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Conflicting information
and location parameter inference

Summary - The use of heavy-tailed distributions is a valuable tool in developing robust
Bayesian procedures, limiting the influence of conflicting information on posterior
inference. In this paper, the behavior of the posterior density of a location parameter
is investigated when the sample contains outliers or the prior location is misspecified.
Conditions on the tails of the prior and the likelihood are established to determine the
proportion of conflicting information that can be rejected by the posterior. It is shown
that the posterior distribution converges in law to a density proportional to the product
of the densities of the non-conflicting information, as the outliers (and/or the prior
location) go to plus or minus infinity, at any given rate. In particular, if the prior is
non-conflicting, this limiting density is the posterior that would be obtained from the
reduced sample, excluding the outliers. Examples are given to illustrate the results.
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1. Introduction

The use of heavy-tailed distributions is a valuable tool in developing ro-

bust Bayesian procedures, limiting the influence of conflicting information on

posterior inference. Outlier rejection in Bayesian analysis was first described

by De Finetti (1961), where the simplest case with a single observation hav-

ing mean θ was considered. Theoretical results were given by Dawid (1973)

and Hill (1974). O’Hagan (1979) considered outlier rejection in a sample

and O’Hagan (1988) considered more general Bayesian modeling based on

Student-t distributions. Outlier rejection based on the notion of credence was

introduced by O’Hagan (1990) and was generalized to p-credence by Angers

(2000) to accommodate a wider class of densities. Other authors approached

outlier rejection, see for instance Meinhold and Singpurwalla (1989), Angers

and Berger (1991), Carlin and Polson (1991), Angers (1992), Fan and Berger

(1992), Geweke (1994) and Angers (1996).
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In Section 2, the behavior of the posterior density of the location parameter

is investigated when the sample contains outliers or the location parameter of

the prior is misspecified, that is when there is conflicting information. In

Section 2.1, the Bayesian context is described. In Section 2.2, conditions of

thickness and regularity for the tails of a density, needed when robust inference

is expected, are given. In Section 2.3, the main results of this paper are given

in Theorem 1. Under certain conditions on the tails of the prior density and the

likelihood, asymptotic results are given. Note that the term “asymptotic” is not

used in the frequentist sense, where the sample size n tends to infinity, but in

the sense that the conflicting values (outliers and/or the prior location) tend to

plus or minus infinity. We determine the asymptotic behavior of the marginal

density of the observations, the posterior density of the location parameter

and the posterior expectation of some functions of the location parameter. In

Section 2.4, we present two special cases. The case where the sample contains

only one observation is described, which enables us to make the connection

with previous papers on robustness. The case where the tail behavior of the

prior density and the likelihood are identical is also described for its usefulness

in practice. In Section 2.5, conditions are simplified using a measure of tails

called left and right p-credences. In Section 3, examples are given to illustrate

the results. We conclude in Section 4 and proofs are given in Section 5.

2. Conflicting information

2.1. Context

Consider the following Bayesian context.

i) Let X1, . . . , Xn be n random variables conditionally independent given θ

with the conditional densities of X i |θ , evaluated at the point xi , given by

fi(xi − θ), where xi ∈ R, θ ∈ R, i = 1, . . . , n.

ii) The prior density of θ , evaluated at the point θ , is f0(x0−θ), where x0 ∈ R

is a known location parameter.

To emphasize the fact that the prior is an additional source of information,

we use the notation f0(x0 − θ) instead of the more usual πθ (θ − x0). Note

that the scale parameter is assumed to be known. Extending the results to the

location-scale parameters inference is not trivial. The densities f0, f1, . . . , fn

are assumed to be proper, positive everywhere and bounded above.

The observations are denoted by x
∼n = (x1, . . . , xn). Among the n + 1

sources of information (x0, x1, . . . , xn), we assume that k + 1 of them are

fixed and denoted by (x j0
, x j1

, . . . , x jk
), m − k of them tend to −∞ and are

denoted by (x jk+1
, . . . , x jm ) and finally n − m of them tend to ∞ and are
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denoted by (x jm+1
, . . . , x jn ), where ( j0, j1, . . . , jn) is any permutation of the

set (0, 1, . . . , n) and 0 ≤ k ≤ m ≤ n. Note that the location parameter of the

prior is treated just as another observation and can be considered as conflicting

information if x0 ∈ (x jk+1
, . . . , x jn ). If x0 is fixed, we set x j0

= x0 without loss

of generality.

Let the posterior density of θ be denoted by π(θ |x
∼n) and the marginal

density of X1, . . . , Xn be denoted by m(x
∼n). If we denote x

∼k = (x j1
, . . . , x jk

),

two other densities are defined as follows:

m(x
∼k) =

∫ ∞

−∞

k
∏

i=0

f ji
(x ji

− θ) dθ and π(θ |x
∼k) =

∏k
i=0 f ji

(x ji
− θ)

m(x
∼k)

.

Note that when the location parameter of the prior is fixed, that is x j0
= x0,

m(x
∼k) is the marginal density of X j1

, . . . , X jk
and π(θ |x

∼k) is the posterior

density of θ , considering only the k fixed observations x
∼k . If k = 0, m(x

∼k) is

set to 1 and π(θ |x
∼k) becomes f j0

(x j0
− θ). Finally, let the vector of conflicting

values be denoted by φ
∼

= (−x jk+1
, . . . , −x jm , x jm+1

, . . . , x jn ). The notation

φ
∼

→ ∞ means that each term of the vector tends to ∞ at any given rate.

In the next section, conditions on the prior density and the likelihood are

established to obtain robust Bayesian inference on the location parameter. The

influence of the conflicting information on the posterior density is expected to

decrease as the conflict increases.

2.2. Conditions of thickness and regularity for the tails of a density

The tails of the densities of the conflicting information must satisfy certain

conditions of thickness and regularity when robust inference is expected. Three

conditions of thickness and regularity for the tails of a density f are given

by conditions C1 to C3 as follows. The density f is assumed to be proper,

positive everywhere and bounded above. (Note that the conditions are the same

for the left and right tails, except for the support of the density which is given

in parentheses for the left tail.)

C1: ∀ǫ > 0, ∀h > 0, there exists a constant A1(ǫ, h) > 0 such that z > A1(ǫ, h)

(z < −A1(ǫ, h) for the left tail) and |θ | ≤ h ⇒ 1 − ǫ ≤ f (z+θ)

f (z)
≤ 1 + ǫ.

For conditions C2 and C3, there exist constants A2 > 0 and M2 > 1 and

proper densities f ∗ and g such that for all z > A2 (z < −A2 for the left tail),
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C2: f 2(z/2)

f (z)g(z/2)
≤ M2,

C3: d2

dz2 log f ∗(z) ≥ d2

dz2 log g(z) ≥ 0,

where f ∗ can be the density f or a density with the same tail behavior.

More formally, the density f ∗ must satisfy this condition: there exist constants

B > 0 and 0 < K1 < K2 < ∞ such that z > B (z < −B for the left tail) ⇒
K1 ≤ f (z)

f ∗(z)
≤ K2.

In condition C1, the ratio of the density f measured in two points with

any fixed distance approaches 1 when the two points increase in the right tail,

which means that a location transformation has no impact on the right tail of

the density f (z), as z → ∞. This ensures that the tail is sufficiently heavy.

(Note that the interpretation of the conditions is done only for the right tail to

ease the text, but it is similar for the left tail.) For example, if f (z) is the

density of a normal distribution, limz→∞
f (z+1)

f (z)
= 0 and condition C1 is not

satisfied. If f (z) is the density of a Student distribution, limz→∞
f (z+θ)

f (z)
= 1,

for any fixed θ ∈ R and condition C1 is satisfied.

For conditions C2 and C3, g can usually be a double Pareto density (two

Pareto distributions shifted at 0 and spliced together back-to-back) if the right

tail of f is lighter than that of a Pareto, otherwise g can be simply f ∗. The

density

g(z) =







α

2
(1 + |z|)−(1+α); if lim

z→∞

f (z)

|z|−(1+α)
= 0,

f ∗(z); otherwise,

is usually appropriate, for any choice of α > 0. The same density g(z) is

also usually appropriate when the left tail is considered, except that limz→∞ is

replaced by limz→−∞ in the first row.

Condition C2 also ensures that the tail is sufficiently heavy. Condition C3

ensures that the logarithm of the densities f ∗ and g (in the right tail) are

convex, with the log-convexity of f ∗(z) more pronounced than that of g(z). It

can be shown that a positive function which is logarithmically convex is convex,

therefore the right tails of f ∗ and g are also convex. Using the condition C3

with f ∗ instead of f is more inclusive, since it allows the inclusion of densities

f with non-convex tail. Note that when condition C1 is satisfied, it usually

follows that conditions C2 and C3 are also satisfied.

2.3. Rejection of conflicting information

Using the Bayesian context described in Section 2.1 and the conditions of

thickness and regularity for the tails of a density described in Section 2.2, the

main theorem of this paper is now presented.



