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Abstract

We provide a polynomial algorithm that determines for any given undi-
rected graph, positive integer k and a separable convex function on the degree
sequences, k edges that minimize the function. The motivation and at the
same time the main application of the results is the problem of finding a
subset of k vertices in a line graph, that cover as many edges as possible (we
called it maxfix cover even though k is part of the input), generalizing the
vertex cover problem for line graphs, equivalent to the maximum matching
problem in graphs.

The usual improving paths or walks for factorization problems turn into
edge-disjoint unions of pairs of such paths for this problem. We also show
several alternatives for reducing the problem to b-matching problems — lead-
ing to generalizations and variations.

The algorithms we suggest also work if for any subset of vertices, upper,
lower bound constraints or parity constraints are given. In particular max-
imum (or minimum) weight b-matchings of given size can be determined in
polynomial time, combinatorially, in more than one way, for arbitrary b. Fur-
thermore, we provide an alternative ”gadget reduction” method to solve the
problems which leads to further generalizations, provides ideas to alter the
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usual optimization problems themselves, and solves the arising problems in
polynomial time. We also show the limits of the methods by proving the NP-
completeness of some direct extensions, in particular of the generalization to

all convex functions.

1 Introduction

Let G = (V, E) be a graph that may contain loops and parallel edges, and
let £ > 0 be an integer. The main result of this work is to provide a polyno-
mial algorithm for finding a subgraph of cardinality £ that minimizes some
pre-given objective function on the edges or the degree sequences of the
graph. The main example will be the sum of the squares of the degrees
(minsquare problem) showing how the algorithm works for the sum of any
one dimensional convex function of the degrees (Section 2.3), including also
linear functions (Section 2.5). This is the minconver factor problem. The
sum of squares function is general enough to exhibit the method in full gen-
erality, and at the same time concrete enough to facilitate understanding,
moreover this was originally the concrete problem we wanted to solve.

It also arises in a natural way in the context of vertex-covers of graphs,
and this was our starting point:

given a graph and an integer ¢ (as part of the input) find a subset of
vertices of cardinality ¢ that cover the most number of edges in a graph, that
is find a mazfiz cover. This problem, introduced by Petrank in [16] under the
name of maz vertex cover, obviously contains the vertex cover problem, so it
is NP-hard in general. However, VERTEX COVER is polynomially solvable
for line graphs (it is straightforwardly equivalent to the maximum matching
problem). What about the maxfix cover problem in line graphs ?

The following figure shows such a maxfix cover: The vertices of G are
represented with small balls; nine edges of L(G)- that cover altogether 60
edges— have a big ball in their middle. (In Maxfix Lineland candles of birth-
day cakes are put in the middle of edges of a graph drawn on the cake. A
candle in the middle of an edge e selects all the incidences of that edge to
have a (fictitious) candle (that is, the total number of candles is equal to
the number of covered edges of the line graph). The figure shows how to
celebrate 60th birthdays with only 9 candles.

A maxfix cover for L(G) is a set 7' C E(G) minimizing the number of



Figure 1: A sixtieth birthday cake with nine candles

incident pairs of edges in the remaining edge-set F' = E(G)\ T, |F| =k =
n—t. Clearly, the number of such pairsis ) (dFQ(”)). Since the sum of the
degrees is constant, this is equivalent to minimizing >, d%(v). This sum
will be called the value of F'. A subgraph of k edges will be called optimal if
it minimizes this value, and the problem of finding an optimal subgraph of
k edges will be called the minsquare problem. The main result of this work

is to provide a polynomial algorithm for solving this problem.

Let us introduce some notation and terminology used throughout the
paper. Let G be a graph. Then n := n(G) = |V(G)|; E(X) (X C V(G))
is the set of edges induced by X, that is, with both endpoints in X; §(X)
denotes the set of edges with exactly one endpoint in X. For X C V(G) let
d(X) = [6(X)|. We will not distinguish subgraphs from subsets of edges.
For a subgraph F' C E(G) let dp(v) (v € V) be the degree of v in F,
that is, the number of edges of F' incident to v. The maximum degree of
G will be denoted by Ag. The line graph of G will be denoted by L(G).
The FEuclidean norm of a vector a € R", denoted by ||al|, is the number

o a? (thus ||al]* = Y21, a?). The l; norm of a, denoted by |al, is the
number |af 1= D" |a;|.

Given b : V(G) — NN, a b-matching (also known as simple b-matching
or b-factor) is a subset of edges F' C E(G) such that dp(v) = b(v) for every
v € V(G); bis a degree sequence (in G) if there exists a b-matching in G.



More generally, an (f, g)-matching, where f,g: V(G) — N, is FF C E(G)
with f(v) > dp(v) > g(v) for all v € V(G).

In the same way as minimum vertex covers are exactly the complemen-
tary sets of maximum stable sets, maxfix covers are the complementary sets
of ‘minfix induced subgraphs’, that is, of sets of vertices of pre-given cardi-
nality that induce the less possible edges. (Ad extrema 0 edges, when the
decision version of the minfix induced subgraph problem with input k& spe-
cializes to answering the question ‘a > k 7°.) Similarly, minfix covers are the
complements of maxfix induced subgraphs.

