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NORMAL FORMS OF REGULAR MATRIX POLYNOMIALS
VIA LOCAL RANK FACTORIZATION

MASSIMO FRANCHI∗ AND PAOLO PARUOLO†

Abstract. The ‘local rank factorization’ (lrf) of a regular matrix polynomial at an eigenvalue
consists of a sequence of matrix rank factorizations of a certain function of its coefficients; the lrf
delivers the local Smith form and extended canonical systems of root functions that correspond to
the eigenvalue. In this paper it is shown that by performing the lrf at each finite eigenvalue and
at infinity one can contruct the Smith form, Jordan triples and decomposable pairs of the matrix
polynomial. When A(λ) = A − λB, where A,B ∈ Cp×p, the analysis delivers the Kronecker form
of A(λ) and strict similarity transformations; for B = I one finds the Jordan form of A and Jordan
bases.
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1. Introduction. Normal forms of matrix polynomials play a central role in
linear algebra, with important applications in matrix theory [6, 15, 17, 20], in the
study of systems of differential and difference equations [9, 10, 16], in system theory
[2, 12, 14], as well as in times-series econometrics [3, 4, 11, 13]. The same tools are
also employed in various numerical algorithms, such as the ones in [1, 21, 22] for
calculating the coefficients of the principal part of the inverse.

A standard reference for the analytic theory of elementary divisors is Gantmacher
[6, ch. VI], who reduces a square matrix to its Jordan normal form via the Smith
normal form of a matrix polynomial. A second classical reference is Gohberg, Lan-
caster and Rodman [9], who collect the spectral properties of monic and non-monic
matrix polynomials of arbitrary degree into Jordan triples and decomposable pairs
and discuss their relations with the Smith and Kronecker normal forms (and other
representations).

In this paper we present a theory of reduction of regular matrix polynomials to
normal form based on a ‘local rank factorization’ (lrf). This procedure consists of
a sequence of matrix rank factorizations of a certain function of the coefficients of
the matrix polynomial and it delivers the local Smith form and extended canonical
systems of left and right root functions that correspond to an eigenvalue. The lrf
was introduced in Franchi and Paruolo [5] to study the inversion of a regular analytic
matrix function; they also showed how these tools can be used to construct canonical
sets of left- and right-Jordan chains and local Jordan triples.

In this paper we show that by performing the lrf of regular matrix pencils
A(λ) = A− λB, where A,B ∈ Cp×p, at each finite eigenvalue and at infinity one can
construct the Kronecker form of A(λ) and strict similarity transformations; for B = I
one finds the Jordan form of A and Jordan bases. This also gives rise to an enlarged
set of necessary and sufficient conditions for a matrix to be diagonalizable, some of
which are stated in terms of the subspaces associated with the lrf.

The rest of the paper is organized as follows: Sections 2 and 3 introduce notation
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2 M. FRANCHI AND P. PARUOLO

and review the local analysis in [5] (i.e. the lrf, local Smith form and local Jordan
triples). Sections 4 and 5 contain the results of the paper. Specifically, Section 4
presents the global analysis (Smith form, Jordan triples and decomposable pairs).
Section 5 considers the particular cases A(λ) = A − λB, with A,B ∈ Cp×p, or
A ∈ Cp×p, B = I. Section 6 contains an example and Section 7 concludes. Proofs are
given within the main text, except for the ones taken from [5], which are collected in
Appendix A.

1.1. Notation. The following notation is used throughout the paper: by a := b
and b =: a we indicate that a is defined by b; any empty sum is defined equal to
0. For any matrix ϕ ∈ Cp×r, ϕ′ denotes its conjugate transpose. We indicate by
colϕ := {ϕv, v ∈ Cr} the column space of ϕ and by colϕ′ the row space of ϕ; this
is in line with current use, see [19, p. 170]. By ϕ⊥ we indicate a basis of col⊥ ϕ,
the orthogonal complement of colϕ in Cp, where orthogonality is with respect to the
standard inner product in Cp, 〈x, y〉 := y′x. The matrix rank factorization of ϕ is
written as ϕ = −αβ′, where α and β are bases of colϕ and colϕ′, see Theorem 1 in [18],
and the negative sign is chosen for convenience in the calculations. When ϕ has full
column rank, we set ϕ̄ := ϕ(ϕ′ϕ)−1 and ϕ̄′ := (ϕ̄)′ = (ϕ′ϕ)−1ϕ′. With this notation
the orthogonal projector matrix onto colϕ can be written as Pϕ := ϕ̄ϕ′ = ϕϕ̄′, and

we denote by Mϕ := I−Pϕ the orthogonal projector matrix onto col⊥ ϕ. Finally δn,m
is Kronecker’s delta, i.e. δn,m = 0 for n 6= m and δm,m = 1.

2. Definitions. This section reports the definition of ‘local rank factorization’
(lrf) and states its link with the order of the pole of the inverse function (Theorem
2.3). The stated results are a particular case of the ones proved in [5] for regular
analytic matrix functions. Proofs of this section are contained in the Appendix.