Conflicting information and location parameter inference 71

Theorem 1. For any integers k and m such that 0 ≤ k ≤ m ≤ n and for any fixed

x j0
, x j1

, . . . , x jk
, if conditions C1 to C3 are satisfied on the left tails of f jk+1

, . . . , f jm

and on the right tails of f jm+1
, . . . , f jn , and if

lim
θ→−∞

k
∏

i=0

f ji
(x ji

− θ)

m
∏

i=k+1

f ji
(θ)

= 0 when k < m, and (1)

lim
θ→∞

k
∏

i=0

f ji
(x ji

− θ)

n
∏

i=m+1

f ji
(θ)

= 0 when m < n , (2)

then

a) limφ
∼

→∞
m(x

∼
n)

m(x
∼k )

∏n
i=k+1

f ji
(x ji

)
= 1,

b) for any h > 0 and for all θ such that |θ | ≤ h, limφ
∼

→∞
π(θ |x

∼
n)

π(θ |x
∼k )

= 1,

c) for any h > 0 and i ∈ (k + 1, . . . , n), limφ
∼

→∞ Pr[
∣

∣θ − x ji

∣

∣ ≤ h|x
∼n] = 0,

d) θ |x
∼n

L→ θ |x
∼k as φ

∼
→ ∞, where the density of the random variables θ |x

∼n and

θ |x
∼k evaluated at the point θ are given by π(θ |x

∼n) and π(θ |x
∼k).

In addition, for any function w(·) on R such that E
π(θ |x

∼k )

[|w(θ)|] < ∞ and

|w(θ)| π(θ |x
∼k) is bounded above, if

lim
θ→−∞

w(θ)

k
∏

i=0

f ji
(x ji

− θ)

m
∏

i=k+1

f ji
(θ)

= 0 when k < m, and (3)

lim
θ→∞

w(θ)

k
∏

i=0

f ji
(x ji

− θ)

n
∏

i=m+1

f ji
(θ)

= 0 when m < n , (4)

then

e) limφ
∼

→∞ E
π(θ |x

∼
n)

[w(θ)] = E
π(θ |x

∼k )

[w(θ)].
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Proof. See Section 5.

Conditions C1 to C3 on a tail ensure that it is logarithmically convex

and sufficiently heavy. Conditions given by equations (1) and (2) can be

interpreted as follows. The left tail of the density (evaluated at θ ) proportional

to
∏m

i=k+1 f ji
(θ) is heavier than the left tail of the density proportional to

∏k
i=0 f ji

(x ji
− θ), also denoted by π(θ |x

∼k). In the same way, the right tail

of the density proportional to
∏n

i=m+1 f ji
(θ) is heavier than the right tail of

π(θ |x
∼k). Note that there are no conditions on the right tails of f jk+1

, . . . , f jm

or on the left tails of f jm+1
, . . . , f jn .

Asymptotic behavior of the marginal and the posterior densities is estab-

lished through results a) to d), as x ji
→ −∞ for i = k + 1, . . . , m and as

x ji
→ ∞ for i = m + 1, . . . , n, at any given rate. If the distance between a

value x ji
(i > k) and the center of π(θ |x

∼k) increases but remains smaller than

a certain threshold, the influence of this information on the posterior density

usually increases. However, if this distance increases beyond the threshold, a

conflict occurs and the influence of x ji
gradually decreases to zero.

2.4. Special cases

A first special case is obtained when the information is provided only

by the prior and one observation. The conflicting information is either the

observation x1 (if we set x j0
= x0, x j1

= x1) or the location parameter x0 (if we

set x j0
= x1, x j1

= x0), depending on which source we trust in case of conflict.

We set k = 0, n = 1 and x
∼n = x1. Since k = 0, m(x

∼k) is set to 1 and π(θ |x
∼k)

becomes f j0
(x j0

− θ). If the conflicting value x j1
→ −∞, we set m = 1, if

x j1
→ ∞, we set m = 0.

In Theorem 1, conditions C1 to C3 must be satisfied on the left tail of

f j1
when conflicting information is on the left (m = 1), or on the right tail of

f j1
when conflicting information is on the right (m = 0). Conditions given by

equations (1) and (2) become

lim
θ→−∞

f j0
(x j0

− θ)

f j1
(θ)

=0 when m = 1, and lim
θ→∞

f j0
(x j0

− θ)

f j1
(θ)

=0 when m =0 .

The marginal m(x1) behaves asymptotically like f j1
(x j1

), while the posterior

π(θ |x1) behaves asymptotically like f j0
(x j0

−θ), where the term asymptotically

is understood as x j1
→ −∞ or x j1

→ ∞ depending on the case. The mass

of the posterior around x j1
converges to 0. The posterior density converges in

distribution to the source of information (prior or likelihood) with the lightest

tail, if the heaviest tail is sufficiently heavy.
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Another interesting special case occurs when the tail behavior is the same,

for all densities f0, f1, . . . , fn , and for each of their left and right tails. There-

fore, conditions C1 to C3 must be satisfied on each tail. This modeling is

useful in practice, since it ensures the same robustness against any extreme

sources of information among x0, x1, . . . , xn , for any direction. If the direction

of the conflicting values is not specified, it can be shown that the posterior can

reject up to [n/2] sources of conflicting information, even if they are all on

the same side, where [a] stands for the integer part of a. If the direction is

specified, the posterior will be insensitive to the conflicting values, as long as

the number of fixed values is larger than both the number of conflicting values

on the left and the number of conflicting values on the right.

2.5. Conflicting information using p-credence

The conditions in Theorem 1 can be simplified if the family of densities is

restricted for the prior and the likelihood. Conditions C1 to C3 and those given

by equations (1) to (4) can be easier to check if they are replaced by slightly

stronger conditions stated using p-credence. The left and right p-credences

characterize respectively the left and right tails of a density by comparing it

to a generalized exponential power (GEP) density, see Desgagné and Angers

(2005). If f (z) is the density of a random variable Z , then right p-credence

is denoted by p-cred+( f ) or p-cred+(Z) and is defined as follows.

Definition 1. A density f has right p-credence (γ, δ, α, β) if there exists a

constant K > 0 such that

lim
z→∞

f (z)

e−δ|z|γ |z|−α log−β |z|
= K .

Since the GEP density is symmetric, the definition of left p-credence

is identical, except that limz→∞ is replaced by limz→−∞. It is denoted by

p-cred−( f ) or p-cred−(Z). Note that p-cred−(Z) = p-cred+(−Z).

This definition ensures that the tail of a density f is proportional to the

corresponding tail of the GEP density with parameters (γ, δ, α, β), which guar-

antee a certain smoothness in the tail of f . The domain of the parameters is

γ ≥ 0, δ ≥ 0 (by convention δ = 0 if γ = 0), α ∈ R and β ∈ R. Left and

right p-credences are defined for most of the known densities (see Desgagné

and Angers, 2003), which does not restrict too much the family of densities

that can be considered.

Once right (or left) p-credence of two densities have been determined,

a dominance relation can be established to compare and order their tails, as

shown in Proposition 1.
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Proposition 1. Let f and g be two densities such that

p-cred+( f ) = (γ, δ, α, β) and p-cred+(g) =
(

γ ′, δ′, α′, β ′) .

i) If γ ′ = γ, δ′ = δ, α′ = α, β ′ = β, then we say that right p-credences of f and

g are equal, which is denoted by (γ ′, δ′, α′, β ′) = (γ, δ, α, β). Their right tails

are equivalent, which means that limz→∞
f (z)

g(z)
= k for a positive constant k.

ii) We say that right p-credence of g is smaller than that of f , which is denoted by

(γ ′, δ′, α′, β ′) < (γ, δ, α, β), as soon as either one of the following conditions

is satisfied:

a) γ ′ < γ, b) γ ′ = γ, δ′ < δ ,

c) γ ′ = γ, δ′ = δ, α′ < α, d) γ ′ = γ, δ′ = δ, α′ = α, β ′ < β .

The right tail of g strictly dominates the right tail of f , which means that

limz→∞
f (z)

g(z)
= 0.

The proof of Proposition 1 is given in Angers (2000). The left tails of

two densities are compared and ordered in a similar way using left p-credence.

The left tail of the density with the smallest left p-credence dominates the left

tail of the other density.

It is possible to simplify conditions C1 to C3 with slightly stronger con-

ditions using left and right p-credences, as stated in Proposition 2.

Proposition 2. If p-cred+( f ) = (γ, δ, α, β) and γ < 1, then conditions C1 to C3

are satisfied on the right tail of the density f . If p-cred−( f ) = (γ, δ, α, β) and

γ < 1, they are satisfied on its left tail.

The proof is given in Section 5.8.

Conditions given by equations (1) to (4) can be simplified if they are

replaced by slightly stronger conditions stated using p-credence. It can be

shown that the left and right p-credences of a density proportional to the

product of densities can be determined, under certain conditions, as given in

Proposition 3.