As we will see in 4, of all these variants the only problem that can be
solved in relatively general cases is maxfix cover. The others are NP-hard
already in quite special cases.

The maxfix cover problem has been even more generally studied, for hy-
pergraphs: find a set of vertices of given size t € IN that hits a maximum
cardinality (highest weight) set of hyperedges. For Fdge-Path hypergraphs,
that is hypergraphs whose vertices are the edges of a given underlying graph
G and whose set of hyperedges is a given family of weighted paths in G,
several results have been achieved:

In [1] and [2] polynomial algorithms have been worked out for special
underlying graphs (caterpillars, rooted arborescences, rectangular grids with
a fixed number of rows, etc.) and for special shaped collection of paths
(staple-free, rooted directed paths,L-shaped paths, etc.), and it has been
shown that the problem is NP-complete for a fairly large set of special Edge-
Path hypergraphs. When the Edge path hypergraph has the form (G, P),
P being the family of all paths of length two in G, the problem is a maxfix
cover problem in the line graph L(G) of G.

Until the last section we will state the results in terms of the minsquare
problem, because of the above mentioned application, and the general us-
ability and intuitive value of the arguments.

A support for the polynomial solvability of the minsquare problem is gen-
eral convex optimization. It is well-known [10] that convex function can be
minimized in polynomial time over convex polytopes under natural and gen-
eral conditions. Hence convex functions can be optimized over ‘b-matching
polytopes’ and intersections of such polytopes with hyperplanes (or any other
solvable polyhedron in the sense of [10]). However, the optima are not nec-
essarily integer, neither when minimizing over the polytope itself, nor for the
intersection.



Minimizing a convex function over b-matchings, that is the integer points
of the b-matching polytope, is still easy with standard tools: single improving
paths suffice, and the classical algorithms for finding such paths [9], [17] do
the job. However, for our problem, where the set of b-matchings is intersected
with a hyperplane, single paths do not longer suffice (see at the end of this
Introduction); yet we will show that pairs of paths along which a non-optimal
solution can be improved do always exist and yield a polynomial algorithm.

In this way the integer optimum of a quite general convex function can
still be determined in polynomial time over the intersection of ( f, g)-matching
polyhedra with hyperplanes. This is less surprising in view of the following
considerations.

Intuitively, the best solution is the ‘less extremal’ one. Clearly, if r :=
2k/n is an integer and G has an r-regular subgraph, then it is an optimal
solution of the minsquare problem. This is the ‘absolute minimum’ in terms
of k and n. The existence of an r-regular subgraph is polynomially decidable
(with the above mentioned methods) which makes the problem look already
hopeful: it can be decided in polynomial time whether this absolute minimum
can be attained or not.

If 2k/n is not integer, it is also clear to be uniquely determined how
many edges must have degree [2k/n] and how many |[2k/n| in a subgraph,
so as the sum of the degrees of the subgraph is 2k. However, now it is less
straightforward to decide whether this absolute minimum can be attained
or not, since the number of all cases to check may be exponential. On the
example of Figure 1 we have k =9, n = 7 so the absolute optimum consists
of four vertices of degree 3 and three vertices of degree 2. It is attained by
the nine selected edges (with the candles) showing that they form an optimal
cover. At first sight the general problem may appear hopeless.

Yet the main result of the paper states that a subgraph F' is optimal if
and only if there is no vector t : V(G) — IN such that:

— t is a degree sequence in G.

= Y ovev dr(v) = >, oy t(v), that is each t-matching has the same size as
F,

= Y pev ldr(v) — t(v)] < 4, that is ¢ differs from F by at most 4 in
l1-norm), and



D ver t2(v) < X cv di(v), that is, ¢ has better objective value than F.

Since the number of vectors v that satisfy the last three conditions is
smaller than n*, and it can be decided for each whether it satisfies the first
condition by classical results of Tutte, Edmonds-Johnson, and various other
methods (see accounts in [9], [17], [13]), the result implies a polynomial
algorithm for the minsquare problem.

If ¢ satisfies the above four conditions, the function (vector) k :=t — dp
will be called an improving vector with respect to F'. We have just noticed
the following.

(1) If an improving vector exists it can be found in polynomial time.

The graph G consisting of two vertex-disjoint triangles shows that one cannot
replace 4 by 2 in the second condition, unlike in most of the other factoriza-
tion problems. Indeed, choose k = 4, and let F' contain the three edges of
one of the triangles and one edge from the other. The value of this solution
is 14, the optimum is 12 and one has to change the degree of at least four
vertices to improve (Figure 2). Optimizing linear functions over the degree
sequences of subgraphs of requested cardinality & (part of the input) is not
algorithmically simpler than the results we prove (even if the statements that
make this possible can be made easier in this case see Section 2.5 ), and the
same results hold for a quite general set of objective functions (see Section
2.3). If we have put in the center minsquare factors it is because the origins
of the problem and because we still find them to be a representative example
of the new problems we can solve.

