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Abstract

Fractional diffusion equations of order v € (0,2) are examined and
solved under different types of boundary conditions. In particular, for the
fractional equation on the half-line [0, +o00) and with an elastic boundary
condition at x = 0, we are able to provide the general solution in terms of
the density of the elastic Brownian motion. This permits us, for equations
of order v = %, to write the solution as the density of the process obtained
by composing the elastic Brownian motion with the (n — 1)-times iterated
Brownian motion. Also the limiting case for n — oo is investigated and
the explicit form of the solution is expressed in terms of exponential.

Moreover, the fractional diffusion equations on the half-lines [0, +00)
and (—oo, a] with additional first order space derivatives are analyzed also
under reflecting or absorbing conditions. The solutions in this case lead to
composed process where only the driving one is affected from drift, while
the role of time is played by iterated Brownian motions.
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Brownian motions; Mittag-Leffler functions; Elastic Brownian motion.
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1 Introduction

Fractional diffusion equations represent extensions of basic equations of math-
ematical physics (i.e. the heat and wave equations) and, in some sense, they
inherit their main qualitative features, which reverberate on the form of their
solutions. This kind of equations have been intensively studied since the Eight-
ies: see, for example, Schneider and Weyss (1989), Fujita (1990, I-IT), Podlubny
(1999), Gorenflo et al. (2000).

Telegraph-type fractional equations have been studied and resolved under
different initial or boundary-value conditions by Beghin and Orsingher (2003),



Orsingher and Beghin (2004), Saxena et al. (2006), Chen et al (2007), Zhang
(2007).

The relationship between initial-value problems for fractional equations and
the distribution of processes obtained composing independent Brownian motions
(or other processes) has been introduced in Orsingher and Beghin (2004) and
subsequently extended and applied in Orsingher and Beghin (2007).

We consider here time-fractional equations on half-lines subject to different
kinds of boundary conditions. Also in this case the corresponding stochastic
processes can be constructed explicitly by means of well-known processes, as
Brownian motion or stable processes.

A particularly interesting case is the fractional diffusion equation
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for 0 < v < 2, on the half line [0, +00) subject to the elastic boundary condition
atz =0

w(0,t) + é ) =0, v <0, (1.2)

=01
where 5
u(zx,t) — lim u(e, t) — u(0,t)
0r |,_g+ =0 €
and to the initial condition
u(z,0) = d(z — xo). (1.3)

The fractional derivative appearing in (1.1) must be understood in the
Dzherbashyan-Caputo sense, as
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For v = 0 condition (1.2) corresponds to an absorbing barrier, while, for v —
oo we get a reflecting behavior at x = 0. If we consider equations on half-lines
with rather general conditions like the elastic one (1.2), we are able to obtain
explicit solutions which can be interpreted as distributions of compositions of
processes. The role of the guiding process is played by the elastic Brownian
motion which adequately represents the heat diffusion on semi-infinite bars,
when an adiabatic and reflecting behavior of the heat flow is envisaged.

The explicit law of the elastic Brownian motion was obtained by means
of probabilistic arguments in Ito and McKean (1965) while in Gallavotti and
McKean (1972) some additional information on its behavior is given.

When the time-derivative is of fractional order a more analytic approach
must be used: we write the solution of (1.1) under the conditions (1.2)-(1.3),



for 0 < v <1, in terms of the Wright function
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The kernel of (1.4) is the distribution p(x,t;z¢,0) of an elastic Brownian
motion B¢ on [0, +00) with starting point at z = zo.
Clearly
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p(z, t; 20, 0)dx (1.5)
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where B denotes the Brownian motion with absorbing barrier and E the Brow-
nian motion with reflecting barrier.

The integrals in (1.5) represent the reflecting effect of the elastic boundary
condition. It is easy to check that (1.5) for v — oo becomes the distribution of
the reflecting Brownian motion.

For v = 2% and A2 = 2372 it is well known that the solution to

can be written as
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and it has been proved in Orsingher and Beghin (2007) that it coincides with
the distribution of the n-times iterated Brownian motion

In(t) = Bi(|Ba(-| Buya(t)]--)])

(where Bj, j =1,...,n+ 1 are independent Brownian motions).
Therefore (1.4) can be interpreted as the distribution of

(1) = B (1 (D)), ¢>0

or, alternatively, in terms of free iterated Brownian motions emanating from the
sources placed at x = x¢p and x = —zg and from the continuum of sources on
the half-line (—oo, —z0) .

In light of (1.4) we can thus write that

Pr{T¢(t) € dz} (1.6)
= Pr{I,(t) € dz| B1(0) = zo} + Pr{I,(¢) € dz| B1(0) = —z¢}
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Since v < 0 the third term of (1.6) represents the contribution of negative
sources exerting their action in (xg + x,00) .

The effect of the elastic barrier is played by the sources with exponentially
decaying intensity distributed on (—oo, —x¢) and this is similar to what happens
in the case of classical Brownian motion whose role is here played by the n-times
iterated Brownian motion.

It is also interesting to note that for v = 2% and letting n — oo the solution
(1.4) to equation (1.1) with the elastic boundary condition takes the following
simple form
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which is an asymmetric function, does not integrate to one (because of the
partially absorbing nature of the elastic barrier at = 0) and does not depend
on t.

Section 3 is devoted to different types of iterated processes (or compositions
of processes) constructed by means of the elastic Brownian motion and their
mutual relationships. In particular, we are able to show that the distribution of
B$Y(BSL(t)), t > 0 (with starting point at 29 = 0) is the solution of
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for 1,772 < 0.
The Mittag-Leffler function appears also in the relationship between the
distributions of B{'(BS'(t)) and B{!(|Bs(t)|), which reads

Pr{B{!(B§(t)) € dz}

= 2%/0 Pr{B§(s) > 0} Pr{B{!(|Ba(t — s)|) € dx} ds,

for z > 0, where
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for s > 0 and 7> < 0. An analogous relationship holds also between B{'(B§'(...B&', 4 (t)...))
and B{(BS!(...|Bni1(t)]...))-

A key role for the analysis of B{'(BS!(...B%, (t)...)), t > 0 is played by the
Laplace transform
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and this shows that the absolute value of the n-times iterated Brownian motion
|I,(t)] is just a particular case of the iterated elastic Brownian motion. More-
over from (1.9) it is clear that it converges in distribution, for n — oo, to an
exponential r.v. with parameter 2 (compare with formula (3.12) of Orsingher
and Beghin (2007)).

In section 4 we analyze the fractional diffusion equation with drift u
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z,t> 0, (1.10)

for 0 < v < 2, either without any barrier or subject to the reflecting condition
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oz | o — pu(0,t) = 0. (1.11)



We also study the case where equation (1.10) is subject to an absorbing

condition
u(0,t) = 0. (1.12)

Moreover, the case of equation (1.10) on the half-line (—ooc,al, for a > 0,
and reflecting or absorbing conditions at point x = a is examined.

The solution to (1.10) without restricting barriers coincides with the distri-
bution of a process of the form

T)(t) = B ([T ()),  t>0,

where B*/* is a Brownian motion with drift 1/ independent from the process
75, which is not affected by the drift.

2 Fractional diffusion equations subject to elas-
tic boundaries: general results

In this section we consider the time-fractional diffusion equation (1.1) on the
half line [0, +00) subject to the elastic boundary condition (1.2) and the initial
condition (1.3). It is well-known (see Weyss (1986), Fujita (1990), Orsingher
and Beghin (2007)) that the solutions u, (x,) to this kind of equations are non-
negative for 0 < v < 2 and can be interpreted as probability distributions since
fj;: uy(z,t)dr = 1.

