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Abstract

An important goal of microarray studies is the detection of genes that
show significant changes in observed expressions when two or more classes
of biological samples such as treatment and control are compared. Using
the c-fold rule, a gene is declared to be differentially expressed if its average
expression level varies by more than a constant factor c between treatment
and control (typically c = 2). While often used, however, this simple
rule is not completely convincing. We propose to model this filter and
define a binary variable at the gene×experiment level, allowing for a more
powerful treatment of the corresponding information. We introduce a
gene-specific random term controlling for both dependence among genes
and variability with respect to the c-fold threshold. We make inference
via a two-level finite mixture model under a likelihood approach. Then,
using the counting distribution we show how parameter estimates can
be usefully derived also under a Bayesian nonparametric approach which
allows to keep under control some error rate of erroneous discoveries. We
illustrate the effectiveness of both proposed approaches through a large-
scale simulation study and an real-data application based on the well
known dataset introduced by Alon et al. (1999).

Keywords: Microarray Data, Up-regulated genes, Mixture Models, Count-
ing Distribution, False Discovery Rate.

1 Introduction and Motivation

An important goal of microarray studies is the detection of genes that show
differential behavior in two or more biological situations of interest (Amaratunga
and Cabrera (2004),Parmigiani et al. (2003)). Lists of (up or down) regulated
genes can be identified by many different statistical methods. Supposing no
additional covariate has been measured, one possibility is to do a T test (or
F test in case of more than two biological conditions) on the expression levels
for each gene, and select the significant genes using a correction for multiple
testing. Most popular procedures control the False Discovery Rate (FDR) of
Benjamini and Hochberg (1995), see for instance Dudoit et al. (2003) for a
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review. Another possibility is to apply clustering methods, as proposed by Alon
et al. (1999); for a review, see Pollard and van der Laan (2003) and references
therein. Though being more flexible than multiple testing methods, clustering
methods do not actually provide a formal assessment of the significance of the
differences between observed expression levels.

In almost all cases of actual practice some genes are preliminary filtered
out from the analysis. For each gene the so called fold-change is measured in
terms of the ratio between the expressions detected in the two different biological
conditions. Genes that have afold change lower than a certain threshold (a value
of 2 is commonly used) are not considered for validation, since the difference
in expression may be too low to be actually detected by methods like PCR
(polymerase chain reaction). This is the so called “2-fold rule”, which has been
widely used and criticized in the literature; among others, see for instance Tusher
et al. (2001); Wolfinger et al. (2001); Sabatti et al. (2002); Gieseg et al. (2002).
Applying the filter after testing is inefficient, since the power of many multiple
testing procedures is not increasing with the number of tests. Some of the
discoveries are filtered out and the power of the entire procedure is artificially
lead to be lower than it could. On the other hand, it is not possible to apply the
filter before doing the tests, since all the test statistics must be considered in the
multiple testing procedure to avoid explosion of the number of false positives
(see Hochberg and Tamhane (1987)). To bypass some of the aforementioned
difficulties we propose an approach to the discovery of differentially expressed
genes via a mixture model, which efficiently incorporates the 2-fold filter and
provides a formal statement on the regulation of selected genes between the
analyzed biological conditions. The proposed approach generalizes the standard
“2-fold rule”, avoiding to test the average expression level; moreover, it can be
employed in both a likelihood and a Bayesian framework, and can be joined
with proper control of the estimated FDR (see e.g. Storey et al. (2004)). As
far as we know, the SAM (Significance Analysis of Microarrays) of Tusher et al.
(2001) is the only other technique that directly incorporates the c-fold rule and
controls the FDR. The main difference between SAM and our techniques is that
we model the gene expression at a slide level.

The paper is structured as follows: in Section 2 we introduce our modeling
approach together with the adopted notation. In Section 3 we describe a finite
mixture approach. In Section 4 we slightly deviate from the finite mixture model
leaving unspecified the mixing density. We describe a Bayesian method to make
inference on the counting distribution of exceedances. In Section 5 we illus-
trate how to choose the regulated genes using the proposed modeling strategies.
The empirical behavior of the proposed models is investigated through both a
simulation study presented in Section 6 and an application to the benchmark
dataset discussed by Alon et al. (1999). Finally Section 7 gives some concluding
remarks.

2 Modeling framework

Let us start assuming we are analyzing a set of G genes, composed of G1 ¿ G
genes which are truly differentially expressed, while G0 = G−G1 are not. The
corresponding sets of genes will be denoted with G1 and G0, respectively; in real
examples G1/G can be lower than 1%. Let us suppose we have recorded the

2



normalized ratios of i-th gene, i = 1, . . . , G, on ni slides; on each slide tissues
from two different biological conditions were hybridized. In the following we
denote with fij the fold change observed for the i-th gene in the j-th sample,
i = 1, . . . , G, j = 1, . . . , ni. We assume that genes that are not differentially
expressed are the same in all slides, thus showing no substantial difference across
the analyzed biological conditions. For simplicity, we restrict the discussion to
up-regulated genes as if the researcher is filtering out only those genes whose fold
change is below a certain threshold c – say c = 2. It is obviously straightforward
to consider down-regulated genes, and the proposed approach could be also
extended, at least in principle, to model jointly down and up-regulated genes.

