PDL) is given by the subsets:

I = {Sicily 1} , J = {PDL, MPA}

from which we compute the α (on the left) and β (on the right) values as in the Table 15, from which we
get the contradiction ∑

j∈J

pj − ᾱ = 280− 266 = 14 <
∑
i∈I

ri − β̄ = 26− 11 = 15

5 Conclusions

In the design of sound electoral systems, some conflict may occur between accuracy and transparency.
Indeed electoral problems like the biproportional apportionment one are not amenable to simple-minded
solution, and when this is done several anomalies and paradoxes are likely to occur. On the other hand
correct procedures may turn out to be too complex to be written down in an electoral law.

In this paper we have proposed a possible third way to get out of this dilemma. The key idea is to
distinguish between the two stages of producing the solution and checking its validity. This idea is common
in theoretical computer science, e.g. in the definition of the class NP. Luckily, for the particular min-max
solution generated by the parametric max flow algorithm [16], this distinction is possible and a certificate
can be produced on the basis of the Max Flow-Min Cut theorem. Obtaining such a certificate this way is
not the task of the Verifier. However, it is nice to observe that its computation has low complexity.
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While we have described a certificate with reference to biproportional apportionment similar ideas may
have potential scope also in other contexts within the area, especially when writability is an important
issue.

In conclusion, the adoption of a certificate of guarantee in presence of complex electoral rules which
cannot be easily replicated by the layman, may result in better quality electoral systems without prejudice
of transparency.
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PDL LN MPA PD IDV SVP UDC

Piemonte 1 9.470 2.530 0.000 9.450 1.550 0.000 1.283

Piemonte 2 9.596 4.404 0.000 6.150 0.850 0.000 1.194

Lombardia 1 16.580 7.421 0.000 13.080 1.920 0.000 1.428

Lombardia 2 15.350 13.650 0.000 10.390 1.613 0.000 2.064

Lombardia 3 5.829 3.171 0.000 4.534 0.466 0.000 0.689

Trentino-Alto Adige 2.758 1.242 0.000 2.642 0.358 2.644 0.460

Veneto 1 9.312 9.688 0.000 7.806 1.194 0.000 1.754

Veneto 2 6.265 5.736 0.000 5.955 1.045 0.000 1.013

Friuli-Venezia Giulia 5.089 1.911 0.000 4.398 0.602 0.000 0.815

Liguria 7.588 1.412 0.000 6.189 0.811 0.000 0.669

Emilia-Romagna 14.940 4.058 0.000 20.140 1.862 0.000 1.918

Toscana 15.030 0.969 0.000 18.610 1.390 0.000 1.700

Umbria 3.816 0.184 0.000 4.683 0.317 0.000 0.437

Marche 6.585 0.415 0.000 7.216 0.784 0.000 1.035

Lazio 1 19.870 0.000 0.131 16.120 1.881 0.000 1.800

Lazio2 8.927 0.000 0.073 4.558 0.442 0.000 0.940

Abruzzo 6.738 0.000 0.262 4.961 1.039 0.000 0.858

Molise 1.744 0.000 0.256 0.393 0.607 0.000 0.176

Campania 1 18.000 0.000 1.002 10.280 1.720 0.000 1.836

Campania 2 16.320 0.000 0.681 8.646 1.354 0.000 2.207

Puglia 23.100 0.000 0.900 13.950 2.048 0.000 3.581

Basilicata 2.938 0.000 0.062 2.601 0.399 0.000 0.438

Calabria 11.290 0.000 0.707 7.202 0.798 0.000 1.918

Sicilia 1 13.370 0.000 1.626 6.953 1.048 0.000 2.968

Sicilia 2 14.980 0.000 3.025 7.159 0.841 0.000 2.114

Sardegna 8.868 0.000 0.132 7.209 0.791 0.000 1.059

Table 12: Target quotas
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PDL LN MPA PD IDV SVP UDC

Piemonte 1 9 3 0 9 2 0 1

Piemonte 2 9 5 0 6 1 0 1

Lombardia 1 16 8 0 13 2 0 1

Lombardia 2 15 14 0 10 2 0 2

Lombardia 3 6 3 0 5 0 0 1

Trentino-Alto Adige 3 1 0 3 0 2 1

Veneto 1 9 10 0 8 1 0 1

Veneto 2 6 6 0 6 1 0 1

Friuli-Venezia Giulia 5 2 0 4 1 0 1

Liguria 7 2 0 6 1 0 1

Emilia-Romagna 15 4 0 20 2 0 2

Toscana 15 1 0 19 1 0 2

Umbria 4 0 0 5 0 0 0

Marche 6 1 0 7 1 0 1

Lazio 1 20 0 0 16 2 0 2

Lazio 2 9 0 0 5 0 0 1

Abruzzo 7 0 0 5 1 0 1

Molise 2 0 0 0 1 0 0

Campania 1 18 0 1 10 2 0 2

Campania 2 16 0 1 9 1 0 2

Puglia 23 0 1 14 2 0 4

Basilicata 3 0 0 3 0 0 0

Calabria 11 0 1 7 1 0 2

Sicilia 1 14 0 1 7 1 0 3

Sicilia 2 15 0 3 7 1 0 2

Sardegna 9 0 0 7 1 0 1

Table 13: Apportionment minimizing the maximum absolute error
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PDL MPA PD IDV SVP UDC

Pi2 9 0 6 1 0 1

Lo1 16 0 13 2 0 1

Ve1 9 0 8 1 0 2

Ve2 6 0 6 1 0 1

ERm 15 0 20 2 0 2

Mar 6 0 7 1 0 1

La1 20 0 16 2 0 2

Si2 15 3 7 1 0 2

Sar 9 0 7 1 0 1

LN

Pi1 3

Lo2 14

Lo3 3

TrA 1

FVG 2

Lig 2

Tos 1

Umb 0

La2 0

Abr 0

Mol 0

Cam1 0

Cam2 0

Pug 0

Bas 0

Cal 0

Si1 0

αij

βij

Table 14:
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PDL MPA

Pi1 9 0

Pi2 10 0

Lo1 16 0

Lo2 15 0

Lo3 6 0

TrA 3 0

Ve1 9 0

Ve2 6 0

FVG 5 0

Lig 7 0

ERm 15 0

Tos 15 0

Umb 4 0

Mar 6 0

La1 20 0

La2 9 0

Abr 7 0

Mol 2 0

Cam1 18 1

Cam2 16 1

Pug 23 1

Bas 3 0

Cal 11 1

Si2 15 3

Sar 9 0

LN PD IDV SVP UDC

Si1 0 7 1 0 3

αij

βij

Table 15:
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