Moreover their explicit form is given as
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For the case 0 < v < 1 we have the following general result where the
solutions are expressed in terms of the transition density of the elastic Brownian
motion B¢ (t),t > 0 running on the half-line (0, +-00) , which reads, for x, zg > 0,
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Theorem 2.1
The solution to the Cauchy problem

g:ﬁ‘ :)\2%, z,t>0
u(0,2) + 7%‘ -0 <0 (2.3)
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u(x,0) = §(x — o)



for 0 < v <1, is given by
ug! (2, t; 70, 0) (2.4)
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and we, (y,t) is the solution to

82’;u _ )\2&121, ( )

ot 7 Oy yER, t>0. 2.6
u(y,0) = d(y)

Proof The general solution to (2.3) can be obtained by means of the method

of separation of variables, i.e. by assuming that u(x,t) = y(x)s(t). This leads

to the ordinary differential equations
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By resolving (2.7) and taking into account the linearity of (1.1) we have the
general solution of (2.3) in the form
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is the Mittag-LefHler function. For the linear ordinary fractional equations and
their solutions consult Podlubny (1999), Ch. V.
The elastic boundary condition (1.2) implies that
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The initial condition (1.3) is satisfied if
1 .
A(B) = 5 e iB=o (2.10)

and thus we obtain the following solution to problem (2.3) as
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By taking into account the representation of the Mittag-Leffler function as
contour integral on the Hankel path Ha, the first term in the r.h.s. of (2.12)
becomes
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In the last step we have applied the following representation of the Wright
function as contour integral on Ha (see Podlubny (1999), p.37)
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permits us to develop the integral with respect to w in (2.13) as
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By inserting (2.15) into (2.13) we can rewrite it as
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where, in the last step we have integrated by parts with respect to v.
We now focus our attention on the second integral in (2.12) and by perform-
ing similar steps we have that
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In order to complete the calculations we need to evaluate also the first inte-
gral in (2.11) as follows
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By collecting together (2.16), (2.17) and (2.18) we finally have that the
solution reads
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The last step can be explained by considering formula (2.1) and (2.2). O

The previous result shows that the solution to (2.3) can be interpreted as
the distribution of the process defined as

V() = B[ W2 (®)), >0,
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where the time argument is represented by the absolute value of a stochastic
process Vs, which is independent from B¢ and whose density coincides with
the folded solution of (2.6).

Remark 2.1

The kernel p®(z,t;xzo,0) represents the transition density of a Brownian
motion starting from = zy > 0 and running on the half-line [0, c0) when an
elastic barrier at * = 0 is assumed. This means that each time the particle
visits the barrier it can either be absorbed or reflected and in the last case it
continues its motion. The reflection behavior of B¢ can be expressed by means
of the survival random variable T with distribution

Pr{T >¢tB}=e"Y <0 (2.20)

where

1
L(0,t) = liH(l) . meas {s <t:|B(s)| < ¢}
€e— €

is the local time in zero up to time ¢ and B; the o-field of events generated by
the Brownian motion B at time t.

The third term of the kernel p¢ (z,; 29,0) in (2.2) has a fine representation
in terms of the first passage time T, of a standard Brownian motion through a
level a. This can be shown by taking the Laplace transform, as follows:
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From the above expressions we can also write that
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In the above calculations we have applied the well-known fact that the joint

+
density of the local time L(0,t) and the reflecting Brownian motion B(t) has
the form

+ 2(utv) ,— (etw)?
Pr {L(O,t) € dv, B(t) € du} _ ] Vmme ® dudv wv>0
0 otherwise

By comparing (2.21) and (2.22) we can conclude that the integral in p® (z, ¢; zg, 0)
can be interpreted as the probability that a reflecting Brownian motion is in =
at time ¢ after its first visit of the barrier and before its extinction.
A derivation of the transition function by means of probabilistic arguments
is presented in Ito and McKean (1965), p.46, and also in Ito and McKean (1963).
An interpretation of the elastic Brownian motion as a process with a time change
is hinted at in Gallavotti and McKean (1972).
The density in (2.2) can also be rewritten in the form
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In (2.2) the elastic transition is decomposed into the sum of the absorbing
component plus the part depending on the effect of the elastic barrier. In (2.23)
we decompose the transition function of the elastic Brownian motion into two
components, the first being that pertaining to the reflecting part. It should be
pointed out that v must be a negative constant and thus the last term in (2.23)
contributes negatively to the sum.

Formula (2.23) confirms that v must be a negative constant and is the pa-
rameter of the exponential distribution (2.20) of the survival time T.

We can evaluate the survival probability by integrating the kernel of (2.2)
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We also remark that, for v — oo, the survival probability (2.24) becomes
el
lim_ Pr {B(t) > 0}
zo w? 00 w?
Vioe 2

e 2z
—dw + 2/ dw =1,

-2 V2m o ous
since, as it is evident from (2.2),

H(x,t;20,0) coincides in the limit with the
transition function of the reflecting Brownian motion. Furthermore, for v — 0
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the probability (2.24) tends to the survival probability of an absorbing Brownian
motion, as a straightforward application of the inequalities

22

<1 1>eé</°oew22d < e 7
B — w
x 23) Vor T ), Vor T aorw

22

shows.

Remark 2.2

Let us the consider the simplest case where the starting point is in the origin
(zo = 0): from (2.2) it is evident that, in this case, the distribution of B¢ (t)
reads

2
ve Tty

—d

x V 27Tt3
If we denote by T, = inf(¢t : B(t) = a) the first passage time of the level a,
we can derive the distribution of the elastic Brownian motion at T, as follows

Y

p°(x,£;0,0) = 27~ v, v <0. (2.25)

PT{Bel(Ta) € d.'L'}
= E{Pr{BUT,) € dz|T.}}

oo 2 _a?

_z +oo v e~ 2t qge 2t
= dx2e 7 ve dv —_—
T

—dt
o V2rtd V2ort3
2e5 [t +oo
= dz 7/ ve?dv/ yef%(”%r“z)dy
T 0

2

~+o0 z
o 9 _z vev
= dx2%e ~ /m mdv

Remark 2.3
We show now that, in view of 2.24),

2 2

2 /we%d +2 ‘TH%/M <y
T — 2 w + 2ye B w
z V2T (@o—1) L us

= x9— 2y /:0 o(w)dw + v Pr (Bel(t) >0) — 'y/ﬁ o(w)dw

Q

EB°(t)

SE

o
= z9—yPr(B(t)=0). (2.26)

and thus the mean position of an elastic Brownian motion lies somewhere to
the right of the starting position zg.
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Formula (2.26) can be evaluated by observing that
2
+oo otag 400 ve~ 2t+”
2/ e 7 dz
z+zo V 27Tt3
+oo zz +2 ] -
= xe 7 vdx
V 27Tt3
2t +E v x v
= 2 vc;/ﬁv [—7(1} —xp)e +’y2(e_% - 6_7)] dv
xo ™
“+o0 _v? e3¢} _v2
e 2t ve 2t
= —27/ v(v — x 7dv—272/ dv +
X0 ( ) V 27Tt3 o V 27Tt3
I
+2+%e”

o0

zo ve

gl
x0 V27Tt3

P

|
= o

+oo _ w2 _Zo

2 /+ € 2 aw-228
_ LI
7 zo  V2mt 7 V21t

i m/oo(v 1+1)et+5d
e —— =4 = | —=dv
" w0 \t Y v/ V2t

v
M

il _To o —rqn
_ _2’7 2t 2’72 2t n 27 6 2t n 2767«170 / e t oy dv
%o \/ 2t V2t Zo 27t

A change of variable then yields (2.26) once the remaining two integrals

of EB®(t) are evaluated. the second line of (2.26) is obtained by taking into
account (2.24).

For large values of ¢ we can apply the approximation

[ O
dw ~e 2 —— 1

and thus
lim EB®(t) = zo — .

t—o0

By means of result (2.26) we can also evaluate the mean value of the process

Wel(t) = BY(|Wq,(t)|) related to our Cauchy problem (2.3) as follows
EW(t)
1 +oo Y e 2(2/\y)
P W—V,l y( 1/){
At At V2m( 2/\y
w [TCe R
+2ve
V2m( 2/\y
’7 _Zo
= x9— —/ uy (v, t)dv + —e™ evuy, (v, t)d
A /\10 A Aa}o
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where, in the last step we have applied Theorem 2.1 of Orsingher and Beghin
(2007).

Remark 2.4

We can easily give an analytic solution to problem (2.3), which is valid for
any v € (0,2), but looses the transparent probabilistic interpretation of (2.4).
We write (2.11) in the more convenient form

ul! (x, t; o, 0) (2.27)
+oo
_ i E,, 1(7>\262ty) 62',3(179:0) + efiﬁ(x+zo) . 2 efiﬁ(x+a:0) dﬂ
21 J_ ' 1—1ifBy

B 1 |z — 20| 1 |z 4+ 20|
- INtV/2 W_%vl_% <_ A\tv/2 > + INtV/2 W_%vl_% <_ A\tv/2 +

+o0 00
—2/ dy/ e—y(l—iﬁ’Y)—iﬁ(r-‘rmu)Eu 1(_)\2ﬁ2tu)dﬁ
0 —00

B 1 |x — x| |z + o]
= e W-s1-3 (— 2 ) tWosi-y (— oz )t

Ha | + 20 — ¥yl
—2A e wag’lfg <_)\ty/2> dy}

The last formula shows that the solution u¢ can be expressed by suitably
combining the Wright function representing the solution w, of the fractional
equation in (—o0, 400). This is analogous to what happens for the heat equation
(i.e. for v = 1) where the solution (2.23) to the elastic Cauchy problem is
obtained by combining in a similar way the Gaussian transition function of the
free Brownian motion.

