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Abstract

We propose a robust Cox regression model with outliers. The
model is fit by trimming the smallest contributions to the partial like-
lihood. To do so, we implement an ad-hoc algorithm, and show its
convergence to a global optimum. We discuss global robustness prop-
erties of the approach, which is illustrated and compared through
simulations. Finally, we develop an application to survival in a ran-
domized study about prostate cancer.
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1 Introduction

Robust estimation is a well developed topic in different areas of statistics
(e.g., Maronna et al. (2006), Hubert et al. (2008), Hawkins (1980)). It is well
known that many statistical procedures can be sensitive to violation of un-
derlying assumptions, and even non-parametric non-robust procedures may
break down due to outliers or departures from model assumptions. Visual
inspection may not reveal masked outliers, and it is practically infeasible in
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large dimensions, thereby making it very hard to detect covariate outliers
even when the number of predictors is small.

Survival analysis makes no exception. Despite the unspecified baseline
in the Cox model may be able to capture some aberrant behaviours, it can
still happen that even a single malicious observation is unduly influent, with
dramatic effects on the parameter estimates. A single observation sufficies
for violation of the assumption of proportionality of hazard, and this depar-
ture may not be detected by common checking methods. The Cox model is
sensitive even to slight departures from the assumptions: its influence func-
tion is not bounded (Reid and Crépeau, 1985). Lack of robustness of the
Cox model is clearly pointed out in the literature, see for instance Samuels
(1978), Bednarski (1989) and Minder and Bednarski (1996). Many studies
are devoted to diagnostics and assessing of robustness (for instance, to in-
fluential outliers) of the Cox model, e.g., Cain and Lange (1984), Reid and
Crépeau (1985). Many of these proposals rely on residual analysis ( Schoen-
feld (1982), Grambsch and Therneau (1994), Therneau et al. (1990), Nardi
and Schemper (1999)). It is well known anyway that residual analysis cannot
be directly used for outlier identification, since there is a very high likelihood
of masking (Becker and Gather, 1999) and swamping due to the fact that
outliers, when present, are used to obtain the parameter estimates. Robust
estimates are a pre-requisite for distance based outlier detection procedures.

Among the few attempts to robustify the Cox model estimators we point
the reader to Bednarski (1993), who proposes an approach based on a smooth
modification of the partial likelihood; and to Sasieni (1993a,b), who uses a
weighted partial likelihood method, e.g., a Wilcoxon-type weighting scheme.
Schemper et al. (2009) have demonstrated the usefulness of weighted partial
likelihood for computing average hazard ratios in presence of non-proportionality
of hazards.

The double weighting approach of Bednarski (1993) was refined in Bed-
narski (2007) to make it adaptive and invariant to time-transformation.

In this paper we describe a different approach for robust estimation in the
Cox model, which is based on trimming. Our approach is simple, but very
effective in terms of robustness. The idea of adaptively trimming observations
which are least likely to occur as indicated by the likelihood has also been
investigated in other contexts (e.g., Bednarski and Clarke (1993), Clarke
(2000)).

Outliers in survival studies can be interpreted as in Nardi and Schemper
(1999), who define outliers as individuals whose failure time is too short, or
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too long; with respect to the median survival as predicted by the model. This
definition is very useful since it serves as a unified approach to the problem
of treating covariate outliers, patients responding differently to a covariate
combination, misclassified covariates, misclassified events, and plain gross
outlying (too short or too long) survival times.

Our definition is slightly more general than that of Nardi and Schemper
(1999). We define outliers as individuals whose contribution to the (partial)
likelihood is small when compared to the other subjects. Hence, they can
be “too long living”, “too early dying”, or belong to any other configuration
of covariates and survival times which is unusual with respect to the fitted
model. Valsecchi et al. (1996) provide a detailed illustration on how long
surviving outliers may affect the estimates. Too long living individuals are
only one of the possible kind of outliers, but they probably are the most
harmful (i.e., influent) to the parameter estimates since they are present in
almost all risk sets.

