
Dipartimento di Scienze Statistiche 
Sezione di Statistica Economica ed Econometria

Massimo Franchi

Comment on:
Ravenna, F., 2007. Vector autoregressions and 
reduced form representations of DSGE models. 
Journal of Monetary Economics 54, 2048-2064.

DSS Empirical Economics and Econometrics
Working Papers Series

DSS-E3 WP 2013/2



DSS Empirical Economics and Econometrics
Working Papers Series

ISSN 2279-7491

Dipartimento di Scienze Statistiche
Sezione di Statistica Economica ed Econometria

“Sapienza” Università di Roma
P.le A. Moro 5 – 00185 Roma - Italia

http://www.dss.uniroma1.it

http://www.dss.uniroma1.it/


Comment on:

Ravenna, F., 2007. Vector autoregressions and reduced form representations of DSGE

models. Journal of Monetary Economics 54, 2048–2064.

Massimo Franchi

May 30, 2013

Abstract. Solutions of DSGE models are usually represented by state space forms. This note shows that

if one wishes to determine whether the observables of the model admit a finite order VAR representation,

minimality of the state space representation of the solution matters. More specifically, we first provide a

counterexample to Proposition 2.1 and Corollary 2.2 in Ravenna (2007), which state that in the square case

a finite order VAR exists if and only if a ‘unimodularity condition’ holds. Our counterexample shows that

the proposed condition is not necessary for the existence of a finite order VAR representation. That is,

if the state space representation of the solution is non-minimal, the observables of the DSGE may admit

a finite order VAR representation even though the unimodularity condition fails. It is further shown that

if the state space representation of the solution is minimal, then the unimodularity condition is necessary.

Given that a minimal state space representation always exists, before applying the unimodularity condition

one simply needs to check whether the state space representation of the solution is minimal and if not

transform it into an equivalent minimal form. A discussion of how to perform such reduction is presented

and further it is shown that the economic interpretation of the system is not affected by this transformation.

An interpretation of the results in terms of the eigenvalues of the matrix defined in Fernández-Villaverde

et al. (2007) for the poor man’s invertibility condition is also provided. The analysis is then applied to the

Smets and Wouters (2007) model.

1. Introduction

Solutions of linear or (log-)linearized dynamic stochastic general equilibrium (DSGE) models are usually

represented by state space forms. In the square case, i.e. when the number of economic shocks is equal to

the number of observed variables and the matrix that loads the former into the latter is non-singular, it is

often of interest to determine whether the shocks of the DSGE can be recovered via a vector autoregressive

(VAR) model on the observables. Instances of this analysis are found in Chari et al. (2005), Christiano et al.

(2006), Fernández-Villaverde et al. (2007), Kapetanios et al. (2007), Ravenna (2007), Schmitt-Grohé (2010),

Kurmann and Otrok (2011), Sims (2012), Leeper et al. (2013) among others. This issue is related to the
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fact that economic models may be non-invertible (or economic shocks be non-fundamental), as early stressed

in Hansen and Sargent (1980), Hansen and Sargent (1991), Lippi and Reichlin (1993), Lippi and Reichlin

(1994).

The present paper shows that if one wishes to determine whether a VAR representation of a DSGE model

exists, minimality of the state space representation of the solution matters. More specifically, we first provide

a counterexample to Proposition 2.1 and Corollary 2.2 in Ravenna (2007), which state that in the square

case a finite order VAR exists if and only if a ‘unimodularity condition’ holds. Our counterexample shows

that the proposed condition is not necessary for the existence of a finite order VAR representation. That is,

if the state space representation of the solution is non-minimal, the observables of the DSGE may admit a

finite order VAR representation even though the unimodularity condition fails.

Non-minimal state space representations are natural outcomes of standard solution methods, such as Sims

(2002). This is illustrated in Komunjer and Ng (2011), where it is shown that the state space representation

of the solution of the models in Christiano et al. (2005), An and Schorfheide (2007), Smets and Wouters

(2007), Garćıa-Cicco et al. (2010) are all non-minimal. Indeed, minimality of the state space representation

is important in other contexts as well. For example, it is key to establish and to employ the necessary and

sufficient conditions for identification in Komunjer and Ng (2011) and thus it is also relevant when choosing

the variables to estimate singular DSGE models as proposed in Canova et al. (2013): dropping observable

variables in order to make a singular system become square can have an impact on minimality and hence on

the conditions for identification.