It is easy to see that in the absorbing case (v = 0) we get from (2.27) the
solution under the boundary condition u|,_,+ = 0, that is

B 1 |z — @0l |z + @0
Uy (2,t;20,0) = W{Wf%,k% (‘ \tv/2 ) Wiy <_ \tv/2 }-

On the other hand, for v — oo, the third term in the last member of (2.27)
converges to zero and we get the solution under the action of the reflecting
barrier:

+ _ 1 |z — @o| |z + ol
Uu(xat,fo,o) = W{W—%vl_% ( Atu/Q > +W_%71_% < Atu/2 }

3 Iterated elastic Brownian motions

We examine now in detail the particular case where v = 2% and \? = 2ﬁ_2,
which leads to a first form of iterated elastic Brownian motion, where the driv-
ing process is an elastic Brownian motion composed with the classical iterated

Brownian motion.

16



Theorem 3.1
The solution to the Cauchy problem

6ﬁu L _20%u
atilﬁ :22” 922 $7t>0
u(0,) + 82|,y =0 7 <0 (3:1)
u(z,0) = é(z — )
is given by
o0 .
uei (l‘,t;.’lﬁo,O) = / a 1 T (y?t)pd(xa 22Ty7$070)dy, (32)
S 0 Fre
where

2
Fn—1

+o00o +o0 e 221 ——53
u ——dzy...dzp_1. 3.3
uz / / 27T21 V2t 1 Fn—l ( )
Proof

We specify the result of Theorem 2.1 to the case where v = 7 and \2 =

2272 a5 follows:

U‘Zé (l’vt; Zo, O)

1 oo
= W_a i

Y e N
g —1lggw - (_ 1 )p l(x722 'y;xo,O)dy,

i 1, 1
2 237 ~itam

which coincides with (3.2). The expression of the solution (3.3) can be obtained
by means of formula (1.9) of Orsingher and Beghin (2007). O

We point out that (3.3) coincides with the distribution of the absolute value
of I,,_1(t), which is defined as the (n — 1)-iterated Brownian motion

In_1(t) = Bi(|Ba(..| Bu(¥)]..)]) t> 0.

Therefore we can interpret the solution as the transition density of the fol-

lowing process
Uil(t) = B (Haa (1)), t>0.

Remark 3.1
If we now take the limit, for n — oo, of (3.2) and apply the following result
lim @ — i L _w Y 3.4
) = Ve (gae) G

t
2W071 ( ) = 26_2y

17



so that we get

nll)rr;ou 1 (x,t;20,0) (3.5)
+oo . L
= lim u_v (y,)p" (2,277 y; 20, 0)dy
0
r—x 2 r kil 2 v v
/+Oc | R ( ){67(‘ o) ei( +2y0) (oo too 7% +2
= im u_a y7t - +2e v
0 n—oo 2n—1 \/ﬁ \/ﬁ . \/T
i o+a0)? w2 v
2/+OO 72y{ - 0) e_( e 4o _@iag) [T peTwm TS v
= _ o dv}dy
0 V2my V2my otz \/T

2¢2lz—zo|  9p—2|z+zol

- > 2

+oo o] —
lz+=zq] v ve 2v
+4e” A / e dv/ e~ dy
z+x0 0 \/ 27Ty3

+oo
= e 2lemmol _ g=2lwtwol 4 gom o / e (2 gy
r+x0
_ 6—2\1—x0| _ e—2|w+w0| + 4776—2(1+w0)
2y —1

27—1

for x, 29 > .
Alternatively we can take the limit of (2.27), getting the same result:

lim u® 1 (x,t;20,0)

n—oo

= Woi(=2|z —x0|) + Wo1 (—2|z + z0]) +

—+oo
2 / eI Wo1 (~2]a + 20 — yy) dy
0

+oo
_ o 2e—wol 4 o~2z+z0) _ 9o (e+z0) / v+ gy
0
e_(z+x0)
1—2v

—Q\T zo| + 21T 27 +1 —2(:6-1—7"0)
2y — 1

e 2lz—o] + e~ 2(ztm0) _ 9

The most striking fact about (3.5) is that the limiting distribution does not
depend on t.

18
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The results obtained so far suggest us to introduce and examine new com-
positions of processes such as B¢ (| Bo(t)]), BSH(|BS'(t)|) and By (| BS'(t)|), which
are similar to the iterated Brownian motion. These processes represent general-
izations in different directions of the iterated Brownian motion. Many properties
of I1(t) = B1(|B2(t)]) have been analyzed by Burdzy (1994) (the fourth-order
variation), by Burdzy and San Martin (1995) (the law of the iterated logarithm),
by Khoshnevisian and Lewis (1996) (the modulus of continuity) and by Allouba
and Zheng (2001). Applications of the iterated Brownian motion can be found
in De Blassie (2004).

The iterated processes of different forms emerging here can be imagined as
limits of compositions of independent random walks. In the simplest case a
random walk with a reflecting barrier on the y axis represents the time with
upward and downward steps of length As (“upward” means that time moves
from the past to the future and viceversa for “downward”). At each instant
we can consider a random walk on a line parallel to the x axes, that, every As
units of time, moves rightward or backwards. Thus the particle occupies the
position z if a sufficient time elapse has passed and we must sum up (integrate)
on all the random walks passing through x. In the limit this construction leads
to the iterated Brownian motion. Moreover, if at * = 0 some form of barrier
is considered, we have reflecting, absorbing or elastic random walks composed
with the random walk representing the time evolution.

The section below is devoted to the analysis of these processes (and their
extensions) and to the related boundary-value problems for the fractional diffu-
sion equation. For the sake of simplicity we consider elastic Brownian motions
starting at x = 0.

Theorem 3.2
The distribution of the process

B (|B:(t)]),  t>0,
given by
Pr { B{Y(|Bs(t))) € dz} (3.6)

v s2

2
+oo +oo . —5s+ -
ve 2z e 2t
= d$22€7%/ ds —
0

——dv,
z V2orsd /2xt

coincides with the solution u§ (x,;0,0) of the Cauchy problem

1
2

1 2
w(0,t) + v 3u{(j&;7t) L= 0 v <O0. (3.7)
=0
u(z,0) = §(x)

Proof Instead of the reasoning used in Theorem 2.1, we resort here to the
Laplace transform

+oo
L(z,n) = /0 e Mz, t)dt, (3.8)
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which converts problem (3.7) into

2
7%5(1‘) + \/ﬁL(ﬂj, 77) = 231/2 27«%
OL(x,n) _ (39)
L(0,n) + Toz o+ 0
The solution to equation (3.9), for = > 0, is clearly equal to
L(z,n) = Ae®V2V21 4 Bem oV 2V (3.10)

and, in view of the boundedness of the solution we must assume that A = 0.
From (3.9), by integrating in the interval [0,¢), we have that

il |
- O(x)dr + L(x,n)dx 3.11
Ji Jo (z) Vi | (z,m) (3.11)
1 [°0°L(z,n)
= wr), e V
— L —e\/2v/2n aL(xaT])
= 5 [— 2v/2nBe i ol

By taking into account that L is a bounded function, from (3.11) we get that

23/2
B-i—v( - B 2\/277> =0
Vv
and thus
23/27 1 22

B:

- - v _ 1)
Vi 1—vy V2 (\/2\/277 7)

Therefore the solution to problem (3.9) is given by
2267:1:\/2\/%

V2 (vV2vE - 1)

and this coincides with the Laplace transform of (3.6). O

L(»’Cﬂ?) =

(3.12)

Remark 3.2
We show now that the distribution of B{!(|By(t)|) can be expressed by means
of the law of the iterated Brownian motion I(t). For the particular case where

20



xo = 0 we get from (2.25), for x > 0,

Pr{B{!(|By(t)|) € dx} (3.13)

+o00 Sy 2 U
25 2t o
= 2%7% {/ - € T es ds +
0 2mws /27t
V=T
1 [Te° +oo engr% e‘%
+— dv/ ds
’Y/l 0 V2ms 2wt '

- 22/+Oo eE e ds +
0 V2mws \/ 27t
22e7% /+°° 2y /+°° e Ty e m p
+ e av S
Y z 0 V2ms 2wt

—_z

2e

= 2Pr{I(t) €edz}+

too
/ ex Pr{I(t) € dv}
too
_ 2Pr{](t)edx}+%/0 e Pr{l(t) € d(z + )}
= Pr{|I(t)| 6dx}+1/+ooeg Pr{|I(t)| € d(z +y)}
= 5 ), Y

Since v is a negative constant the previous relationship shows that the dis-
tribution of B (|B(t)|) can be obtained from that of I(t) by an appropriate
correction (due to the partially absorbing effect of each visit of the barrier).