While the c-fold filter is usually applied on the mean (or median) fold for
each gene, usually at a logarithmic scale, we propose here to apply it at a slide
level. We transform the original fold change measures into a binary matrix Y ,
in which yij is 1 if the fold change of i-th gene is above c (i.e. fij > c) in the j-th
sample, and 0 otherwise. It is worth noting that the cut-off c is meaningful to
the researchers and usually not completely arbitrary. We show in the following
that this transformation allows a powerful, efficient and more robust treatment
of the analyzed data exploiting many tools that are usually devised in statistics
for binary data. We only need to take into account the special characteristics
of the data, in particular the fact that the number of genes is very high and
potentially only a small number of them is truly differentially expressed; at the
same time, the number of samples is relatively small.

Our method is more suitable for two-color technologies in which a fold change
based on a natural matching of biological samples directly measured by putting
tissues from the two classes on the same slide. See Schena (2000) for a discussion
of the different technologies that can be used in DNA microarrays, and Kerr
and Churchill (2001) for issues in experimental design in this setting. Never-
theless, the derivation of the binary matrix Y may yield good results also with
other technologies through the derivation of individual fold changes with an
appropriate matching of slides, possibly at random..

First, genes are modeled separately and information from different genes
is pooled only for non differentially expressed, in the sense that they share a
common probability of yielding an expression above the threshold c. Then,
genes are jointly modeled in a hierarchical framework, where the probability of
being above the threshold for differentially expressed genes is modeled using a
common but unknown distribution, which we denote by F (·). The underlying
idea is that expression of non differentially expressed genes should differ only
by experimental error, while a more heterogeneous behavior is expected for
differentially expressed genes.

More formally, we avoid distributional assumptions on the fold changes fij ,
i = 1, . . . , G, j = 1, . . . , ni and we limit ourselves to directly model the binary
outcome

Yij =
{

1 if fij > c
0 otherwise

We denote with

q0 = Pr(fij > c | i ∈ G0), j = 1, . . . , ni (1)

the probability that the i−th gene, which is not differentially expressed, yields
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a fold change fij above c in the j−th sample. On the other hand, let

qi = Pr(fij > c | i ∈ G1), j = 1, . . . , ni (2)

denote the probability that a truly differentially expressed gene yields a fold
change over the threshold c. We are implicitly assuming that qi does not change
across slides, i.e., that the slides are exchangeable. Moreover, we assume that
qi > q0 not only for identifiability reasons, but also because it seems natural
to expect that truly up-regulated genes are more likely than non up-regulated
genes to yield a fold change above c. With the above assumptions Yij is a
Bernoulli variate with marginal probability

Pr(Yij = 1) = pi = q0(G0/G) + qi(G1/G), ∀j = 1, . . . , ni. (3)

It is usually safe to assume independence at the sample level so that for the i-th
gene we would have a likelihood proportional to

p
P

j yij

i (1− pi)
P

j(1−yij).

We can express the above model as a complete data problem. Let zi be the
indicator of the i-th gene to be differentially expressed. We have

Pr(Yij = 1|Zi = 1) = qi

Pr(Yij = 0|Zi = 0) = q0

Pr(Zi = 1) = G1/G = π.

Note that the individual contribution to the likelihood becomes proportional to

(G1)zi(G0)(1−zi)q
P

j yij(1−zi)

0 (1− q0)
P

j(1−yij)(1−zi)q
zi
P

j yij

i (1− qi)zi

P
j(1−yij)

and that our considerations imply (by an immediate application of Bayes theo-
rem) the following statement:

P (Zi = 1|yij > c) =
qiG1/G

pi
.

Unfortunately, it is well acknowledged that genes are likely to be dependent, so
that we can not combine the G likelihoods directly. This is a usual problem in
microarray data analysis. A standard approach is to treat each gene separately,
as if one is considering G different models and then make a correction for the
multiplicity. Here a good correction may be given by shrinking the posterior
parameter estimates.

An EM algorithm can now be used to fit this model. Potential problems can
arise due to the number of samples ni which is usually small when compared to G
and consequently the variance of the estimates can be very large. The approach
in the next section tries to overcome this problem by linking the estimates
at a gene level. The main quantity of interest here is a formal statement on
zi, i = 1, . . . , G, that is, an estimation of the probability of the i-th gene to
be differentially expressed. There are some interesting by-products: one can
estimate the strength of the effect with qi, and a general statement on the
sensibility of the c-fold test for differential expression is given by the first moment
of (qi)i=1,...,G. The quantity (1−q0) gives a measure of both the specificity of the
c-fold test, and the ability in carrying out the experiment: if non-differentially
expressed genes are very likely to have high fold changes, probably normalization
did not properly clean the data.
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3 Likelihood analysis with finite mixture approach

