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A simple check for VAR representations of DSGE models

MASSIMO FRANCHI AND ANNA VIDOTTO

OCTOBER 11, 2012

Abstract. The present paper shows that there is a simple way to check whether a DSGE model can be

represented by a finite order VAR. This consists in verifying that the eigenvalues of a certain matrix defined

in Fernández-Villaverde et al. (2007) are all equal to zero. Further we show that this condition is equivalent

to the one in Ravenna (2007), which is, however, not easily applicable.

1. Introduction

The analysis of how an economy reacts to shocks plays a central role in macroeconomics. Since the seminal

work of Sims (1980), the mechanisms of propagation of economic shocks have been analyzed empirically using

vector autoregressive (VAR) models. During the last thirty years, a vast literature has provided evidence

on the effects of monetary policy, fiscal policy and other economically relevant shocks via the analysis of

impulse response functions (IRFs) derived from VARs, see e.g. Blanchard and Quah (1989), Blanchard

and Perotti (2002), Uhlig (2005), Mountford and Uhlig (2009), Perotti (2008). On the theoretical side,

dynamic stochastic general equilibrium (DSGE) models have recently gained a central role in formalizing

these mechanisms of propagation in a coherent theoretical framework; in many cases, one uses the ‘stylized

facts’ derived from a VAR as a guidance for isolating properties that a theoretical model would need to

possess.

A growing number of papers (Chari et al., 2005, Christiano et al., 2006, Kapetanios et al., 2007, Fernández-

Villaverde et al., 2007, Ravenna, 2007) remarks that this requires that the data-generating process consistent

with the DSGE admits a finite order VAR representation, and the following very basic question is posed: is

it always possible to capture the economic shocks of a DSGE via the residuals of a VAR? That is, does a

reduced form VAR always contain the economic shocks of the DSGE among its structural interpretations?

This difficulty is related to the problem of non-invertibility (or non-fundamentalness) of economic models,

see Hansen and Sargent (1980, 1991), Lippi and Reichlin (1993, 1994) for early treatments of the issue, and

precedes the identification step.

The present paper shows that there is a simple way to check whether a DSGE model can be represented

by a finite order VAR. This consists in verifying that all the eigenvalues of the matrix defined in Fernández-

Villaverde et al. (2007) are equal to zero. The same problem is addressed and answered in Ravenna (2007)

by giving a unimodularity condition which is, however, not easily applicable in practice. In Section 3 we

further show that our condition is equivalent to the latter and thus it provides an easy way to implement it.
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Moreover, our results are very much related to those in Fernández-Villaverde et al. (2007), who discuss when

a DSGE model admits an infinite order VAR representation, and can be viewed as clarifying the missing

link between their condition and the one proposed in Ravenna (2007).

2. The ‘ABCD’ setup

Let an equilibrium of an economic model have the state space representation (see e.g. Uhlig (1999) for

an exposition of how to obtain it):

(1)

xt = Axt−1 +Bwt

yt = Cxt−1 +Dwt

wt = Hwt−1 + εt

where xt is an nx× 1 vector of possibly unobserved variables, yt is an ny× 1 vector of observed variables, wt

is an nw × 1 autoregressive process, and εt is an nε× 1 vector white noise of economic shocks, i.e. E(εt) = 0

and E(εtε
′
t) is a diagonal matrix.

Assumption 2.1. Assume that (1) satisfies the following requirements:

i) nε = ny, i.e. the number of economic shocks is equal to the number of observables;

ii) D is an invertible matrix;

iii) the system is minimal.1

We are interested in characterizing situations in which the structural shocks of the DSGE match up with

those of a finite order VAR on the observable yt. That is, we wish to give a necessary and sufficient condition

for (1) to admit a finite order VAR representation

(2) yt =

k∑
j=1

Ajyt−j + ut, ut = Qεt,

where the reduced form errors ut are a linear combination of the economic shocks of the DSGE εt and Q is

an invertible matrix.

Two recent articles discuss this issue: Fernández-Villaverde et al. (2007) study the case in which H = 0

and show that if all eigenvalues of the matrix A − BD−1C are less than one in modulus then (2) holds for

k =∞. This is the so-called ‘poor man’s invertibility condition’. Ravenna (2007) states that (2) holds for a

finite k if and only the matrix polynomial2

(3) |I −Az|I + C(I −Az)adjBD−1z, z ∈ C,

is unimodular, i.e. its determinant is a constant different from zero.

We observe that the unimodularity condition in Ravenna (2007) is not of immediate application; in fact,

one would need to compute determinant and adjoint of matrix functions of z and then verify that for all

z ∈ C the determinant of the resulting matrix polynomial in (3) is a constant different from zero. This cannot

be done numerically. On the contrary, the ‘poor man’s invertibility condition’ in Fernández-Villaverde et al.

