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Abstract

We develop a sieve bootstrap range test for poolability of cointe-
grating regressions in dependent panels and evaluate by simulation its
performances. Although slightly undersized the test has good power even
when only a single unit of the panel is heterogenous.
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1 Introduction1

Estimation and testing of macroeconomic models using the tools of non-
stationary panel analysis is becoming increasingly popular. Recent ex-
amples include topics as diverse as migrations (Brücker, Fachin and Ven-
turini, 2011), energy consumption and economic growth (Apergis, 2010),
human capital spillover e¤ects (Le, 2010) and money neutrality (West-
erlund and Costantini, 2009). Consider for simplicity two cointegrated
variables, X and Y , observed over N units (indexed by i) and T time
periods (indexed by t). The potential of a panel dataset can be best
exploited when the long-run slope coe¢ cients are the same across units;
in this case pooled long-run models of the type

yit = �i + �xit + �it (1)

may be estimated2. However, the poolability, or homogeneity, hypoth-
esis H0 : �i = � should be tested, rather than imposed a priori, as it
is often the case (as e.g., in Adedeji and Thornton, 2008). A naive,
indirect way to test the homogeneity hypothesis is to test for cointegra-
tion model (1), since in case of heterogeneity its residuals include the
non-stationary component (�i��)xi. However, this approach implicitly
assumes homogeneity in the speed of adjustment: if this does not hold,
the null hypothesis of slope homogeneity may be erronously rejected
even if true. Moving to direct tests of the poolability hypothesis, several
options are available for stationary panels (for a recent review see Pe-
saran and Yamagata, 2008). However, the choice is much more limited if
we consider tests suitable for non-stationary panels which take into ac-
count the dependence across units. Standard likelihood ratio tests can
be used when N is small relative to T (see e.g.,Groen and Kleibergen,
2003). However, in macro panels the two sample sizes are typically of
the same order of magnitude, so that this route is empirically of very lit-
tle interest. To the best of our knowledge, the only empirically relevant
options available are the generalisations by Mark, Ogaki and Sul (2005)
and Moon and Perron (2004) of the Wald test by Mark and Sul (2003),
the Hausman test by Westerlund and Hess (2009), and the variance test
by Trapani (2010). As we shall see, unfortunately none of these tests is
fully satisfactory for testing homogeneity in small panels.

1Financial support from MIUR is acknowledged by both authors. We are grateful
to participants to the RCFEA Time Series Workshop (Rimini, June 2011), ECTS
2011 (Rome, June 2011) and to the Conference in Honour of M.H. Pesaran (Cam-
bridge, July 2011) for comments and suggestions. The usual disclaimers apply. Cor-
respondence to s.fachin@caspur.it, fdiiorio@unina.it.

2If the short-run dynamic is of interest the PMG estimator by Pesaran, Shin and
Smith (1999), which allows for heterogenous short-run coe¢ cients while imposing
long-run homogeneity, may be used.
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The Wald test, which compares all the restricted and heterogenous
estimates, requires either the assumption of independent units3 or SUR
estimation. The former is empirically implausible, and the latter feasible
only for large T=N ratios (in some previous work we found that FM-
SUR estimates turned out to be unfeasible for a panel with T = 50 and
N = 10; see Di Iorio and Fachin, 2008).
Westerlund and Hess (2009) construct a test based on the maximum

distance between the heterogenous and the pooled estimates estimating
the variance of the distance by the Hausman approach. The use of the
maximum gives the procedure the ability to detect heterogeneity even
in a single unit of the panel. However, some problems remain open.
Although stationary common factors in the residuals are allowed, the test
requires the assumption of independence across units for the right-hand
side variables. Westerlund and Hess suggest that the more general case
of dependent explanatory variables can be tackled extracting in a �rst
step the common factors with the Bai and Ng (2004) procedure. This
is rather straightforward in the case of to stationary factors, examined
by simulation by Westerlund and Hess, but less so in the empirically
more relevant case of non-stationary factors, not examined. Further,
the power of this two-steps test seems to be inversely related to the
variance of the common factor. It should also be kept in mind that,
as pointed out e.g. by Pesaran and Yamagata (2008), Hausman tests
generally tend to have low power.
Trapani (2011) suggests to formulate the homogeneity hypothesis as