2.1. Preliminaries. Consider a regular p × p matrix polynomial A(λ) and let
σ(A) := {λ ∈ C : rankA(λ) < p} be the set of its eigenvalues. Assume σ(A) is
non-empty, i.e. A(λ) is not unimodular, and observe that for some λu ∈ σ(A) one
may have A(λu) = 0; in this case all the elements of A(λ) contain the common factor

(λ − λu)k, k > 0, and one can write A(λ) = (λ − λu)kÃ(λ) with Ã(λu) 6= 0. For
ease of exposition, we assume henceforth that this common factor simplification has
already been performed on A(λ), so that A(λ) 6= 0 for all λ ∈ C. Let adjA(λ), |A(λ)|
respectively be the adjoint and the determinant of A(λ) and let d(λ) be the greatest
common divisor of all the minors of order p − 1 of A(λ); then, see Gantmacher [6,
p. 90], one has

adjA(λ) = d(λ)A◦(λ), |A(λ)| = d(λ)a(λ),

where A◦(λ), a(λ) are respectively called the reduced adjoint and the minimal poly-
nomial of A(λ). Since d(λ) contains the common factors between the elements of
adjA(λ), one has A◦(λ) 6= 0 for all λ ∈ C. Because λu is an eigenvalue of A(λ) if and
only if it is a root of its minimal polynomial, for λu ∈ σ(A) one finds

a(λ) = (λ− λu)mau(λ), au(λu) 6= 0, m > 0, (2.1)

where we call m ‘the multiplicity of λu’ (as a root of the minimal polynomial).
The multiplicity m is equal to the order of the pole of A−1(λ) at λu. In fact, from

the identity A(λ) adjA(λ) = adjA(λ)A(λ) = |A(λ)|I, one finds

A(λ)A◦(λ) = A◦(λ)A(λ) = (λ− λu)mau(λ)I, A(λu), A◦(λu), au(λu) 6= 0; (2.2)
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this implies

A−1(λ) =
A◦(λ)

(λ− λu)mau(λ)
,

so that 0 < limλ→λu
||(λ−λu)mA−1(λ)|| <∞ and limλ→λu

||(λ−λu)m−1A−1(λ)|| =∞
for any matrix norm || · ||, see [10, p. 219].

2.2. Local rank factorization. The local rank factorization consists of a se-
quence of matrix rank factorizations. Recall that for any full column rank matrix ϕ,
we indicate by Mϕ the orthogonal projector matrix onto col⊥ ϕ.

Definition 2.1 (Local rank factorization of A(λ) at λu). Fix λu ∈ σ(A), let

A(λ) =
∑`
n=0An(λ− λu)n, An ∈ Cp×p, A0 6= 0, be the representation of A(λ) around

λu and let j be the counter in the recursions.

Initialization: Set j = 0, rmax
0 := p, J−1 = ∅, J0 = 0, A0,k := Ak−1, k ≥ 1, and

Q0 := A0; perform the matrix rank factorization

Q0 = −α0β
′
0, (2.3)

where a1 := α0, b1 := β0 are full column rank matrices of dimension p× r0.

Recursion: While rj < rmax
j , increment the counter j to j + 1 and, for the updated

value of j, define rmax
j := p−

∑
i∈Jj−1

ri and

Aj,k := Aj−1,k+1 +Aj−1,1

∑
i∈Jj−2

β̄iᾱ
′
iAi+1,k, k ≥ 1. (2.4)

If Qj := MajAj,1Mbj 6= 0 perform the matrix rank factorization

Qj = −αjβ′j , (2.5)

where αj , βj are full column rank matrices of dimension p × rj, and set Jj := (j :
Jj−1), aj+1 := (αj : aj) and bj+1 := (βj : bj); else let Jj := Jj−1, aj+1 := aj and
bj+1 := bj.

End: Set µ := j, J := Jµ, a := aµ+1, and b := bµ+1.

Remark that Definition 2.1 is a restatement of Definition 2.1 in [5], except that
the ordering of J , a, b here is reversed.1

2.3. Basic properties of the local rank factorization. We collect here the
basic properties of the lrf. The inputs of the lrf are the matrix polynomial A(λ)
and the eigenvalue λu; the outputs are the matrices αj , βj ∈ Cp×rj , Aj,k ∈ Cp×p, and
the vector of indices J = (is : · · · : i1). Remark that i1 = 0 because A0 6= 0 and
is = µ by construction; in the following µ is called the index of the lrf of A(λ) at
λu. In Theorem 2.3 below, it is shown that µ equals the multiplicity m of λu, and
hence it is finite. Note that 0 ≤ rj ≤ rmax

j , that the end statement is reached when
rj = rmax

j and that p =
∑
j∈J rj .

Remark 2.2. Observe that a and b are non-singular p× p matrices with orthog-
onal blocks, i.e. α′jαk = β′jβk = 0 for j 6= k, j, k ∈ J .

Note also that (2.3), (2.5) define αj , βj up to a conformable change of bases of
the row- and column-spaces, but this does not affect the definition of Aj,k in (2.4).

1In [5] the vector of indices J in the present Definition 2.1 is denoted by J↓.
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Because the orthogonal projectors Mϕ are also invariant with respect to the choice of
basis, the ranks rj and the index µ in the lrf are determined independently of the
choice of basis in αj , βj .

The next theorem states that the index of the lrf is equal to the order of the
pole.

Theorem 2.3 (Order of the pole and index of the lrf). Let A(λ) be a regular
matrix polynomial and let σ(A) be the set of its eigenvalues; then A−1(λ) has a pole
of order m at λu ∈ σ(A) if and only if m is the index of the lrf of A(λ) at λu.