VAVAVAVAS

value : 14 value : 12

Figure 2: To improve, the degrees must change in four vertices



The paper is organized as follows: in Section 2 we develop the key lemmas
(Section 2.1) that are behind the main result and make the algorithm work.
Then we prove the main result and state a polynomial algorithm that solves
the minsquare problem (Section 2.2). In Sections 2.3, 2.4, 2.5 we character-
ize the functions for which the procedure is valid, exhibit some additional
conditions for which the method works, and state some connections to other
problems. In Section 3 we provide an alternative method for solving the
mincovex factor problem that leads to further generalizations. Finally in
Section 4 we show the NP-completeness of some natural variations of the
problem.

2 Main Results

The following result is a variant of theorems about improving alternating
walks concerning b-matchings (f-factors). In this paper we avoid speaking
about refined details of these walks. We adopt a viewpoint that is better
suited for our purposes, and focuses on degree sequences. (In Section 2.5 we
mention some ideas concerning efficient implementation.)

Let G be a graph, and F, F’ C E(G). Then P C E(G) will be called an
F — F' alternating walk, if P C FUF" and )\ |dpar(v) — dpap(v)| < 2;
evenif |y v dpap(v)—dpap(v)| =0, oddif | >, _\ dpap(v)—dpap (V)] = 2.
Clearly, an even walk contains the same number of edges of F' and F’, and
in an odd walk one of them has one more edge than the other.

An F — E(G) \ F-alternating walk that has at least as many edges in F’
as in E(G) \ F will be simply called an F-walk. For an F-walk P (where
F is fixed) define kp : V(G) — Z by rkp(v) := dp\r(v) — dprp(v), v € V;
clearly, |kp| = 2 or 0; kp will be called the change (of F along P).

2.1 The key-facts

We state here three simple but crucial facts:

(2) If F C E(G) and P is an F-alternating walk, then dr + kp is a
degree sequence.

Indeed, dr 4+ Kkp is the degree sequence of FAP, where A denotes the sym-
metric difference, FAP := (F'\ P)U (P \ F).



In other words, an alternating walk is a subgraph P of GG that has the
property that dpnr = dpnp in all but at most two vertices of G. The degree
of F' and F’ can differ in two vertices (by 1) or in one vertex (by 2). We call
these vertices the endpoints of the alternating walk, and if the two endpoints
coincide we say that the vertex is an endpoint of the path with multiplicity

2 (twice).
Note that we will not use any fact or intuition about how these paths
‘go’,the only thing that matters is the change vector kp = (dpnp(v) —

dprr(V))vey, and the fact (2) about it: adding this vector to the degree
sequences of F', we get a feasible degree sequence again.

If |dpar(v) — dpap(v)] = 0 for all v € V| that is in every node of P
there is the same number of incident edges in F' and F”, then we say it is an
alternating cycle.

The following statement is a variant of folklore statements about improv-
ing paths concerning graph factors, generalizing Berge’s improving paths for
matchings:

(3) Let F, F" C E. Then FAF' is the disjoint union of alternating walks,
so that for allv € V, v is the endpoint of |dp(v) — dp(v)| of them (with
multiplicity).
Equivalently, for every v € V, the alternating walks in (3) starting at v
either all start with an F-edge or all start with an F’-edge.

Indeed, to prove (3) note that FAF”, like any set of edges, can be de-
composed into edge-disjoint alternating walks: edges, as one element sets
are alternating walks, and they are edge-disjoint. Take a decomposition that
consists of a minimum number of walks. Suppose for a contradiction that
for some u € V(G) there exist two walks, P; and P, such that P, N F has
more edges in u than Py NF’, P,N F has less edges in v than P, N F”’, and let
P = P UP,. It follows that u is an endpoint of both P; and P, moreover
with different signs, and we get: >\, |dprr(v) — dpap (V)] <

Y ldpar) = dpar (0)] + Y ldp,ar(v) — dpoap(v)] —2<2+2-2=2.
veV veV

Therefore, P is also an alternating walk, hence it can replace {P;, P} in
contradiction with the minimum choice of our decomposition, and (3) is
proved. L]



We see that in case |F| = |F’|, the number of alternating walks in (3)
with one more edge in F' is the same as the number of those with one more
edge in F’. It follows that the symmetric difference of two subgraphs of
the same size can be partitioned into edge-sets each of which consists either
of an alternating path (also allowing circuits) or of the union of two (odd)
alternating paths.

The statement (3) will be useful, since walks will turn out to be algorith-
mically tractable. For their use we need to decompose improving steps into
improving steps on walks.

Let a and A be given positive integers, and let §(a, \) := (a + \)? — a? =
2Xa + A%, Then we have:

If Ay and Ay have the same sign, then 0(a, A\1 + A2) > d(a, A1) + d(a, A\2).

Indeed, 2(A; + A2)a+ (A1 + A2)? > 2\1a + 2X\2a + A2 + )3, since the left hand
side minus the right hand side is 2A\;\s > 0, for A\; and Ay have the same
sign.