H0 : �
2
� = 0; where �

2
� is the variance of the estimates across units, and

develops a testing procedure which has many appealing features: for
instance, mixed panels in which only some of the units are cointegrated
may be considered. Unfortunately, the simulation evidence reported
(which, further, is limited to the case of independent units) suggests that
its power is likely to be very low for small sample sizes and heterogeneity
limited to a small fraction of the units.
Borrowing from bothWesterlund and Hess (2009) and Trapani (2011),

we suggest to formulate the homogeneity hypothesis as H0 : R = 0 ,
where R =Maxi2[1;N ](�i)�Mini2[1;N ](�i) is the range of the coe¢ -
cients over theN units. Measuring the heterogeneity of the estimated set
of coe¢ cients in this way is expected to bring some advantages over both
Hausman and variance tests. On one hand, we avoid the troublesome
estimation of the variance of the di¤erence between the heterogenous
and pooled estimates required by the Hausman tests. On the other, we
expect to improve the ability to detect violations of the null hypothesis

3This also applies to the Hausmann test applied by Pesaran, Shin and Smith
(1999).
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in a small fraction of the units. Obviously, the disadvantage is that the
asymptotic distribution of the Range can be derived only under the as-
sumption that the extremes are independent (the classical reference is
Gumbel, 1947), precisely the case we are not interested in. As we will
argue below, we conjecture that this problem can be tackled by the sieve
bootstrap. Details of the algorithm will be given in section 2, while the
results of some Monte Carlo evaluation in section 3. Section 4 concludes.

2 Testing set-up

Assume we are interested in the following cointegration model (Chang,
Park and Song, 2006):

yit= �i + �ixit + �it (2)

xit=xit�1 +  it�
�it
 it

�
=�(L)

�
eyit
exit

�
where �(L) =

P1
k=0�kz

k:The following standard assumptions hold:
et = [e

y
it e

x
it]
0 s.t. E(et) = 0; E(ete

0
t) = � > 0; Ejetj4 < 1; det �(z) 6= 0

for all jzj � 1;
P1

k=0 k j�kj < 1: Then, let b�i any consistent estimate
of �i, e.g. OLS ot the more e¢ ciente FM-OLS or DOLS. Since Max
and Min are continuous functions, by the Continuous Mapping The-
orem (CMT) the sample range bR =Maxi2[1;N ](b�i)�Mini2[1;N ](b�i) is
a consistent estimate of the population range R, and it can be used
as a statistic for testing the homogeneity hypothesis H0 : R = 0 : As re-
marked in the Introduction, since the distribution of the Range is known
only for independent units, we conjecture that inference can be based
on the sieve bootstrap. This conjecture is based upon two elements.
First, Hall and Miller (2010) showed that the simple bootstrap yields
asymptotically valid inference on extrema of parameters computed from
IID datasets. Second, Chang, Park and Song (2006) proved that sieve
bootstrap estimators (i.e., estimators applied to datasets constructed by
the sieve bootstrap, say ��i ) have the same limiting distribution as that
of the estimators computed on the originary data. Invoking the CMT
again we can conclude that this holds for their Max and Min as well:
the asymptotic distribution of �(��i ) is the same as that of �(b�i); where
� =Max;Min. For independent units this trivially extends to their dif-
ference as well, the range. We conjecture, and will show by simulation,
this holds for dependent units as well. We do not attempt to obtain
a formal proof for two reasons. First, such a proof will necessarily be
limited to some speci�c form of dependence, and thus will never be fully
satisfactory. Second, the empirical interest of the procedure lies in its
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small sample performances, which will need to be assessed by simulation
anyway.
To assess if the null hypothesis of poolability is compatible with

the data we then suggest to construct by the sieve bootstrap pseudo-
data satisfying the null hypothesis, and compare the range computed
on the empirical dataset with the distribution of the bootstrap ranges.
To this end, since bootstrap tests should be based on pivotal statis-
tics we make the additional assumption that all coe¢ cients have the
same sign (formally, �i�j > 0 8i; j) and de�ne the normalized rangebRN= [Maxi2[1;N ](b�i) �Mini2[1;N ](b�i)]=Maxi2[1;N ]

���b�i��� ;which under this
assumption falls in the [0; 1] interval.
The details of the algorithm are as follows:

1. Estimate (2) by any consistent procedure, obtaining for each unit
i the residuals fb�itgTt=1 ;

2. Compute the Range of the N coe¢ cients, bRN= [Maxi2[1;N ](b�i)�
Mini2[1;N ](b�i)]=Maxi2[1;N ]

���b�i��� ;
3. Letting Zit = [�xit b�it]0, �t VARs of order pi to each of the N
bivariate time series fZitgTt=2 : Zit =

Ppi
j=1BjZi + �it;where �it =

[�xit ��it]
0:

4. Store the (empirically white noise) residuals b�it = [b�xit;b��it]0; t =
pi + 1; : : : ; T of the N VARs;

5. Letting pM = max(pi); resample with replacement the rows of
the (T � pM) � 2N matrix V = [b�x1 : : : b�xN b��1 : : : b��N ] ; whereb�xi = [b�xipM+1 : : :b�xiT ]0, b��i = [b��ipM+1 : : :b��iT ]0; obtaining a ma-
trix of pseudoresiduals V� = [b��x1 : : : b��xN b���1 : : : b���N ] : Since entire
rows swap places with the column �xed, the cross-unit dependence
structure of the matrix V is preserved;

6. Construct recursively the pseudoseries Z�it =
Ppi

j=1
bBjZ�i + ��it ;

setting the pM initial values equal to the observed values (Z�it =
[�xit b�it]0 ; t = 1; : : : ; pM);

7. Cumulate the �x�0s to obtain the x�0s;

8. Compute pseudodata obeying the null hypothesis of slope homo-
geneity: y�it = b�i + �0x�it + ��it; i = 1; : : : ; N , t = 1; : : : ; T .

9. Estimate the cointegrating regression (2) on the dataset fy�t ; x�tg,
obtaining estimates of the cointegrating coe¢ cients ��i ; i = 1; : : : ; N ;
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10. Compute the Range of the bootstrap estimates: R�N = [Maxi2[1;N ](�
�
i )�

Mini2[1;N ](�
�
i )]=Maxi2[1;N ] j��i j ;

11. Repeat 3-10 B times;

12. Compute the bootstrap p-value as the right tail of the distribution
of the R�0�s : p

� = prop(R�N > bRN) :
A few remarks are in order;

(i) The poolability hypothesis is empirically meaningful only for coe¢ -
cients of the same sign. Hence, the assumption �i�j > 0 8i; j does
not introduce any actual limitation to the empirical applications
of the test.

(ii) If the �x0is have a non-zero mean they must be centred, or a con-
stant included in the VAR of step 3.

(iii) The VAR lag lengths pi may be empirically chosen on the basis
of any consistent criterion, such as the AIC, provided they are
allowed to grow with the time sample size at some controlled rate
(e.g. logarithmic).

(iv) In steps 8 and 9 the constant may be omitted from both the boot-
strap DGP and model.

(v) The simplest choice of �0 is the mean group estimate �MG = N�1PN
i=1
b�i;

which does not require estimating a constrained model.

(v) The procedure is immediately extended to the multivariate model
yit = �i +

Pk
j=1 �jixjit + �it. Tests for a subset of the coe¢ cients

are obtained constraining only the relevant elements of the vector
�0, and joint tests as induced tests rejecting H0 : �ji = �j; j =
1; : : : ; k0; if min(p�j) < �0;where p�j is the bootstrap p-value for
variable j. Use of Bonferroni individual signi�cance levels �0 =
�=k0 ensures control of the Family Wise Error Rate at � (Savin,
1984)

3 Simulation evidence

3.1 Design
Our Monte Carlo experiment is based on a Data Generating Process
(DGP) which is essentially a generalisation of the classic Engle and
Granger (1987) DGP to the case of dependent panels. The panel struc-
ture is closely related to those used by Kao (1999), Fachin (2007),
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and Gengenbach et al. (2006). Since panel DGPs are inevitably very
complex, simulation experiments are computationally very demanding.
Hence, rather than aiming at the unfeasible task of a complete design our
aim will be that of de�ning an empirically relevant set-up. We assume
the variable of interest, Y; known to be linked in all units of a panel by a
cointegrating relationship to a right-hand side variable X, with residuals
following stationary autoregressive processes:�

yit = �i + �ixit + �yit
�yit = �i�

y
it�1 + eyit; eyit � N(0; �2iy)

(3)

where i = 1; : : : ; N , t = 1; : : : ; T . The �0is are generated as Uniform(0:4; 0:6)
across units and kept �xed for all Monte Carlo simulations. To ensure
some heterogeneity across units we also generate �2iy � Uniform(0:5; 1:5)
and keep them �xed across experiments, while with no loss of general-
ity we set �i = �i = 1 8i under the null hypothesis of homogeneity.
The power simulations consider two cases: in the �rst case there is wide
heterogeneity, with �i = 1 in the �rst � = 0:7N units and 0.5 in the
remaining 0:3N 4. In the second case only the last unit of the panel is
heterogenous (�i = 1 for i = 1; : : : ; N � 1; �N = 0:5); so that � = N � 1:
The right-hand side variable X is constructed essentially as the sum

of two terms. The �rst, ux; is in turn the sum of two non stationary
factors, one common across units (F x) and one idiosyncratic (�xit). The
second term, ai(�0i + �

y
it); captures the feedback from the left-hand side

variable, absent when ai = 0. Summing up:�
xit = (1� ai�i)

