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Abstract

This article deals with determination of a sample size that guarantees the success of a trial.

We follow a Bayesian approach and we say an experiment is successful if it yields a large

posterior probability that an unknown parameter of interest (an unknown treatment effect or

an effects-difference) is greater than a chosen threshold. In this context, a straightforward

sample size criterion is to select the minimal number of observations so that the predictive

probability of a successful trial is sufficiently large. In the paper we address the most typical

criticism to Bayesian methods - their sensitivity to prior assumptions - by proposing a robust

version of this sample size criterion. Specifically, instead of a single distribution, we consider a

class of plausible priors for the parameter of interest. Robust sample sizes are then selected by

looking at the predictive distribution of the lower bound of the posterior probability that the

unknown parameter is greater than a chosen threshold. For their flexibility and mathematical

tractability, we consider classes of ε-contamination priors. As specific applications we consider

sample size determination for a Phase III trial.

Keywords: Analysis and design priors; Bayesian power; Bayesian robustness; conditional and

predictive power; evidence; ε-contaminated priors; phase II and phase III clinical trials; sample

size determination;

1 Introduction

In clinical trials - which will be in the following the reference context of applications - one

wants to assess whether the efficacy of a new treatment (Phase II trials) or the effects

difference between two treatments (Phase III trials) are larger than a chosen clinically

relevant threshold. The underlying statistical problem is essentially testing a one-sided

hypothesis for an unknown parameter. We are here interested in choosing an appropriate

sample size for these experiments.

The most widely used sample size determination (SSD) method for testing an hypothesis

on an unknown parameter is based on the classical power function, the probability of rejecting
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the null hypothesis. This probability is computed with the sampling distribution of the data.

Typically, one considers the power function evaluated at specific values of the unknown

parameters under the alternative hypothesis (conditional power) and chooses the smallest

sample size such that this quantity is sufficiently large [Armitage, Berry and Matthews

(2003)]. Conditional power has been often criticized since it depends critically on the chosen

design values, whose uncertainty is not accounted for. This local optimality is typical of

standard classical designs and may lead to serious miscalculation of the sample size [Chaloner

and Verdinelli (1995)]. To avoid local optimality, several authors have advocated a Bayesian

look at the design problem. This approach allows one to model uncertainty on the design

values of the parameters with a probability distribution. This is employed to average the

sampling distribution, obtaining the predictive distribution for future data, used to compute

the probability of rejecting the null, called predictive power. The resulting SSD methodology

is a mixed Bayes-frequentist approach, since it takes into account prior uncertainty on the

unknown parameters only for the design of the experiment whereas a standard classical

test statistics is used for final inference [Spiegelhalter and Freedman (1986) and Joseph, du

Berger and Belisle (1997)].

In this paper we consider a fully Bayesian approach to SSD, that: (i) models prior

uncertainty on the design value when planning the experiment; and (ii) combines pre-

experimental information with data for final inference. Specifically, we assume that an

experiment is successful if one observes a large posterior probability that the unknown

parameter is greater than a chosen threshold. The sample size can then be determined

by looking at the predictive distribution of this posterior probability. More specifically,

one considers suitable summaries - expectation and tail probabilities - of this predictive

distribution and chooses the smallest number of units so that these quantities are sufficiently

large.

The use of a specific elicited prior for posterior analysis has been always a major criticism

to Bayesian inference. This is due to the high degree of subjectivism intrinsic to the selection

of a specific distribution. An attempt to address this objection is represented by the robust

Bayesian approach that: a) replaces a single prior with a class of distributions that gives

a more flexible and realistic representation of pre-experimental knowledge; b) studies how

posterior inference changes as the prior varies over the class. The idea is simple: if the

range of posterior quantities of interest, the differences between the various priors in the

class are irrelevant and then one can use the starting prior with confidence. On the contrary,

if the posterior range is not small enough, robustness is a concern and refinement of prior

knowledge is needed. General principles and developments of the robust Bayesian approach

are discussed in Berger (1984, 1990), Berger, Rios Insua and Ruggeri (2000) and Wasserman
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(1992). Applications of robust Bayesian analysis to clinical trials are in Greenhouse and

Wasserman (1995 and 1996), Carlin and Perez (2000), Carlin and Sargent (1996) and Sargent

and Carlin (1996).