We start by briefly reviewing the approach in a simple case where a common
parameter for the up-regulated genes qi = q1 is assumed. Given the above
description of the complete data problem, the marginal density is

f(y, z) =
G∏

i=1









∏

j

q
yij

1 (1− q1)(1−yij)


π




zi




∏

j

q
yij

0 (1− q0)(1−yij)


 (1− π)




(1−zi)




and the corresponding log-likelihood function is therefore defined as follows

`c(·) =
G∑

i=1


zi


∑

j

yij log(q1) +
∑

j

(1− yij) log(1− q1) + log(π)





 +

+
G∑

i=1


(1− zi)


∑

j

yij log(q0) +
∑

j

(1− yij) log(1− q0) + log(1− π)







Denoting with
∑

j yij = ki the number of samples with a fold change over the
threshold, the log-likelihood function can be rewritten as:

`c(·) =
G∑

i=1

{zi [ki log(q1) + (ni − ki) log(1− q1) + log(π)]} =

+
G∑

i=1

[(1− zi) (ki log(q0) + (ni − ki) log(1− q0) + log(1− π))]

As usual, in the E-step of the EM algorithm, we define the log-likelihood for the
observed data by taking the expectation of the log-likelihood for complete data
over the unobservable class indicator vector zi given the observed data y and
the current ML estimates, say q(t). In other words, at the t-th step, we replace
zi with its conditional expectation

wi =
fi1π

fi1π + fi0(1− π)

where fi1 = f(yi | zi = 1), and fi0 = f(yi | zi = 0). The conditional expec-
tation of the complete log-likelihood given the observed data y is expressed by
the function

Q(t) (·) = E(t)
q {`c (·) |y} =

G∑

i=1

{wi [ki log(q1) + (ni − ki) log(1− q1) + log(π)]}+

+
G∑

i=1

{(1− wi) [ki log(q0) + (ni − ki) log(1− q0) + log(1− π)]}

Maximizing Q(t) (·) with respect to q = (q0, q1) we obtain the following ML
parameter estimates:

q̂
(t)
0 =

∑
i(1− w

(t)
i )ki∑

i(1− w
(t)
i )ni

, q̂
(t)
1 =

∑
i w

(t)
i ki∑

i w
(t)
i ni

(4)
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while the prior probability estimate is

π̂(t) =
∑

i wi

G

which represents a standard result in ML estimation in finite mixtures. It is
worth noticing that the constraint q1 > q0 can be satisfied by simply (post-)
ordering the estimated locations. However, the hypothesis that all genes are
homogeneous, i.e. qi = q1, i = 1, . . . , G, can be quite unsatisfactory. If we
rather adopt subject-specific parameters qi, i = 1, . . . , G, we can easily gen-
eralize the EM algorithm to endow subject-specific parameters obtaining the
following estimates

q̂
(t)
i =

w
(t)
i ki

w
(t)
i ni

.

Obviously, these estimates are free of any constraints, while we should rationally
assume that qi > q0 to ensure that truly up-regulated genes are more likely to
yield a fold change above c. Also in this case post-estimation ordering can be
of help. However ML estimation could be in this case particularly cumbersome
since the number of parameters could be very high (often G ≥ 5000 in practi-
cal examples). Moreover, while heterogeneity among genes is preserved by this
model, potential dependence among genes is not accounted for. For this pur-
pose, we introduce a discrete mixing distribution on qi to allow for dependence
among genes belonging to the same component, while controlling for potential
overdispersion with regards to the homogeneous Binomial model. We consider
that, conditionally on Zi = 1, the observed counts of samples yielding a fold
change over the threshold follow an overdispersed distribution, such as a finite
mixture of K Binomial distributions, with locations defined over the interval
(q0, 1]. We define a second-level component indicator, say Xik, with Xik = 1 if
Zi = 1 and the gene belongs to the k−th component of the finite mixture. We
denote with

τk = Pr(Xik = 1 | Zi = 1)

the corresponding prior probabilities. The marginal density for the complete
data is

f(y, z,x) =
G∏

i=1






∏

k


∏

j

q
yij

k (1− qk)(1−yij)τk




xik

π




zi

×

×




∏

j

q
yij

0 (1− q0)(1−yij)


 (1− π)




(1−zi)




(5)

The log-likelihood function for the complete data is as follows

`c(·) =
G∑

i=1

{
zi

[
K∑

k=1

xik [ki log(qk) + (ni − ki) log(1− qk) + log(τk)] + log(π)

]}
+

+
G∑

i=1

{(1− zi) [ki log(q0) + (ni − ki) log(1− q0) + log(1− π)]} .
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As before, in the E-step of the EM algorithm, we define the log-likelihood for
the observed data by taking the expectation of the log-likelihood for complete
data over the unobservable class indicator vectors (z,x) given the observed data
y and the current ML estimates, say q(t). In other words, at the t-th step, we
replace both zi and xik, i = 1, . . . , G, k = 1, . . . ,K with their conditional
expectations:

wi =
fi1π

fi1π + fi0(1− π)
vik =

fi1kτk∑
k fi1kτk

where fi1k = f(yi | Zi = 1, Xik = 1). The conditional expectation of the
complete log-likelihood given the observed data y is expressed by the function