Proposition 3. If, for some densities f1, . . . , fs ,

a) p-cred+( fi) = (γi , δi , αi , βi), i = 1, . . . , s, and

b) each parameter γi is equal either to 0 or a constant c, with 0 < c < 1,

i = 1, . . . , s,
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then

p-cred+(h) =
(

max
i=1,... ,s

γi ,

s
∑

i=1

δi ,

s
∑

i=1

αi ,

s
∑

i=1

βi

)

,

where the density h is such that

h(θ) ∝
s

∏

i=1

fi(θ − ui) ,

for any constants u1, . . . , us . By convention, δi = 0 if γi = 0.

Using left and right p-credences, we can now state sufficient conditions

needed to obtain results a) to d) of Theorem 1.

Theorem 2. Suppose that p-cred−( fi) = (γ −
i , δ−

i , α−
i , β−

i ) and p-cred+( fi) =
(γ +

i , δ+
i , α+

i , β+
i ), where each parameter γ −

i and γ +
i can be equal either to 0 or a

constant c, with 0 < c < 1, i = 0, 1, . . . , n. For any integers k and m such that

0 ≤ k ≤ m ≤ n and for any fixed x j0
, x j1

, . . . , x jk
, if

(

max
i=k+1,... ,m

γ −
ji

,

m
∑

i=k+1

δ−
ji
,

m
∑

i=k+1

α−
ji
,

m
∑

i=k+1

β−
ji

)

<

(

max
i=0,... ,k

γ +
ji

,

k
∑

i=0

δ+
ji
,

k
∑

i=0

α+
ji
,

k
∑

i=0

β+
ji

)

when k < m, and

(

max
i=m+1,... ,n

γ +
ji

,

n
∑

i=m+1

δ+
ji
,

n
∑

i=m+1

α+
ji
,

n
∑

i=m+1

β+
ji

)

<

(

max
i=0,... ,k

γ −
ji

,

k
∑

i=0

δ−
ji
,

k
∑

i=0

α−
ji
,

k
∑

i=0

β−
ji

)

when m < n ,

then results a) to d) of Theorem 1 are obtained.

In addition, for any function w(·) on R such that E
π(θ |x

∼k )

[|w(θ)|] < ∞,

|w(θ)| π(θ |x
∼k) is bounded above, if p-cred−(|w|) = (γ −

w , δ−
w , α−

w , β−
w ) and p-cred+

(|w|) = (γ +
w , δ+

w , α+
w , β+

w ), where each parameter γ −
w and γ +

w can be equal either
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to 0 or the constant c, and if

(

max
i=k+1,... ,m

γ −
ji

,

m
∑

i=k+1

δ−
ji
,

m
∑

i=k+1

α−
ji
,

m
∑

i=k+1

β−
ji

)

<

(

max
i=0,... ,k

(γ +
ji

, γ −
w ),

k
∑

i=0

δ+
ji

+ δ−
w ,

k
∑

i=0

α+
ji

+ α−
w ,

k
∑

i=0

β+
ji

+ β−
w

)

when k < m, and

(

max
i=m+1,... ,n

γ +
ji

,

n
∑

i=m+1

δ+
ji
,

n
∑

i=m+1

α+
ji
,

n
∑

i=m+1

β+
ji

)

<

(

max
i=0,... ,k

(γ −
ji

, γ +
w ),

k
∑

i=0

δ−
ji

+ δ+
w ,

k
∑

i=0

α−
ji

+ α+
w ,

k
∑

i=0

β−
ji

+ β+
w

)

when m < n,

then result e) of Theorem 1 is obtained.

It is easy to verify Theorem 2 using Propositions 1 to 3.

3. Examples

Suppose that a portfolio manager needs a prediction on the return of a

stock index for the next day. He asks 10 experts for their predictions on the

return. The manager wants to combine this information with his prior belief

using the Bayesian model described in Section 2.1. According to this setting,

the manager chooses fi(xi − θ) = 1
σi

h
(

xi −θ

σi

)

, for i = 0, 1, . . . , 10, where

h(·) is a Student density with ν degrees of freedom and σi is a known scale

parameter.

The random variables X1, . . . , X10 represent the prediction of each expert

and they are conditionally independent given θ . Each X i has a distinct distribu-

tion, represented by the densities fi , but they share the same location parameter

θ . Since the Student density is symmetric, the parameter θ represents the mean,

median and mode of the predictions of all the experts. The portfolio manager

will use the posterior expectation of θ as his combined prediction.

The densities fi in this setting differ only by the scale parameters σi .

If the standard deviation of X i is denoted by si , then it can be shown that

si =
√

ν

ν−2
σi . The parameters si represent the volatility of the predictions of
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expert i . This means that there is 100(1 − α)% chance that the prediction X i

is included in the interval θ ± tα/2(ν)
√

ν−2
ν

si , where tα/2(ν) is the quantile of

a Student distribution with ν degrees of freedom and 0 < α < 1. For example,

there is approximately 95% chance that the prediction X i is included in the

interval θ ± 2si , since tα/2(ν)
√

ν−2
ν

is between 1.96 and 2 for all ν > 3 if

α = 0.05. Inference on θ based only on expert i would produce an estimate

of θ given by the observation xi and an approximate 95% confidence interval

for θ given by xi ± 2si .

We arbitrarily chose the degrees of freedom equal to ν = 10 and all

standard deviations are assumed equal to si = 1, or equivalently σi =
√

0.8,

i = 0, 1, . . . , 10. The uncertainty of each source of information (experts and

prior) is the same since σi is constant, which means that the weight given to

each source in the posterior inference will be the same, in case of no conflict. In

case of conflict, the credence given to each source will also be the same, since

the left and right p-credences of each density are the same, that is (0, 0, 11, 0),

where 11 represents the degrees of freedom plus 1. Note that if we wanted to

give no weight to the prior information, we could simply set f0(x0 − θ) ≡ 1,

an improper uniform density defined on R.

Four examples are presented. In each case, we consider that k + 1 sources

of information are fixed, 10−m of them are equal to x∗ and m −k are equal to

−x∗, for different values of k and m such that 0 ≤ k ≤ m ≤ 10. The posterior

expectation of θ was computed for values of x∗ ranging from −60 to 60 using

Monte Carlo simulations with importance sampling, see Desgagné and Angers

(2005). Note that it could be estimated using other appropriate numerical

methods. The value x∗ can be considered as conflicting if its distance with the

fixed values is sufficiently large. Note that no distinctions are made between

the prior location and the ten observations.

In the first case, m = k = 9, and the 10 fixed values are given by x
∼k =

(x j0
, x j1

, . . . , x j9
) = (−2, −2, −1, −1, 0, 0, 1, 1, 2, 2). There is only one source

of conflicting information denoted by x j10
= x∗, which can be a prediction of

an expert or the location parameter of the prior, x0. Note that all numbers

in this example are expressed in percentage since they represent returns. The

posterior expectations of θ are plotted in figure 1 and correspond to the line

labeled (10 fixed, 1 x∗).

Three other cases are plotted in figure 1. In the second case, k = 4,

m = 6 and the 5 fixed values are given by (x j0
, x j1

, . . . , x j4
) = (−1, −1, 0, 1, 1).

The 2 values (x j5
, x j6

) are equal to −x∗ and the 4 values (x j7
, . . . , x j10

) are

equal to x∗. For example, if x∗ = 4, the information is given by the vector

(−1, −1, 0, 1, 1, −4, −4, 4, 4, 4, 4) and the posterior mean of θ is 0.9 (y-axis),

which corresponds approximately to the mode of the line labeled (5 fixed, 4

x∗, 2 (-x∗)), at the point x∗ = 4.
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Figure 1. The posterior expectation of θ .

In the third case labeled (6 fixed, 5 x∗), k = 5, m = 5 and the 6 fixed

values are given by (x j0
, x j1

, . . . , x j5
) = (−1, −1, 0, 0, 1, 1), while the 5 val-

ues (x j6
, . . . , x j10

) are equal to x∗. In the fourth case labeled (5 fixed, 6

x∗), k = 4, m = 4 and the 5 fixed values are given by (x j0
, x j1

, . . . , x j4
) =

(−1, −1, 0, 1, 1), while the 6 values (x j5
, . . . , x j10

) are equal to x∗.

The left and right p-credences are given by p-cred−( fi) = p-cred+( fi) =
(γ −

i , δ−
i , α−

i , β−
i ) = (γ +

i , δ+
i , α+

i , β+
i ) = (0, 0, 11, 0) for all densities, that is

for i = 0, 1, . . . , n. It can be easily verified that conditions C1 to C3 are

satisfied for each tail of every density since γ −
i < 1 and γ +

i < 1. The tails of

the Student density are sufficiently heavy and logarithmically convex. It can

be verified that conditions given by equations (1) and (2) of Theorem 1 are

satisfied if (0, 0,
∑m

i=k+1 α−
i , 0) < (0, 0,

∑k
i=0 α+

i , 0) and (0, 0,
∑n

i=m+1 α+
i , 0) <

(0, 0,
∑k

i=0 α−
i , 0), which is equivalent to max(m − k, n − m) < k + 1 since

α−
i = α+

i = 11 for all i . If the number of conflicting values on each side is

smaller than the number of fixed values, then the posterior density will reject

the conflicting values as they become extreme. The model can reject up to 5

conflicting values even if they are on the same side and up to 6 conflicting

values if they are split on each side, with at least 2 of them on each side.
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If we consider the posterior expectation of θ , the function w is w(θ) = θ

and p-cred−(|w|) = p-cred+(|w|) = (γ −
w , δ−

w , α−
w , β−

w ) = (γ +
w , δ+

w , α+
w , β+

w ) =
(0, 0, −1, 0). It can be verified that conditions given by equations (3) and (4)

of Theorem 1 are satisfied if (0, 0,
∑m

i=k+1 α−
i , 0) < (0, 0,

∑k
i=0 α+

i +α−
w , 0) and

(0, 0,
∑n

i=m+1 α+
i , 0) < (0, 0,

∑k
i=0 α−

i +α+
i , 0), which is equivalent to max(m −

k, n − m) + 1/11 < k + 1. Clearly, the term 1/11 has no impact, and these

conditions are equivalent to max(m − k, n − m) < k + 1. This means that the

posterior expectation of θ has the same robustness as the posterior density.