The same result could be also derived by considering that the process B¢ (| B(t)|)
is a particular case of U¢(t) = B§!(|I,,_1(t)|) for n =1 (i.e. for v = 1/2), with
the additional assumption that zo = 0. Therefore by specializing (3.2) we get

ue%l(x,t;0,0) (3.14)

2

- 2/%06 =z, 23;0,0)d
- 0 \/ﬁp 9 y? 9 y

and, by inserting (2.25) we obtain again (3.13).

We consider now the process obtained by composing two independent elastic
Brownian motions B¢! and BS' starting from the origin, as

BI(BS(1),  t>0.

In this case the role of time is played by an elastic Brownian motion and its
related clock can be stopped during the visits of the origin. Once the clock is
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stopped the driving process is forced to be captured by the elastic trap because
it behaves like B{!(0) for the remaining time elapse.

In the following result we prove that its density satisfies a Cauchy problem
identical to (3.7), but with an additional term in the boundary condition.

Theorem 3.3
The transition density of the process B{(BS!(t)), t > 0, given by
Pr{B{(Bs\(t)) € dx} (3.15)
+o00 +oo —v2 +o0 —%%—l
_ v e 2s _ s we 72
= 2dze m / vet dv 2e 7z ————dw | ds
z 0o V2msd s V2mt3
solves the following Cauchy problem
03 =1 %% z,t >0
8t% 23/2 §x2> )
w(O8) +m PHEL| L+ =0 (8.16)
u(z,0) = d(z)
where y
2’}/1 t
ft)=—EFE: (), V1,772 < 0. 3.17
0 ="2E (S5 (3.17)
Proof We start by taking the Laplace transform of (3.15) with respect to ¢:
+oo
/ e~ Pr {B{'(Bs\(t)) € dz} dt (3.18)
0
1/2 2

T +oo v +oo e 2s
2dxe 1 / ve" dv
xT

0 V2mrs3

2
too 5%

0 V2ms3

s +oo +oo e%i%
267ﬁ/ e M dt dw | ds
0 s

wi
V23

) . +oo » s +oo w 2
_ o _ s w /2
= 2%dxe 71/ vet dv e 7 ds/ e dw
x S

224 _m/m s [T 1,
— Tre e qu v S
z 0 V2mwsd /2 —,%2

“+o0
22dl‘€7%/ 6%71 1 e VA2,
T \/277*»72
22dx e~ V2V
om L [ 5 1
2 Y2 2y/2 7

We now pass to the Laplace transform of (3.16) which leads to

2
— 5 0(@) + AL(2,0) = 5572 5%
OL(x +oo _
L(0,n) +m 7L§$”7)L=0+ + Jo e f(t)dt =0

(3.19)
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The solution to the above equation, in view of its boundedness, takes the
following form

L(z,n) = Be™®V2V21

and the constant B can be determined by integrating the first equation in (3.19)
on [0,e] and then letting € — 0:

S [ By\/2v/2n } (3.20)
By inserting (3.20) into (3.19) we get that
¢
B = F T f e ()
24/21 — =+ o
Thus the solution to problem (3.16) becomes
L(z,n) (3.21)

22 1 +oo . e ¥ 2v2n
= — + 7/ 6_77 f t dt> .
(\/% 7 Jo () 220 — L

71

We need now to determine the explicit expression for f(t), such that (3.21)
and (3.18) coincide; after some manipulation we obtain that

/m eMf(t)dt = 2n !
g 2 VI - L)

2’}/1 1
Y2 n— \//7]\/5,\/2

It can be checked that

teo t 1 1
/ e”tEl <\[>dt— —, forn>_-—=
0 V272 ﬁ—\/ﬁm 273

and then (3.17) follows (for Laplace transforms of Mittag-Leffler functions see
Podlubny (1999), p.21, formula (1.80)). O

In the following theorem we obtain a connection between the two processes
Bf!(Bs'(t)) and B! (Bx(t)).

Theorem 3.4
For the iterated elastic Brownian motion the following relationship holds

Pr{B{(Bs\(t)) € dx} (3.22)

- 212/ Pr{BS'(s) > 0} Pr{B{(|Ba(t — s)|) € da} ds,
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for z,t > 0 and ~ < 0.
Proof The Laplace transform (3.18) can be rearranged as

/m e " Pr{B{!(B§(t)) € dz} dt (3.23)

2n 22dze=*V2V21
van .
V2= v (Vaven - L)

The second term in the right hand side of (3.23) corresponds to the Laplace
transform (3.12) of B{!(|B2(t)|). In order to determine the inverse Laplace
transform of the additional term we write

L - ()
- = —_ (3.24)
1_72\/ﬂ k=0 72v/21

— /+Oo e—ﬂt i t%_l 1 dt
0 k=0 r (g) (72\/%)k 7

and this permits us to conclude that it coincides with

g(t) = %E%@ (712 ;) . (3.25)

The previous function can be rewritten as follows

t71°° AN
W) T

o0 +1
-y 1\/7 Trp
ot \ V2 2/7T (r)
o0 T+1 r
1 /+°° Cw 1\/? ws 12"
= — e —— dw
2y/7t Jo — \ 2 2 (r—1)!

+o00
= 721 / e_ww_%e% 2 .
272\/77' 0

By the change of variable y = /2w and by comparing (2.24) for o = 0,
formula (3.22) is then obtained. O
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Formula (3.22) shows that B§!(BS!(t)) can reach a point z if the “time” pro-
cess BS! has not been absorbed up to time s and then it behaves as B! (| Ba(t)|),
in the interval (s, t).

The mean value of the iterated elastic Brownian motion starting at zg = 0
can be obtained, by recalling (2.26), as follows

E (Bi'(Bs'(1))) (3.26)
_ [ EB{'(s)Pr{Bs\(t) € ds}
0

_ /+OOP el _ el
= N r{Bi'(s) =0} Pr{Bs'(t) € ds} .
0

From (3.26) and (2.26) we can easily check that EB{!(s) and thus E (Bf'(B§'(t)))
are non-negative: indeed we rewrite the first one follows

2
s +oo — -

EBS(s) = —ny+ 2y €
o = e [
1

= [y:w—i-\/g/’h}

2

2 /+Ooe_y2 (1 M)d >0
= —e ,
aa! . on Y

for v1 < 0 and for any s > 0.

dw

We generalize the previous results to the n-times iterated elastic Brownian
motion (with starting point at = 0) and we show that its density (consisting
of 2n + 1 integrals), given by

el el el
Pr{B{(BS'(...(B1(1))...)) € dz} (3.27)
1)2
1 = Too +oo oTEmr oy Too
= dz2"tle 71/ vie dvy —==t 7 dsl/ voe2 dvug -
z 0 \/ 2msy s1
,ﬁ ,i “72z+1
/+°O e 2s2 d too ey Vpe 2Snd +oo un+1d e "2t
. —dss... e Tntl ————(s, Upp1€ 1 dv, 11—,
0o \/27ss 0 \/2ms3 S V2rt3

satisfies similar relationships.
For n = 1 the previous expression clearly gives the one-time iterated elastic
Brownian motion studied above.
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We give now the explicit Laplace transform of the distribution (3.27):

—+oo
/O e " Pr {B{'(BS!(...(B 1 (1))...)) € da} dt (3.28)
11 @ Foo v1 +oo 67% s1 +oo v
= dz2" eif/ viet duy dslefﬁ/ v9e72 dvg -
. 0 \/27s} 51
1)2 'u2
oo 35 +oo s T too 11
e %2 ——sn_y,e Zom optl o obo L
. —dss... e M+l ————(s evntle Unt1ef Ny g
/o \/2mss 0 \2ms3 " Sn "
+1 x +oo v1 +oo e_% 51 +oo v2
= dz2" eif/ vlefdvl/ eiﬁdsl/ v9e2 dvg -
z 0 \/2ms} s1
oo o~ mg o0 gmsn2int g oo
/ ng.../ T 1 1 dsn
0o \/27ss 0 22nF— o \/2ms})
dx2”+1e_21_ﬁ’7ﬁw
= n4+1 :
1 (2 syt - 1)
If we let v1, 72, ... Yn+1 — 00 we get from (3.28) that
—+oo
lim / e " Pr {B{Y(B§!(...(BE, 1 (t))...)) € dz} dt
V1,725 V417700 J
“+o0
_ / ¢ Pr{|By(|Ba(oon(| Brsa (£)]).-2)])| € da} dt (3.29)
0

ST
dgontle—2 T o

on+1 (g)Z?Ll P=E

P R
dpe=2 matie

(3)'

If we let n — oo in (3.29) we obtain that
“+oo
lim e " Pr{|B1(|Ba(...(| Bpy1(t)])-..)])| € dx} dt

n—oo 0

2 —2x “+oo
= dx € :Qe*%dx/ e~ dt.
n 0

We thus conclude that

Jim Pr{|B1(|Ba(.-(|Br+1(t)])--) )] € da}

= 2 %%dg, x>0
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and this is in accordance with the results of Remark 3.4 of Orsingher and Beghin
(2007).