Q(t) (·) =
G∑

i=1

{
wi

∑

k

vik [ki log(qk) + (ni − ki) log(1− q) + log(τk) + log(π)]

}
+

+
G∑

i=1

{(1− wi) [ki log(q0) + (ni − ki) log(1− q0) + log(1− π)]}

Maximizing Q(t) (·) with respect to q0 and q′ = (q1, . . . , qK) we obtain the
following ML estimates for the parameters of the Bernoulli densities

q̂
(t)
0 =

∑
i(1− w

(t)
i )ki∑

i(1− w
(t)
i )ni

, q̂
(t)
k =

∑
i w

(t)
i vikki∑

i w
(t)
i vikni

(6)

while the prior probability estimates are

π̂(t) =
∑

i wi

G
τ̂

(t)
k =

∑
i wivik∑

i wi

which mimic previous results. In this case, however, we have not taken into
account the K constraints qk ∈ (q0, 1] and post-estimation ordering can not be
of any help. To avoid complex maximization procedures, we can proceed as
follows: doing a little algebra, we can show that the Q function in equation
(6) is equal to a Q function corresponding to a simple finite mixture of K + 1
Binomial densities. In fact, by writing z∗ik = zixik, w∗ik = wivik, 1− zi = z∗K+1,
π∗k = πτk and πK+1 = 1− π, i = 1, . . . , G, k = 1, . . . , K, we obtain

Q(t) (·) =
G∑

i=1

K∑

k

w∗ik {[ki log(qk) + (ni − ki) log(1− q) + log(π ∗ τk)]}+

+
G∑

i=1

w∗iK+1 [(ki log(qK+1) + (ni − ki) log(1− qK+1) + log(πK+1))] =

=
G∑

i=1

K+1∑

k=1

{
wik

∑

k

[ki log(qk) + (ni − ki) log(1− qk) + log(π∗k)]

}

and this suggests a possible simple approach to estimation and to post-estimation
ordering. In fact, constraints qk > q0 are satisfied by posing q̂0 = q̂K+1 =
mink(q̂k). In this case, the ML estimates are those of a standard finite mixture
of K + 1 Binomial densities, namely

w
∗(t)
ik =

fikπ∗k∑
k fiπ∗k

q̂
(t)
k =

∑
i w

∗(t)
ik ki∑

i,k w
∗(t)
ik ni
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and

ẑi = w∗i =
K∑

k=1

wivik =
K∑

k=1

w∗ik = 1− wK+1.

So far we have considered a finite mixture model for qi with a fixed number K
of components. In fact, it is easy to consider a broader class of mixture models
with an unknown number of components, say from a minimum of K = 1 to a
maximum K = Kmax. Several fitting procedures are then carried out and one
can select the appropriate K by using an information criterion such as BIC.

This model approach is quite simple to be implemented and is often robust
to model misspecification, but it can suffer from possible drawbacks. In fact,
while it is well known that finite mixture models tend to closely fit the observed
distribution, in empirical applications they are likely to produce a smooth se-
quence of location estimates. In the empirical context we are analyzing, this
would result in substantial problems when selecting up-regulated genes, i.e., in
separating one location from the other K. In the absence of any a priori informa-
tion on the magnitude of q0 or G0, which can be based on control or noise spots,
stronger constraints like qi−q0 > M > 0 or larger individual sample sizes ni are
needed to detect a more reliable segmentation of the analyzed genes. A possible
alternative is to assume a continuous distribution for the qi, i = 1, . . . , G, such
as a Beta distribution reshaped to take values on the interval (q0, 1]. This choice
does not lead to a closed form for the corresponding log-likelihood function

`c(·) =
G∑

i=1

zi

{
log

[∫ 1

q0

(
qki
i (1− qk)(ni−ki)

)
dF (qi)

]
+ log(π)

}
+

+
G∑

i=1

{(1− zi) [ki log(q0) + (ni − ki) log(1− q0) + log(1− π)]} .

Therefore, only procedures based on approximations (such as those based on QL
approximation or on linearization techniques) or on numerical integration can
be employed to obtain ML estimates. However, these techniques often fail with
discrete data. For this reason, we now turn to re-express this problem adopting
a more suitable approach, based on the counting distribution, which is detailed
in the following paragraph.

4 A Bayesian semiparametric approach

A slightly different perspective for making inference could be adopted with a
semiparametric model for the analyzed data, by leaving the latent distribution
F (·) unspecified and modeling the counting distribution of exceedances. As-
suming for simplicity that ni = n for any i = 1, . . . , G, let hk be the number of
genes that exceed the threshold exactly k out of n times. It is easy to realize
from the independence structure that the vector h = (h0, . . . , hn), referred to as
the counting distribution, contains all the relevant experimental evidence. Note
that

∑n
k=0 hk = G. The probability of observing a vector h = (h0, . . . , hn),
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p(h|F, q0, G0), is given by

p(h|F, q0, G0) =
G!∏
k hk!