We stress that we focus on robust estimation. In many survival studies,
outlier detection may follow (robust) estimation. Outliers may unveil im-
portant clinical information. In our approach, outliers are confined to the
trimmed set of observations, together with possibly few clean observations.
After robust estimation, we suggest formally assessing which observations are
outliers through residual analysis as in Nardi and Schemper (1999). After
robust estimation, residual analysis is not expected to suffer from problems
related to masking. Further, the covariates can be separately explored with
methods for detecting multivariate outliers.

The rest of the paper is as follows: in Section 2 we illustrate our method-
ology for robust survival analysis. In Section 3 we discuss robustness prop-
erties. We illustrate the method with a brief simulation study in Section 4
and on a real data example on prostate cancer in Section 5.

Non-optimized R (R Development Core Team, 2009) code for fitting the
proposed model is available from the authors upon request.

2 A Proportional Hazards model with out-

liers

Suppose we observe time to an event of interest for n independent subjects,
and let (ti, δi) denote the observed time and the event indicator for the i-th
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subject. Denote also by Xi a vector of subject specific covariates. In Cox
proportional hazard regression (Cox, 1972) the effects of covariates on the
hazard rate λ(t|xi) for the i-th individual is of the form:

λ(t|xi) = λ0(t) exp(β′Xi),

where λ0(t) denotes a non-parametric baseline hazard.
Regression parameters β are estimated by maximizing the partial likeli-

hood l(β), where

l(β) =
n∏

i=1


 exp(β′xi)∑

tj>ti

exp(β′xj)




δi

. (1)

The resulting maximum partial likelihood estimator (MPLE) is consistent
and asymptotically normal under regularity conditions.

Here we consider a Cox model with possible contamination. We denote
with I∗ the set of clean observations. Then, we have that

{
λ(t|xi) = λ0(t) exp(β′xi) If i ∈ I∗

λ(t|xi) = λi(t) If i /∈ I∗.
(2)

Contaminated observations arise from an unknown and observation-specific
unspecified hazard rate λi(t). This leads contaminated observations not to
give useful information for estimating the effects of covariates on the survival
times.

Suppose the set of clean observations is of cardinality dn(1 − α)e, for a
fixed 0 < α < 1. Denote with H(α) the set of all subsets of the vector of
integers (1, . . . , n), where each of these subsets is of cardinality dn(1− α)e.

The MPLE for model (2) is the maximizer of

lTRIM(β) = max
I∈H(α)

∏
i∈I


 exp(β′xi)∑

tj>ti,j∈I

exp(β′xj)




δi

(3)

That is, β̂ is the largest maximum over all possible maxima of the partial
likelihoods computed only on subsets of dn(1− α)e observations.

In practice, the proportion of contaminated observations α is not known,
and the user will set α slightly larger than the expected proportion of con-
taminated observations. See Section 2.2 for further discussion on this point.
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The simple idea of trimming the smallest contributions to the likelihood
is seen to lead to robust estimation in the Cox model. It is straightforward
to check that the resulting estimator is still consistent and asymptotically
normal under the assumption of no contamination. Of course, the asymptotic
variance will be inflated, resulting in a small loss of efficiency with respect
to the classical MPLE. This is the price that is (always) paid for robustness.

2.1 Model fit

Maximization of (3) is a much harder optimization problem than maximiza-
tion of (1). In order to obtain the maximum likelihood estimates for the
trimmed model we should solve a formidable combinatorial problem and
compare the maxima obtained under all the possible subsets of the data of
size dn(1 − α)e. This is obviously infeasible, as the number of such subsets
is

(
n

dn(1−α)e
)
, and grows very rapidly with n.

This kind of optimization problem is common in robust statistics, and
it is usually tackled via the use of ad-hoc algorithms. These algorithms use
repeated concentration steps (Rousseeuw and van Driessen, 1999), see also
Farcomeni (2009). Here it is not straightfoward to use these algorithms,
since individual contributions to the partial likelihood have cumbersome ex-
pressions (Verweij and Van Houwelingen, 1993). A different general method,
suitable for our problem, has been recently described in Chakraborty and
Chaudhury (2008), and we will now adapt it to the survival context.