This article applies the robust Bayesian philosophy to the preceding SSD problem. The

basic goal is the introduction of robust SSD criteria which take into account deviations from

an elicited base prior distribution for the unknown parameter. For this reason, we replace

a single base prior with an entire class of distributions close to it. We assume that an

experiment is successful if - as the prior varies in the class - the lower bound of the posterior

probability that the parameter is greater than a chosen threshold is sufficiently large. Robust

sample sizes are selected by looking at summaries of the predictive distribution of this lower

bound.

Typically, robust sample sizes are larger than single-prior sample sizes. One of the goals

of the present paper is to show the inflate of sample sizes determined by using specific

classes of priors in the place of a single base prior. However, we are also interested in

those circumstances (and classes of priors) in which single-prior sample sizes do not differ

substantially from robust sample sizes. In these cases we say that single-prior sample sizes

are robust with respect to the class Γ and that the standard procedure provides adequate

sample sizes.

To model uncertainty on the base prior we here consider classes of ε-contaminated priors,

studied for instance in Sivaganesan and Berger (1989). These are mixtures of the base prior

with classes of distributions that possess some specific features. In this paper we focus

on two specific classes of contaminating priors. The former is the set of all probability

distribution, which is the largest contaminating class one can consider. The latter is the

class of symmetric and unimodal distributions. These two classes of priors have been very

popular in the literature on Bayesian robustness, both for being analytically tractable and

also for giving fairly realistic representation of prior beliefs and uncertainty.

The present paper is related to the literature on Bayesian experimental design. For

general reviews and for discussions on robust Bayesian design, see Chaloner and Verdinelli

(1995), Wang and Gelfand (2002), Sahu and Smith (2006) and DasGupta (1996). For

Bayesian SSD see also Joseph and Belisle (1997) and Clarke and Yuan (2006). Sample

size determination methods for robust Bayesian analysis, closely related to those presented

in this article, are proposed in DasGupta and Mukhopadhyay (1994), Ianus (2000), De Santis

(2006) and Brutti and De Santis (2007).

The outline of the paper is as follows. Section 2 introduces the basic technical definitions

of successful trial and the related SSD criteria. The concepts of robust-successful experiment

and the corresponding SSD criteria are also formalized. Section 3 develops the main results in
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the case of normal models, a common assumption in bio-medical applications. Implementation

with two classes of ε-contamination priors are discussed and some examples presented.

Section 4 reports final remarks.

2 Methodologies

Let θ be a real one-dimensional parameter denoting an unknown quantity of interest. Also,

let Yn be an estimator of θ, based on n observations, yn its observed value and fn(·; θ) its

density or probability mass function. We assume to be interested in assessing whether θ is

larger than a threshold, δ. In Phase II superiority trials, for instance, θ may represent the

effect of a treatment, an odds or an hazard function and δ a minimal “clinically significant

effect”. Similarly, in Phase III experiments, θ may denote an effects-difference, an odds or

hazard ratio and δ a minimally “clinically significant difference” between two treatments.

In the next section we review two SSD criteria for this problem. In Section 2.2 we give the

corresponding robust versions.

2.1 Sample size determination criteria

Let πA denote the prior probability distribution of θ. This is the analysis prior, that

formalizes pre-experimental information and uncertainty on the unknown parameter θ. Given

yn, let πA(θ|yn) ∝ πA(θ) × fn(yn; θ) be the posterior distribution of θ and PπA
(·|yn) the

corresponding posterior probability measure. The experiment which yields the data will be

said successful if the posterior probability that θ > δ is larger than a chosen value, γ:

PπA
(θ > δ|yn) > γ, γ ∈ (0, 1).