Remark that a minimal representation always exists, i.e. one can always transform a non-minimal state

space form into an equivalent minimal representation; further note that if the state space representation of the

solution is minimal, then the unimodularity condition is necessary for the existence of a finite order VAR, as

shown in Franchi and Vidotto (2013). Because the unimodularity condition is sufficient in the square case, i.e.

both in minimal and non-minimal square systems, this condition provides a characterization of the existence

of a finite order VAR representation in minimal square systems. Thus, before applying it to determine if a

finite order VAR representation exists, one simply needs to check whether the state space form of the solution

is minimal and if not transform it into an equivalent minimal representation. A discussion of how to perform

such reduction is presented. The transformation consists in eliminating irrelevant states, i.e. those that are

non-controllable, non-observable or both. Given that the observed variables and the economic shocks are not

affected by the reduction, the economic assumptions that define the square case are unchanged. Moreover,

because impulse response functions (IRFs) of equivalent non-minimal and minimal systems are the same,

the economic implications of the solution are also invariant with respect to this transformation. Finally,

also the coefficients of the VAR representation of equivalent non-minimal and minimal systems are equal.

Hence the economic interpretation and the implications of the model derived from equivalent non-minimal

and minimal systems are exactly the same.

The results have a neat interpretation in terms of the eigenvalues of the matrix defined in Fernández-

Villaverde et al. (2007) for the poor man’s invertibility condition. When the state space representation of the
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solution is non-minimal, the eigenvalues are divided into two groups: those in the first group are associated

to the minimal state representation and are relevant in determining whether the observables admit a VAR

representation, whereas those in the second group are associated to irrelevant states and are cancelled by the

transformation that reduces the system to a minimal form. Relevant and irrelevant eigenvalues do not have

the same role in shaping the properties of the system; identifying them is thus crucial to determine whether

the observables of a DSGE model admit a VAR representation. The reduction of the system to a minimal

form allows one to do that.

The analysis developed in the paper is then applied to the version of the Smets and Wouters (2007)

model implemented in Iskrev (2010). For standard choices of observable variables and parameters values,

the state space representations of the solutions turn out to be non-minimal; the sets of relevant and irrelevant

eigenvalues are then characterized. The analysis reveals the presence of both zero and non-zero irrelevant

eigenvalues, which reflects additional linear dependence among equations that causes non-identificability of

the model, as discussed in the supplementary material of Komunjer and Ng (2011).

The rest of the paper is organized as follows. Section 2 introduces the square case and provides a

counterexample to Proposition 2.1 and Corollary 2.2 in Ravenna (2007). Section 3 discusses non-minimality

of state space representations of DSGE models and shows that if the state space is minimal the unimodularity

condition provides a characterization of the existence of a finite order VAR representation. Section 4 discusses

how to transform a non-minimal system to an equivalent minimal representation and Section 5 provides an

interpretation of the results in terms of the eigenvalues of the matrix defined in Fernández-Villaverde et al.

(2007) for the poor man’s invertibility condition. Section 6 applies the results to the Smets and Wouters

(2007) model and Section 7 concludes. All proofs are collected in the Appendix.

2. The square case and the unimodularity condition

Consider an equilibrium of an economic model with representation

(1)

yt = Pxt−1 +Qzt

xt = Rxt−1 + Szt

zt =
∑q
i=1 Zizt−i + εt,

where yt is an ny × 1 vector of endogenous variables, xt is an nx× 1 vector of endogenous state variables, zt

is an nε×1 vector of exogenous state variables, and εt is an nε×1 vector of economic shocks.1 The following

assumption is maintained throughout the paper.

Assumption 2.1 (Square case). Assume yt is observed, ny = nε and Q is invertible.