Let

l(β, I) =
∏
i∈I


 exp(β′xi)∑

tj>ti,j∈I

exp(β′xj)




δi

(4)

denote the trimmed partial likelihood for the regression parameters β com-
puted in a given subset I.

Our algorithm (whose general iteration is summarized in Algorithm 1)
is initialized from a set I of observations of cardinality dn(1 − α)e. This
initialization set can be chosen at random, or a set of likely clean observations
can be used if available. Given I, β̂ is estimated via the usual score equations
for the Cox model, restricted to the observations in I, and the corresponding
maximum partial likelihood is recorded.

The algorithm then follows an acceptance-rejection scheme similar to
Metropolis-Hastings in MCMC. At each iteration, a new proposal for the
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Algorithm 1 General iteration for maximization of trimmed partial likeli-
hood

for k = 1, . . . , kmax do
for i ∈ I do

randomly sample a candidate i′ ∈ IC .
let Icand be the set of positions equal to I, except that i is replaced
with i′.
Let

τk := log(k + 1)/D (5)

β̂ := arg max
β

l(β, I)

β̂cand := arg max
β

l(β, Icand)

p := min(eτk(log(l(β̂cand,Icand))−log(l(β̂,I))), 1) (6)

Let U be a random draw from a Bernoulli with parameter p.
if U = 1 then

I(i) := i′.
end if

end for
end for

optimal subset is chosen at random by changing a single entry of the current
subset I. The maximum likelihood corresponding to the randomly sampled
candidate subset Icand is then recorded. Whenever this maximum is larger
than the maximum partial likelihood corresponding to the current subset, it
is accepted with a probability p = 1. If the likelihood is not increased, the
candidate is accepted with a probability p < 1, so that the algorithm is not
trapped in local optima.

This probability p, given in expression (6), is a function of the itera-
tion number k and of the difference between the current and candidate log-
likelihoods. More precisely, it decreases with the iteration number k so that
in the first few iterations of the algorithm it is possible to excape local op-
tima while in the last iterations, when the global mode is more likely to have
been found, it is unlikely to explore other regions of the parameter space. Of
course, this probability of acceptance is also always proportional to the like-
lihood ratio between the proposal and the current subset; and when the new
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proposal corresponds to a slightly lower likelihood than the current subset,
p is very small regardless of the iteration number k.

There are two tuning parameters: kmax and D. The first tuning param-
eter controls the maximum number of iterations, and should be set large
enough that in the last few iterations cycle p is always either equal to 1 or
approximately zero. The second is instead related to the maximal expected
change in the log partial likelihood when a single observation is changed in
the subset I (refer to Chakraborty and Chaudhury (2008) for further de-
tails). The choice of D has consequences only on the speed of convergence
and acceptance ratio for the candidate subsets. Unless stated otherwise, we
will set kmax = 10000 and D = 0.1n(1− α).

Formally, we can prove the following theorem:

Theorem 1. Fix 0 < D < n(1−α). For any initial subset I0, for Algorithm
1 we have that

P (Ik ∈ H) → 1

as k →∞, where Ik is the subset obtained at the k-th iteration and H denotes
the set of all global optima of the trimmed partial likelihood.