Before conducting the experiment, Yn and PπA
(θ > δ|Yn) are random. Using, for simplicity,

the notation for the continuous case, let mπD
denote the predictive density of Yn:

mπD
(yn) =

∫

θ

fn(yn; θ)πD(θ)dθ,

where πD is the design prior for θ. This distribution models uncertainty on the design

values for θ and, in general, it does not coincide with πA. Note that, if πD is a point-

mass probability on a value θD, then mπD
coincides with the sampling density fn(·; θD), the

distribution commonly used for the standard classical sample size approach. Generally, most

of Bayesian SSD criteria use the same prior distribution for computing both the posterior

and the predictive distribution: see, for instance, Lindley (1997) and Raiffa and Schlaifer

(2000). However, several authors have argued that two distinct priors should be used: one
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prior to model uncertainty on the design value of the parameter and to obtain the predictive

distribution; and another prior to model pre-experimental information, often represented by

historical data, and to obtain the posterior. In this regard see, for instance, Etzioni and

Kadane (1993), O’Hagan and Stevens (2001), Wang and Gelfand (2002), Sahu and Smith

(2006) and De Santis (2006).

Let us consider an extreme but illustrative example for realizing why it is necessary to

involve two priors. Suppose we want to design a Phase II experiment under the assumption

of a large treatment effect, θD, but that we are uncertain on what the level of θD may be.

In this case we use a prior πD centered on a large guessed value θD, with a certain variance.

At the same time, suppose that a regulatory agency requires the data from the trial to

be summarized without introducing any pre-experimental bias. In this case one can use a

noninformative analysis prior, which does not alter information from the data.

With no loss in generality, in designing the experiment let us assume that θ is larger

than δ. This condition is formalized by choosing πD centered on a suitably “large” value

θD. We expect that, as n increases, the predictive distribution of PπA
(θ > δ|Yn) tends

to concentrate around larger and larger values. Hence, we choose the smallest n so that

a suitable summary of this predictive distribution is sufficiently large. According to the

summaries that we employ, different SSD criteria can be defined. We consider the following

two specific cases.

1. Predictive Expectation Criterion. Let

en = EmπD
[PπA

(θ > δ|Yn)]

be the expected value of the random posterior probability PπA
(θ > δ|Yn) with respect to

mπD
, the predictive distribution of the data. The chosen sample size is then

n∗e = min {n ∈ IN : en > η} . (1)

This approach is called effect-size criterion by Wang and Gelfand (2002).

2. Predictive Probability Criterion. Consider the predictive probability of obtaining a

successful experiment:

pn = PmπD
[Sn] =

∫

Sn

mπD
(yn)dyn,

where PmπD
is the predictive probability measure associated to mπD

and Sn the subset of

the sample space containing all the samples which yield a successful experiment at level γ:

Sn = {yn : PπA
(θ > δ|yn) > γ} .
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The chosen sample size is the smallest number of observations such that pn is larger than a

chosen threshold, η:

n∗p = min {n ∈ IN : pn > η} , η ∈ (0, 1). (2)

Note that pn is also known as Bayesian power (Spiegelhalter et al. (2004)).

Criterion 1 guarantees only an average control on the predictive distribution of PπA
(θ > δ|yn).

Criterion 2 controls also its sampling variability.

In the following we will consider examples of both methods. See De Santis (2006)

for discussion on the different sensitivity to priors of expectation criteria with respect to

criteria based on tail areas. Two remarks are now in order. The first is that the two-priors

scheme is a general framework incorporating, as special cases, other approaches, such as the

hybrid Bayes-likelihood method (πA noninformative, πD proper) or even classical SSD (πA

noninformative, πD a point-mass prior on a design value θD). See Spiegelhalter, Abrams and

Myles (2004) for discussion on conditional versus predictive versions of classical and Bayesian

power. The second remark is more technical. Generally, at least in standard models, a

noninformative analysis prior leads to a proper posterior. Conversely, a noninformative

improper design prior cannot be employed since the corresponding marginal distribution of

the data, mπD
, is undetermined. See, for instance, De Santis (2007) for discussion on this

point.