For each given factor F' and each given A € Z" @ define §(F, \) as ||dp +
Al = lldr|]?, that is,

S(F,A) = > 8(dp(v), A(v)).

veV(Q)

(4) If M1, . .., A\ are vectors such that for everyv € V(G), A\ (v),..., A\(v)
have the same sign (this sign may be different for different v) and A\ =
Mo+ A then 0(FyN) > 0(Fo ) + ...+ 0(F, A\y).

Indeed, apply the inequality stated above to every v € V, and then sum up
the n inequalities we got. U]

Now if F is not optimal, then by (3) and (4) one can also improve along
pairs of walks. The details are worked out in the next section.

2.2 Solving the Minsquare problem

Recall that for given F' C E(G) an improving vector is a vector k : V(G) —
Z such that b := dr + r is a degree sequence, > v ) [£(v)] < 4, and

Y owey b(0)? <30 oy dp(v)?, while Y, dp(v) =Y, o b(v).



Theorem 2.1. Let G be a graph. If a factor F is not optimal, then there
erists an improving vector.

Proof. Let Fy be optimal. As F' is not optimal one has

0> |ldg|* = ldp|* = ldp + dr, — dpl|* = ||dpl]* = 6(F,dp, — dr)

By (3) FAF, is the disjoint union of m € IN F-alternating paths Py, ..., P,,.
In other words, Fy = FAP,A ... AP,,, and using the simplification x; := kp,
we have:

dFo = dF + i K,
=1

where we know that the sum of the absolute values of coordinates of each «;
(t=1,...m) is £2 or 0. Since F' and F{, have the same sum of coordinates

{ie{l,...om}: Y wi(w)=2}=[{ie{l,...om}: Y  riv)=-2},
)

veV(G) veV (G

and denote this cardinality by p.

Therefore those ¢ € {1,...,m} for which the coordinate sum of x; is 2
can be perfectly coupled with those whose coordinate sum is —2; do this
coupling arbitrarily, and let the sum of the two members of the couples
be kY,...,k;,. Clearly, for each x} (i = 1,...,p) the coordinate-sum is 0,

ZUEV(G) |ki(v)] < 4, and
p
dpy = dp + Z K.
i=1

Now by (2) each of dp + & (i = 1,...,p) is a degree sequence and by (3)
ri(v) and r(v) have the same sign, v € V(G), 7',j" € {1,...,p}. To finish
the proof we need that at least one of these is an improving vector, which

follows from (4):

P

p
0> 0(F.dp, —dp) =0(F,> k) >> 6(F,r})
=1

=1

It follows that there exists an index 4, 1 <1 < p such that §(F, ;) < 0.
[]

10



Corollary 2.1. The minsquare and the mazfix-cover problem can be solved
in polynomial time.

Indeed, the maxfix cover problem has already been reduced (see begin-
ning of the introduction) to the minsquare problem. Since the value of any
solution, including the starting value of the algorithm, is at most n?, and an
O(n?®) algorithm applied n* times decreases it at least by 1, the optimum can
be found in at most O(n'?) time. (]

It can be easily shown that the improving vectors provided by the theo-
rem are in fact alternating walks - similarly to other factorization problems
- or edge disjoint unions of such alternating walks. If someone really wants
to solve such problems these paths can be found more easily (by growing
trees and shrinking blossoms) than running a complete algorithm that finds
a b-matching. By adding an extra vertex, instead of trying out all the n*
possibilities, one weighted matching-equivalent algorithm is sufficient for im-
proving by one. (Adding the nonedges with higher weights one can reformu-
late the existence of pairs of edge-disjoint improving paths as one matching
problem.) However, the goal of this paper is merely to prove polynomial
solvability. Some remarks on more refined methods can be found in 2.5.

Various polynomial algorithms are known for testing whether a given
function b : V' — IN is a degree sequence of the given graph G = (V) E).
Such algorithms are variants, extensions of Edmonds’ algorithm for 1-matchings
[7], and have been announced in [8], or can be reduced to matchings alto-
gether with a variety of methods for handling these problems, for surveys
see [13], [9], [17]. The complexity of the matching algorithm is bounded by
O(n*?), and can be used for making an improving step.

Then n? calls of this matching subroutine are sufficient; the resulting
somewhat more careful algorithm uses O(n®°) operations for finding a min-
square factor.

2.3 Characterizing when it works

We will see here that the proof of Theorem 2.1 works without change for
the minconver factor problem, that is, if we replace squares by any set of
functions f, : IN — R (v € V) for which 0(F, ) := 37 g foldr(v) +
A) — fo(dp(v)) satisfies (4). This is just a question of checking. However,

11



a real new difficulty arises for proving Corollary 2.1: the difference between
the initial function value and the optimum is no more necessarily bounded
by a polynomial of the input, it is therefore no more sufficient to improve the
objective value by 1 in polynomial time.

The problem already arises for linear functions: suppose we are given
rational numbers p, (v € V(G)) on the vertices, and f,(x) := p,z. The
length of input is O(n log max{|p,| : v € V(G)}), but if we cannot make sure
a bigger improvement than by a constant, then we may need O(n max{|p,| :
v e V(G)}) steps.