It follows from this theorem that A−1(λ) has a pole of order m at λu if and only
if rj < rmax

j for j = 0, . . . ,m − 1 and rm = rmax
m . These conditions characterize the

structure of A(λ) at λu through (2.3), (2.5). Observe that (2.3) is a condition on the
rank of A0, which is reduced, r0 < p. Next let aj⊥ and bj⊥ be bases of colMaj and
colMbj respectively and observe that (2.5) is a condition on the rank of a′j⊥Aj,1bj⊥,
which is reduced (rj < rmax

j ) for j = 1, . . . ,m− 1 and full (rm = rmax
m ) for j = m. In

other terms, A−1(λ) has a pole of order m at λu if and only if the coefficients of A(λ)
satisfy

|A0| = 0, |a′j⊥Aj,1bj⊥| = 0, j = 1, . . . ,m−1, and |a′m⊥Am,1bm⊥| 6= 0.

For m = 1, 2 these conditions were derived in [13] in the context of vector autore-
gressive processes and are called the I(1) and I(2) conditions. Similar conditions are
also found in [12].

3. Local Smith form and local Jordan triples. This section illustrates how
the lrf can be used to construct the local Smith form and local Jordan triples of
A(λ). Theorem 3.1, taken from [5], discusses the local Smith form, while Theorem
3.2, which is in part new, discusses Jordan chains and local Jordan triples. All these
quantities refer to a given eigenvalue of the spectrum, hence the label ‘local’. The
proofs of the parts of this section taken from [5] are reported in the Appendix.

3.1. Local Smith form and extended canonical systems of root func-
tions. In the following we use the notation (ξj)

n
j=1 := (ξ1 : · · · : ξn); similarly

for a vector of indices H = (i1 : · · · : in), we let (ξj)j∈H := (ξi1 : · · · : ξin) and
diag(ξj)j∈H := diag(ξin , . . . , ξi1). Recall also that A◦(λ) denotes the reduced adjoint
of A(λ).

Theorem 3.1 (Local Smith form and extended canonical systems of root func-
tions). Given the outputs of the lrf of A(λ) at λu, define

π̃j(λ) := αj −
m−j−1∑
k=1

Aj+1,kβ̄j(λ− λu)k, γ̃j(λ) := βj −
m−j−1∑
k=1

A′j+1,kᾱj(λ− λu)k,

πj(λ) :=
A◦(λ)π̃j(λ)

(λ− λu)m−j
, γj(λ) :=

A◦(λ)′γ̃j(λ)

(λ− λu)m−j
,

Π̃(λ) := (π̃j(λ))j∈J , Γ̃(λ) := (γ̃j(λ))j∈J ,

Π(λ) := (πj(λ))j∈J , Γ(λ) := (γj(λ))j∈J .

Then
i) the local Smith form of A(λ) at λu is

Λ(λ) = diag((λ− λu)jIrj )j∈J ;
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ii) Π(λ) and Γ(λ) are respectively an extended canonical systems of right and left
root functions of A(λ) at λu, i.e.

A(λ)Π(λ) = au(λ)Π̃(λ)Λ(λ), |Π(λu)|, |Π̃(λu)| 6= 0, (3.1)

Γ(λ)′A(λ) = au(λ)Λ(λ)Γ̃(λ)′, |Γ(λu)|, |Γ̃(λu)| 6= 0, (3.2)

where au(λ) is as in (2.1).

Note that from the form of Λ(λ) one sees that j ∈ J is a partial multiplicity
of A(λ) at λu and that there are exactly rj partial multiplicities that are equal to
j; because p =

∑
j∈J rj , this implies that the local Smith form of A(λ) at λu is

completely determined by the lrf through the pairs (j, rj), j ∈ J . Moreover, since
the ranks rj are determined uniquely within the lrf, the local Smith form of A(λ) at
λu is uniquely determined by the lrf.

Moreover, Theorem 3.1 shows that one can construct right and left canonical
systems of root functions of A(λ) at λu using αj , βj , Aj,k. Because αj , βj are defined
up to a change of basis, each choice gives a different canonical systems of root functions
Π(λ),Γ(λ).

For later use it is convenient to collect the partial multiplicities into the vector

κ := (κk)pk=1 := (j1′rj )j∈J , (3.3)

where 1s is the s× 1 vector of ones and κk indicates the k-th element in κ.

3.2. Local Jordan triple. In this section we construct a local Jordan triple
of A(λ) at λu; in the following we indicate by Jj a Jordan block of dimension j
and eigenvalue λu. For ease of exposition, we use the convention that whenever J0

appears in a matrix the corresponding rows and columns should be discarded, e.g.
diag(Is ⊗ J1, It ⊗ J0) = Is ⊗ J1.

Theorem 3.2 (Canonical set of Jordan chains and local Jordan triple). Let Π(λ)
(Γ(λ)) in Theorem 3.1 refer to λu, let xk(λ) (yk(λ)) indicate the k-th column in Π(λ)
(Γ(λ)) and define wk,i from wk(λ) =

∑n
i=0 wk,i(λ − λu)i, n = degwk(λ), w = x, y;

finally let

X := (Xk)p−r0k=1 , Xk := (xk,i)
κk−1
i=0 , Y := (Yk)p−r0k=1 , Yk := (yk,i)

κk−1
i=0 ,

where κk is as in (3.3); then the columns in X (Y ) form a canonical set of right-
(left-) Jordan chains of A(λ) at λu.