In the first case with 10 fixed values, when x j10
increases from 0 to a

certain threshold (around 3), the posterior expectation also increases. Beyond

this threshold, the influence of x j10
gradually decreases to zero, as x j10

→ ∞. In

the limit case, the posterior density considering all observations converges to the

density proportional to
∏9

i=0 f ji
(x ji

−θ), which is the posterior density excluding

the outlier in the particular case where the conflicting value is an observation.

The posterior expectation converges to 0 for this case. The interpretation is the

same if x j10
→ −∞.

The model can reject up to 6 conflicting values, only if they are split on

the left and right sides, as can be seen in the second case. However, if the 6

conflicting values are all on the same side, as in the fourth case, the posterior

does not reject them. Actually, the conflicting information becomes the 5 fixed

values in this case. Finally, the model can reject up to 5 conflicting values,

even if they are on the same side, as in the third case.

4. Conclusion

In this paper, the behavior of the posterior density of a location parameter

has been investigated when the sample contains outliers or the prior location

is misspecified. Conditions on the tails of the prior and the likelihood have

been established to determine the proportion of conflicting information that can

be rejected by the posterior. It has been shown that the posterior distribution

converges in law to a density proportional to the product of the densities of

the non-conflicting information, as the outliers (and/or the prior location) go

to plus or minus infinity, at any given rate. In particular, if the prior is non-

conflicting, this limiting density is the posterior that would be obtained from the

reduced sample, excluding the outliers. Examples have been given to illustrate

the results.

5. Proofs

The proof of Theorem 1 is given in this section. In Section 5.1, the proof

of result a) of Theorem 1 is given. The proof of Lemma 3, needed for this
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proof, is given in Section 5.2. The proofs of results b) to e) are given through

Sections 5.3 to 5.6. The proof of Lemma 10, needed for the proof of result

e) in Section 5.6, is given in Section 5.7.

5.1. Proof of result a) of Theorem 1

It is assumed that the densities f0, f1, . . . , fn are proper, positive every-

where and bounded above. Without loss of generality, we will assume that

x ji
= xi , for i = 0, 1, . . . , n, in order to ease the notation. This means that

x0, x1, . . . , xk are considered fixed, xk+1, . . . , xm tend to −∞ and xm+1, . . . , xn

tend to ∞.

If conditions C2 and C3 are satisfied on a tail of a density f , the constants

B, K1, K2, A2, M2 and the density g are determined. Note that we can choose

the constants A2 and M2 to be as large as we want. To ease the notation

later in the proof, we choose M2 = max(M2, 1/K1, K2, supz f (z), g(A2), 6)

and A2 = max(A2, B). It follows that f ∗ is such that z > A2 (z < −A2 for

the left tail) ⇒ 1
M2

≤ f (z)

f ∗(z)
≤ M2.

It is easy to show that the marginals m(x
∼k) and m(x

∼n) are positive and

bounded above and that the posterior densities π(θ |x
∼k) and π(θ |x

∼n) are also

proper, positive everywhere and bounded above. Note that since the prior loca-

tion x0 is considered fixed to ease the notation of the proof, π(θ |x
∼k) is the poste-

rior density and m(x
∼k) is the marginal. Considering that 0 ≤

∫ h

−h π(θ |x
∼k)dθ ≤ 1

for any h > 0 and that π(θ |x
∼k) depends only on the fixed values x0, x1, . . . , xk ,

it is then possible to show the following lemma.

Lemma 1. ∀ǫ > 0, there exists a constant A4(ǫ) > 0 such that h ≥ A4(ǫ) ⇒
∫ h

−h

π(θ |x
∼k)dθ ≥ 1 − ǫ,

∫ −h

−∞
π(θ |x

∼k)dθ ≤ ǫ and

∫ ∞

h

π(θ |x
∼k)dθ ≤ ǫ .

Assuming that conditions C1 to C3 are satisfied on the right tail of a

density f which is proper, positive everywhere and bounded above, two other

lemmas needed for the proof are given. Note that if conditions C1 to C3 are

satisfied on the left tail of f , the lemmas are the same except for the support,

written in parentheses.

Lemma 2. z > A2 and θ > 0 (z < −A2 and θ < 0) ⇒ f (z + θ) ≤ (M2)
2 f (z).

Proof. It can be shown that if a positive function is logarithmically convex,

then it is also convex. It also can be shown that if the right tail of a proper

density is convex, then it is necessarily decreasing. Since f ∗ is proper and

logarithmically convex when z > A2 (see C3), then the right tail of f ∗ is

decreasing, that is z > A2 ⇒ f ∗(z + θ) < f ∗(z), ∀θ > 0. Therefore, z > A2
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and θ > 0 ⇒ f (z + θ) ≤ M2 f ∗(z + θ) ≤ M2 f ∗(z) ≤ (M2)
2 f (z). Condition C3

is used in the first and last inequalities. The proof for the left tail is similar.

Lemma 3. h > A2, z > max[2h, A1(1, h)] and D = [h, ∞) (z < min[−2h, −A1

(1, h)] and D = (−∞, −h] for the left tail ) ⇒
∫

D

f (z − θ) f (θ)

f (z)
dθ ≤ (M2)

10 and
f (z − θ) f (θ)

f (z)
≤ (M2)

11 for all θ ∈ D .

Proof. See Section 5.2.

Using the fact that the numerators in equations (1) and (2) are proportional

to π(θ |x
∼k) (m(x

∼k) depends only on fixed values x0, x1, . . . , xk), equations (1)

and (2) respectively can be rewritten as follows (assuming k < m and m < n):

∀ǫ > 0, there exists a constant A3(ǫ) > 0 such that

θ < −A3(ǫ) ⇒
π(θ |x

∼k)

m
∏

i=k+1

fi(θ)

≤ ǫ and θ > A3(ǫ) ⇒
π(θ |x

∼k)

n
∏

i=m+1

fi(θ)

≤ ǫ . (5)

Denote yi = −xi if i = k + 1, . . . , m and yi = xi if i = m + 1, . . . , n. It

follows that φ
∼

= (yk+1, . . . , ym, ym+1, . . . , yn) and φ
∼

→ ∞ if yi → ∞, for

i = k + 1, . . . , n, at any given rate. Then

m(x
∼n)

m(x
∼k)

n
∏

i=k+1

fi(xi)

=

∫ ∞

−∞

n
∏

i=0

fi(xi − θ)dθ

m(x
∼k)

n
∏

i=k+1

fi(xi)

=

∫ ∞

−∞
π(θ |x

∼k)

n
∏

i=k+1

fi(xi − θ)dθ

n
∏

i=k+1

fi(xi)

=
∫ ∞

−∞
π(θ |x

∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ .

Then result a) can be rewritten as follows: ∀ǫ > 0, there exists a constant

A0(ǫ) such that yk+1 > A0(ǫ), . . . , yn > A0(ǫ) ⇒

1 − ǫ ≤
∫ ∞

−∞
π(θ |x

∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ ≤ 1 + ǫ .
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First choose any 0 < ǫ < 1. Note that if the result is true for 0 < ǫ < 1, it is

necessarily true for any ǫ > 0. Then define

ǫ0 = min
([

(1 + ǫ/3)1/(n−k) − 1
]

,
[

1 − (1 − ǫ/3)1/(n−k+1)
]

, (M2)
−11nǫ/3

)

.

Define h = max(A2, A3(ǫ0), A4(ǫ0)) and then A0(ǫ) = max(A1(ǫ0, h), 2h).

Note that 0 < ǫ0 < 1
3
, h > 0 and A0(ǫ) depends only on ǫ. The constant A1

comes from condition C1, A2 and M2 from conditions C2 and C3, A3 from

equation (5) and A4 from Lemma 1. Actually, there are different constants

A1(ǫ, h), A2 and M2 defined for each density fk+1, . . . , fn in conditions C1

to C3. To simplify the notation, A1(ǫ, h) corresponds to the largest constant

A1(ǫ, h), for each specified ǫ and h. In the same way A2 and M2 correspond to

the largest constant. The integral is divided into three parts: (−∞, −h], (−h, h]

and (h, ∞) and consider that yk+1 > A0(ǫ), . . . , yn > A0(ǫ). First consider

the integral on (−h, h].