However, this is a standard problem and has a standard solution, since
a slight sharpening of (1) is true: the improving vector x with the highest
|0(F, k)| value can also be found in polynomial time. Indeed, one has to
take the optimum of a polynomial number of values. Together with the
following standard trick the polynomial bound for the length of an algorithm
minimizing >, ¢y ) fo(dr(v)) among subgraphs F' C E(G) can be achieved:

(5) Let Fy, (t € IN) denote the current factor and F* the optimal one.
Starting with an arbitrary factor and choosing repeatedly an improving
vector k with mazimum |0(Fy, k)| (that is, minimum §(Fy, k) < 0) value,
there are at most O(nlog max{|p,| : v € V(G)}) improving steps.

To see this observe first that, by (3) the number [ of alternating paths fac-
torizing the symmetric difference of two factors of the same size is at most
twice this common size, hence [ = O(m(G)). Let p; denote the change vector
where 6(F}, k) attains its minimum value over all change vectors k. We have
from the last inequality of the proof of Theorem 2.1:

0> f(dp) = f(dr,) = 6(Fy, dp — dp) = 0(Fy, > K}) > 16(Fy, ),
i=1
that is, f(dp,,) — f(dr) = 0(Fy, me) < 1/1(f(dp+) — f(dg,)). Tt follows that
the difference of the current solution from the optimum is multiplied in each
step by 1 — 1/1; after [ steps it is multiplied by approximately 1/e, and after
hl steps by 1/e". Since the input is rational, we can suppose it is integer,
and with h = O(nlog max{|p,| : v € V(G)}), after hl steps the difference of
the current and optimal solution is less than 1, that is, equal to 0. ]

Note that the case of linear functions that we use for an example can
be solved very easily independently of our results. It is a special case of

12



problems minimizing a linear function on the edges, that is of the following
problem: given w : E(G) — Z and k € IN minimize the sum of the edge-
weights among subgraphs of cardinality k. (The node-weighted problem can
be reduced to edge-weights defined with w(ab) := p, + py (a,b € V'); indeed,
then w(F) = > cy ) Podr(v).) Add now an extra vertex zo to the graph
and join it with every v € V(G) by dg(v) parallel edges. A minimum weight
subgraph with degrees equal to 2(|E(G)| — k) in z and dg(v) for all v € V
intersects £(G) in a minimum weight k-cardinality subgraph. (The same can
be achieved under more constraints see Section 2.5.)

Let us make clear now the relation of inequality (4) with some well-known
notions.

A function f: D — R (D C R") is said to be convex if for any =,y € D
and a,3 € R, a+ (3 = 1 such that ax + By € D we have f(az + By) <
af(x) + Bf(y). Note that we do not require D to be convex, that is for
instance D can also be any subset of integers.

A particular case of the defining inequality that will actually turn out to
be equivalent is

(f(21) + f(22))/2 = f((21 + 22)/2),

that is, say for x1 = a, ro = a + 2:
fla)+ fla+2) = 2f(a+1),

that is,

fla+2) = fla+1) > fla+1) = f(a).
We are not surprised to get this inequality, which characterizes supermodu-
larity, strictly related to discrete convexity, see Murota’s work [14]. Notice
indeed that g : 28(@) — 7 defined by g(F) = > vev() Jo(dr(v)) is super-
modular on E(G), when the f,’s are convex. Let us state the equivalence of

the above inequalities in a form useful for us: Let us state the equivalence of
these above inequalities in a form useful for us:

Lemma 2.1. The following statements are equivalent about the function f
whose domain is a (possibly infinite) interval:

(i) f is convex

13



(ii) For every integer i so that i,i — 1,i+1 € D(f): f(i) < (f(i — 1)+
fli+1))/2.

(iii) If x = @1+ xo, where x1, x5 have the same sign, then f(a+x)— f(a) >

Fla+ 1) — f(a) + fla+ ) — f(a). -

Indeed, (i) implies (ii) since the latter is a particular case of the defining
inequality for convexity. Suppose now that (ii) holds, that is, f(i+1)— f(i) >
f(@) — f(i — 1), and © = 21 + 23, where x; and x5 have the same sign as
x. Then applying this inequality |z;| times we get f(a + z) — f(a + x1) >
fla+x9) — f(a). (If x > 0, this follows directly; if < 0 then in the same
way f(a) — f(a + z2) > f(a+ x1) — f(a + x), which is the same.) This
inequality (after rearranging) is the same as (iii). So far we have not even
used the assumption about the domain.

We finally prove that (iii) implies (i). Let z,y,2 € D, z = Az + (1 — \)y.
Suppose without loss of generality x = 2z +r,y = 2 — s,r, s € IN, and prove

(s +7)f(2) < sf(x) +7rf(y).

Since by the condition all integers between z 41 and z — s are in the domain
of f, we have: f(z+7r)—f(2)=f(z4+r)—flz+r—=1)+ f(z+r—1)— f(z+
r—=2)+...+ f(z+1)—f(z) > r(f(z+1)— f(2)), and similarly f(z) — f(z —
) < s(7G: + 1) = J(0), whenee 1) — 1G =) < (5/1(f(s +7) = T

Rearranging, we get exactly the inequality we had to prove.