Moreover, let Jj be a Jordan block of dimension j and eigenvalue λu and J :=
diag(Irj ⊗ Jj)j∈J ; then (X, J, Y ) is a Jordan triple of A(λ) at λu.

Proof. From Theorem 3.1 one has that Π(λ) (Γ(λ)) is an extended canonical
system of right- (left-) root functions of A(λ), and that Λ(λ) is its local Smith form.
Hence the statement is a direct consequence of the definition of canonical set of right
(left) Jordan chains and local Jordan triples, see [9, p. 32-57].

Remark 3.3. In the following the subscript u indicates that a quantity refers to
the point λu; that is, Λu(λ),Πu(λ),Γu(λ), and (Xu, Ju, Yu) indicate respectively the
local Smith form, extended canonical systems of right and left root functions and a
local Jordan triple of A(λ) at λu.
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4. Smith form, Jordan triples and decomposable pairs. This section re-
ports the first part of the original contribution of the paper. Using the local quantities
defined in the previous sections, we construct their global counterparts, i.e. the Smith
form, finite and infinite Jordan triples and decomposable pairs of the matrix polyno-
mial. These results show how the lrf can be used to obtain these normal forms for
any regular matrix polynomial.

It is well known, see [9, p. 181], that σ(A) is a finite set, i.e. σ(A) = {λu}su=1

for some integer s; because the invariant polynomials of A(λ) are the product of its
elementary divisors, the Smith form of A(λ) is found at the product of the local Smith
forms, i.e

Λ(λ) =

s∏
u=1

Λu(λ), (4.1)

where Λu(λ) is as in Theorem 3.1. Because Λ(λ) contains information on the behaviour
of A(λ) for finite values of λ, it does not determine A(λ) uniquely; that is, one needs to
know both finite and infinite spectral data in order to characterize A(λ). By definition,
the latter are those of the reverse polynomial A#(λ) := λ`A(λ−1) at 0. Hence they
can be found by applying the lrf in Definition 2.1, and making use of Theorems 3.1,
3.2 replacing A(λ) with A#(λ) and λu with λ∞ := 0.

Theorem 4.1 (Finite and infinite Jordan triples and decomposable pairs). Let
σ(A) = {λu}su=1 be the set of eigenvalues of A(λ) and let (Xu, Ju, Yu) be the Jordan
triple defined in Theorem 3.2 refer to λu; further let

XF := (Xu)su=1, JF := diag(Ju)su=1, YF := (Yu)su=1;

then (XF , JF , YF ) is a finite Jordan triple of A(λ).

Moreover, define (X∞, J∞, Y∞) by applying Definition 2.1 and Theorems 3.1, 3.2
replacing A(λ) with A#(λ) and λu with λ∞ := 0, then (X∞, J∞, Y∞) is an infinite
Jordan triple of A(λ). Finally, defining

X := (XF : X∞), J := diag(JF , J∞), Y := (YF : Y∞),

one finds that (X, J) and (Y, J) are respectively a right- and left- decomposable pair
of A(λ).

Proof. Given the local Jordan triples at each eigenvalue, one can construct a
finite Jordan triple by organizing them into (XF , JF , YF ), see [9, p. 50-57]; because an
infinite Jordan triple of A(λ) is by definition a Jordan triple of the reverse polynomial
A#(λ) at 0, see [9, p. 183-185], one can construct (X∞, J∞, Y∞) by performing the
lrf of A#(λ) at 0. The last part of the statement follows from Theorem 7.3 in [9,
p. 189].

5. Kronecker and Jordan forms; similarity to a diagonal matrix. In
this section we discuss how the local rank factorization can be used to derive i) the
Kronecker form and strict similarity transformations for linear matrix polynomials
and ii) the Jordan form and the associated similarity transformations for matrices.
This is achieved considering the regular matrix pencil

A(λ) = A− λB, A,B ∈ Cp×p.
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5.1. Kronecker and Jordan forms. First observe how the expressions in the
lrf and related quantities simplify for this form of A(λ). From Definition 2.1, A1,k =
0, k > 1, implies

Aj,k = 0, k > 1, Aj,1 = Aj−1,1

∑
i∈Jj−2

β̄iᾱ
′
iAi+1,1, j = 2, . . . ,m;

hence for j ∈ J , j 6= m, π̃j(λ), γ̃j(λ) are given by

π̃j(λ) = αj −Aj+1,1β̄j(λ− λu), γ̃j(λ) = βj −A′j+1,1ᾱj(λ− λu).