2.2 Robust sample size determination criteria

Suppose now that, instead of a single analysis prior distribution, we are only able to elicit a

class of distributions ΓA. Specifically, assume we single out a prior π0 that quantifies pre-trial

information on θ, but that we are not completely confident in it. We replace π0 with a class

of distributions “close” to it. The trial is considered robust-successful if, for any prior in ΓA,

the posterior probability that θ is greater than δ is larger than γ or, equivalently, if

inf
πA∈ΓA

PπA
(θ > δ|yn) > γ, γ ∈ (0, 1).

The robust version of SSD criteria 1 and 2 defined above are obtained by simply replacing

PπA
(θ > δ|yn) with infπA∈ΓA

PπA
(θ > δ|yn) in (1) and (2).

1. Robust Predictive Expectation Criterion. Let

er
n = EmπD

[ inf
πA∈ΓA

PπA
(θ > δ|Yn)].

The, for η ∈ (0, 1), the selected sample size is

n∗e,r = min {n ∈ IN : er
n > η} . (3)
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This is the robust effect-size criterion.

2. Robust Predictive Probability Criterion. For given a η ∈ (0, 1), the selected sample size is

n∗p,r = min {n ∈ IN : pr
n > η} , (4)

where

pr
n = PmπD

[Sr
n] =

∫

Sr
n

mπD
(yn)dyn

denotes robust predictive power and

Sr
n =

{
yn : inf

πA∈ΓA

PπA
(θ > δ|yn) > γ

}
,

i.e. the subset of the sample space whose elements, for each prior in ΓA, yields a posterior

probability that θ > δ larger than γ.

Generally, the consequence of replacing πA with ΓA (which we assume to contain πA), is that,

for any given δ, η and γ, the robust sample size is larger than the single-prior sample size.

Similarly, for any two classes of priors ΓA and Γ′A such that ΓA ⊂ ΓA′ , optimal sample sizes

determined with the latter class are larger than those obtained with the former. Numerical

examples will be discussed in Section 3.

2.3 Robust sample size determination with ε-contamination classes

An ε-contamination class, studied for instance in Berger and Berliner (1986) and Sivaganesan

and Berger (1989), is defined as follows:

Γε = {πA : πA(θ) = (1− ε)π0(θ) + εq(θ); q ∈ Q},

where π0 is the base prior, ε ∈ (0, 1) is the degree of contamination we consider for this

distribution and q is the contaminant prior, that varies in a given class Q. According to

the choice of Q, we have different ε-contamination classes. Among the many available, we

consider the following two classes for Q:

QUS = {all the unimodal and symmetric distributions with the same mode µ0 as that of π0};

and

QAll = {all the distributions}.
The corresponding ε-contamination classes will be denoted respectively as ΓUS and ΓAll. The

class QAll is appealing for its analytical tractability but it contains many more priors than

we would often consider plausible in practice. We will see in the following sections that this
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fact determines very large sample sizes even for small amounts of contamination. The class

QUS is still analytically feasible but it restricts considerably the set of possible contaminant

distributions compared to QAll. Sivaganesan and Berger (1989) provides the expressions for

lower and upper bounds of the posterior probability of a set H as the prior varies in ΓUS

and ΓAll. Note that, for any yn,

ΓUS ⊂ ΓAll ⇒ inf
πA∈ΓUS

PπA
(H|yn) ≥ inf

πA∈ΓAll

PπA
(H|yn) .

Hence, optimal sample sizes computed using ΓUS are smaller than those determined with

ΓAll.

For both the classes considered here, closed-form expressions for er
n and pr

n cannot be

determined and we will resort to standard Monte Carlo approximations: we draw a large

number of samples from the predictive distribution of the data, mπD
, and for each generated

value ỹn(j) we compute infπA∈Γε PπA
[H|ỹn(j)]. These quantities are obtained exploiting the

results by Sivaganesan and Berger (1989) (see Appendix A.1) and are then used to determine

numerical approximations for er
n and pr

n.