We need (4) to hold only for improving vectors, and this property does
not imply convexity. Conversely, convexity is also not sufficient for (4) to
hold: define f : R* — R with f(x,y) := max(x,y), and let u = (0,0),
A= (2k+1,2k+1), \y :=(k+ 1,k), Ao := (k,k+ 1), where k£ € IN. Then

flutN)=f(u) = 2k+1 < (b+1)+(k+1) = (f (utAa) = f () +(f (utA2) = f (u)).

2.4 Nonseparable Convex Functions

The convex functions that are the sums of one-dimensional convex functions
will be called separable. We showed in the previous section that our results
can be generalized to separable convex functions but they do not hold for
general convex functions. We prove here that the problems themselves are
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actually NP-complete for these. Indeed, convexity is not a strong constraint:
any function on the hypercube {0,1}" is convex.

Theorem 2.2. For any graph G = (V, E), V ={1,...,n} and a number k €
IN as inputs, it is NP-hard to compute the minimum of f(dp(1),...,dr(n))
(F C E||F|=k), given an oracle that computes f in polynomial time.

Proof. We reduce the Hamiltonian cycle problem for undirected graphs to

the problem stated in the theorem. Let G = (V, E) be an arbitrary graph.
Split the vertices of the complete graph Ky on V into n — 1 vertices, that

is, consider the graph H on n x (n — 1) vertices, and the function f, where

— V(H) is the set of ordered pairs (i, 7), i # j where (i, j) represents the
(split) endpoint of the edge ij of Ky at vertex i.

— the edge set is a perfect matching: it consists of edges between (3, j)
and (j,4) for every pair i, j, i # j.

— Define f : V(H) — {0,1} to be 0 if and only if f(i,j) = 1 implies
f(,9) =1 and {ij : f(i,5) = 1} represents a Hamiltonian cycle of G,
and let it be 1 otherwise.

Clearly, f can be computed in polynomial time, and the minimization
problem for f is equivalent to the Hamiltonian cycle problem for G. L]

This result is of course somewhat banal: any combinatorial search prob-
lem where the searched object is a subset of edges can be encoded into
function f; if the problem is in NP, the function f will be computable in
polynomial time, and will be convex as any function whose domain is the
hypercube.

2.5 Minsquare factors under classical constraints

If we want to solve the minsquare problem for constrained subgraphs, that is
to determine the minimum of the sum of squares of the degrees of subgraphs
satisfying some additional requirements we do not really get significantly
more difficult problems. This is at least the case if the requirements are the
‘classical’ upper, lower bound or parity constraints for a subset of vertices.
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For such problems (3) can still be applied and the improving path theo-
rems hold. We state the most general consequence concerning the complexity
of the minsquare of constrained graph factors, that is, (f, g)-matchings with
parity constraints:

Theorem 2.3. Let G = (V,E) be a graph, k € N, [,u : V — N and
T CV. Then F C E, |F| = k minimizing Y., d3.(v) under the constraint
l(v) < dp(v) < u(v) for allv € V and such that dp(v) has the same parity
as l(v) for allv € T, can be found in polynomial time.

The sum of squares objective function can be replaced here by any ob-
jective function mentioned in the previous subsection. The cardinality con-
straint can actually be replaced by a degree constraint on an added new
vertex xy. Again, the linear case is much easier. (For instance the minimum
weight k-cardinality matching problem can be solved by adding a new vertex,
joining it to every v € V(G) and requiring it to be of degree n — 2k and re-
quiring every v € V to be of degree 1. In polyhedral terms this is an exercise
on Schrijver’s web page [18] and Exercise 6.9 in [5] — about the integrality of
the intersection of f-factor polyhedra with the hyperplane x1+...+z, = k to
which we provided thus one simple solution, and another through our main
result, both different from the one suggested in [5].)

The variants we mention can either be proved directly or with some simple
and well-known gadgets such as loops for parity constraints.

The results can also be generalized to more abstract structures such as
particular jump systems. In [3] this is worked out for “leap systems”, which
by now turned out to be a too restrictive structure and those results have
been subsumed by Murota’s results in [15] concerning the minimization of
M-convex functions. These seem to reach furthest possible in the direction
of generalizing our results to abstract structures.

3 Another Way, Another (GGeneralization

In this section we describe another polynomial algorithm for finding a min-
convex factor of a graph, where the given convex function is separable. In-
stead of n b-matching problems in (essentially) the original graph, this solu-
tion needs to solve just one b-matching problem in a graph that may have n
times as many vertices. The complexity of this solution is therefore higher,
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but it has the advantage of providing a framework into which other inter-
esting extensions can be encoded. Moreover it confirms that the “level of
difficulty” of our problem and a range of variants is the same as that of
b-matchings.