Proof. Note that if max{|(log(l(β̂I′ , I
′))− log(l(β̂, I)))|} = 0 then the thesis

trivially holds.
Now suppose max{|(log(l(β̂I′ , I

′))− log(l(β̂, I)))|} 6= 0.
The proposed algorithm trivially satisfies conditions 1-3 in (Chakraborty

and Chaudhury, 2008, Pag. 686). Define

∆k = max{|τk(log(l(β̂I′ , I
′))− log(l(β̂, I)))|},

where I and I ′ differ only by one coordinate, and τk = log(k + 1)/D, as
defined in (5). It only remains to prove that

∑

k

e−n(1−α)∆k = ∞. (7)

Now, (7) holds since

∑

k

e−n(1−α)∆k ≥
∑

k

1

k + 1
= ∞,

and the trimmed partial likelihood l(β, I) is identifiable. Consequently, all
conditions of Theorem 1 in Chakraborty and Chaudhury (2008) are satisfied,
and the thesis follows.
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An implication of Theorem 1 is that if the number of iterations kmax is
large enough, the algorithm converges to the global maximum for (4), pro-
vided the maximum partial likelihood estimators computed on each subset
are the true global maxima for each subset. The initial set I is consequently
irrelevant if kmax is large enough. This is confirmed by our experience: Algo-
rithm 1 is not heavily dependent on the starting values, and even when the
initial set I is contaminated, outliers are dropped quite soon. Nevertheless,
we adopt a multistart strategy in order to increase the odds of finding soon
(i.e., for smaller values of kmax) the global maximum: the algorithm is repli-
cated (say 10 times) from different randomly chosen starting solutions and
the solution corresponding to the largest trimmed partial likelihood retained.

We now discuss standard errors for β̂. Since there is additional uncer-
tainty related to the composition of the set of clean observations, the standard
errors obtained from the score equations of the selected set I may grossly un-
derestimate the true standard errors. A formal derivation of the standard
errors for the trimmed estimators is cumbersome. On the other hand, we
can propose a simple strategy based on the bootstrap. There are different
approaches to bootstrap for censored data (refer for instance to Davison and
Hinkley (2006)). In our implementation we used a simple case resampling.
The n vectors (ti, δi, Xi) are resampled with replacement and the robust Cox
model is estimated on the resampled data. The operation is repeated a large
number of times (say B = 999 times). Standard errors and confidence in-
tervals can be directly estimated from the vector of estimates obtained after
resampling. See also Burr (1994).

2.2 Choosing the trimming level

A general rule for choosing the trimming level is still an open issue in robust
statistics. It is anyway acknowledged that if the trimming level is set too low
malicious outliers can break down the estimates; while on the other hand, a
high level may lead to a mild loss of efficiency, which is not substantial in
presence of a moderate to large number of observations. A rule of thumb in
related contexts is to set α = 0.2 or even α = 0.25. In the survival context,
where many observations could be censored and the nonparametric baseline
for the Cox model should capture mildly aberrant behaviours, we suggest
setting α even lower. In the simulations and real data application we will
always set α = 0.1.

A more formal approach would be given by minimizing an estimate of
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the asymptotic variance of the estimates, as in Bednarski and Clarke (1993).
Unfortunately, an explicit expression is not available for our trimmed Cox
model. A formal choice could hence be performed through a bootstrap for
each value on a grid of possible trimming levels, but we only expect a mild
improvement in performance and do not pursue this approach further in this
paper.

3 Robustness properties

In this section we study the global robustness properties of the proposed
procedure. An important concept in global robustness is the one of breakdown
point. Hodges (1967) and Donoho and Huber (1983) define a finite-sample
breakdown value as the smallest fraction of outliers that can break down the
estimate in a sample. The asymptotic breakdown value (Hampel, 1971) is the
breakdown value of a procedure for an infinite number of observations. An
infinitesimal asymptotic breakdown point denotes a non-robust procedure.

Applying this concept to proportional hazards regression, we define the
finite sample partial breakdown point of β̂ as

εp
n(β̂, (t, δ,X)) =

1

n
min

{
m : sup

(t′,δ′,X′)m

∥∥∥β̂((t, δ,X))− β̂((t′, δ′, X ′)m)
∥∥∥ = ∞

}

(8)

where β̂((t, δ,X)) is the vector of regression parameters estimated on the

original data, and β̂((t′, δ′, X ′)m) is instead estimated on the data in which
m rows have been replaced by arbitrary values.