1That is, nx is as small as possible. One can easily check minimality of (1) via the condition

rank( B AB · · · Anx−1B ) = rank( C′ A′C′ · · · (A′)nx−1C′ ) = nx,

see e.g. Ch.6 in Kailath (1980). See Franchi and Paruolo (2012a,b) for non-minimal systems.
2|M | and Madj indicate determinant and adjoint of M .
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(2007) is of straightforward application as it only requires to compute the eigenvalues of a given matrix.

Moreover, we note that the relation between the ‘poor man’s invertibility condition’ and the unimodularity

condition is not clear: since the former ensures an infinite order VAR and the latter a finite order one, the

intuition is that the condition in Ravenna (2007) is stronger than the one in Fernández-Villaverde et al.

(2007).

3. Our result

This section presents two results: in Proposition 3.1 we show that a necessary and sufficient condition for a

DSGE to admit a finite order VAR representation is that the eigenvalues of the matrix A−BD−1C defined

in Fernández-Villaverde et al. (2007) are all equal to zero. This condition is of immediate application.

In Proposition 3.2 we further show that this requirement is equivalent to the unimodularity condition in

Ravenna (2007) and thus it may be viewed as an easy way to implement it. Combining the two results,

one understands the relation between the ‘poor man’s invertibility condition’ in Fernández-Villaverde et al.

(2007) and the unimodularity condition in Ravenna (2007); in particular, one sees why the former is weaker

than the latter.

Proposition 3.1. A finite order VAR representation for yt exists if and only if the eigenvalues of F =

A−BD−1C are all equal to zero, that is F is nilpotent.

It is interesting to observe how this result is related to the one in Fernández-Villaverde et al. (2007),

who show that if the eigenvalues of F are all less than one in modulus, then yt admits an infinite order

VAR representation. Our result shows that if all the eigenvalues of F are not only stable but also equal to

zero, then the VAR is of finite order. In minimal systems the converse also holds; that is, nilpotency of F

characterizes the existence of finite order VAR representations of DSGE models. Hence what is needed in

order to eliminate the infinitely many lags in Fernández-Villaverde et al. (2007) is the stronger condition

that F is not only stable but also nilpotent.

Next we discuss the relation between our condition and the one in Ravenna (2007).

Proposition 3.2. The following statements are equivalent:

i) |I −Az|I + C(I −Az)adjBD−1z is unimodular;

ii) F is nilpotent.

Ravenna (2007) shows that a finite order VAR representation for yt exists if and only if the unimodularity

condition in i) holds. Here it is shown that i) holds if and only if F is nilpotent. Apart from mathematical

simplicity, this result is of practical importance; in fact, it implies that if one wants to check the condition

in Ravenna (2007) he can simply verify whether the eigenvalues of F are all equal to zero. Finally, we

observe that Propositions 3.1 and 3.2 allow to link the results in Fernández-Villaverde et al. (2007) to those

in Ravenna (2007). In fact, one immediately sees why the unimodularity condition is stronger than the ‘poor

man’s invertibility condition’ and thus able to eliminate the infinitely many lags from the autoregressive

representation.

4. Conclusions

In the present paper we have shown that there is a simple check for finite order VAR representations of

DSGE models. This consists in verifying that the matrix defined in Fernández-Villaverde et al. (2007) is
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nilpotent. This condition is shown to be equivalent to the one in Ravenna (2007) and in minimal systems

it characterizes the existence of finite order VAR representations of DSGE models. The results of the paper

can also be viewed as providing the missing link between those in Fernández-Villaverde et al. (2007) and

those in Ravenna (2007).

Appendix A. Proofs

The proofs of Propositions 3.1 and 3.2 are based on the following lemmas.

Lemma A.1. F (z) = I − Fz is unimodular if and only if F is nilpotent.

Proof. Observe that λ0 6= 0 is an eigenvalue of F if and only if z0 = λ−10 is a root of |I − Fz| = 0. We next

show that if the eigenvalues of F are all equal to zero, then F (z) is unimodular. Suppose that this is not

the case, namely that there exists z0 6= 0 such that |F (z0)| = 0. Because I − Fz0 = (−z0)(F − z−10 I), one

has |F − z−10 I| = 0, i.e. λ0 = z−10 6= 0 is an eigenvalue of F . This contradicts the hypothesis and hence F (z)

must be unimodular. Similarly one proves necessity. �

Lemma A.2. Let λ0 6= 0 be an eigenvalue of F and define z0 = λ−10 ; then

(4) (I − Fz)−1 =
G(z)

(z − z0)mg(z)
, m ≥ 1, g(z0) 6= 0, G(z0) = uϕv′ 6= 0,

where u, v are bases of the right and left eigenspaces3 of F corresponding to λ0. Moreover, if (1) is minimal,

then

(5) rank(v′B) = rank(Cu) = nx − r,

where r = rank(F − λ0I).

Proof. Let λ0 6= 0 be an eigenvalue of F and define z0 = λ−10 . One can write

|I − Fz| = (z − z0)ag(z), a ≥ 1, g(z0) 6= 0,

(I − Fz)adj = (z − z0)bG(z), 0 ≤ b < a, G(z0) 6= 0;

cancelling common factors from determinant and adjoint, one then has

(I − Fz)−1 =
G(z)

(z − z0)mg(z)
, m = a− b.