In the same spirit of Theorem 3.4 we can prove the following result.

Theorem 3.5
For the n-times iterated elastic Brownian motion the following relationship
holds, for 2 > 0,

Pr{ B! (BS(...(BE, | ())...)) € dz} (3.30)
— 1 ! r el S T el pel —g "
_ 2%%“/0 Pr{ B, (s) > 0} Pr { B (BE(...(|Buya (t — 5)])...)) € dac}.

Proof We start with the Laplace transform

—+oo
/ e " Pr {B{'(BS!(...(|Bny1(t)])...)) € da} dt
0 .
. +oo v +oo *ﬁ
= dx2"+lefq/ v1€ﬁdvl e

I
0o +/27s}
2

(3.31)

_r2 w2
_s [T Too T spo1 [T won T o=t ot
e 2 voe 2 dug Tn Upen dvuy, dt
S1 S

———dsg...e”
0 \/27T.S§ 2

P R
_ n+1 n+1 ..
ontl dge™2 2" nTie

VI (o' sy - L)

i

Jj=1

2302 — v ; A AR 1/ el l
= T"* ; e " Pr{B{(BS'(...(Bg,1(t))...)) € da} dt,

where the last step is obtained by comparing (3.31) with (3.28). The conclusion
follows from (3.31) if we note that

1
1
1-— — V2n

can be expanded as

O

We are now interested in finding the boundary-value problem which is sat-
isfied by the density (3.27) and we follow the same steps performed in Theorem
3.3.
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Theorem 3.6
The transition density of the n-times iterated elastic Brownian motion, given
in (3.27) solves the following Cauchy problem

0%y _ ok —20%
ti =237 922 x,t >0
Au(z,t) _ R 3.32
w(0,0) + 1 S| A () =0 (3.32)

u(z,0) = 6(z)

where f,,(t) is a function with Laplace transform

—+oo
/ e f(t)dt (3.33)
0
n+1 . .
= M 2n+1 H n — 22_27"7]27"_1

2 on— J+2 on— J+2 _
j=2 i vj

Proof The Laplace transform of (3.32) leads to

1 1 2
nze L(z,n) —nzw'o(x )—2**23952
L(0,m) +m Léﬁ’") ‘/__0 f e M f, (t)dt =0

(3.34)

and, by considering the boundedness of the solution, we get
1 1
2nFT panFl

-
L(z,n) = Be™? , x> 0.

By integrating the first equation in (3.34) on [0,¢] and then letting & — 0

] (3.35)
=01
we get
1 _ 1.9 1 1 11 Feo t
B+m [nW* 27737 — B2 2”“} +/ e fu(t)dt =0,
0
which gives

1 1
o2 TN [ty 4 L oot (1)t

L(z,n) = — (3.36)
nz i ol—gnrr _ L
71
By equating (3.36) to (3.28) we get
2— st s —1 1 e —nt
2°7ampaT T 4 ’7 e " fu(t)dt (3.37)
1.Jo
2n+1
= n+41 1 1
-Gz oz _ L
jl;lz (2 S %‘)
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and (3.33). O

Remark 3.3

The results of theorems 3.4 and 3.6 prove that the distribution of processes
like B{!(BS!(...)), obtained by composing independent elastic Brownian motions
are related to fractional differential equations with non-homogeneous elastic
boundary conditions. On the other hand processes of the form B{!(|I,,_1|)
emerge when an homogeneous boundary condition is considered.

For n = 1 the previous result reduces to Theorem 3.3, since the function f,
appearing in (3.33) coincides with (3.17): indeed we can rewrite it as follows

+o0 922 23/2
/ e”’tfl (t)dt =7 _ —
0

ﬂ (ﬁ B 721\/§> \/ﬁ
= 2’ {/0+°° et

1 1\ﬁ t3

—FEi | —/= |dt— ———|dt ;.

vae e (W 2) \@F(é)] }
Therefore we get

I L PR R B
fit) = 271[152(273) T (1) 72\/51“@)]

k=0
1
_ Pt )T 1
St ;(%%) I (5 +1)
_ 2717250: ot LA 1
N t = \2% I(5+1)

which coincides with f(t) given in (3.17), obtained by a different approach.
For n = 2, the Laplace transform (3.33) can be still inverted as follows

“+o0
/ e " fa(t)dt =
0

— 23’)/1 - - ; - - ; 72_122772%_1
2 27 (TIZ - 7223/4 25 (77E - ,),321/2)
1 +oo t 3 81/4 1 (t — 8)1/2

_ 3 —nt -2 —5

— 2’}/1{22%‘/0 e 77[/08 4E‘11‘11(7223/4)(t S) 2E;é< 721/2 >d8+
t
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so that we get an explicit form for f(¢) in terms of convolutions of two Mittag-

Leffler functions

E

1

t
— 93/4 % (t—5)"3
fa(t) = 29/4, /O 5 (t—s)

!

81/4 5 (t _ 8)1/2
i\ 72378 ) Taa \ T ap212 ) T (

1

4

)T (3

For an arbitrary value of n the form of f,,(¢) is much more complicated and
can be expressed as convolutions of Mittag-Leffler functions of different order.

4 Fractional diffusion equations with drift and

boundary conditions

In this section we add to the fractional diffusion equation (1.1) a term repre-
senting a drift of intensity p. The presence of drift in time-fractional diffusion
equations is the source of interesting extensions of the previous results. We thus

examine fractional equations of the form

9"u \2 u  Ou

av o2 Mox

either on the whole line, or on the half-lines [0, +0) , (—o0, a] and with different

forms of boundary conditions.

The drift makes the consideration of elastic boundary conditions extremely
hard and we restrict ourselves to the reflecting and absorbing barriers only.

L

The special case v = 55

+ +
B#/A(|In,1(t)|) and B**(|I,,_1(t)|), where B*/, B and BH/> are, respec-

tively, free, absorbing and reflecting Brownian motions, independent from the

iterated Brownian motion I,,_; and endowed with drift u/\.

In all these cases, in the limit for n — oo, we obtain asymmetric distribu-
tions composed by combinations of exponentials where the dependence from ¢

is cancelled.

We start with the case where only the initial condition is assumed and, for
the sake of simplicity, we write p(x,t) and wu,(x,t) instead of p(x,t;0,0) and

uy(z,t;0,0), when the starting point is zg = 0.

Theorem 4.1
The following initial value problem, for 0 < v < 1,

{ "u _ )\2& _Mau

ot dz? 9z, MmweER, t>0
u(z,0) = 6(x) o

is solved by

(z— B2)2
bet) = g [ W
U\, = Y —F—W_p1—v\—7)az
A Joo \/2m(2X2) ' At¥

+oo
/ p*(x, 2)ug, (2, t)dz
0
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leads to processes of the following forms: B*/*(|I,,_1(t)]),



where U, (z,t) is given in (2.5) and wug,(z,t) is the solution to (2.6). The kernel
p/*(z, z) represents the transition density of a Brownian motion B*/* with a
drift of intensity § and an infinitesimal variance equal to 2), i.e. coincides with
the solution to

{ ot A612 A Oz o GR )\ t 0 (4 3)
: 5 5 .T, 9 3 > 0. .
p(l7 ) (:l)

Proof
By applying to (4.1) the Laplace transform and taking into account that for
the Dzherbashyan-Caputo fractional derivative the following formula holds

“+o0 v
/ e,ma u(z,t) gt
0

otv
+oo m—1 ak t
= n”/ e u(w,at — 3 ik LUDD |
0 otk |,
k=0
(where m = |v| + 1), we obtain that
—+o0 —+o0 )
/ efntdt/ ePryl (z, t)dx (4.4)
0 —00
77V*l
SN =B
By inverting the Laplace transform we get
+oo
/ Pyl (x, t)dx = B,y (—(\°B% —iBu)t") (4.5)

so that the solution can be extracted by inverting the Fourier transform as
follows:

ub(z,t) (4.6)
1 e —iz 202 . v
= | B (-0~ igw) df
i — 00
1 +oo ) d z v—1
= — 671'6””—6_ ez . dz
27 J_ o 270 J g 2¥ + 7 [AN202 — i8]
— 1 z v—1 dZ oo 677;’8x dﬁ
27 Sy 21 J_o 2V Y [N252 —ify]
—+oo —+o0
— i ezzuflg / dﬂ/ e—iﬁr—y[z”+t”()\ZBz—iﬁu)]dy
27 Jga 2 J_ o 0
(z—pt¥y)?
+oo T otvaZy)
1 v 2(2tY A\2y)
= / dy— e Y*? 6zz”*167dz
0 271 J g 27 (2t¥ \2y)
(x—pt¥y)?