∏

k

phk

F,k

pF,k =
(

n

k

)[
(qk

0 (1− q0)n−k)
G0

G
+

G1

G

∫ 1

q0

qk
i (1− qi)n−k dF (qi)

]
.

The resulting F-mixture binomial probability is almost intractable in this form,
but one can overcome difficulties by expanding the binomial term displayed as
second factor inside the integral. After a little bit of algebra, this leads to the
following expression:

pF,k =
(

n

k

) [
(qk

0 (1− q0)n−k)
G0

G
+

G1

G

n∑

r=k

(−1)r−k

(
n− k

r − k

)
mr

]
, (7)

where mr =
∫ 1

q0
xr dF (x) is the r-th moment of F (·). Now we can turn the

seemingly cumbersome problem to a purely parametric one, since F (·) inter-
venes only through a finite number of its moments. The problem is now
tractable, and parameters can be estimated either with a Bayesian approach
or by a maximum likelihood. A similar alternative semiparametric approach
to model dependent binary data can be found in George and Bowman (1995).
A convenient reparametrization of (7) which avoids dealing with a constrained
convex parameter space can be obtained by replacing the moments of F (·) with
the corresponding canonical moments (Dette and Studden, 1997), which are in
one-to-one correspondence and are defined over an unrestricted space, such as
(0, 1)n. Also in Dette and Studden (1997) it is shown how one can easily com-
pute the invertible mapping, which we denote with ψ(·), from the space of the
first n canonical moments c1, . . . , cn to the space of the first n ordinary moments
m1, . . . , mn. They also prove that the canonical moments are invariant under
linear transformations of the random variables with those canonical moments;
for this reason, we can conveniently use the easily tractable mapping ψ(·) for
the moments of an hypothetical random variable Xi on [0, 1], and then apply
the mapping η : (0, 1)n → (q0, 1)n to get moments of qi = Xi ∗ (1 − q0) + q0.
From the same source (Dette and Studden, 1997) we know that the mapping
η(·), for the r-th moment, is

E[qr
i ] =

r∑

i=0

(
r

i

)
q
(r−i)
0 (1− q0)iE[Xi].

Hence, pF,k is conveniently re-expressed as

pF,k =
(

n

k

)
[(qk

0 (1− q0)n−k)
G0

G
+

G1

G

n∑

r=k

(−1)r−k

(
n− k

r − k

)
η(ψ(cr))]

We propose to derive inference under the Bayesian paradigm. In order to do
that, we just need to specify a convenient prior distribution over the parameter
space and then derive the posterior distribution conditionally on the observed
data. As usual, no closed form expression can be obtained and hence we pro-
pose to approximate the posterior distribution by a Markov Chain Monte Carlo
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sampling scheme (Gilks et al. (1998)). In fact, we have used an hybrid sampler
called ARMS (Gilks and Wild, 1992), which combines a Gibbs sampling scheme
with a Metropolis-Hastings routine to draw from full conditionals. This provides
an automatic Metropolis-within-Gibbs sampler, avoiding the need for the usual
fine tuning of Metropolis-Hastings proposal parameters. In a Bayesian context,
we need to specify priors on the parameters (G0/G, q0, c1, . . . , cN ); if prior in-
formation on such parameters is available, this should be used. For instance, it
should be customary to use for G0/G a prior which puts most of the mass close
to 1, like a Beta < a, 1 > where a is large (say a ≥ 10); nevertheless, default
priors for other parameters can be used either flat uniform priors or Jeffreys’
prior for the ordinary moments. More details on how to obtain such default
priors in terms of ordinary moments and canonical moments can be found in
Tardella (2002). A little extra detail must be added here since one needs also
to consider the mapping η(·) and hence the corresponding Jacobian. In fact,
∂E[qr

i ]
∂ms

=
(
r
s

)
(1 − q0)sqr−s

0 if r ≥ s and 0 otherwise. The Jacobian is the de-
terminant of the matrix whose (r, s)-th entry is given by the expression above,
and can be computed in a closed form as (1− q0)

Pn
k=1 i = (1− q0)n(n+1)/2. Of

course, we could have used a maximum likelihood approach instead of deriving
Bayesian inference, but we have eventually preferred this last option because the
maximization routine used in terms of canonical moments produced less stable
and reliable results than those obtained for the Bayesian analysis through the
MCMC simulation machinery.

5 Selection of up-regulated genes

We now describe how one can use the modeling approaches in Section 3 and 4
to select up-regulated genes.

With respect to the approach described in Section 3, once the complete
data problem for the finite mixture model has been setup, one can rely on the
posterior probabilities

Pr{Zi = 1|data} i = 1, . . . , G

and select genes for which the above probability is greater than 0.5. One can
also use the finite mixture structure to cluster up-regulated genes in further K
subgroups; this can be done adopting a maximum a posteriori (MAP) approach
on the probabilities of component membership Xik, k = 1, ..., K.