∫ h

−h

π(θ |x
∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ

≥
∫ h

−h

π(θ |x
∼k)

m
∏

i=k+1

(1 − ǫ0)

n
∏

i=m+1

(1 − ǫ0)dθ

= (1 − ǫ0)
n−k

∫ h

−h

π(θ |x
∼k)dθ ≥ (1 − ǫ0)

n−k+1 ≥ 1 − ǫ/3 .

Note that C1 is used in the first inequality since −yi < −A1(ǫ0, h) and yi >

A1(ǫ0, h) and Lemma 1 is used in the second inequality since h ≥ A4(ǫ0). In

a similar way, it can be shown that

∫ h

−h

π(θ |x
∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ ≤ 1 + ǫ/3 .

Consider now (h, ∞) if m < n is assumed.
∫ ∞

h

π(θ |x
∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ

≤ (M2)
2(m−k)

∫ ∞

h

π(θ |x
∼k)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ

≤ ǫ0(M2)
2(m−k)

∫ ∞

h

n
∏

i=m+1

fi(yi − θ) fi(θ)

fi(yi)
dθ

≤ ǫ0(M2)
2(m−k)(M2)

11(n−m−1)

∫ ∞

h

fn(yn − θ) fn(θ)

fn(yn)
dθ

≤ ǫ0(M2)
2(m−k)(M2)

11(n−m−1)(M2)
10 ≤ ǫ0(M2)

11n ≤ ǫ/3 .
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Note that Lemma 2 is used in the first inequality since −yi − θ < −yi < −A2,

equation (5) is used in the second one since θ ≥ A3(ǫ0), Lemma 3 is used

in the third one since h > A2 and yi > max[2h, A1(1, h)], Lemma 3 is used

again in the fourth one, and the inequality 0 ≤ k ≤ m ≤ n is used in the fifth

one. Consider now (h, ∞) if m = n is assumed.

∫ ∞

h

π(θ |x
∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)
dθ ≤ (M2)

2(m−k)

∫ ∞

h

π(θ |x
∼k)dθ

≤ ǫ0(M2)
2(m−k) ≤ ǫ0(M2)

11n ≤ ǫ/3 .

Note that Lemma 2 is used in the first inequality since −yi − θ < −yi < −A2

and Lemma 1 is used in the second one since h > A4(ǫ0). In a similar way,

it can be shown that

∫ −h

−∞
π(θ |x

∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ ≤ ǫ/3 .

Considering the three parts of the integral, we showed that

∫ ∞

−∞
π(θ |x

∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ

≤ (1 + ǫ/3) + ǫ/3 + ǫ/3 = 1 + ǫ ,

and
∫ ∞

−∞
π(θ |x

∼k)

m
∏

i=k+1

fi(−yi − θ)

fi(−yi)

n
∏

i=m+1

fi(yi − θ)

fi(yi)
dθ

≥ (1 − ǫ/3) + 0 + 0 > 1 − ǫ .

5.2. Proof of Lemma 3

We first introduce four other lemmas needed to prove Lemma 3. Suppose

that conditions C1 to C3 are satisfied on the right tail of a proper density f ,

positive everywhere and bounded above. (If conditions C1 to C3 are satisfied

on its left tail, the lemmas are the same, except for the support given in

parentheses. The proofs are given only for the right tail, the proofs for the left

tail being similar.)
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Lemma 4. z > A2 (z < −A2 for the left tail ) ⇒ f ∗(z) > 0 and g(z) > 0.

Proof. If f ∗(z) = 0 for some z > A2, then f ∗(z) cannot have the same tail

behavior as f , see condition C3. If g(z) = 0 for some z > A2, then condition

C2 is not satisfied.

Lemma 5. z > A2 (z < −A2) ⇒ f (z) ≤ (M2)
3g(z).

Proof. Using Lemma 2, if z > A2 then f (2z) ≤ (M2)
2 f (z). Using C2, if

z > A2 then (M2)g(z) ≥ f 2(z)

f (2z)
. Therefore z > A2 ⇒ (M2)

3g(z) ≥ (M2)
2 f 2(z)

f (2z)
=

f (z)
(M2)2 f (z)

f (2z)
≥ f (z).

Lemma 6. z > A2 ⇒ g(z) < g(A2) (z < −A2 ⇒ g(z) < g(−A2)) .

Proof. Since g is a proper density and it is logarithmically convex (see C3)

when z > A2, then the right tail of g is decreasing and then bounded above

by g(A2).

Lemma 7. For all a, b and z such that A2 ≤ a ≤ b ≤ z − A2 (z + A2 ≤ a ≤ b ≤
−A2 for the left tail), arg maxa≤θ≤b

f ∗(z−θ) f ∗(θ)

g(θ)
∈ {a, b}.

Proof. Since the maximum on a range of a convex function is located at its

bounds, it is sufficient to show that d2

dθ2 log f ∗(z−θ) f ∗(θ)

g(θ)
≥ 0 for any θ such that

A2 < θ < z − A2, since the convexity of the logarithm of a positive function

implies the convexity of the function. Then

d2

dθ2
log

f ∗(z − θ) f ∗(θ)

g(θ)
=

d2

dθ2
log f ∗(z − θ) +

d2

dθ2
log f ∗(θ) −

d2

dθ2
log g(θ) .

Using C3, d2

dθ2 log f ∗(θ) − d2

dθ2 log g(θ) ≥ 0 for θ > A2. It can also be shown

that d2

dθ2 log f ∗(z−θ) =
(

d2

dy2 log f ∗(y)
)

|y=z−θ , and using C3, it is non negative

for z − θ > A2. Then we showed that d2

dθ2 log f ∗(z−θ) f ∗(θ)

g(θ)
≥ 0 if θ > A2 and

z − θ > A2, that is if A2 < θ < z − A2.

To prove Lemma 3, we divide [h, ∞) into three parts: [h, z/2], (z/2, z−h]

and (z−h, ∞). Consider that h > A2 and z > max[2h, A1(1, h)]. The constants

A1 and A2 respectively come from conditions C1 and C2.
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First consider h ≤ θ ≤ z/2. Note that h ≤ θ ≤ z/2, h > A2 and z > 2h ⇒
z > z − A2 > z − h ≥ z − θ ≥ z/2 ≥ θ ≥ h > A2. Then

f (z − θ) f (θ)

f (z)
≤ (M2)

3 f ∗(z − θ) f ∗(θ)

f ∗(z)
= (M2)

3

(

f ∗(z − θ) f ∗(θ)

f ∗(z)g(θ)

)

g(θ)

≤ (M2)
3 max

(

f ∗(z − h) f ∗(h)

f ∗(z)g(h)
,

f ∗2(z/2)

f ∗(z)g(z/2)

)

g(θ)

≤ (M2)
6 max

(

f (z − h) f (h)

f (z)g(h)
,

f 2(z/2)

f (z)g(z/2)

)

g(θ)

≤ (M2)
6 max

(

f (z − h)(M2)
3

f (z)
, M2

)

g(θ)

≤ (M2)
6 max

(

2(M2)
3, M2

)

g(θ) = 2(M2)
9g(θ)

≤ 2(M2)
9g(A2) ≤ (M2)

11 .

Note that C3 is used in the first inequality since z − θ > A2, θ > A2 and

z > A2, Lemma 7 is used in the second one since A2 < h ≤ θ ≤ z/2 < z − A2,

C3 is used in the third one since z − h > A2, h > A2, z > A2 and z/2 > A2,

Lemma 5 is used in the fourth one since h > A2 and C2 is used since z > A2,

C1 is used in the fifth one since z > A1(1, h), Lemma 6 is used in the sixth

one since θ > A2 and finally 2 < M2 and g(A2) ≤ M2 are used in the last

inequality. Furthermore, since g(·) is a proper density,

∫ z/2

h

f (z − θ) f (θ)

f (z)
dθ ≤ 2(M2)

9

∫ z/2

h

g(θ)dθ ≤ 2(M2)
9 .

Consider now z/2 ≤ θ ≤ z − h. It is possible to use the preceding results

(when h ≤ θ ≤ z/2 is considered) if the change of variables u = z −θ is done,

since h ≤ u ≤ z/2. Then

f (z − θ) f (θ)

f (z)
=

f (u) f (z − u)

f (z)
≤ 2(M2)

9g(u) = 2(M2)
9g(z − θ)

≤ 2(M2)
9g(A2) ≤ (M2)

11 .

Lemma 6 is used in the second inequality since z − θ > A2. Furthermore,

since g(·) is a proper density,

∫ z−h

z/2

f (z − θ) f (θ)

f (z)
dθ ≤ 2(M2)

9

∫ z−h

z/2

g(z − θ)dθ ≤ 2(M2)
9 .
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Finally consider θ ≥ z − h.

f (z − θ) f (θ)

f (z)
≤

f (z − θ)(M2)
2 f (z − h)

f (z)
≤ 2(M2)

2 f (z − θ)

≤ 2(M2)
3 ≤ (M2)

11 .