It has been pointed out (e.g., Kalbfleisch and Prentice (2002), p. 144) that
the addition of a single divergent observation may breakdown the classical
MPLE. Hence the partial breakdown point for classical Cox regression is
upper bounded as

εp
m(β̂, (t, δ,X))) ≤ 1

n
,

and hence infinitesimal.
Let us now focus on our approach. Let us suppose that (nα) observa-

tions are contaminated. If Algorithm 1 is applied with a trimming level
exactly equal to α, the outliers can be discarded and do not contribute to
the computation of the estimate. If there is just one additional contami-
nated observation, this can not be trimmed, and the procedure breaks down.
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Hence, for Algorithm 1,

εp
m(β̂, (t, δ,X)) ≤ nα + 1

n
= α +

1

n

Consequently, the maximal asymptotic partial breakdown point for our pro-
cedure is positive and coincides with the trimming level.

4 Simulations

We now illustrate the properties of the trimmed procedure with a brief sim-
ulation study.

We simulate clean data from the Cox model

λ(t|Xi) = λ0(t) exp(β1x1i + β2x2i), (9)

with λ0(t) = 1, x1i generated randomly from a uniform random variable and
x2i from a Bernoulli with parameter p = 0.4, and sample size n.

We then record the largest and smallest values of exp(β1x1i + β2x2i), call
them HRlow and HRhigh, as simulated under model (9). Then, we select
at random a proportion πcont of observations, and regardless of their true
covariate configuration we generate their survival times according to

λ(t|Xi) = λ0(t)(uiHRlow + (1− ui)HRhigh),

where ui is a random draw from a Bernoulli with parameter 0.5. These
observations can be considered as outlying (and possibly influent).

In order to simulate censoring, we generate a vector C1, . . . , Cn of i.i.d.
random variables, uniformly distributed in [0, Tmax]. The parameter Tmax is
set as a function of β so to have a censoring proportion πcens of approximately
either 0.05 or 0.25.

We then fit our Algorithm 1 on the fabricated data, initialized from a
randomly chosen starting solution and trimming level α = 0.1.

We also compare our approach with Bednarski and Sasieni methods (as
in R packages coxrobust and coxphw), other than the classical Cox model,
by fitting the three competitors on the same fabricated data.

We evaluate the performance of each method by recording the Sum of
Squared Errors (SSE), i.e.,

SSE =
(
β̂1 − β1

)2

+
(
β̂2 − β2

)2
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We replicate data generation and model fitting for 5000 times for each
simulation setting, and finally report the median SSE in Table 1 for each
technique.

Cox Bednarski Sasieni Trim Cox Bednarski Sasieni Trim
n = 250 n = 500

πcont πcens β1 = 1, β2 = −1
0 0.05 0.050 0.061 0.076 0.086 0.025 0.030 0.038 0.039
0 0.25 0.060 0.075 0.097 0.091 0.030 0.036 0.046 0.043
0.05 0.05 0.130 0.079 0.083 0.079 0.122 0.049 0.046 0.045
0.05 0.25 0.085 0.083 0.098 0.082 0.055 0.048 0.054 0.044
0.075 0.05 0.192 0.098 0.095 0.089 0.189 0.068 0.056 0.048
0.075 0.25 0.105 0.100 0.111 0.093 0.080 0.063 0.069 0.058
0.1 0.05 0.267 0.199 0.153 0.090 0.260 0.098 0.072 0.062
0.1 0.25 0.137 0.175 0.181 0.095 0.113 0.089 0.090 0.080
πcont πcens β1 = 1, β2 = −3
0 0.05 0.072 0.087 0.131 0.150 0.037 0.043 0.064 0.064
0 0.25 0.089 0.100 0.164 0.160 0.041 0.049 0.081 0.074
0.05 0.05 1.711 0.660 0.232 0.109 1.785 0.661 0.207 0.048
0.05 0.25 0.762 0.435 0.324 0.118 0.826 0.440 0.282 0.103
0.075 0.05 2.273 1.011 0.402 0.098 2.413 1.036 0.385 0.048
0.075 0.25 1.163 0.708 0.553 0.103 1.214 0.702 0.537 0.157
0.1 0.05 2.904 1.445 0.648 0.100 2.970 1.449 0.618 0.048
0.1 0.25 1.612 1.058 0.897 0.149 1.634 1.040 0.881 0.366
πcont πcens β1 = 3, β2 = −3
0 0.05 0.085 0.099 0.154 0.178 0.042 0.048 0.072 0.076
0 0.25 0.111 0.127 0.208 0.204 0.053 0.061 0.100 0.095
0.05 0.05 2.205 1.061 0.380 0.140 2.649 1.244 0.404 0.108
0.05 0.25 0.686 0.639 0.665 0.203 0.861 0.701 0.702 0.211
0.075 0.05 3.328 1.795 0.783 0.159 3.609 1.960 0.801 0.101
0.075 0.25 1.306 1.182 1.368 0.251 1.425 1.226 1.404 0.460
0.1 0.05 4.322 2.637 1.357 0.180 4.464 2.699 1.353 0.093
0.1 0.25 2.013 1.887 1.980 0.306 2.095 1.904 2.061 0.509