Theorem 5.1 (Kronecker form and strict similarity transformations). Let X :=
(XF : X∞), J := diag(JF , J∞), Y := (YF : Y∞) in Theorem 4.1 refer to A(λ) =
A− λB, where A,B ∈ Cp×p, and define

U := (BXF : AX∞), V := (YFB : Y∞A);

then K(λ) := diag(JF , I)−λ diag(I, J∞) is the Kronecker form of A(λ) and X,U and
Y, V are strict similarity transformations that connect A(λ) to K(λ). That is,

A(λ)X = UK(λ), |X|, |U | 6= 0, Y A(λ) = K(λ)V, |Y |, |V | 6= 0,

so that A(λ) = UK(λ)X−1 = V −1K(λ)Y.
Proof. It is well known, see [9, p. 184-185], that AXF = BXFJF , BX∞ =

AX∞J∞. Hence

A(λ)X = (AXF : AX∞)− λ(BXF : BX∞)

= (BXFJF : AX∞)− λ(BXF : AX∞J∞)

= (BXF : AX∞) diag(JF , I)− λ(BXF : AX∞) diag(I, J∞)

= U(diag(JF , I)− λ diag(I, J∞)),

where U := (BXF : AX∞). The fact that X,U are non-singular follows from
properties of decomposable pairs, see [9, ch. 7]. Similarly, from YFA = JFYFB,
Y∞B = J∞Y∞A, see [9, p. 53], one finds

Y A(λ) = (diag(JF , I)− λ diag(I, J∞))V, |Y | 6= 0, |V | 6= 0,

where V := (YFB : Y∞A).
We next consider the special case B = I, i.e. A(λ) = A − Iλ, A ∈ Cp×p; in this

case the analysis delivers the Jordan form of A and Jordan bases.

Corollary 5.2 (Jordan form and similarity transformations). Let (X,J, Y ) in
Theorem 4.1 refer to A(λ) = A − λI, where A ∈ Cp×p; then J = JF is the Jordan
form of A and X = XF , Y = YF are systems of generalized eigenvectors that connect
A to J . That is,

AX = XJ, |X| 6= 0, Y A = JY, |Y | 6= 0,

so that A = XJX−1 = Y −1JY.
Proof. Let B = I in Theorem 5.1 and observe that X∞, J∞, Y∞ are empty; hence

X = XF , J = JF , Y = YF and U = X,V = Y .
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5.2. Similarity with respect to a diagonal matrix. The next theorem gives
necessary and sufficient conditions for A to be diagonalizable; the conditions are
expressed in terms of the outputs of the lrf at each eigenvalue and extend the ones
given e.g. in [6, page 152].

Theorem 5.3 (Diagonalization). Let A ∈ Cp×p, indicate by σ(A) = {λu}su=1 the
set of its eigenvalues and let αu,j , βu,j, be the outputs of the lrf of A(λ) = A − λI
at λu ∈ σ(A); then the following statements are equivalent:

i) A is diagonalizable,
ii) mu = 1 for u = 1, . . . , s;
iii) rankMαu,0Mβu,0 = p− ru,0 for u = 1, . . . , s,
iv) rankα′u,1βu,1 = p− ru,0 for u = 1, . . . , s,
v) rankα′u,0βu,0 = ru,0 for u = 1, . . . , s.

Proof. i)⇔ ii) By [6, page 152] A is diagonalizable if and only if all its elementary
divisors are of first degree, i.e. mu = 1 for u = 1, . . . , s. For ease of notation we drop
the subscript u in the remaining parts of the proof. ii) ⇔ iii): see Definition 2.1;
iii) ⇒ iv): iii) implies ii) and hence Mα0

= Pα1
, Mβ0

= Pβ1
, so that Mα0

Mβ0
=

ᾱ1(α′1β1)β̄′1. Because ᾱ1 and β̄1 are of full column rank p−r0, one has that iii) implies
iv); iv)⇒ iii): iv) implies Mα0Mβ0 = ᾱ1α

′
1β1β̄

′
1 has rank p− r0 and hence iii) holds;

iv) ⇒ v): first observe that C := (β0 : α1) and D := (α0 : β1) are non-singular; in
fact (

β̄′0
β′1

)
(β0 : α1) =

(
Ir β̄′0α1

0 β′1α1

)
,

(
ᾱ′0
α′1

)
(α0 : β1) =

(
Ir ᾱ′0β1

0 α′1β1

)
are non-singular matrices. Note also that (β̄0 : β1), (ᾱ0 : α1) are non-singular by
Remark 2.2. Because

C ′D =

(
β′0
α′1

)
(α0 : β1) =

(
β′0α0 0

0 α′1β1

)
,

one has rankβ′0α0 = r0. v) ⇒ iv): Replacing subscripts 1, 0 with 0, 0⊥ in the
proof of iv) ⇒ v), one proves that rankα′0⊥β0⊥ = p − r0. Because Mα0

= Pα0⊥ and
Mβ0 = Pβ0⊥ , one finds that Mα0Mβ0 = ᾱ0⊥(α′0⊥β0⊥)β̄′0⊥ has rank equal to p − r0,
i.e. iii) holds, which implies iv).

6. Example. In this section we illustrate the main results by computing the
Jordan form and generalized eigenvectors of the matrix

A =

 6 2 2
−2 2 0
0 0 2

 ,

see [16, p. 238]; from A(λ) = A − Iλ one finds the reduced adjoint and the minimal
polynomial

A◦(λ) =

 (λ− 2)2 2(λ− 2) 2(λ− 2)
−2(λ− 2) (λ− 6)(λ− 2) −4

0 0 (λ− 4)2

 , a(λ) = (2− λ)(λ− 4)2.