Note that Lemma 2 is used in the first inequality since θ ≥ z − h > A2, C1

is used in the second one since z > A1(1, h), supz∈R
f (z) ≤ M2 is used in the

third inequality and 2 < M2 is used in the last one. Furthermore, since f (·)
is a proper density,

∫ ∞

z−h

f (z − θ) f (θ)

f (z)
dθ ≤ 2(M2)

2

∫ ∞

z−h

f (z − θ)dθ ≤ 2(M2)
2 ≤ 2(M2)

9 .

If the integrals on the three domains are considered, then

∫ ∞

h

f (z − θ) f (θ)

f (z)
dθ ≤ 6(M2)

9 ≤ (M2)
10 .

5.3. Proof of result b) of Theorem 1

Result b) can be rewritten as follows: ∀ǫ > 0, ∀h > 0 there exists a

constant A5(ǫ, h) such that min[φ
∼

] > A5(ǫ, h) and |θ | ≤ h ⇒ 1−ǫ ≤
π(θ |x

∼
n)

π(θ |x
∼k )

≤

1+ǫ. Note that min[φ
∼

] stands for min[−xk+1, . . . , −xm, xm+1, . . . , xn]. Result

a) of Theorem 1 can also be rewritten as follows: ∀ǫ > 0 there exists a constant

A0(ǫ) such that min[φ
∼

] > A0(ǫ) ⇒ 1 − ǫ ≤
m(x

∼k )
∏n

i=k+1
fi (xi )

m(x
∼

n)
≤ 1 + ǫ.

Choose any ǫ > 0 and any h > 0. Then define

ǫ0 = min[(1 + ǫ)1/(n−k+1) − 1, 1 − (1 − ǫ)1/(n−k+1)]

and A5(ǫ, h) = max[A0(ǫ0), A1(ǫ0, h)]. The constants A0 and A1 respectively

come from the proof of result a) of Theorem 1 and from condition C1. Consider

that min[φ
∼

] > A5(ǫ, h) and |θ | ≤ h. Then

π(θ |x
∼n)

π(θ |x
∼k)

=
m(x

∼k)

n
∏

i=k+1

fi(xi − θ)

m(x
∼n)

=
m(x

∼k)

n
∏

i=k+1

fi(xi)

m(x
∼n)

n
∏

i=k+1

fi(xi − θ)

fi(xi)

≤ (1 + ǫ0)

n
∏

i=k+1

fi(xi − θ)

fi(xi)
≤ (1 + ǫ0)

n
∏

i=k+1

(1 + ǫ0)

= (1 + ǫ0)
n−k+1 ≤ 1 + ǫ .
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Result a) is used in the first inequality since min[φ
∼

] > A0(ǫ0) and C1 is used

in the second one since min[φ
∼

] > A1(ǫ0, h). In a similar way, it can be shown

that
π(θ |x

∼
n)

π(θ |x
∼k )

≥ 1 − ǫ.

5.4. Proof of result c) of Theorem 1

Result c) of Theorem 1 says that the posterior density tends to 0, in

any finite neighborhood of any conflicting values (or outliers, without loss of

generality) x j , j ∈ (k + 1, . . . , n). It can be rewritten as follows: ∀ǫ >

0, ∀d > 0, there exists a constant A6(ǫ, d) such that min[φ
∼

] > A6(ǫ, d) and

j ∈ (k+1, . . . , n) ⇒ Pr[
∣

∣θ − x j

∣

∣ ≤ d|x
∼n] ≤ ǫ. A lemma analogous to Lemma 1

is needed for the proof.

Lemma 8. ∀ǫ > 0, ∀h ≥ A4(ǫ/2), we have min[φ
∼

] > A5(ǫ/2, h) ⇒
∫ h

−h

π(θ |x
∼n)dθ ≥ 1 − ǫ,

∫ −h

−∞
π(θ |x

∼n)dθ ≤ ǫ and

∫ ∞

h

π(θ |x
∼n)dθ ≤ ǫ .

Proof.
∫ h

−h π(θ |x
∼n)dθ ≥ (1 − ǫ/2)

∫ h

−h π(θ |x
∼k)dθ ≥ (1 − ǫ/2)2 > 1 − ǫ. Result

b) of Theorem 1 is used in the first inequality since min[φ
∼

] > A5(ǫ/2, h)

and |θ | ≤ h, and Lemma 1 is used in the second one since h ≥ A4(ǫ/2).

Furthermore,
∫ −h

−∞
π(θ |x

∼n)dθ +
∫ ∞

h

π(θ |x
∼n)dθ =

∫ ∞

−∞
π(θ |x

∼n)dθ −
∫ h

−h

π(θ |x
∼n)dθ

≤ 1 − (1 − ǫ) = ǫ .

Choose any ǫ > 0 and any d > 0. Define h = A4(ǫ/2) and define

A6(ǫ, d) = max[A5(ǫ/2, h), d + h], where the constant A5 comes from the

proof of result b) of Theorem 1. Consider that min[φ
∼

] > A6(ǫ, d) and j ∈

(k + 1, . . . , n). Since
∣

∣x j

∣

∣ ∈ φ
∼

, it follows that
∣

∣x j

∣

∣ > d + h. Then, if x j > 0

(that is for j = m + 1, . . . , n),

Pr[
∣

∣θ − x j

∣

∣ ≤ d|x
∼n] =

∫ x j +d

x j −d

π(θ |x
∼n)dθ ≤

∫ ∞

x j −d

π(θ |x
∼n)dθ

≤
∫ ∞

h

π(θ |x
∼n)dθ ≤ ǫ .

Lemma 8 is used in the last inequality. The proof for x j < 0 (that is for

j = k + 1, . . . , m) is similar.
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5.5. Proof of result d) of Theorem 1

The definition of convergence in law of a sequence of random variables

{Ys}s=1,2,3,... to a random variable Y , as s → ∞, is given as follows.

Definition 2. Ys
L→ Y if lims→∞ Pr[Ys ≤ d] = Pr[Y ≤ d], for all d such that

Pr[Y ≤ d] is continuous.

In order to use this definition with Ys = θ |x
∼n and Y = θ |x

∼k , the prior

location x0 and the observations x1, . . . , xn are expressed as some functions

hi(s) of the variable s, that is xi = hi(s), i = 0, 1, . . . , n, for any functions

hi(s) on N which satisfy

i) hi(s) = ci for all s ∈ N, where ci is a constant, if i = 1, . . . , k,

ii) lims→∞ hi(s) = −∞, if i = k + 1, . . . , m,

iii) lims→∞ hi(s) = ∞ if i = m + 1, . . . , n.

The density of Ys = θ |x
∼n evaluated at the point y is then given by

π(y|x
∼n) =

n
∏

i=0

fi(xi − y)

∫ ∞

−∞

n
∏

i=0

fi(xi − θ) dθ

=

k
∏

i=0

fi(ci − y)

n
∏

i=k+1

fi(hi(s) − y)

∫ ∞

−∞

k
∏

i=0

fi(ci − θ)

n
∏

i=k+1

fi(hi(s) − θ) dθ

and the density of Y = θ |x
∼k evaluated at the point y is given by

π(y|x
∼k) =

k
∏

i=0

fi(ci − y)

∫ ∞

−∞

k
∏

i=0

fi(ci − θ) dθ

.

It can be seen that the functions hi(s) are defined such that s → ∞ ⇔ φ
∼

→ ∞.

Furthermore, it can be seen that the density of Y = θ |x
∼k does not depend on

s or φ
∼

. Then Ys
L→ Y as s → ∞ for any functions hi(s) which satisfy i), ii)

and iii) ⇔ θ |x
∼n

L→ θ |x
∼k as φ

∼
→ ∞ at any given rate.
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According to Definition 2, the convergence in law for any functions hi(s)

is obtained if lims→∞ Pr[Ys ≤ d] = Pr[Y ≤ d], for all d such that Pr[Y ≤ d] is

continuous, or equivalently, if limφ
∼

→∞ Pr[θ ≤ d|x
∼n] = Pr[θ ≤ d|x

∼k], for all d

such that Pr[θ ≤ d|x
∼k] is continuous. Therefore, the result d) can be rewritten

as follows: ∀ǫ > 0 there exists a constant A7(ǫ) such that min[φ
∼

] > A7(ǫ) and

d ∈ R ⇒
∣

∣

∣Pr[θ ≤ d|x
∼n] − Pr[θ ≤ d|x

∼k]
∣

∣

∣ ≤ ǫ.

Choose any ǫ > 0, define h = A4(ǫ/6) and A7(ǫ) = A5(ǫ/6, h). The

constants A4 and A5 respectively come from Lemma 1 and from the proof of

result b) of Theorem 1. The real line is divided into three parts: (−∞, −h],

(−h, h] and (h, ∞), and consider that min[φ
∼

] > A7(ǫ). First consider d ≤ −h.

Pr[θ ≤ d|x
∼n] ≤ Pr[θ ≤ −h|x

∼n] =
∫ −h

−∞
π(θ |x

∼n)dθ ≤ ǫ/3 .