Given an arbitrary graph G = (V| E) we define a graph G with the help
of the following main gadget (see Figure 3): for every v € V let K, =
(A,, B,) be a complete bipartite graph on new vertices A, and B,, where
Ay =1, auaw) by By = {bye € € dg(v)}, |Av] = |By| = d(v). Now

join
— Every v € V to all the vertices of A,
— For every e = wv € F, join b, € B, with b, € B,.

To finish the definition of G add a new vertex s, and join it with every
vertex v € V with d(v) parallel edges. This vertex s will serve to control the
cardinality of the subgraphs we will be considering.

Given G = (V, F) and k € IN define a g-factor problem (in the goal of
reducing the existence of a minconvex factor of size k to it) with g : V(G) —
IN as follows: g(s) := 2(|E| — k), g(v) := d(v) for all v € V', and 1 on every
other vertex, that is on vertices of K.

Note first that each g-factor FofG corresponds to a (unique) subset F
|F| = k of G that will be called the natural image of the g-factor in G. The

definition is simple:
F:={e=uv € E(G) : bycb,. € F}

We have to check that |F'| = k. Indeed, since there are g(s) = 2(|E| — k)
edges incident to s, there are ) i, da(v) — g(s) = 2|E| = 2(|E| — k) = 2k
edges from v to A, (v € V) altogether. The rest of the vertices of A, is
matched in K, with the vertices of B,, and then the rest of the vertices of
B, is matched to other vertices of B := U,cy B,. Recall |A,| = |B,| (v e V)
and that g(z) = 1 for all x € V(K,). It follows that there are altogether 2k
vertices of B matched to other vertices of B by k edges; therefore |F| = k as
claimed.

Conversely, F' C E, |F| = k is the natural image of (several) g-matchings
of G, and one can get them by reversing the above correspondence.

17



(a) (b)

Figure 3: (a): The graph G for the triangle G' on {u,v,w} with one of its
g-factors F' (thick lines); (b): the natural image of F'in G.

Recall that a separable convex function on the degree sequences of a graph
is the sum of functions f, : {0,1,...,d(v)} — R on degree sequences, such
that for all v € V' :

foli+ 1) = fu(i) = fu(@) = fui = 1)
for all i =1,...,d(v) — 1 (obviously equivalent to Lemma 2.1 (ii)).

Theorem 3.1. Suppose we are given a graph G = (V, E) and a separable
convex function on its degree sequences given by the convex functions f, (v €
V). Then the natural image of minimum weight g-factors of G, where the
weights are defined by w(va,;) = f,(1) — fu(i — 1), (¢ = 1,...,d(v) — 1)
minimize )y, oy, fo(dp(v)) among subgraphs of G of size k.

Proof. Let F' be a minimum weight g-factor of G. By definition of natural
image it follows that the number of endpoints of edges of Fin A, is dr(v)
F' being the natural image of F. We can suppose without loss of generality
that the set of the endpoints of ' in A, is {ava, - s Qudp)}-

Indeed, if there exists i € IN such that va,; ¢ F and Vayit1 € F, then let
b € B, be the unique vertex (because of g(a,;) = 1) for which a,;b € F', and
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define .
F = (F \ {vamﬂ, av,ib}) U {Uav,ia a’v,i-i—lb}'

Because of convexity (see Lemma 2.1 (ii) ):
w(vav,iJrl) = fv(Z + 1) fv( ) > fv< ) fv(Z - 1) = w(vav,i)>

and therefore w(F) > w(F'), where F' is also a g-factor in G. By the
minimality of F equality must hold throughout and we can replace F by
F’. Thus we will suppose now that the endpoints of F itself in A, are
{av1, ... apdp@) - We have then

dr(v) dp(v)
w(ﬁ)zz Zw<vav,i)zz Z(fv( fv 1—1 va dF va

veV =1 veV =1 veV veV

and the last (subtracted) term is a constant (independent on dr(v)).
Conversely, for any F' C E(G), |F| = k, any F' C E(G) whose image is

F has weight at least Y, fu(dr(v)) — ZUGV 1.(0). L]

The model G is of course able to include a wider range of optimization
problems. In the above proof all weights are 0: we used only the possibility
of putting a weight on the edges of G incident to v, and under the constraint
of convexity (it should be noticed however that any weight function on E(G)
which is non decreasing in ¢ on the edges va, ; and zero elsewhere would define
a separable convex function on the degree sequences of the original graph,
according to Lemma 2.1). One can optimize on releasing these constraints
and putting weights on other edges as well. The minconvex objective function
plus a linear objective function can be minimized in this way, a case that has
been shown by Murota to be polynomially solvable as it is a particular case
of M-convex function minimization, see [15]. However, the following problem
does not fit any more into the framework of usual optimization problems :
assign weights to the edges of K, (v € V') and to the edges that join B, and
B, (u,v € V'), and let the edges incident to v (v € V) have 0 weight. We get
the following problem in terms of the original graph G:

Find F' C E of minimum cost where the costs are associated with triples
(v,uv,i), u,v € V, uv € E and i € [0,dg(u)] N IN, and express the “price” of
edge uw if it is the ¢-th in the order of the edges of F' at vertex v; furthermore
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one can add to this latter “price” an ordinary linear weight function on the
edges. This model actually contains the one of Theorem 3.1 (even though
the weights of edges incident to v € V are 0) : one gets this theorem as a
special case by putting on all edges of K, incident to a,; the weight —w(va, )
defined in the statement of the theorem. (In terms of the problem we defined
on G this means that the values assigned to (v, vu,i) do not depend on v.)