This is called square case, see Fernández-Villaverde et al. (2007); in this case (1) is such that the number of

observed variables is equal to the number of economic shocks and the matrix that loads the exogenous state

1As shown in Ravenna (2007), by defining a new state vector xt that includes both endogenous and exogenous states in (1),

one can rewrite the system as xt = Axt−1 +Bεt, yt = Cxt−1 +Dεt, as e.g. done in Fernández-Villaverde et al. (2007).
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variables into the observed variables is invertible. Rearranging the first equation one has zt = Q−1(yt−Pxt−1)

and one can thus rewrite (1) as

(2)

yt = Pxt−1 +Qzt

xt = (R− SQ−1P )xt−1 + SQ−1yt

zt =
∑q
i=1 Zizt−i + εt.

Proposition 2.1 in Ravenna (2007) states that a finite order VAR representation of yt exists if and only if

the determinant of the ny × ny matrix polynomial

|G(L)|Iny + PDG(L)SQ−1L,

where |G(L)| and DG(L) are respectively determinant and adjoint of G(L) = Inx−RL, is of degree zero in the

lag operator L. Equivalently, Corollary 2.2 in Ravenna (2007) states that a finite order VAR representation

of yt exists if and only if the determinant of the matrix nx × nx polynomial

Inx − (R− SQ−1P )L

is of degree zero in the lag operator L. A matrix polynomial is called unimodular if its determinant is a

non-zero constant, see e.g. Antsaklis and Michel (2007, p.283), and hence, given that the two conditions

above are equivalent, in the following we refer to either of them as the unimodularity condition.

The nilpotency condition in Franchi and Vidotto (2013) provides an equivalent and more direct formulation

of the unimodularity condition.

Proposition 2.2. The unimodularity condition holds if and only if R− SQ−1P is nilpotent, i.e. its eigen-

values are all equal to zero.

The present formulation of the unimodularity condition involves the eigenvalues of the matrix defined

in Fernández-Villaverde et al. (2007) for the poor man’s invertibility condition. The latter consists in the

stability of R − SQ−1P , i.e. its eigenvalues being all less than one in modulus. From Proposition 2.2 one

immediately sees why the unimodularity condition is stronger than the poor man’s invertibility condition and

thus it is able to eliminate the infinitely many lags from the autoregressive representation. This is because

a nilpotent matrix is stable, but a stable matrix may not be nilpotent. Given that the unimodularity

condition and the nilpotency condition are equivalent, whatever stated regarding one of the two also applies

to the other. Hence in the following we refer to either of the three formulations above as the unimodularity

condition. Finally observe that the matrix polynomial Z(L) = Inε −
∑q
i=1 ZiL

i in Z(L)zt = εt plays no role

in the unimodularity condition.

2.1. A counterexample to Proposition 2.1 and Corollary 2.2 in Ravenna (2007). This example

shows that in the square case a finite order VAR representation of yt may exist even though the unimodularity

condition fails, unlike stated in Proposition 2.1 and Corollary 2.2 in Ravenna (2007). Let nx = ny = nε = 2
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and take

R =
1

3

(
1 1

1 1

)
, S = I2, P =

1

3

(
−1 1

−1 1

)
, Q = I2.

This is a square case in which R is stable, because its eigenvalues are {0, 2/3}. Further note that the

unimodularity condition is violated because

R− SQ−1P = R− P =
2

3

(
1 0

1 0

)
has eigenvalues {0, 2/3} and it is not nilpotent, i.e.

I2 − (R− SQ−1P )L =

(
1− 2

3L 0

− 2
3L 1

)
has determinant 1 − 2

3L and it is not unimodular. Nevertheless, contrarily to what stated in Proposition

2.1 and Corollary 2.2 in Ravenna (2007), yt admits a VAR representation; in fact, because P (R − P ) = 0,

lagging the second equation in (2) and substituting it into the first one, one finds

yt = P (R− SQ−1P )xt−2 + PSQ−1yt−1 +Qzt = Pyt−1 + zt

and hence the finite order VAR representation A(L)yt = εt, where A(L) = (I2−
∑q
i=1 ZiL

i)(I2−PL). This

shows that a failure of the unimodularity condition does not imply that a finite order VAR representation

of the observables does not exist. That is, in the square case the unimodularity condition is not necessary

for the existence of a finite order VAR representation.