When turning to the modeling approach of Section 4, we have devised a
different method which is based directly on the counting distribution. After
fitting the model, one can choose those genes which exceed the threshold at least
k̄ times with an appropriate value of k̄. In order to select k̄ one can try to keep
under control some error rate (such as FDR) of the resulting procedure. Recall
that the FDR of Benjamini and Hochberg (1995) is the expected proportion of
false discoveries over the number of selected genes, if any, and zero otherwise.
In fact, for any fixed k we can estimate the number of falsely selected genes as
follows

F̂DRk =

S∑
i=k

Ĝ0

(
S
i

)
q̂i
0(1− q̂0)S−i

S∑
i=k

hi

. (8)
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Then, we select the smallest k for which the FDR is estimated to be below
a pre-specified level α can be chosen, k̄ = min

k=1,...,n
{k : FDRk ≤ α}. We will

make the resulting procedure clearer with a simple numerical example at the
beginning of next section.

6 Applications

In this section we will give an illustration of FDR control and the Bayesian
approach to gene selection we have just proposed. Then, we will show a large
simulation study in order to check the validity of our proposals, and in particular
to verify the comparative performance of both methods. Finally, a benchmark
dataset is discusses to give more insight.

6.1 Numerical illustration of the selection rule for the
Bayesian approach

We generated one simulated dataset as follows: we took G = 2000, of which
G0 = 1800 not differentially expressed, with a probability of exceeding the
threshold equal to q0 = 0.05. The probability qi corresponding to the G1 =
200 genes with differential expression is generated as (1 − q0)Xi + q0, where
Xi is a Beta variate with parameters 0.5 and 0.5. All genes are observed in
ni = n = 4 replicates and using this setup we have obtained a vector of counts
h = (1503, 332, 72, 38, 55).

After deriving MCMC approximations for the joint posterior distributions
of all parameters we got the posterior means of parameters of interest as shown
in Table 1, which are actually close to the true values used for generating the
data.

True Value Posterior Mean
G1 200 216
q0 0.05 0.046

E[qi] 0.5 0.497
E[q2

i ] 0.375 0.341
E[q3

i ] 0.312 0.269
E[q4

i ] 0.273 0.228

Table 1: True values and posterior means for the simulated example

We can now illustrate with this simple numerical example the rationale used
to filter out genes that have to be considered over expressed. One could have
chosen a number of around Ĝ1 = 216 genes to be declared significantly differ-
entially expressed. In that case one would have taken all the 165 (72+38+55)
genes which exceed the threshold c two or more times, and discarded the remain-
ing ones. However, this would yield a high number of false discoveries. In fact
we know from the simulated data that 38 among these 165 genes are not truly
differentially expressed and this means that by choosing 165 genes we would
get a False Discovery Proportion (the true number of false discoveries over the
number of rejections) of 0.23. To bound the proportion of false discoveries we
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decided to aim at a proper control over the expected False Discovery Propor-
tion, namely, the FDR. Hence we suggest to use the posterior expected number
of non differentially expressed genes, which is equal to Ĝ0 = 2000− 216 = 1784.
Each non-regulated gene is expected to be over the threshold c with probability
q̂0 = 0.046. Therefore, we expect Ĝ0

(
S
k

)
q̂k
0 (1− q̂0)k genes to be over the thresh-

old exactly k times. In this case, we get a vector of expected false discoveries
h∗ = (1440, 278, 20, 1, 0). This allows us to estimate the posterior expected false
discovery proportion for each k as the ratio of the reverse cumulative sums of
h∗ and h, as F̂DR = (0.869, 0.60, 0.12, 0.01, 0). Hence, an FDR controlling pro-
cedure consists in fixing k̄ = 3 and selecting those 93 (38+55) genes exceeding
the threshold 3 or 4 times.

6.2 Comparison of the procedures based on simulated data

We have studied the comparative performance of our proposed methods by
generating B = 1000 simulated datasets, which mimic a classical microar-
ray experiment. Again, we have considered G = 2000 genes, of which only
G1 = 200 up-regulated. The fold changes have been simulated according to
log(fij) ∼ N(0, σ2), where σ2 is such that q0 =

∫∞
2

φ(x/σ) dx and φ(·) is
the pdf of a standard normal random variable. This leads to fix σ2 = 1.478.
The fold changes for the differentially expressed genes are generated according
to log(fij) ∼ N(µi, σ

2), where µi is such that
∫∞
2

φ(x−µi

σ ) dx = qi. The re-
maining simulation set-up is analogue to the previous section. We have used
the simulated datasets to infer on the over-expressed genes. The reference ap-
proaches have been based on calculating p-values from a standard one sample
t-test on the generated log-fold changes. The experiment has been carried over
for B = 1000 replications and the corresponding average (actual) false discovery
proportion (the false discovery rate), average false non-discovery proportion (the
false non-discovery rate) and number of selected genes (R) have been recorded.
The False Non-discovery Rate (FNR) is a Type II error rate defined in Genovese
and Wasserman (2002) as the proportion of false negatives over the number of
non-rejected hypotheses; and we denote by f̄i. the geometric average of the fold
change for the i-th gene.