Table 1: Median SSE for different proportions of contamination πcont, cen-
soring πcens, sample size n and β = (β1, β2). Cox stands for classical Cox
regression, Trim for our proposal. The results are based on 5000 replications.
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It is interesting to note that under no contamination all methods more or
less yield the same SSE, with robust methodologies slightly outperformed by
classical Cox regression. This could be expected since classical Cox regression
uses all of the available information.

Under contamination, Cox regression breaks down. Robust methods, in-
stead, lead to SSE values much smaller than the one obtained with Cox
regression. Sasieni method seems to be slightly more robust than Bednarski
method, at least in this setting. This is particuarly evident when the propor-
tion of censoring is small. A deeper comparison between the two methods
can be found in Bednarski and Nowak (2003).

Finally, at least in this settings, our proposed method always returns
the smallest SSE values in contaminated settings. The differences are more
and more evident as πcont grows. We discard possible outliers (i.e., give a
zero weight to them). Consequently, when the method succeds in putting
all outliers in the trimmed set, the results are basically those that would
have been obtained by recording only a sample of clean observations of size
n(1− α).

5 Prostate cancer data

Our example comes from Andrews and Herzberg (1985) and was used by
Nardi and Schemper (1999) to illustrate outlier detection in the Cox model
by means of residuals analysis.

Survival times were recorded for n = 297 patients with prostate cancer,
together with seven binary prognostic factors: treatment, performance status
(PS), serum Hemoglobin level in g/100 ml (> 12-≤ 12), weight index, history
of cardiovascular disease, tumor size (Small-Large), and a combined index of
tumor stage and grade. A detailed description of the data can be found in
Andrews and Herzberg (1985).

The results for the classical Cox model fit to the full data set are shown
in Table 2.

We now perform outlier detection. Log-odds residuals are defined as

wi = log
(

Ŝ(ti)

1−Ŝ(ti)

)
. Under the null hypothesis of no contamination for the

i-th subject, wi asymptotically follows a standard logistic distribution for
subjects experiencing the event. There a different options to accomodate
censored subjects, more details can be found in Nardi and Schemper (1999).

Through the computation of log-odds residuals, four patients are flagged
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V ariable Parameter Standard p-value Hazard 95%Confidence
Estimate Error Ratio Limits

History 0.5096 0.1457 0.0005 1.665 1.251− 2.215
Size 0.7835 0.2093 0.0002 2.189 1.453− 3.299

Grade 0.6940 0.1542 < 0.0001 2.002 1.479− 2.708
Weight −0.3265 0.1498 0.0293 0.721 0.538− 0.968

Hemoglobin −0.2462 0.1838 0.1805 0.782 0.545− 1.121
PS 0.1405 0.2495 0.5731 1.151 0.706− 1.187

Treatment 0.0518 0.1676 0.7572 1.053 0.758− 1.463

Table 2: Summary of Cox model for the prostate cancer data.

as outliers at level 0.05. A summary is given in the first four rows of Table
3.