3 Results with normal likelihoods

Assume now that data relevant to θ are summarized by a statistic Yn with (at least approximately)

normal distribution of parameters (θ, σ2/n). In Phase II clinical trials, for instance, θ

may denote a treatment effect, n the number of individuals assigned to the treatment,

Yn the sampling mean of experimental outcomes normally distributed with expectation θ

and variance σ2. However, the same basic model provides an approximation that can be

used, for instance, for binary data - with θ denoting a log-odds - and for survival data -

with θ denoting a log-hazard function - (see Spiegelhalter et al., 2004, Sections 2.4.1 and

2.4.2). Note that, if σ2 is unknown, a full Bayesian analysis with a proper prior (such as,

for example, inverted-gamma priors) can be performed but, for brevity, we will omit this

case and will rely on the simplifying assumption that σ2 is known. See Spiegelhalter and al.

(2004) for discussion on this point.

For computational simplicity, we assume π0(θ) = N(θ|θ0, σ
2/n0), where N(·|a, b) denotes

the density function of a normal random variable of mean a and variance b and n0 is the

so-called “prior sample size”. It follows that

Pπ0(θ > δ|yn) = 1− Φ

(
δ − θπ0(yn)

σπ0

)
(5)

where Φ(·) is the c.d.f. of the standard normal random variable, θπ0(yn) = (n0θ0 +nyn)(n0 +

n)−1 and σπ0 = σ2(n + n0)
−1/2 are the posterior expectation and standard deviation of θ

under the base prior π0.
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As design prior, we consider πD(θ) = N(θ|θD, σ2/nD), where θD is the design value

around which we spread the probability mass, with precision determined by nD. In this case,

mπD
(yn) = N(yn|θD, σ2(1/n + 1/nD)). Note that for nD → +∞, the predictive distribution

mπD
tends to the sampling distribution fn(·; θD), the density used in standard classical

sample size choice.

The use of conjugate design and analysis priors yields a closed-form expressions for pn.

Under the above assumptions, for a given η ∈ (0, 1), we have

pn = Φ


 ξ − θD

σ
√

1
n

+ 1
nD


 , (6)

where ξ = (n0 + n)(δ − z1−ησπ0)/n− n0θ0/n and where zα denotes the α-level percentile of

the standard normal distribution. See Spiegelhalter et al. (2004) for the π0 = πD special

case. Implementation of robust SSD methods with ε-contamination classes ΓUS and ΓAll is

presented in Appendix A.2.

3.1 Examples: robust SSD for inference on a log-hazard ratio

Suppose we want to design a trial for inference on a log-hazard ratio, θ, using the statistic

Yn = 4Ln/n, where Ln is the standard log-rank statistic and n the total number of events

(deaths) that will be observed in the trial. It is assumed that Yn is approximatively normal

with parameters (θ, σ2/n), with σ2 = 4 (see Spiegelhalter et al., 2004, Section 2.4.2, for

details). We revisit an example from Spiegelhalter et al. (2004, Examples 2.6 and 6.2) in

which a balanced trial is designed to have 80% of classical power to detect a log-hazard

ratio θD = 0.56, equivalent to a raise of 5-year survival from 20% to 40% in favor of the

new treatment. The Authors consider a design prior, centered on the guessed value θD and

with 0.05 probability that θ is less than zero (old treatment better than new treatment).

This results in a design-prior sample size nD = 34.5 and, overall, in a design density which

represents optimism towards the new treatment. The prior is then employed to average the

classical power curve and to obtain an hybrid classical-Bayes power to be compared with the

standard procedure. This is equivalent to using a noninformative analysis prior for θ.

We here extend Spiegelhalter et al.’s example with the introduction of a base analysis

prior π0 and with the robust analysis illustrated in previous sections. Specifically, as base

analysis prior π0, we start considering a normal density centered on θ0 = 0, expressing

equivalence between old and new treatment, and variance such that the probability that θ is

greater than θD is equal to a chosen value α. This choice yields an analysis prior sample size

n0 equal to (2z1−α/θD)2. Note that, the smaller the values of α and of |θD|, the more sceptical

the resulting base prior. Of course an equivalent way to define a sceptical base prior is to fix
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θD and then set θ0 to a value close to 0 and smaller than θD. For instance if the guessed value

is θD = 0.56, we can choose α = 0.2, so that, on the one hand we assign low chance to the

values of the parameter greater than θD, and on the other we are still allowing for a relatively

high uncertainty, corresponding to a low value of the prior sample size, namely n0 = 9. The

analysis base prior is therefore less informative than the design prior. In addition, we assume

a minimal clinically significant difference δ = 0.1, corresponding to a raise in the survival

rate from 20% to 23.3%.