Hence σ(A) = {2, 4}, s = 2 and a1(λ) = (λ − 4)2, a2(λ) = 2 − λ in (2.1) so that
A−1(λ) has a pole of order m1 = 1 at λ1 = 2 and a pole of order m2 = 2 at λ2 = 4.
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First consider the eigenvalue λ1 = 2; the inizialization of the lrf of

A(λ) =

 4 2 2
−2 0 0
0 0 0


︸ ︷︷ ︸

A0

+

 −1 0 0
0 −1 0
0 0 −1


︸ ︷︷ ︸

A1

(λ− 2)

at λ1 = 2, see Definition 2.1, delivers

A0 = −

 4 2
−2 0
0 0


︸ ︷︷ ︸

α0

(
−1 0 0
0 −1 −1

)
︸ ︷︷ ︸

β′0

, r0 = 2 < 3 = rmax
0 , J0 = 0,

which implies

Ma1 = I − ᾱ0α
′
0 =

 0 0 0
0 0 0
0 0 1

 , Mb1 = I − β̄0β
′
0 =

1

2

 0 0 0
0 1 −1
0 −1 1

 .

Because A1,1 = A1 = −I, recursion j = 1 delivers

Ma1A1,1Mb1 = −

 0
0
1
2


︸ ︷︷ ︸

α1

(
0 −1 1

)︸ ︷︷ ︸
β′1

, r1 = 1 = rmax
1 , J1 = (1 : 0).

This terminates the recursion because the end condition is satisfied; hence µ1 = m1 =
1. Because J1 = (1 : 0), r1 = 1 and r0 = 2, the local Smith form of A(λ) at λ1 = 2 is
equal to, see Theorem 3.1,

Λ1(λ) =

 λ− 2 0 0
0 1 0
0 0 1

 ,

and hence κ = (1 : 0 : 0). Next compute

π̃1(λ) = α1 =

 0
0
1
2

 , π1(λ) = A◦(λ)π̃1(λ) =

 0
−2
2

+

 1
0
λ−6

2

 (λ− 2),

π̃0(λ) = α0 + β̄0(λ− 2) =

 6− λ 2
−2 2−λ

2

0 2−λ
2

 ,

π0(λ) =
A◦(λ)π̃0(λ)

λ− 2
= − (λ− 4)2

2

 2 0
0 1
0 1

 ,

and define the transformations

Π̃(λ) = a1(λ)(π̃1(λ) : π̃0(λ)), Π(λ) = (π1(λ) : π0(λ));
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observe that Π̃(2),Π(2) are non-singular and, as stated in Theorem 3.1, they satisfy

A(λ)Π(λ) = Π̃(λ)Λ1(λ),

i.e. they connect A(λ) to its local Smith form Λ1(λ). A right Jordan pair of A(λ) at
λ1 = 2 is found applying Theorem 3.2; because p− r0 = 1, κ1 = 1 one has

XF,1 =

 0
−2
2

 , JF,1 = 2.

Next perform the lrf of A(λ) at λ2 = 4; this delivers J2 = (2 : 0), r2 = 1, r1 =
0, r0 = 2 and

a =

 − 1
12
− 1

12
− 1

12︸ ︷︷ ︸
α2

2 2
−2 0
0 −2


︸ ︷︷ ︸

α0

, b =

 −1
1
0︸ ︷︷ ︸

β2

−1 0
−1 0
0 −1


︸ ︷︷ ︸

β0

.

Hence the local Smith form of A(λ) at λ2 = 4 is

Λ2(λ) =

 (λ− 4)2 0 0
0 1 0
0 0 1

 , κ = (2 : 0 : 0),

and the transformations are equal to

Π̃(λ) = (2− λ)︸ ︷︷ ︸
a1(λ)

 − 1
12
− 1

12
− 1

12︸ ︷︷ ︸
π̃2(λ)=α2

8−λ
2 2
−λ2 0
0 2− λ


︸ ︷︷ ︸
π̃0(λ)=α0+β̄0(λ−4)

, Π(λ) =

 4−λ2

12
−12+10λ−λ2

12
−16+8λ−λ2

12︸ ︷︷ ︸
π2(λ)

2−λ
2 0

2−λ
2 0
0 2− λ


︸ ︷︷ ︸

π0(λ)

.

One can check that |Π̃(4)|, |Π(4)| 6= 0 and A(λ)Π̃(λ) = Π(λ)Λ2(λ), i.e. they connect
A(λ) to its local Smith form Λ2(λ). Because p− r0 = 1, κ1 = 2 and

π2(λ) =

 −1
1
0

+

 − 2
3

1
6
0

 (λ− 4)− 1

12

 1
1
1

 (λ− 4)2,

one finds

XF,2 =

 −1 − 2
3

1 1
6

0 0

 , JF,2 =

(
4 1
0 4

)
.

Because s = 2 this completes the local analysis; hence the Smith form of A(λ) is equal
to

Λ(λ) =

 (λ− 2)(λ− 4)2 0 0
0 1 0
0 0 1

 ,
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see (4.1), and a Jordan pair, see Theorem 4.1, is given by

X =

 0
−2
−2︸ ︷︷ ︸

XF,1

−1 − 2
3

1 1
6

0 0


︸ ︷︷ ︸

XF,2

, J = diag(JF,1, JF,2) =

 2 0 0
0 4 1
0 0 4

 .