+o0 e 20tVAZy)
= W_y1-v(—y)dy,

0 \/27T(2t’/)\2y)

31



which gives (4.2), after the change of variable z = t¥ \y. O

Remark 4.1
The previous result shows that u#(x, t) can be interpreted as the distribution

of the process
T)(t) = B ([T (t)]), >0 (4.7)

where 75, (t) is the process whose law is obtained by folding the solution to
the fractional equation (2.6). The drift appears only in the distribution of the
driving Brownian motion B*/* and we note also that if the drift is absent we get
T2(t) = T,(t) = B(|T2,(t)|) (where B = BY), as in Theorem 2.3 of Orsingher
and Beghin (2007).

Remark 4.2

We can derive an alternative expression for the solution u#(z,t) where, with
respect to (4.2), the roles of time and space are interchanged. We prove that
the following relationship holds

22

+oo e 4t
ut(z,t) = ub(z,2)——dz, 4.8
s = [ e (45)

by evaluating the Fourier transform of the r.h.s. of (4.8)

+00 . +oo " e— 5

e'’? ub (x, z dzdx 4.9
[ [ eSS (1.9
+o0 —z2

242 - opy € 4
| Es 1 ( (A I6) zﬁu) z ) —\/ﬁ dz
= (- (232 —iBp)" /+°° S
2" eT it dz
P T(2kv + 1)Vt Jo

(= (A26% = iBp)" VI i ( 1>
L(2kv + 1)V/7t S

I
M T2 11

(= (82 =ip) )" o oo T (2h0)
2kuT (2kv) /7 2w T (kv)
_ )\2 2 _ t’/ k +oo .
o
k=0 o

Formula (4.8) suggests that the solution to (4.1) can be interpreted as the
distribution of the process

7)) =15, (IBO)), t>0, (4.10)

which is an alternative form of (4.7)
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Remark 4.3

We consider now the particular case where v = —n and \2 = 2272 (we
maintain A in the distribution of the driving process, only for typographical
reasons): by applying Theorem 4.1 together with Theorem 2.2 of Orsingher and

Beghin (2007) we can show that v, (z,t) can be written as
i

(a—52)2
too o= 2(2)\2)
u" (z,t) = L (2,t)dz (4.11)
o™ 0 ./ 2"—
T—M 2 22 1&7271
too o= 2(2)\z) too o vy too o——5
= 2" ——dw,,—1 p dz

0 v Ve vV V2w, 0 V2mt

and thus can be interpreted as the distribution of the process

T (t) = BY* ([I,_1(t)]), t>0. (4.12)

27T
In particular, for n = 1, the process (4.12) coincides with the iterated Brow-
nian motion BY /> (|B2(t)]) , where the driving process possesses drift equal to

/A

Remark 4.4
In order to study the asymptotic behavior of the solution we specialize the
Fourier transform (4.5) of wu(z,t) for v = 5% and let n — oo, so that we get
+oo
lim Pyt (x,t)dx (4.13)
n—oo [ o 27
= lim Ey 4 ( (\B% —iBu)t L”)
n—oo 27
1
= Eoi(-(\2p%—i =
0,1( ( B 'Lﬂﬂ)) 1+>\252_Zﬁ,u

By taking the inverse Fourier transform of (4.13) we obtain that

. 1 [t e
nh_}Irolou%(xJ) = 5 - 1+£+(Aﬁ—;—’;\)2d6 (4.14)
= |w=r-5)
e~ w3l
B 27r)\/oo 1+4)\2+w2dw
w

y=—F—=
V1t L=
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oo 1 67”%¢1+Z;22 d
2T A [m u? 1_|_y2 Y
1+ 4=
ez m\/ﬁ eﬁ[umf\w\\/W}
— = e xVitim =
2)\\/@ 4N2 + 2

e—ﬁg[m—u]

nx
€222

B zrerr x>0
- eﬁ[m+u]
e <0

/4/\2_;'_“2

Formula (4.14) coincides with the solution of the limiting equation

0%u ou

=N, ==

b 0x? u@a:
/2"y

obtained from (4.1), for v = %, with lim,,—,cc 5,77z = u, as should be.
We recognize in (4.14) an asymmetric exponential random variable X (in-
dependent from ¢) and we evaluate below its moments. By denoting A =

VAN hd B = VAN R

2 2 we obtain the mean value as follows
1 r pt+oo 0
EX = —— / re " dx + / a:ezde}
RV 4/\2 + MQ LJO —o0

B R
= ﬁA2+M2 _A2 B2

2 2
_ 1 2\ B 2\
VAN + 2 |\ AN2 2 — VAN + 2 4

r 2 2
92 \4 (\/4>\2+u2+,u) <\/4)\2+u2—u)
VAN 12 (422)? - (422)?

22pn/AN? +
22,/4X0% + 2

Analogously, for the second moment we get

1 “+00 0
EX2 = \/ﬁ / I2€_mAd{L‘ + / $2€de$:|
+ s LJo —o0

1 +oo —+oo
= — / r?e A dx +/ xzedex}
VAN + 12 Lo 0

B 2 (1 1]

VANZ + 2 | 43 M
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3 3
B 2 2)2 N 2)2
/4)‘2+/’L2 4)‘2+/’[’2_M /4)‘2+M2+M

3 3
946 (\/4)\2+u2+u> (\/4)\24—;12—#)
+
VAN £ 2 (4x2)? (422)*

1
= [2(/4N2 4+ p2)% 4+ 3 20 /4N2 + pi2
5 /74)\2—1—”2[( I [ u}

1
= 5 [4X% + p® + 3p°] = 2(\% + ).

The variance of the asymmetric exponential random variable is therefore
equal to VarX = 2\? + 2. We can arrive at the same conclusion by taking the
derivatives of the function (4.13) for 8 = 0.

We consider now the time-fractional diffusion equation with drift u, subject
to reflecting boundary conditions. We will study two different formulations of
this problem: in the first one we impose the following condition

ou
uw(0,t) = N2 =— , 4.15
pu0,0) = N5t (415)
which reveals the presence of a reflecting barrier in the origin.

Moreover we assume that our motion starts now from a point xy > 0, so

that we modify the initial condition as follows

u(z,0) = d(z — xo), xg > 0. (4.16)

Theorem 4.2
The solution to the following Cauchy problem, for 0 < v < 1,

u __ )\2& _ ,,0u
ot — N oz2 _ Mag
pu(0,t) = A28%| _ L, T, uER, tizg>0 (4.17)
u(z,0) = d(z — x9)
coincides with
+H
uu(x7t;x070) (418)
(z—zg— K 2)2 (ztazg— K 2)?

1 +oo e T 2 Cwgu e 2(2AE)

Y e

1Y Gy
Nz NN C=oyv)

B (szfng
w 2(2Xxz)
—% eNE eidw}dz
A2 2m(222)

O /A N
= / p  (x,2;20,0)u9,(z,t)dz
0

—x
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where Uy, is defined in (2.5).