Table 2 gives an overall picture of comparative performances. SAM is the
technique proposed in Tusher et al. (2001) with no threshold for the fold change,
while SAM-2 is the same technique in which a c-fold rule is applied with c = 2.
Somewhat surprisingly one can see a low expected number of rejections given
by the Benjamini and Hochberg (1995) (BH) correction. This can be explained
as a consequence of the small number of replicates and the fact that the signal
is weak (some of the qis are very close to q0). Table 2 also shows that the
method based on the counting distribution, among the methods controlling the
FDR at level 0.05, is the most powerful (i.e. lowest FNR). It is worth noticing
that the method succeeds in having a lower FNR and a lower realized FDR. The
finite mixture approach, while yielding good results in terms of power with a low
FNR, does not succeed in controlling the FDR. This can be explained by the low
(n = ni = 4) number of samples per individual (i.e. gene) and therefore by the
limited experimental information which is available to the researcher. We are
not claiming the reference approaches are dominated by the approaches based
on finite mixtures or the counting distribution; in fact, the data are generated
from a specific model, even if the simulation design is likely to resemble quite
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well a real microarray setting.
Table 3 shows the results of a different simulation setting where qi = (1 −

q0)X+q0 and X ∼ Beta < 3, 0.5 >; in this case, the signal is stronger. With the
same number of samples but with a distribution of the qis more concentrated
and asymmetric towards the unit boundary, the Bayesian method still reaches
the best performance in terms of FNR within those controlling the FDR. Similar
comments apply to the figures resulting from the finite mixtures approach.

FDR FNR R
Discrete Mixture 0.172 0.044 143.96

Non-parametric method 0.009 0.058 90.03
SAM 0.0487 0.079 47.29

SAM-2 0.0467 0.079 47.165
Uncorrected Testing 0.441 0.048 204.37

Uncorrected Testing, only f̄i. > 2 0.246 0.047 150.46
BH corrected Testing 0.048 0.099 1.66

BH corrected Testing, only f̄i. > 2 0.025 0.099 1.57
Bonferroni corrected Testing 0.036 0.099 0.47

Bonferroni corrected Testing, only f̄i. > 2 0.018 0.099 0.45

Table 2: Comparison of methods in simulation, qi ∼ Beta < 0.5, 0.5 >, n = 4

FDR FNR R
Discrete Mixture 0.117 0.005 216.22

Non parametric method 0.005 0.015 173.20
SAM 0.0338 0.062 84.46

SAM-2 0.031 0.062 84.49
Uncorrected Testing 0.330 0.010 273.71

Uncorrected Testing, only f̄i. > 2 0.169 0.010 220.61
BH corrected Testing 0.045 0.092 19.43

BH corrected Testing, only f̄i. > 2 0.015 0.092 18.80
Bonferroni corrected Testing 0.023 0.099 1.14

Bonferroni corrected Testing, only f̄i. > 2 0.009 0.099 1.11

Table 3: Comparison of methods in simulation, qi = (1−q0)X+q0, X ∼ Beta <
3, 0.5 >, n = 4

When we move to simulate larger samples sizes per individual such as n = 8
things change substantially as shown by results reported in Tables 4 and 5.
The available experimental information is now enough to let the finite mixture
approach reach better results, which mimic those obtained through the counting
distribution.

Even if the method has not been defined to control the FDR, the finite
mixture approach is now a reliable competitor of the semi-parametric approach
based on the counting distribution; the FNR is even lower in one case and the
estimated FDR is comparable. Similar results in fact are detailed in Table 5,
showing results obtained with a different simulation scheme with qi = (1 −
q0)X + q0 and X ∼ Beta < 3, 0.5 > (the signal is stronger).
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FDR FNR R
Discrete Mixture 0.007 0.047 111.20

Non-parametric method 0.007 0.049 108.71
SAM 0.023 0.057 93.03

SAM-2 0.018 0.057 93.00
Uncorrected Testing 0.380 0.030 236.21

Uncorrected Testing, only f̄i. > 2 0.198 0.030 181.49
BH corrected Testing 0.048 0.049 113.81

BH corrected Testing, only f̄i. > 2 0.023 0.049 110.82
Bonferroni corrected Testing 0.001 0.083 37.76

Bonferroni corrected Testing, only f̄i. > 2 0.000 0.083 37.73

Table 4: Comparison of methods in simulation, qi ∼ Beta < 0.5, 0.5 >, n = 8

FDR FNR R
Discrete Mixture 0.003 0.005 191.66

Non parametric method 0.048 0.004 218.43
SAM 0.023 0.020 166.50

SAM-2 0.016 0.020 166.233
Uncorrected Testing 0.310 0.001 288.58

Uncorrected Testing, only f̄i. > 2 0.149 0.006 233.78
BH corrected Testing 0.022 0.004 201.86

BH corrected Testing, only f̄i. > 2 0.022 0.004 196.77
Bonferroni corrected Testing 0.000 0.058 89.26

Bonferroni corrected Testing, only f̄i. > 2 0.000 0.058 89.26

Table 5: Comparison of methods in simulation, qi = (1−q0)X+q0, X ∼ Beta <
3, 0.5 >, n = 8.