The contour plot in Figure 1 represents the lower bound of er
n for ΓAll as the sample

size n and the contamination parameter ε vary. We notice that, even for low levels of

contamination, the sample size required to reach η = 0.8 (n∗e,r = 124, for ε = 0.1), is

substantially larger than the standard optimal sample size (n∗e = 56). Nevertheless, if we

are willing to slightly reduce η, for example to values around 0.7, we are able to achieve

significantly smaller sample sizes (n∗e,r ∼ 60) even for a moderate amount of contamination

(ε ∼ 0.2). The optimal sample sizes listed above are clearly unreasonable in many practical

n
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Figure 1: Contour plot of er
n for ΓAll as the sample size n and the contamination parameter ε vary,

assuming: σ2 = 4, θ0 = 0, n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1.

situations. This is a consequence of the content itself of the contamination class which

contains many undesirable distributions such as point masses that are far way from the base
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prior π0.

As already discussed in Section 2.3, a plausible alternative contamination class is ΓUS.

In Table 1 we summarize the standard and robust optimal sample sizes computed for both

classes ΓAll and ΓUS, and for different levels of contamination. Focusing on the rows related

to ΓUS the overall impression is that the optimal sample sizes we obtain are extremely stable

with respect to the contamination level, when compared to what happens under the class

ΓAll. The same conclusions can be drawn by looking at Figure 2. In fact, as shown in the

right panel of this graph, the distance between the two extrema related to ΓUS is actually

negligible even for values of ε approaching 1. In order to observe a wider distance, we
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Figure 2: er
n (first row) and pr

n (second row) for ΓAll (solid line) and ΓUS (dashed line) as the sample size

n (first column, with ε = 0.2) and the contamination parameter ε (second column, with n = n∗e = n∗p = 56)

vary, assuming: σ2 = 4, θ0 = 0, n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1. The horizontal reference line is set

to η = 0.8.

can force the two priors π0 and πD to express radically opposite beliefs. For example, we

might center the analysis base prior on θ0 = −1.6, expressing a very pessimistic opinion

on the experimental treatment and, conversely, the enthusiastic design prior on θD = 1.6,
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corresponding to a hazard ratio equals to 5 in favor of the new treatment. In this extreme

situation depicted in Figure 3, the predictive expectation criterion based on er
n leads to more

cautious conclusions than the standard criterion en.

Expectation Probability

Class ε θ0 = 0 θ0 = 0.29 θ0 = 0 θ0 = 0.29

0.1 124 100 162 128

All 0.2 236 209 359 329

0.3 366 338 520 499

0.1 56 40 56 36

US 0.2 57 40 57 37

0.3 57 41 57 38

Standard 0.0 56 39 56 36

Table 1: Optimal sample sizes n∗e,r and n∗p,r for ΓAll and ΓUS and 3 different levels of contamination

(ε ∈ {0.1, 0.2, 0.3}), assuming: σ2 = 4, n0 = 9, θD = 0.56, nD = 34.5, δ = 0.1, η = 0.8, γ = 0.6 and two

different base analysis priors π0, namely a sceptical one (θ0 = 0) and a enthusiastic one (θ0 = 0.29). The

line labelled Standard contains the non–robust optimal sample sizes n∗e and n∗p (associated to ε ≡ 0).

Moving to the predictive probability criterion, the right side of Table 1 summarizes our

findings. As for ΓUS, we reach similar conclusions to those just obtained for the expectation

criterion, whereas the optimal sample sizes induced by ΓAll are even larger than before

because of the higher sensitivity of this criterion to the presence of extreme distributions

in the contamination class. All these results are strongly influenced by the value of the

parameter γ. In our case the chosen γ = 0.6 leads to optimal sample sizes comparable to

those selected by the er
n. Of course increasing γ would result in larger and larger values of

the optimal sample size.