Lemma 8 is used in the last inequality since h = A4(ǫ/6) and min[φ
∼

] >

A5(ǫ/6, h). In the same way, it can be shown, using Lemma 1, that Pr[θ ≤
d|x

∼k] ≤ ǫ/6, since h = A4(ǫ/6). From this result and from Pr[θ ≤ d|x
∼n] ≤

ǫ/3, it follows that
∣

∣

∣Pr[θ ≤ d|x
∼n] − Pr[θ ≤ d|x

∼k]
∣

∣

∣ ≤ ǫ/3 < ǫ. Now consider

−h < d ≤ h.

∣

∣

∣Pr[−h < θ ≤ d|x
∼n] − Pr[−h < θ ≤ d|x

∼k]
∣

∣

∣ ≤
∫ d

−h

∣

∣

∣π(θ |x
∼n) − π(θ |x

∼k)
∣

∣

∣ dθ

=
∫ d

−h

π(θ |x
∼k)

∣

∣

∣

∣

∣

∣

π(θ |x
∼n)

π(θ |x
∼k)

− 1

∣

∣

∣

∣

∣

∣

dθ ≤ ǫ/6

∫ d

−h

π(θ |x
∼k)dθ ≤ ǫ/6 .

Result b) of Theorem 1 is used in the second inequality since min[φ
∼

] >

A5(ǫ/6, h) and |θ | ≤ h. Therefore,

∣

∣

∣Pr[θ ≤ d|x
∼n] − Pr[θ ≤ d|x

∼k]
∣

∣

∣ ≤
∣

∣

∣Pr[θ ≤ −h|x
∼n] − Pr[θ ≤ −h|x

∼k]
∣

∣

∣

+
∣

∣

∣Pr[−h < θ ≤ d|x
∼n] − Pr[−h < θ ≤ d|x

∼k]
∣

∣

∣

≤ ǫ/3 + ǫ/6 = ǫ/2 < ǫ .

Finally consider d > h.

Pr[h < θ ≤ d|x
∼n] ≤ Pr[θ > h|x

∼n] =
∫ ∞

h

π(θ |x
∼n)dθ ≤ ǫ/3 .
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Lemma 8 is used in the last inequality since h = A4(ǫ/6) and min[φ
∼

] >

A5(ǫ/6, h). In the same way, it can be shown, using Lemma 1, that Pr[h <

θ ≤ d|x
∼k] ≤ ǫ/6, since h = A4(ǫ/6). From this result and from Pr[h <

θ ≤ d|x
∼n] ≤ ǫ/3, it follows that

∣

∣

∣Pr[h < θ ≤ d|x
∼n] − Pr[h < θ ≤ d|x

∼k]
∣

∣

∣ ≤

ǫ/3. Finally, from this result and from
∣

∣

∣Pr[θ ≤ h|x
∼n] − Pr[θ ≤ h|x

∼k]
∣

∣

∣ ≤ ǫ/2, it

follows that
∣

∣

∣Pr[θ ≤ d|x
∼n] − Pr[θ ≤ d|x

∼k]
∣

∣

∣ ≤ ǫ/2 + ǫ/3 < ǫ.

5.6. Proof of result e) of Theorem 1

The condition E
π(θ |x

∼k )

[|w(θ)|] < ∞ can be rewritten as follows: there

exists a constant M1 such that E
π(θ |x

∼k )

[|w(θ)|] < M1. First we introduce two

lemmas needed for the proof. Considering that 0 ≤
∫ h

−h |w(θ)| π(θ |x
∼k)dθ < M1

and that |w(θ)| π(θ |x
∼k) depends only on the fixed values x0, x1, . . . , xk , it is

then possible to show the following lemma.

Lemma 9. ∀ǫ > 0, there exists a constant A9(ǫ) > 0 such that h ≥ A9(ǫ) ⇒

∫ −h

−∞
|w(θ)| π(θ |x

∼k)dθ ≤ ǫ and

∫ ∞

h

|w(θ)| π(θ |x
∼k)dθ ≤ ǫ .

Another lemma is needed and its proof is given in Section 5.7.

Lemma 10. ∀ǫ > 0, there exists a constant A8(ǫ) such that min[φ
∼

] > A8(ǫ) ⇒

∣

∣

∣

∣

E
π(θ |x

∼
n)

[|w(θ)|] − E
π(θ |x

∼k )

[|w(θ)|]
∣

∣

∣

∣

< ǫ .

Lemma 10 is similar to the result e) of Theorem 1, except that it considers

the absolute value of w(θ). Consider now the result e) of Theorem 1, which

can be rewritten as follows: ∀ǫ > 0, there exists a constant A10(ǫ) such that

min[φ
∼

] > A10(ǫ) ⇒
∣

∣

∣

∣

E
π(θ |x

∼
n)

[w(θ)] − E
π(θ |x

∼k )

[w(θ)]

∣

∣

∣

∣

< ǫ. Choose any ǫ > 0.

Define ǫ0 = ǫ/6, h = A9(ǫ0) and A10(ǫ) = max[A5(ǫ0/M1, h), A8(ǫ0)], where

the constant A5(ǫ0/M1, h) comes from the proof of result b) of Theorem 1,

which was rewritten as follows: ∀ǫ > 0, ∀h > 0, there exists a constant A5(ǫ, h)
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such that min[φ
∼

] > A5(ǫ, h) and |θ | ≤ h ⇒
∣

∣

∣

∣

∣

π(θ |x
∼

n)

π(θ |x
∼k )

− 1

∣

∣

∣

∣

∣

≤ ǫ. Then

∣

∣

∣

∣

E
π(θ |x

∼
n)

[w(θ)] − E
π(θ |x

∼k )

[w(θ)]

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ ∞

−∞
w(θ)π(θ |x

∼n)dθ −
∫ ∞

−∞
w(θ)π(θ |x

∼k)dθ

∣

∣

∣

∣

≤
∫ −h

−∞
|w(θ)| π(θ |x

∼n)dθ +
∫ ∞

h

|w(θ)| π(θ |x
∼n)dθ +

∫ −h

−∞
|w(θ)| π(θ |x

∼k)dθ

+
∫ ∞

h

|w(θ)| π(θ |x
∼k)dθ +

∫ h

−h

|w(θ)|
∣

∣

∣π(θ |x
∼n) − π(θ |x

∼k)
∣

∣

∣ dθ

= E
π(θ |x

∼
n)

[|w(θ)|] − E
π(θ |x

∼k )

[|w(θ)|] +
∫ −h

−∞
|w(θ)| π(θ |x

∼k)dθ

+
∫ ∞

h

|w(θ)| π(θ |x
∼k)dθ +

∫ h

−h

|w(θ)| π(θ |x
∼k)dθ −

∫ h

−h

|w(θ)| π(θ |x
∼n)dθ

+
∫ −h

−∞
|w(θ)| π(θ |x

∼k)dθ +
∫ ∞

h

|w(θ)| π(θ |x
∼k)dθ

+
∫ h

−h

|w(θ)|
∣

∣

∣π(θ |x
∼n) − π(θ |x

∼k)
∣

∣

∣ dθ

≤
∣

∣

∣

∣

E
π(θ |x

∼
n)

[|w(θ)|] − E
π(θ |x

∼k )

[|w(θ)|]
∣

∣

∣

∣

+ 2

∫ h

−h

|w(θ)|
∣

∣

∣π(θ |x
∼n) − π(θ |x

∼k)
∣

∣

∣ dθ

+ 2

∫ −h

−∞
|w(θ)| π(θ |x

∼k)dθ + 2

∫ ∞

h

|w(θ)| π(θ |x
∼k)dθ

≤ 6ǫ0 = ǫ .

Lemma 10 is used in the last inequality since A10(ǫ) ≥ A8(ǫ0) and Lemma 9

is used since h = A9(ǫ0). Furthermore

∫ h

−h

|w(θ)|
∣

∣

∣π(θ |x
∼n) − π(θ |x

∼k)
∣

∣

∣ dθ =
∫ h

−h

|w(θ)| π(θ |x
∼k)

∣

∣

∣

∣

∣

∣

π(θ |x
∼n)

π(θ |x
∼k)

− 1

∣

∣

∣

∣

∣

∣

dθ

≤
ǫ0

M1

∫ h

−h

|w(θ)| π(θ |x
∼k)dθ ≤

ǫ0

M1

E
π(θ |x

∼k )

[|w(θ)|] ≤ ǫ0 .

Result b) of Theorem 1 is used since A10(ǫ) ≥ A5(ǫ0/M1, h).
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5.7. Proof of Lemma 10

We want to show that limφ
∼

→∞ E
π(θ |x

∼
n)

[|w(θ)|] = E
π(θ |x

∼k )

[|w(θ)|], or equiv-

alently limφ
∼

→∞ E
π(θ |x

∼
n)

[|w(θ)| + 1] = E
π(θ |x

∼k )

[|w(θ)| + 1]. Define the density

π∗(θ |x
∼k) =

(|w(θ)| + 1)π(θ |x
∼k)

∫ ∞

−∞
(|w(θ)| + 1)π(θ |x

∼k)dθ

=
(|w(θ)| + 1)

k
∏

i=0

fi(xi − θ)

∫ ∞

−∞
(|w(θ)| + 1)

k
∏

i=0

fi(xi − θ)dθ

.