Proof We first give the general solution to (4.17), obtained by means of the
method of separation of variables. For u, (z,t) = X (¢t)T(t), we have the ordinary
differential equations

o'T )
— = (T 4.1
5 B (4.19)
and
NX" —uX' + 32X =0, (4.20)

whose solutions are
X(z) = en? (Aeﬁ\/’ﬂTA%2 + Be_ﬁ\/m)
{ T(t) = CE,.(—f%")
We can therefore write the general solution as
uy, (x,t) (4.21)
= e {/m By (—3) {Ae#vﬂz—wﬁz n Be—ﬁv*‘z—“zﬂz} dﬁ}

— 00

[v2 = 42287 — 112]

TH +oo tl/ iyx iva
= 3 [ B 02 ) ) [A0)eFE + B 5]

By imposing the conditions in (4.17) we get

+H
u,, (x,t;20,0) (4.22)
w(z—zq) iB
e 222 +o0 t s s 2#67W(m+10)

- - Ez/ . 2 2 5 (z—x0) 5 (z+xz0) d
o (3 [m iz W+ 8 )){ev +e 2 R 3,

since the unknown constants must be in this case

BBty
i+

and
iBxg BT

e 2X2 e 2a2

om(2)2)

A:
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The third term in (4.22) can be developed as follows

pu(x—xzg)

W) gy

dv

Qe 22 +oo tv e~ 3z (#F0)
vy [ B 0D
— 0o
p(z—wzqg) _ B
_Zue W / e / e 2z / el ) g
2r(2X?) ) (B —ip) 2w Sy, 0
(8 —ip =]
plz—xq) — ¥t 2
Zue 27 / T / Y
27(2x2) J, 276 Jira —o0 w
2/‘6% 400 dy T +ooe 4)\2 (U +2MU1) _iv(ateg)
_ / — e*z eV dz/ : e 2
27(2A2) o 27 Ju, —o0 w
na Yoo too —ivlrdzo)
,M/ ﬂ/ ezz’j*le*yzudz/ id%
271‘(2)\2) 0 21t J g, —o0 w
too o (w+%)2%
/ et — dw
—o00

[0ty
27‘[’2/\2

ztag
7,'UU) v 3V

- dv
w

dw

iyt ) 2 222
’ue% +o0 +o0 e (er’zfQ ) % dw +o0
s W_V,l_y(—y)dy/ S %/
0 —o0 oIr Y —
22
2 552
Me )\; +o0 +oo (w—i— 2)\2 ) 722y>\tu
)2 Wﬂ,,l,y(—y)dy/ - H s (w)dw
0 — vy 2X
> 27553
2 2
peE oo oo —(wtay ) 25
= — W7 _ _ d
22, vi-v(=Y)dy i

2X2

[2)\210 =z — w']

\/27r2)\2

p n _ (z—wtnyt”)?
e z2 ey %0 o 2(2X2tVy)

= )\2 W,V,lfy(—y)dy 72de

0 /2w (2A2tVy)

(z—w—pyt¥)?

+00 -z ~ ATy
_ K W )dy/ Colpe OMW L

A2 Jo —oo 21 (2A2t7y)
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As far as the first term in (4.22) is concerned, we can write it as

u(x—zg)
+oo too
e 2x2 ig 1 v v (o o9
5 / eﬁ(w’wo)dﬁ—,/ ezz”_ldz/ eyl e (WP )}dy
2m(222) J_ 271 JHa 0
u(x—zg) i8
+oo v,2 +oo 57 (z—w0) v
e 222 _ytu? d 4 v €222 ytY g2
= —5 e~ axZ —y 2V eV dz e nrfyp
2\ 0 21t Jya oo 2w
o +o00 2 +oo Lif(z—x0) 2,0
pu(r—wzg) _ytYp e _y2A%tY o2
= e 222 / e a2 W_Vyl_u(—y)dy/ —e 2 ﬁdﬁ
0 o 2
_ _(@—=g)?
plx—xq) +oo _wtvu? e 20@3FVy)
= e 222 e ax2 7W7V’17V(—y)dy
0 27T(2)\2t”y)
(z—zg—pt’y)?
“+oo 6_ 2(2X2t7y)
qu,lfl/(_y)dy'

0 \/271'(2)\215”3/)
Analogously the second term becomes

_ (ztzg—ptYy)?
Cagn [T T T 23Ty

e A2 —_——
0 \/2m(2X\%try)

so that the solution coincides with (4.18), after the change of variable y = z/\t”.
O

W—y71—y(_y)dy,

Remark 4.5
Let us check that (4.18) integrates to one, with respect to x: it is sufficient
to calculate the integral below

+o0 +H/>‘
p  (x,z20,0)dz (4.23)
0
(w—zo—K=)? (etzo— K )2
+o0 6_72(”‘;) wou [T 6_72(%;)

22

——dr t+e —dxr +
0 \/ 271’(2)\2) 0 \/27T(2)\Z)
(z—w—K§2)?

+oo T e 2@
—% d.’I}/ €i2 eidw
A Jo oo 2m2(2)2)

The last integral in (4.23) can be rewritten, by inverting the order of inte-
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gration, as follows

W +oo e_yT —To pw
T2 fag ke de/ } ex? dw (4.24)
= 0 —V2Xzy—&z
2 2
pg /+°° e_de /"'OC ef%*x%(vw‘zy*%z)d
= —e’ T y L y
e v e T
+o0 _u +o0 _u?
57 © Zdy+ c 24
= —€ X _— P —
””%T%Z V2 Y ’”Oji V2T v

has been introduced. By putting pieces together we have that (4.23) and thus
(4.18) both integrate to one.
The solution (4.18) is thus a proper probability density and coincides with

+ +

the distribution of the process B*/* (| T, (t)|), which for v = 2 becomes B*/* (|I,,_1(t)]) .
It can also be expressed in terms of the solution of equation (4.1) (without
boundary conditions) as follows

(2,520, 0) (4.25)

14
= uf(z, t;70,0) + e_%‘uu‘lﬁ(x,t; —z0,0) +
_"EO LW
—% . Tl (z, t; w, 0).

Formula (4.25) shows that the solution of the boundary-value problem en-
visaged in Theorem 4.2 can be constructed by superposing solutions of equation
(4.1) emanating from the sources at x = xg (with unit intensity), at x = —xg
(with intensity 6_%) and a continuum of negative sources of exponentially
decaying intensity placed on the half-line (—oo, —xg) .

For v = 1, formula (4.25) represents the distribution of a reflecting Brownian
motion with drift expressed in terms of the transition function of a free Brownian
motion.

Remark 4.6
In the case where the equation (4.1) is subject to the absorbing condition
u(0,t) = 0, it can be proved with little effort that the solution to the corre-
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sponding boundary-value problem reads

W (w, £ 20, 0) (4.26)

© M

(zf.'zro—xz)2 (z+z07Xz)2
1 oo z e 223z wou e 2@a)

- P 2=y e S

+o0
= / p"”‘(x, z; g, 0)Ua, (2, t)dz.
0

Ty

The second boundary-value problem with a reflecting barrier that we will
consider is expressed by the following condition

ou

2 -~ — pu(a,t) =0,

a
which means that a reflecting barrier is placed in a. We also assume that the
motion starts from zero.

Theorem 4.3
The solution to the following problem, for 0 < v < 1,

"u __ )\202711 _ ,0u
otr ozx2 'u’ax
u(z,0) = §(x) ) r<a, t>0, (4.27)
%’m:a — pufa, t) =0
is given by
w.a
b, (z,t) (4.28)
too _(@—H#2)? _ (2—2a—HZ)2
/ e Iz ap € Iz R ( t)dz n
= ———t e ————— | Uoy(z,
0 Varz 4z 2

A2 @ ATy

where Uz, (y,t) coincides with (2.5).
Proof The general solution to equation (4.27) can be written down as in (4.21)
and then

ou

+oo too —(z—v—y%)’ 55
o [
0 2

Oz
/Jeﬁ +oo tv ) ) ig _%
A Eva T 402 (,u + ) {A(V)em + B(y)e 2 }dfy

e [T v, iy ive iy _ive
+e23? E,q e (> +77) ﬁA(y)ezﬂ - ﬁBW)@ 27 | dy

2 2

LT oo n A ine B e
_ €2x / EV’l (_ (MQ +'Y2)> l: (7) (u+ Z’Y)ew + ﬂ(u — 27)6_2)\2] d’y

2)2 42

— 00
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Therefore, by applying the conditions in (4.27), we get the following rela-
tionship between the unknown constants

1 i 1 i

{2 (n+iv) — u} Aeanz® = — {2 (p—iv) — u] Be 22

— Me;%“fl
M+ vy
11
2w 2A2°

We insert the previous expression into (4.29) and then put 7' = “’;)\12“ so that
we get