As mentioned above, once we fix the design mean θD to 0.56, shifting the mean of the

base prior from θ0 = 0 to an intermediate value between 0 and 0.56, for example to θ0 = 0.29,

results in a more optimistic opinion about the experimental treatment. Consequently the

optimal sample sizes associated to θ = 0.29 in Table 1 are uniformly smaller than those

obtained using the sceptical base prior. It is quite interesting to notice that in the extreme

case in which the analysis and the design priors are coincident we observe that en, pn and

their robust versions tend to be flat for large enough values of n (see Figure 4). This can

be explained by the impossibility of keeping the same interpretation for the design prior: in

this setting, the reference value θD does not express optimism anymore with respect to the
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Figure 3: er
n for ΓUS as n varies, assuming: ε = 0.2, σ2 = 4, θ0 = −1.6, n0 = 9, θD = 1.6, nD = 9,

δ = 0.1. The horizontal reference line is set to η = 0.8, whereas the dotted line corresponds to the standard

(non–robust) criterion en.

beliefs represented by the base analysis prior.

Finally we focus on Figure 5, where we compare the proposed robust power curves with

their Bayesian and classical counterparts. As in Spiegelhalter et al. (2004), choosing an

enthusiastic prior (θ0 = 0.56), the Bayesian power curve is substantially higher than the

classical one because, in their terms, the prior gives a “head start”. On the contrary, the

effect of contamination with ΓAll on the robust power curve gives rise to lower power as the

contamination level ε increases. As an example, choosing ε = 0.2 results in a robust power

curve significatively lower than the classical one (see Figure 5).

4 Discussion

The use of robust techniques in a Bayesian framework allows to address the critical dependence

of the inferential conclusions on the specification of a prior distribution. The present paper

deals with this problem in the pre-experimental context, when the size of a trial has to be

selected. The main message of the paper is that, in the presence of uncertainty in prior

specification, the sample size should be adequately larger than it is in the presence of more

refined knowledge. The goal is avoiding sample sizes smaller than necessary, that would

imply a low predictive probability of success for the trial.

We have given a robust Bayesian look at the sample size determination problem in clinical

trials and proposed some criteria which extend the more traditional approaches based on

the power of a test. In order to take into account uncertainty on the base prior, we have
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Figure 4: er
n (left) and pr

n (right) for ΓAll (solid line) and ΓUS (dashed line), assuming: ε = 0.2,

σ2 = 4, θ0 = 0.56, n0 = 34.5, θD = 0.56, nD = 34.5, δ = 0.1

replaced it with an entire class of priors and considered the resulting robust sample sizes. In

the context of normal models, we have showed examples in which sample sizes selected using

the base prior are very close to robust sample sizes, obtained using the class of symmetric and

unimodal distribution. We have also seen that relevant discrepancies between single-prior

and robust sample sizes are obtained only in the presence of a dramatic difference between

design and analysis priors. The robustness of the standard Bayesian procedure observed

in the examples of Section 3 is interesting whenever the class ΓUS is a fairly reasonable

representation of prior beliefs on θ. Basically, we now know that using sample sizes based

on a normal base prior are still adequate under contamination, as long as the contaminating

priors respect the constraints of symmetry and unimodality.

We have also shown that, in the same examples and even for modest contamination

levels, using ΓAll implies samples sizes in general quite larger than those found with the

base prior π0. One can object that the class ΓAll is “too big”, containing unreasonable prior

distributions for the parameter. But we have used this class as a “worst case”: at chosen

ε levels, robust sample sizes selected using ΓAll automatically satisfy SSD criteria for any

other contamination class. Of course, one can consider refinements of this class and select

sample sizes appropriate to the available prior knowledge. One possibility is the class of

unimodal distribution (Sivaganesan and Berger, 1989). Preliminary numerical studies in the

context of the examples of Section 3 shows robust sample sizes obtained with this class are

close to those found using ΓUS. We will elaborate more on this in future research, as well as

considering other classes of prior distributions. We also hope to discuss on sensitivity to the

model (deviation from normality) and applications of the proposed robust criteria to other
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Figure 5: Power functions: classical (solid line), Bayesian (dotted line), and robust for ΓAll with

ε = 0.05 (dashed line) and ε = 0.2 (dashed-dotted line), assuming respectively an enthusiastic

prior, centered on θ0 = 0.56 (top) and a sceptical prior, centered on θ0 = 0 (bottom).

parametric models (binary end-points).