Patient ti Status wCox
i wtrim

i

50 72 Censored −4.51 -4.41
293 76 Censored −4.24 -4.93
437 0 Dead 3.94 3.96
451 4 Dead 3.70 3.87
243 1 Dead 3.56 3.81
362 1 Dead 3.46 3.90

Table 3: Outliers for prostate cancer data according to classical Cox model
(first four) and to trimmed Cox model (all six), with their log-odds residuals
wCox

i and wtrim
i .

The two censored patients also have high values for the DFBetas (Collett,
2003), so they can be deemed as influent outliers.

We can now proceed with an analysis based on our proposed method.
The estimates and standard errors for a trimming level α = 0.1 are reported
in Table 4. We can observe that robustly estimated hazard ratios for the
significant covariates are slightly more extreme than the hazard ratios esti-
mated by the Cox model. Consequently, the effect of risk factors like size and
grade may be underestimated by Cox model, resulting in overly optimistic
survival prognosis and risk assessment for prostatic cancer patients. As a
consequence of trimming, standard errors and confidence intervals for the
hazard ratios are slightly larger.
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V ariable Parameter Standard p-value Hazard 95%Confidence
Estimate Error Ratio Limits

History 0.5456 0.1825 0.0028 1.726 1.301− 2.638
Size 1.0031 0.2248 < 0.0001 2.727 1.633− 3.864

Grade 0.8753 0.1971 < 0.0001 2.400 1.496− 3.182
Weight −0.3872 0.1834 0.0347 0.679 0.486− 0.992

Hemoglobin −0.3090 0.2593 0.2334 0.734 0.451− 1.257
PS −0.0608 0.4066 0.8811 0.941 0.557− 2.646

Treatment 0.0916 0.2016 0.6495 1.096 0.735− 1.590

Table 4: Summary of trimmed Cox model for the prostate cancer data,
trimming level α = 0.1. Estimates of standard errors and confidence limits
are based on a non-parametric bootstrap with B = 999 replications.

We have repeatedly fit the model with different trimming levels, compar-
ing the results shown in Table 4 also with the results obtained fixing α = 0.05,
α = 0.15 and α = 0.20. The estimates are fairly stable with respect to the
trimming level.

For what concers outlier detection, the robust model identifies the same
four outliers as before, plus an additional two which were before masked
by the fact that the other outliers influenced the MPLE. The six outliers
identified are given in Table 3.

Interestingly enough, if we set the trimming level as α = 4/n, our method
leads to trim the very same observations that were identified by Cox model
as outliers. Nevertheless, residual analysis applied to the resulting model
leads to the identification of the other 2 outliers in Table 3.

As a final comparison, we plot in the right panel of Figure 1 the log-
odds residuals for Cox model, and in the left panel the log-odds residuals for
the trimmed Cox model (with α = 0.01). It can be appreciated that, after
trimming, generally extreme residuals are more extreme while the central
part of the histogram becomes more concentrated and more peaked than
before.

6 Discussion

We have proposed a semiparametric model that allows for a fraction of outly-
ing observations. Inference on the hazard ratios β is performed by trimming
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Figure 1: Histograms of log-odds residuals for Cox model (right panel) and
trimmed Cox model (left panel) for prostate cancer data

the observations with smallest contributions to the likelihood. We have ar-
gued formal global robustness properties of our approach. The proposal has
been seen in simulations to perform approximately like the classical MPLE
under no contamination, and to compare very well with other robust tech-
niques, with respect to SSE, when data are contaminated.

As illustrated in the real data application, outlier identification is ex-
pected to be more effective after robust estimation. Robust survival analysis
can help to better understand relationships between covariates and survival
times in the population, and to sort out outlying subjects for further study.
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