6.3 Comparison of procedures via classification of colon
tumor

Cancer classification has greatly improved during last few years, thanks to the
development of more general approaches for class discovery or class predic-
tion. The approach to cancer classification based on gene expression moni-
toring by DNA microarrays has been firstly described and applied to human
acute leukemia by Golub et al. (1999). The availability of class discovery pro-
cedures which automatically separate acute Myeloid leukemia from acute Lym-
phoblastic leukemia raised a tremendous interest in the field of microarray data
statistical analysis. Since this seminal paper, various proposals have been intro-
duced demonstrating the feasibility of cancer classification based solely on gene
expression monitoring. In this context, an important goal is to have reliable
statistical methods which help the researcher to correctly classify the analyzed
tissues using the available gene expression profiling. Data referred to as Colon
Tumor Data (CTD) come from Alon et al. (1999), and represent a well known
benchmark dataset for genes selection and discrimination. The dataset consists
of 2000 genes recorded on 62 individuals, 22 safe and 40 ill of colon cancer.

With this dataset we aim at showing that improving on the standard practice
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of filtering out genes with our proposed procedures instead of the c-fold rule leads
not only to a better control and balance of the error rates (FDR and FNR)
but also to a better classification performance and better chance of successful
discoveries in the genetic field.

We have selected a training set of 30 samples, 15 from normal patients
and 15 from ill patients. So, for each of the G = 2000 genes a set of n =
15 fold changes are computed, with the same matching design considered in
Bioconductor http://www.bioconductor.org/. This leaves us with a test set of
32 samples, of which 7 are normal and 25 tumoral. This set is then used to
estimate the classification error.

In statistical classification it is customary to select only a subset of variables
which will be used to build the classifier. In our context, we can think of selecting
only those genes which result as significantly differentially expressed through a
statistical analysis.

Table 6 shows, for each technique, the number of selected genes and the cor-
responding estimated classification error when classification is performed using
the k-Nearest Neighbor Classifier (Cover and Hart (1967)), with k = 1.

Filtering rule Filtered Classification
Genes Error

Finite Mixture Approach 479 0.125
Non Parametric Approach 73 0.125

SAM 117 0.156
SAM-2 117 0.156

Uncorrected Testing 428 0.156
Uncorrected Testing, only f̄i. > 2 23 0.281

BH corrected Testing 77 0.187
BH corrected Testing, only f̄i. > 2 13 0.219

Bonferroni corrected Testing 11 0.219
Bonferroni corrected Testing, only f̄i. > 2 1 0.219

Table 6: Number of selected genes and estimated classification error for the
Alon et al. (1999) Colon Tumor Data

If the k-NN classifier is applied with other values of k the proposed methods
still outperform the other competitors. In fact, when k = 3, the classification
error of our proposals does not improve, and is equal to those achieved by SAM,
SAM-2, Uncorrected testing and BH corrected testing.

Note however that the non-parametric approach always achieves the smallest
classification error with the lowest number of genes (73). Also consider that,
since we are not working with the average fold change, there is not a complete
overlap with the other methods. For instance, only 35 of the 77 genes selected by
the BH method are included in the set of 73 genes chosen by our non-parametric
method.
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7 Concluding remarks

In this paper we discuss models for the detection of differentially expressed genes
in a microarray experiment when two biological conditions are compared. We
use a gene-specific random term controlling for variability among genes with re-
spect to the probability of yielding a fold change value over a certain threshold.
We propose two different methods: a two-level finite mixture representation of
the binary matrix resulting from the dichotomization of the fold changes and
a nonparametric approach based on the counting distribution. The first one
is based on maximum likelihood inference which is easy to implement through
an EM-type algorithm. The second one is based on the counting distribution,
i.e. on modeling the number of exceedances and inference is derived under
a Bayesian approach. The performance of the two different selection rules has
been discussed by analyzing a well known benchmark dataset (Alon et al., 1999),
and by performing a large-scale simulation study. Both approaches always ex-
hibit promising results, with the substantial difference that the finite mixture
approach needs a higher sample size (more tissues to be compared) to achieve
a sufficiently low FDR, while the approach based on the counting distribution
seems to guarantee a good FDR control even with a small number of tissues.
These promising results encourage us to extend the proposals so that over-
expressed as well as under-expressed genes can be dealt with simultaneously.
Another aspect which deserves to be more thoroughly investigated concerns the
robustness of the selection procedures to the choice of the threshold c. These
insights will be pursued in a forthcoming paper.
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