We have discussed the necessity of a suitable trade-off between the level of contamination

and the class Q, on the one hand, and the chosen thresholds δ, η and γ, on the other. The

idea is simply that, in fixing the goals of an experiment, one should take into account the

degree of uncertainty on the prior, represented by the class Q and by ε: a large degree of

uncertainty on the prior implies in general unrealistic large sample sizes if the goal of the

trial are too ambitious (large δ, η and γ). The message is here that the sample size problem

is much more problematic than it is typically perceived in that it requires accurate modelling

of both goals of the trials and available uncertainty and information.
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APPENDIX

A.1. Bounds of the posterior probability of a set with symmetric-unimodal and

arbitrary contaminations.

Assume that the class of contaminating distributions is QUS. Sivaganesan and Berger (1989)

show that, for any set H,

inf
πA∈ΓUS

PπA
(H|yn) = inf

z≥0

a0 + K1(z)

a + K2(z)
and sup

πA∈ΓUS

PπA
(H|yn) = sup

z≥0

a0 + K1(z)

a + K2(z)
, (7)

where

a0 = aPπ0(H|yn), a =
1− ε

ε
mπ0(yn), (8)

mπ0(yn) and Pπ0 (H|yn) are respectively the marginal density of the data and the posterior

probability of H, both computed with the base prior π0;

K1(z) =

{
1
2z

∫ θ0+z

θ0−z
IH(θ)fn(yn; θ)dθ z > 0

IH(θ0)fn(yn; θ0) z = 0

with IH(·) denoting the indicator function of the set H; and where

K2(z) =
1

2z

∫ θ0+z

θ0−z

fn(yn; θ)dθ.

For arbitrary contaminations, Berger and Berliner (1986) show that

inf
πA∈ΓAll

PπA
(H|yn) =

a0

a + LHc

and sup
πA∈ΓAll

PπA
(H|yn) =

a0 + LH

a + LH

,

where a0 and a are given in (8), and where LH = supθ∈H fn(yn; θ).

A.2. Bounds of the posterior probability of a set for normal models.

Let

H = {θ : θ > δ}.
Under normality assumptions, the explicit expressions of a0 and a in (8) can be obtained by

noting that

mπ0(yn) = N

(
yn|µ0, σ

2

(
1

n
+

1

n0

))

and by using the expression of Pπ0(H|yn) given in (5). For unimodal-symmetric contaminations,

bounds of PπA
(H|yn) are obtained from (7) with

K2(z) =
1

2z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(θ0 − z − yn)

)]
.
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It can also be checked that for z > 0

K1(z) =





K1,a(z) θ0 < δ

K1,b(z) θ0 = δ

K1,c(z) θ0 > δ

,

where

K1,a(z) =





0 z ≤ δ − θ0

1
2z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(δ − yn)

)]
z > δ − θ0

,

K1,b(z) =
1

2z

[
Φ

(√
n

σ
(δ + z − yn)

)
− Φ

(√
n

σ
(δ − yn)

)]

and

K1,c(z) =





1
2z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(θ0 − z − yn)

)]
z ≤ θ0 − δ

1
2z

[
Φ

(√
n

σ
(θ0 + z − yn)

)
− Φ

(√
n

σ
(δ − yn)

)]
z > θ0 − δ

.

Using the class ΓAll, bounds for PπA
(H|yn) are determined noting that, under the above

normality assumptions,

LH = φ

(√
n(δ − yn)

σ

)
I(−∞,δ)(yn) +

√
n

σ
√

2π
I(δ,+∞)(yn)

and

LHc =

√
n

σ
√

2π
I(−∞,δ)(yn) + φ

(√
n(δ − yn)

σ

)
I(δ,+∞)(yn),

where φ(·) is the density function of a standard normal random variable.
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