Since
∫ ∞
−∞ |w(θ)| π(θ |x

∼k)dθ < ∞ and |w(θ)| π(θ |x
∼k) < ∞ as given in the

conditions of Theorem 1, it easy to see that π∗(θ |x
∼k) is a proper density,

positive everywhere and bounded above. We can also define the positive and

bounded density m∗(x
∼k) =

∫ ∞
−∞(|w(θ)| + 1)

∏k
i=0 fi(xi − θ)dθ .

It should be noted that all the information concerning the densities f j0
,

f j1
, . . . , f jk

( f0, f1, . . . , fk for the proof, without loss of generality) in The-

orem 1 is given through the densities π(θ |x
∼k) and m(x

∼k), where π(θ |x
∼k) is

proper, positive everywhere and bounded.

It is then possible to use the result a) of Theorem 1 using the densities

π∗(θ |x
∼k) and m∗(x

∼k). If the conditions given by equations (1) and (2), given

by limθ→−∞
m(x

∼k )π(θ |x
∼k )

∏m
i=k+1

f ji
(θ)

= 0 and limθ→∞
m(x

∼k )π(θ |x
∼k )

∏n
i=m+1

f ji
(θ)

= 0, are used with

π∗(θ |x
∼k) instead of π(θ |x

∼k) and m∗(x
∼k) instead of m(x

∼k), it can be seen that

they are equivalent to the conditions given by equations (1) to (4) using π(θ |x
∼k)

and m(x
∼k). Result a) using m(x

∼k) and π(θ |x
∼k) is given by

lim
φ
∼

→∞

m(x
∼k)

n
∏

i=k+1

fi(xi)

∫ ∞

−∞
m(x

∼k)π(θ |x
∼k)

n
∏

i=k+1

fi(xi − θ)dθ

= 1 ,
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and result a) using m∗(x
∼k) and π∗(θ |x

∼k) is given by

lim
φ
∼

→∞

m∗(x
∼k)

n
∏

i=k+1

fi(xi)

∫ ∞

−∞
m∗(x

∼k)π
∗(θ |x

∼k)

n
∏

i=k+1

fi(xi − θ)dθ

= 1

⇔ lim
φ
∼

→∞

(

n
∏

i=k+1

fi(xi)

)

∫ ∞

−∞
(|w(θ)| + 1)

k
∏

i=0

fi(xi − θ)dθ

∫ ∞

−∞
(|w(θ)| + 1)

n
∏

i=0

fi(xi − θ)dθ

= 1 .

The result can now be shown.

E
π(θ |x

∼
n)

[|w(θ)| + 1] =

∫ ∞

−∞
(|w(θ)| + 1)

n
∏

i=0

fi(xi − θ)dθ

m(x
∼n)

=

∫ ∞

−∞
(|w(θ)| + 1)

n
∏

i=0

fi(xi − θ)dθ

(

n
∏

i=k+1

fi(xi)

)

∫ ∞

−∞
(|w(θ)| + 1)

k
∏

i=0

fi(xi − θ)dθ

×
m(x

∼k)

n
∏

i=k+1

fi(xi)

m(x
∼n)

×

∫ ∞

−∞
(|w(θ)| + 1)

k
∏

i=0

fi(xi − θ)dθ

m(x
∼k)

.

If the limit as φ
∼

→ ∞ is taken, the first two terms in the last expression are 1

according to result a) using respectively π∗(θ |x
∼k) and π(θ |x

∼k). The last term

is E
π(θ |x

∼k )

[|w(θ)| + 1], which proves the result.

5.8. Proof of Proposition 2

Firstly we show that condition C1 is satisfied on the right tail of f .

Condition C1 can be rewritten as follows. For any constant h > 0 and for
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all θ such that |θ | ≤ h, limz→∞
f (z+θ)

f (z)
= 1. Furthermore, since p-cred+( f ) =

(γ, δ, α, β), there exists a constant K1 > 0 such that limz→∞
f (z)

e−δzγ z−α log−β z
=

K1. If h > 0 and |θ | ≤ h, then

lim
z→∞

f (z + θ)

f (z)
= lim

z→∞

f (z + θ)

e−δ(z+θ)γ (z + θ)−α log−β(z + θ)
×

e−δzγ z−α log−β z

f (z)

×
e−δ(z+θ)γ (z + θ)−α log−β(z + θ)

e−δzγ z−α log−β z

= lim
z→∞

K1

K1

e−δ(z+θ)γ (z + θ)−α log−β(z + θ)

e−δzγ z−α log−β z

= lim
z→∞

e−δ((z+θ)γ −zγ )

(

z

z + θ

)α (

log z

log(z + θ)

)β

= 1 .

It is easy to check in the last equality that the last two terms tend to 1 as z tends

to infinity. Furthermore, using the Taylor series development of (z + θ)γ − zγ ,

it can be shown that the last expression tends to 1 as z tends to infinity if and

only if γ < 1.

Secondly, we show that conditions C2 and C3 are satisfied on the right tail

of f . Define f ∗(z) as a GEP density with the same left and right p-credence

as f (z), that is

f ∗(z) =
{ K2e−δ|z|γ |z|−α log−β |z| , if |z| > z0 ;

K2e−δz
γ

0 z−α
0 log−β z0, if |z| ≤ z0 ,

with any z0 > 1, where K2 is the normalizing constant. The tails behavior of

f and f ∗ are the same and both are proper densities. Define

g(z) =
{

(1 + |z|)−3; if γ > 0, δ > 0 ,

f ∗(z); if γ = 0, δ = 0 .

The density g is proper since (1 + |z|)−3 and f ∗ are also proper densities.

Consider the first case, when 0 < γ < 1, δ > 0 and g(z) = (1 + |z|)−3.

Then

lim
z→∞

f 2(z/2)

f (z)g(z/2)
= lim

z→∞

K 2
1

K1

(

e−δ(z/2)γ (z/2)−α log−β(z/2)
)2

(

e−δzγ z−α log−β z
)

(1 + z/2)−3

= lim
z→∞

K1e−δ(21−γ −1)zγ (z/4)−α

(

log2(z/2)

log z

)−β

(1 + z/2)3

= 0 .
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The dominant term is the exponential one and it tends to 0 as z → ∞ since

γ > 0, δ > 0 and 21−γ − 1 > 0 ⇔ γ < 1. It is sufficient to show that

condition C2 is satisfied since f and g are both positive everywhere and

bounded above, with monotonous tails.

Furthermore, if z > z0, it can be shown that

d2

dz2
log f ∗(z) =

d2

dz2
log

[

K2e−δzγ z−α log−β z
]

=
d2

dz2

[

−δzγ − α log z − β log(log z)
]

= γ (1 − γ )δzγ−2 +
α

z2
+

β(log z + 1)

z2 log2 z

=
1

z2

[

γ (1 − γ )δzγ + α +
β

log z
+

β

log2 z

]

.

It can be shown that d2

dz2 log g(z) = 3

(1+|z|)2 > 0 for any value of z. Finally, if

z > z0,

d2

dz2
log f ∗(z) −

d2

dz2
log g(z)

=
1

z2

[

γ (1 − γ )δzγ + α +
β

log z
+

β

log2 z
−

3z2

(1 + z)2

]

.

The term in brackets goes to +∞ as z → ∞ if γ (1 − γ )δ > 0, that is if

0 < γ < 1 and δ > 0, which shows that d2

dz2 log f ∗(z) − d2

dz2 log g(z) ≥ 0 if z is

large enough. Then conditions C2 and C3 are satisfied if γ > 0, δ > 0.

Consider now the second case, when γ = 0, δ = 0 and g(z) = f ∗(z).

lim
z→∞

f 2(z/2)

f (z)g(z/2)
= lim

z→∞

f 2(z/2)

f (z) f ∗(z/2)

= lim
z→∞

f (z/2)

f (z)

K1e−δ(z/2)γ (z/2)−α log−β(z/2)

K2e−δ(z/2)γ (z/2)−α log−β(z/2)
= lim

z→∞

K1 f (z/2)

K2 f (z)

= lim
z→∞

K1

K2

(z/2)−α log−β(z/2)

z−α log−β z
= lim

z→∞

K1

K2

2α

(

log(z/2)

log z

)−β

=
K1

K2

2α .

Furthermore, if z > z0, it can be shown that

d2

dz2
log f ∗(z) =

1

z2

[

α +
β

log z
+

β

log2 z

]

.
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The term in brackets converge to α as z → ∞. Since f ∗ is a proper density

and γ = δ = 0, it follows that α ≥ 1, which shows that d2

dz2 log f ∗(z) =
d2

dz2 log g(z) ≥ 0 if z is large enough. Then conditions C2 and C3 are also

satisfied if γ = 0, δ = 0.
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