+
ut(z,t) (4.30)
e% too v ) _iy(z—2a) 2 _iv(e=2a)
_ Eu v 2 2 YT oz — oz d
4WA2[ ,1 ( N2 (,U + )) |:€ +e 2 ’u,—l—i’ye 2 Y
_pnzy2 z—2a— 5 2
/+Oo e—( 4/\Z> Me_% R ( t>d .
= ———— t+ex — | Uy (2,t)dz
0 Variz N v

e
Que2nz [0 o, dy _ive-2a)
_ E - ' 2 ,
A2 /_Oo v,1 A2 (M +v ) ﬂ+i7€ 2X

where, for the first term we have applied (4.6).
The last line in (4.30) can be rewritten as

e
2ue? [T° dy  ivea—w [ 1 -1
_Zpe / e [ / o dz} (4.31)
4 s MY 210 Jua 27 4 5z (12 +2)
svillas .
= _2,u62k2 / - / emw; l)i ezzyfle_y[zv"':?(”z""yz)]dz
4m A2 . ,u—l—z'y 270 J iy

too -4 F" too He i a—x v
/ ¢z dy/ e’z teTv? dZ/ ) dW. T
0 2mi Ha oo A2 27 o+ iy

The last integral in (4.31) can be evaluated as follows

ux iy(2a—x)
e2x2 1 +oo e 2x2 _yt¥s2
e Y (4.32)
ORI
= [y—ip=u]
r  p(z—2a) (2a—=)
ue;ﬁ e 2x2 too l 222 ytY(iptw)?
- P} 3 (& 4x2 dw
A 2m oo Tw

2u(z—a) yt"’p, . (Qa—x) . oytp
e 22 oz FOO QW TIWTE vy,2
— ¢ 12 dw

A2 2 e w
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yt¥py2 A2

2u(z—a) | ytYu? i (2a—x — Yt py2 A
e 2T +z too w5 +oo iz € (+i552) 5w
= —_— 7(1“} (& —dZ

N2 v
D) 2w oo Tw oo 2ﬂ_g§2
2p(z—a) y u yt¥py2 iy (2a—T)
poe 22F T + too o—(z+ ) 3 yt” oo iwz e e
= -5 e ———dw
D) / ytv W
yt¥p
oo 2u— a)+ytV 2 +OC (ZJF 2x2 yt”
= —e 212 —z)dz
A2 t 2A2 2)\2
2
X
- [” Tz Z}
2
w 2#(1 a)+yt” 2 2>\2 y;ﬂ“)zv?f”
= e 227 H 24 (v)dv
)\2 yt" 232
2)\2
oyt 2 A2
'u 2 (x— a)+1;tyu. (G vty ) g
= 2 222 dU
A yt
2)\2
J7 2/1(7 ﬂ-)+y1"u 7(93 vtyt’p)? 4A2ytv
= € dv
A VATyty \2
Vo2 (z—v—ytp)? m
yt yt
= %e e / exz (=) gy
A 2a \/47Tytl’/\2

In the last step we have carried out the following manipulations:

w—v+yt'p)? —dp(r — a)t’y — y*t* p’
@ —v =yt p+ 2yt 1)® — dp(z — a)t'y — y*t*
r—v—yt'u)? + Ayt (e — v — yt'p) — du(x — a)t’y + 3y*t>

@ —v—yt'p)® + 4yt p(—v + a) — y? 7,

2

(
(
(
(
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By inserting (4.32) into (4.31) we get

1

400 +oo —(l'—U—ytVH)z‘ 2,10
£ dfy ezz”_le_yzydz/ - /7M L exzmagy
A2 0 2mi Ha 2a 47Tytl’)\2
+o0 too —(z—v—yt"n)® 5ot —
S _ € A s (v—a)
= % W_,1-w(~y)dy /za N ex? dv  (4.33)
U o0 L(v—a)d +o00 W ( ) —(z—v—yt"#)274>\21yty p
= 13 ex? v —v,1-v\7Y Y
A2 [, 0 ! £\ Amyty N2
+o00 +o0 1 —@—v—y' %) 5
. 1 X/ axy
= ﬁ e,\l*Z(U*a)dv/ —W_, 1,V(—y—)e dy’
AQ 2a 0 )\tl/ ’ )\tl} 1/ 47Ty,)\
+o00 400 —(z—v—y4)?
- P sz(v=a)g / ” n € Y d
A? Jaa “ Y 0 (1) Ary v
Finally we substitute the last line of (4.30) with (4.33) and we obtain (4.28).
O

Remark 4.7

The comments following Theorem 4.2 can easily be adapted to the solutions
of diffusion equation (4.27) with reflecting boundary conditions at z = a and
starting point z = 0.

Finally let us consider the case where, together with the presence of a drift,
an absorbing barrier is assumed in a > 0.

Theorem 4.4
The solution to the following boundary-initial value problem, for ¢ > 0 and
O<v<l,

u )\zaiu _, du
v 7\ 9z? O
u(z,0) = 0(x) , r<a, t>0, (4.34)
u(a,t) =0
is given by
ut® (x,t) (4.35)
z— )2 z—2a— & 2)2
/+oo 6_% an e_( 22(2x3) : ( )d
= ———— — e’ ———— | Ua,(2,t)dz.
o | 272 e) V2r2he) |
Proof

The application of the boundary and initial conditions to (4.21) leads to

2ya 1

B(y)=—-A(mex  A(y) = @y’

Thus the solution to (4.34) reads
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Tz, t) (4.36)

ezzTM'L’ 400 nz i _iv(z—2a)
_ — {/ Eu,l <4)\2 (M2 +’)’2)> |:e2x2 —e 222 :|d'7}

24 +o0 ) ) +oo
€222 iva _iy(xz—2a) d _ _ v tY 2 2
T I / o — e 273@/ e’z 1dz/ e Ve gy
Ha 0

—00
2 +oo —= P - (172[1)2
o922 v 2(2ytY X 2(2ytY X\
_ e2x / e_yﬁuz dy / iy —19)2 e 2(2ytVA2) e (2ytV 22)
23 Jo 276 Jpa V2r 2yt A2) L\ /2m(2yt A2)
4o _(mwyt”f _(z—za—uyg“ﬂ p
g2 e 2(2ytYA2) an € 2(2ytV A2) 2,0 .
= / e Y 4;7 — eA“ B — euzu?y —y e*TYx zu_ldz
0 V27 (2ytv A2) 27 (2ytv \2) 210 Jga
= [z = y/\Qt”]

(z—£2)? (z—2a— K 2)2

1 too | TN ap € 2@RE) -
Y /0 e Wevia—v(=53 )z

- e 2
V2m(2Az2) V2m(2Az2)
for x < a, which coincides with (4.35). O

Remark 4.8
Formula (4.35) suggests the following interpretation for the process governed
by (4.34):
7o) = B (L)), >0, (437)

where Ea’H/A denotes a Brownian motion with drift of intensity u/\ and an
absorbing barrier. We note that result (4.37) is analogue to (4.7).

The survival probability of the process (4.37) is equal to 1 — /3 for w <0,
as can be ascertained from (4.35), by means of the transformation w = Z=£%t_

£/ 2yty A2

and letting t — 4o0.

Remark 4.9
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If we assume that v = 5 and A? = 2272 from (4.35) we get

T (2, t) (4.38)

™

(z— K 2)? (z—2a— K 2)2

too | T2 ap e 2@
= / —— —ex———— [ U_1_(z,t)dz
0

Var Az VAT Az 2n=1

(z— K 2)? ap (20— )2
TT2(2x%) — exz 2(21z)

+o0 |:€
o /
0 VarAz
”31.71

22
too o zuy T o5
. dwi... dwy,_1 p dz,
0

iV 27'("[1}1 0 V2t

!

which represents the counterpart of (4.11), when an absorbing barrier at x = a
is considered (we have left A\ in the density of the driving process, only for
typographical reasons). Therefore in this case the process can be expressed as

Ty (1) = B

37

(|In71(t)|) , > 0. (439)

Remark 4.10 We study the limiting behavior of (4.35) for v = 2% and n — 00,
for arbitrary values of A. By considering the last line of (4.36), we obtain the
following asymptotic distribution

BE——
lim @4 (z,1) (4.40)
n—oo o7
(m—gz)z (m—2a,—1§z)2
1 [T |23 ap e 2@ .
= - — ex? e Ndz
A Jo VAar Az VAT )z
e oo 2Pz n(z—2a) (=2a)2 2z

A WA A 2,/1+ 42

for z < a.
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We integrate the previous expression in (—oo,a), for a > 0, and we get

0 ez(#ﬂ-%\/lﬁ-%) aex(ﬁ—§\/1+£>
dx + de +  (4.41)

oo AANZ+p? 0 VAN + 2
2a 14 62 —
o1+ /“ ex<#+%\/1+§>dx

\/4)\2 +LL2 —00

1 1
L1 1 [1_;(2;2_;\/”;;)
1fe“<2%*%‘/@).
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