The identity (I − Fz)(I − Fz)adj = (I − Fz)adj(I − Fz) = |I − Fz|I delivers

(I − Fz)G(z) = G(z)(I − Fz) = (z − z0)mg(z)I,

which evaluated for z = z0 gives

(F − λ0I)G(z0) = G(z0)(F − λ0I) = 0,

because I −Fz0 = (−z0)(F −λ0I). The last equation implies that the non-zero columns (rows) of G(z0) are

right (left) eigenvectors of F corresponding to λ0; hence G(z0) = uϕv′, where ϕ 6= 0 and u, v are bases of the

right and left eigenspaces of F corresponding to λ0. With this notation, one can write the rank factorization

3We say that x 6= 0 is a right (left) eigenvector corresponding to the eigenvalue λ0 if (F − λ0I)x = 0 (x′(F − λ0I) = 0). By

right (left) eigenspace of F corresponding to λ0 we mean the space generated by its right (left) eigenvectors.
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(F − λ0I) = v⊥u
′
⊥, where x⊥ indicates a basis of the orthogonal complement of the space generated by x.

This completes the proof of the first statement.

Next assume (1) is minimal; Lancaster and Rodman (1995, Theorems 4.3.3 and 6.1.5) show that this

means

rank( A− λI B ) = rank

(
A− λI
C

)
= nx, ∀λ ∈ C.

We observe that this is equivalent to

rank( F − λI B ) = rank

(
F − λI
C

)
= nx, ∀λ ∈ C;

in fact (A− λI : B) and (F − λI : B) are connected by the invertible transformation

( A− λI B )

(
Inx

0

−D−1C Iny

)
= ( F − λI B ).

Similarly one shows that rank(A′ − λI : C ′) = rank(F ′ − λI : C ′) = nx. Next use the projection identity

I = Pv⊥ + Pv = v⊥v̄
′
⊥ + v̄v′, where Px = x(x′x)−1x′ is the projection on the space generated by x and

x̄ = x(x′x)−1, to write

( F − λ0I B ) = ( v⊥u
′
⊥ v⊥v̄

′
⊥B + v̄v′B ) = ( v⊥ v̄ )

(
u′⊥ v̄′⊥B

0 v′B

)
.

Because rank(F − λ0I : B) = nx and (v⊥ : v̄) is invertible, this shows that rank(v′B) = nx − r, where

r = rank(F − λ0I). Similarly, because(
F − λ0I

C

)
=

(
v⊥ 0

Cū⊥ Cu

)(
u′⊥
ū′

)
,

one has that rank(Cu) = nx − r. �

Proof of Proposition 3.1. Let zt = Dwt and rewrite (1) as

xt = Fxt−1 +BD−1yt, F = A−BD−1C,
yt = Cxt−1 + zt

zt = Mzt−1 +Dεt, M = DHD−1;

combining the first two equations one finds (I − C(I − FL)−1BD−1L)yt = zt and thus using the third

(6) (I −ML)T (L)yt = Dεt, T (z) = I − C(I − Fz)−1BD−1z, z ∈ C.

Note that (6) is a finite order VAR if and only if T (z) is a polynomial matrix.

Suff. We first prove that if F is nilpotent then a finite order VAR representation for yt exists. Since

F (z) = I − Fz being unimodular is equivalent to F being nilpotent, see Lemma A.1, if F is nilpotent then

(I − Fz)−1 =
(I − Fz)adj

|I − Fz|
= (I − Fz)adj

is a matrix polynomial and hence the same holds for T (z).

Nec. We now show that if a finite order VAR representation for yt exists then F must be nilpotent. First

we observe that T (z) is a polynomial matrix if and only if C(I − Fz)−1B is a polynomial matrix. Next

we show that if C(I − Fz)−1B is a polynomial matrix then F must be nilpotent. Suppose that this is not
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the case, namely assume that there exists λ0 6= 0 eigenvalue of F . Write G(z) =
∑k

j=0Gj(z − z0)j , so that

G0 = G(z0); then, see (4) in Lemma A.2,

C(I−Fz)−1B =
CG(z)B

(z − z0)mg(z)
=

1

g(z)

(
CG0B

(z − z0)m
+

CG1B

(z − z0)m−1
+ · · ·+ CGkB

(z − z0)m−k

)
, G0 = uϕv′ 6= 0.

Because T (z) is a polynomial matrix it must be that at least CG0B = 0, i.e. that Cuϕv′B = 0. However,

in minimal systems Cu and B′v have full column rank, see (5) in Lemma A.2, and this implies ϕ = 0, which

is a contradiction because G0 6= 0. Hence it must be that F is nilpotent. �

Proof of Proposition 3.2. Corollary 2.2 in Ravenna (2007) shows that |I −Az|I +C(I −Az)adjBD−1z is

unimodular if and only if the same holds for I − Fz. The statement then follows from Lemma A.1. �
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