Combining the two kinds of conditions, and releasing the convexity as-
sumption one gets again different results that may be interesting. One can
also add some big weight to a group of edges of the auxiliary graph to express
the priority of some component of the cost. We leave to the reader the trial
of some of the quite big variety of possibilities, and especially the pleasure
of finding the appropriate one whenever a need occurs.

4 Weighted minsquare, maxsquare, minfix or
maxfix cover

Let us first see what we can say about the weighted minsquare problem. Let
ai,...,a, be an instance of a partition problem. Define a graph G = (V, E)
on n + 2 vertices V' = {s,¢,1,...,n}, and join both s and ¢ to ¢ with an
edge of weight a;. (The degree of both s and ¢ is n and that of all the other
vertices is 2.)

Prescribe the vertices of degree 2 (that is, the vertices i, i = 1,...,n)
to have exactly one incident edge in the factor, that is, the upper and lower
bounds (see Section 2.5) are 1. Then the contribution of these vertices to the
sum of squares of the degrees is constant and the sum of the contributions
of s and t is at least ((a; + ...+ a,)/2)?, with equality if and only if the
PARTITION problem has a solution with these data. (NP-completeness
may hold without degree constraints as well.)

We showed in the Introduction (Section 1) that the maxfix cover problem
in the line graph of G can be reduced to the minsquare problem in GG, which
in turn is polynomially solvable. We also exhibited how the relation between
transversals and stable sets extends to our more general problems. The
following two extensions arise naturally and both turn out to be NP-hard:

In the context of maxfix covers it is natural to put weights on the hyper-
edges. Associate weights to the hyperedges and the total weight of hyper-
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edges that are covered is to be maximized by a fixed number of elements.
The edge-weighted maxfix cover problem is the graphic particular case of
this, and even this is NP-hard, and even for cliques: the maxfix (vertex)
cover problem for a graph G = (V, E) is the same as the weighted maxfix
cover problem for the complete graph on V' with edge-weights 1 if e € E/, and
0 otherwise. Furthermore, a clique is a line graph (for instance of a star) so
edge-weighted mazfix cover is NP-hard for line graphs of stars and even for
0 — 1 weights.

In the same way as the maxfix cover problem is equivalent to the min-
square factor problem, minfix covers are equivalent to mazsquare factors.
This consists in determining for a given graph and number k£ a subset of
edges that mazimizes the sum of the squares of the degrees.

The maxsquare problem (and accordingly the minfix cover problem in line
graphs) is NP-hard ! Indeed, let’s reduce the problem of deciding whether
a clique of size r exists in the graph G = (V| F) to a maxsquare problem in
G = (V,E) with k := rAg (equivalently, to a min cover problem in L(G))
where G is defined as follows: subdivide every edge of GG into two edges with
a new vertex, and for all v € V add Ag — dg(v) edges to new vertices of
degree 1 each. We suppose that G' does not have loops or parallel edges.

Clearly, G is a bipartite graph, where the two classes are A := V and
B =V \V. In A all the degrees are equal to A = Ag, and in B they
are all at most 2. Then the edges of the factor we have to select forms a
bipartite graph as well, and therefore the size & = rA of the set F we have
to choose is equal to ) ., dr(a) = >, 5 dr(b) = |F| = k. Among sets of
numbers (bounded by A) whose sum is fixed (to k = rA) the largest sum of
squares is reached if each of the numbers is maximum — that is, we cannot do
better than selecting a set F' of edges of G where dp(a) = A for any a € A
incident to some edge of F' (and of course the number of such vertices is r),
and dp(b) = 2 for any b € B incident to some edge of F. This is of course
not always possible, but clearly, when it is, it provides the unique maximum,
and the subgraphs F' with these properties are in one-to-one correspondence
with the cliques of size r of G.

The problem of deciding whether G has a clique of size r is thus polyno-
mially reduced to the a maxsquare problem on G with k = rA, showing that
the maxsquare problem is also NP-hard.

One may think of the “fixed size” constraint in the minsquare factor
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problem as a constraint given on the rank of the factor F' in the uniform
matroid U, ; on E(G). So a direct generalization of the minsquare problem
would be the following: given a matroid M on E(G) find a basis F' of M
minimizing ||dr||? in G. Also this generalization turns out to be NP-complete
(in the ordinary sense): a hamiltonian path of a connected graph G is a basis
of the graphic matroid M(G) of G and minimizes ||dp||* among all F C E(G)
that are bases of M(G).

Among all these problems the most interesting is maybe the one we could
solve: indeed, it generalizes the maximum matching problem and the meth-
ods extend those of matching theory.

Acknowledgment: We are thankful to Maurice Queyranne and Akihisa
Tamura for their questions about the relation of (4) to convexity that gener-
ated the remarks in 2.3.
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