One can check that |X| 6= 0, A = XJX−1, so that X is a similarity transformation
that links A to its Jordan form J , see Theorem 5.2. Similarly one can derive the left
counterpart of these quantities.

7. Conclusion. The lrf characterizes the structure of a matrix polynomial at
an eigenvalue and delivers its local Smith form, extended canonical systems of left
and right root functions, canonical sets of left and right Jordan chains and local Jor-
dan triples. Using the local quantities one then derives the global counterparts, i.e.
the Smith form, finite and infinite Jordan triples and decomposable pairs. Applying
these tools to matrix polynomials of degree one, one obtains the Kronecker form and
strict similarity transformations, as well as the Jordan form and systems of general-
ized eigenvectors. A enlarged characterization of the conditions for a matrix to be
diagonalizable are obtained, some of which are stated in terms of subspaces defined
by the lrf.

Appendix A. Proofs taken from [5].

Lemma A.1. Fix λu ∈ σ(A), let αj , βj , Aj,k,J be the outputs of the lrf of A(λ)

at λu and let A◦(λ) =
∑`◦
n=0A

◦
n(λ − λu)n be the reduced adjoint of A(λ); then for

0 ≤ j ≤ n ≤ min(m,µ), one has

αjβ
′
jA
◦
n−j = Maj

n−j∑
k=1

Aj+1,kA
◦
n−j−k + cn,mMaj , (A.1)

A◦n−jαjβ
′
j =

n−j∑
k=1

A◦n−j−kAj+1,kMbj + cn,mMbj , (A.2)

where cn,m := −δn,mau(λu), see (2.1), and δn,m is Kronecker’s delta.
Proof. Let

A(λ) =
∑̀
n=0

An(λ− λu)n, A◦(λ) =

`◦∑
n=0

A◦n(λ− λu)n

and write

A(λ)A◦(λ) =

N∑
n=0

Ln(λ− λu)n, A◦(λ)A(λ) =

N∑
n=0

Rn(λ− λu)n,

where

N = m+ deg au(λ), Ln =

n∑
k=0

AkA
◦
n−k, Rn =

n∑
k=0

A◦kAn−k;

then (2.2) implies

Ln = Rn = δn,mI, 0 ≤ n ≤ m, (A.3)
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where δn,m is Kronecker’s delta. We wish to show that for 0 ≤ j ≤ n ≤ min(m,µ)
one has

MajLn = −αjβ′jA◦n−j +Maj

n−j∑
k=1

Aj+1,kA
◦
n−j−k, (A.4)

which, together with (A.3), implies (A.1).
We proceed by induction on j. Let j = 1 in (2.4) and observe that A1,k = Ak

with A0 = −α0β
′
0; hence Ln = −α0β

′
0A
◦
n +

∑n
k=1A1,kA

◦
n−k, which proves that (A.4)

holds for j = 0 and Ma0 = I.
Next assume that (A.4) holds for 0 ≤ j ≤ ` ≤ n < min(m,µ); we wish to show

that it also holds for j = `+ 1 ≤ min(m,µ). Consider (A.4) for j = `; pre-multiply it
by Ma`+1

and re-arrange terms to find

Ma`+1
Ln = Ma`+1

A`+1,1A
◦
n−`−1 +Ma`+1

n−`−1∑
k=1

A`+1,k+1A
◦
n−`−1−k =: U + V (say).

(A.5)
Using the projection identity I = Mb`+1

+ Pb`+1
, one finds

U = Ma`+1
A`+1,1Mb`+1

A◦n−`−1 +Ma`+1
A`+1,1Pb`+1

A◦n−`−1 (A.6)

and substituting in the first term from (2.5) and in the second term from Pb`+1
=∑`

h=0 β̄hβ
′
h one obtains

U = −α`+1β
′
`+1A

◦
n−`−1 +Ma`+1

A`+1,1

∑̀
h=0

β̄hβ
′
hA
◦
n−`−1. (A.7)

We next substitute β′hA
◦
n−`−1 in the last expression with

β′hA
◦
n−`−1 = ᾱ′h

n−`−1∑
k=1

Ah+1,kA
◦
n−`−1−k, (A.8)

which is proved as follows. Observe that (A.4) holds by the induction hypothesis with
j and n replaced by h and n− `−1, because h ≤ ` and n− `−1 ≤ n−1 < min(m,µ).
Hence

MahLn−`−1 = −αhβ′hA◦n−`−1 +Mah

n−`−1∑
k=1

Ah+1,kA
◦
n−`−1−k.

Because Ln−`−1 = 0, see (A.3), pre-multiplying by ᾱ′h and observing that ᾱ′hMah =
ᾱ′h, one obtains (A.8).

Substituting (A.8) in (A.7), and interchanging the order of summation, one has

U = −α`+1β
′
`+1A

◦
n−`−1 +Ma`+1

n−`−1∑
k=1

(
A`+1,1

∑̀
h=0

β̄hᾱ
′
hAh+1,k

)
A◦n−`−1−k. (A.9)

Summing U + V and using (2.4) one finds (A.4) for j = ` + 1. Similarly one proves
(A.2) using Rn.
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Proof of Theorem 2.3. We want to show that the index of the lrf of A(λ) at λu is
equal to the order of the pole of A−1(λ) at λu. Next we show that µ < m and µ > m
both lead to a contradiction, so that one must have µ = m. First suppose µ < m;
for n = 0, . . . , µ one has β′nA

◦
0 = 0 by (A.1), i.e. b′A◦0 = 0 which is a contradiction

because A◦0 6= 0 and b is non-singular, see Remark 2.2. Next suppose µ > m; let
j = n = m in (A.1) to get αmβ

′
mA
◦
0 = Mam . Hence, colαm ⊇ colMam ; because

dim colαm = rm and dim colMam = p −
∑m−1
n=0 rn = rmax

m , this implies rm ≥ rmax
m

which is a contradiction because m < µ implies rm < rmax
m . Hence µ = m.