�1[uxt + ai(�0i + �yit)]
uxt = xi F

x
t + �xit

(4)

To allow for some heterogeneity across units we generate, and keep
�xed across experiments, both the a0is and the factor loadings 

x
i as uni-

form variates. The endogeneity coe¢ cients fall in the range [0:05; 0:25];
while the factor loadings, to ensure substantial dependence across units,
in the range [0:50; 3:0]. Both the common and the idiosyncratic factors
are generated as simple random walks:

F xt =
Pt

s=1 �
x
s (5)

�xit=
Pt

s=1 e
x
is (6)

where �xt � N(0; 1) and exit � N(0; �2xi); with �
2
xi � Uniform(1:0; 1:50):

4Fixing the coe¢ cients of the heterogenous units all at the same value allows more
reliable comparisons with small cross-section sample sizes.
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From the empirical point of view, our DGP is representative of many
applications. One obvious example the case of consumption and income
in a panel of regions or national economies, with the common factor due
respectively to national or global stochastic GDP trend. The sample
sizes considered in the experiment are also chosen with the primary aim
of reproducing empirically relevant conditions. Since the homogeneity
question is mostly relevant for small cross-sections we shall examine N =
5; 10; 20, while, considering that most macro datasets include annual, or
at most quarterly data, we will let T = 20; 40, 80; and, to evaluate
asymptotic behaviour under the null hypothesis, T = 160: The VAR
lengths will be chosen on the basis of AIC with the maximum lag set to
4log(T ), yielding 5; 6; 8 respectively for T = 20; 40; 80:
Finally, to strike a balance between experimental precision and com-

puting costs the number of both Monte Carlo simulations and bootstrap
redrawings has been set to 1000, implying that the approximate con�-
dence intervals around 5% and 10% will respectively be [3:6% � 6:4%]
and [8:1%; 11:9%].

3.2 Results and conclusions
The results are summarised in Tables 1 (size), 2 and 3 (power). The
cointegrating coe¢ cients have been estimated by FM-OLS. Even taking
account Monte Carlo uncertainty, the test appears somehow undersized.
However, turning to Tables 2 and 3 we can see that the power perfor-
mances are acceptable for T = 40 at 10% level and always very good
for T = 80. The ability to reject false null hypothesis is clearly strictly
dependent upon the quality of the coe¢ cient estimates. The power loss
from high to low heterogeneity is, as expected, low provided the time
sample is at least moderate.
Summing up, the proposed procedure seems to have good size and

power properties even with small cross-sections (in which factor methods
deliver poor results) and moderate time samples (in which SUR esti-
mation is typically not feasible). Thus it may be a useful addition to
the toolkit of the applied econometrician working with non stationary
panels.
Work in progress include more extensive Monte Carlo evaluation,

and application of the test to the money demand functions of the six
countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman,
Qatar, Saudi Arabia and the United Arab Emirates) which are planning
a monetary union.
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Table 1
Rejection rates �100 of Bootstrap

Poolability Tests
Size

T 20 40 80 160
� 5 10 5 10 5 10 5 10

N 5 4.5 8.5 3.9 8.1 4.3 8.6 3.6 6.8
10 3.0 7.1 4.3 7.2 4.2 8.3 4.1 7.6
20 3.2 7.7 3.4 7.8 3.1 6.3 3.6 6.8

DGP: (3)-(6)
H0 : �i = � 8i

Table 2
Rejection rates �100 of Bootstrap

Poolability Tests
Power, High heterogeneity

T 20 40 80
� 5 10 5 10 5 10

N 5 21.7 33.8 60.4 77.9 99.5 100
10 17.0 28.1 54.3 75.7 99.4 100
20 11.5 23.2 46.6 70.5 99.8 100

DGP: (3)-(6), � = 0:3N heterogenous units;
H0 : �i = � 8i:

Table 3
Rejection rates �100 of Bootstrap

Poolability Tests
Power, one heterogenous unit

T 20 40 80
� 5 10 5 10 5 10

N 5 19.2 28.3 55.0 68.6 97.6 98.6
10 15.9 24.9 56.4 67.5 97.7 98.7
20 10.8 18.1 46.2 61.1 97.2 98.3

DGP: (3)-(6),
H0 : �i = � 8i:
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