Proof of Theorem 3.1. In order to prove (3.1) it is sufficient to show that Π̃(λ)
is an extended system of right root functions of A◦(λ) at λu; together with (2.2) this
implies that Π(λ) is an extended canonical system of right root functions of A(λ) at
λu. In order to do so, first we show that

A◦(λ)π̃j(λ) = (λ− λu)m−jπj(λ), j ∈ J . (A.10)

Then we group (A.10) together into

A◦(λ)Π̃(λ) = Π(λ)Λ◦(λ), (A.11)

where Λ◦(λ) := diag((λ − λu)m−jIrj )j∈J , and show that Π̃(λu) and Π(λu) are non-

singular; this proves that Π̃(λ) is an extended system of root functions of A◦(λ) at
λu by condition (2) in Theorem 1.3 in [7], also reported in the Appendix in [8].

We first prove (A.10). Consider first 0 ≤ j ≤ n ≤ m− 1; for j = n, (A.2) implies
A◦0αj = 0 and hence

A◦(λ)αj =

m−j−1∑
h=1

A◦hαj(λ− λu)h + (λ− λu)m−jR0(λ)αj =: U(λ) + V (λ) (say),

where R0(λu) = A◦m−j and

A◦hαj =

h∑
k=1

A◦h−kAj+1,kβ̄j + ch+j,mβ̄j , (A.12)

follows from (A.2) replacing n − j with h. Observe that for j = 0, . . . ,m − 1 and
h = 1, . . . ,m− j − 1 one has ch+j,m = 0; hence substituting from (A.12) in U(λ) and
re-arranging terms, one finds

U(λ) =

m−j−1∑
k=1

(
m−j−1∑
h=k

A◦h−k(λ− λu)h

)
Aj+1,kβ̄j .

One can write
∑m−j−1
h=k A◦h−k(λ−λu)h = (λ−λu)kA◦(λ)− (λ−λu)m−jRk(λ), where

Rk(λu) = A◦m−j−k; hence U(λ) becomes

U(λ) = A◦(λ)

m−j−1∑
k=1

Aj+1,kβ̄j(λ− λu)k − (λ− λu)m−j
m−j−1∑
k=1

Rk(λ)Aj+1,kβ̄j ,

so that U(λ) + V (λ) is

A◦(λ)αj = A◦(λ)

m−j−1∑
k=1

Aj+1,kβ̄j(λ− λu)k + (λ− λu)m−jπj(λ), (A.13)
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where

πj(λ) := R0(λ)αj −
m−j−1∑
k=1

Rk(λ)Aj+1,kβ̄j . (A.14)

By taking all the terms in (A.13) that multiply A◦(λ) on the l.h.s., one finds (A.10),

where π̃j(λ) := αj −
∑m−j−1
k=1 Aj+1,k(λ− λu)kβ̄j .

Next we have to show that Π̃(λu) and Π(λu) are non-singular. Because π̃j(λu) =

αj one has Π̃(λu) = a and hence it is non-singular, see Remark 2.2. Next consider
the block πj(λu) in Π(λu) = (πj(λu))j∈J . Using (A.14) and Rk(λu) = A◦m−j−k for
k = 0, . . . ,m− j − 1, one finds

πj(λu) = A◦m−jαj −
m−j−1∑
k=1

A◦m−j−kAj+1,kβ̄j ,

where, substituting from (A.12) for h = m− j, one finds

πj(λu) = A◦0Aj+1,m−j β̄j − au(λu)β̄j = −au(λu)(β̄mᾱ
′
mAj+1,m−j β̄j + β̄j)

where we have substituted A◦0 = −au(λu)β̄mᾱ
′
m, which is shown as follows: let n = j

in (A.1) and (A.2); for 0 ≤ j ≤ m, one then has

αjβ
′
jA
◦
0 = cj,mMaj and A◦0αjβ

′
j = cj,mMbj ;

these imply β′jA
◦
0 = 0, A◦0αj = 0 for j = 0, . . . ,m − 1 and β′mA

◦
0αm = cm,mIrm

and thus A◦0 =
∑m
j=0 Pβj

A◦0
∑m
j=0 Pαj

= −au(u)β̄mᾱ
′
m. This also gives πm(λu) =

A◦0αm = −au(λu)β̄m. Hence one finds

Π(λu) = −au(λu)K

(
Irm H
0 Ip−rm

)
,

where au(λu) 6= 0, K := (β̄j)j∈J and H := ᾱ′m(Am,1β̄m−1 : · · · : A1,mβ̄0). Because K
is non-singular, see Remark 2.2, and the upper triangular matrix is non-singular, one
concludes that Π(λu) is non-singular. Similarly one proves (3.2).
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