3. Non-minimal state space representations of DSGE models

In the square case, the unimodularity condition is a sufficient condition for the existence of a finite

order VAR representation of yt. This is shown in Ravenna (2007). Because minimality of the state space

representation, i.e. the fact that the dimension of the state vector xt is non-reducibile, is irrelevant in this

respect, the unimodularity condition is sufficient both in minimal and non-minimal square systems. On the

contrary, the counterexample shows that minimality matters for the necessity of the unimodularity condition.

Indeed, inspection of the counterexample reveals that the given state space form is non-minimal. In Franchi

and Vidotto (2013) it is shown that if the state space representation of the equilibrium is minimal, then

nilpotency of R − SQ−1P is a necessary condition for the existence of a finite order VAR representation

of yt. Hence this condition provides a characterization of finite order VAR representations in minimal

square systems. Proposition 3.1 below collects these results. Given that a minimal representation always

exists, before applying the unimodularity condition to economic models of interest one simply needs to check

whether the state space form of the solution is minimal and if not transform it into an equivalent minimal

representation. A discussion of how to perform such reduction is presented in Section 4.

Proposition 3.1. If the state space representation of a solution of a DSGE is square and non-minimal,

then the unimodularity condition is sufficient but not necessary for the existence of a finite order VAR
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representation of yt. If the state space representation is square and minimal, then it is a necessary and

sufficient condition.

In the square case, the unimodularity condition is a sufficient condition for the existence of a finite order

VAR representation of yt. This is shown in Ravenna (2007). If in addition the square state space form

is minimal, nilpotency of R − SQ−1P provides a characterization of the existence of a finite order VAR

representation of yt. This is shown in Franchi and Vidotto (2013). The last result implies that a violation of

the unimodularity condition may wrongly indicate the non-existence of a finite order VAR only if the system

is non-minimal, as indeed happens in the counterexample.

Non-minimal representations are natural outcomes of standard solution methods, such as Sims (2002).

This is illustrated in Komunjer and Ng (2011), where it is shown that the state space representations of

standard economic models such as those in Christiano et al. (2005), An and Schorfheide (2007), Smets and

Wouters (2007), Garćıa-Cicco et al. (2010) are all non-minimal. In Section 6 below, the Smets and Wouters

(2007) model is analysed.

It is interesting to observe that minimality is not a property of the economic model but of the given

representation of its solution, which depends on how one defines states and observable variables. This fact

can be illustrated via the permanent income model in Fernández-Villaverde et al. (2007),

(3)
ct = ct−1 + σw(1−R−1)εt

ỹt = σwεt,

where ct is consumption, ỹt is labour income and R > 1 is the gross interest rate. Recall that minimality

holds if and only if (1) is both controllable and observable, see e.g. Ch.8.3.2 in Antsaklis and Michel (2007),

i.e. if rank C = rankO = nx, where

(4) C =
(
S RS · · · Rnx−1S

)
, O =


P

PR
...

PRnx−1


are respectively called controllability and observability matrix.

Consider two cases, one in which labour income is observable and one in which savings are observable.

First suppose labour income is observable; by letting xt = ct, yt = ỹt one writes (3) as a square state space in

which nx = ny = nε = 1 and R = 1, S = σw(1−R−1), P = 0, Q = σw. Note that because P = 0 this state

space representation is non-observable and hence non-minimal. Again here, because ỹt = σwεt, yt has a finite

order VAR representation and the failure of the unimodularity condition wrongly indicates the non-existence

of a finite order VAR; in fact R − SQ−1P = R = 1 is not nilpotent, i.e. 1 − (R − SQ−1P )L = 1 − L has

not degree 0 in L. Note also that the poor man’s invertibility condition fails, because R− SQ−1P = 1, and

wrongly indicates non-invertibility.
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Next, as in Fernández-Villaverde et al. (2007), assume savings are observable, sum and subtract ct in the

second equation and rearrange terms to find

(5)
ct = ct−1 + σw(1−R−1)εt

ỹt − ct = −ct−1 + σwR
−1εt.

Letting xt = ct, yt = ỹt − ct one writes (5) as a square state space in which nx = ny = nε = 1 and

R = 1, S = σw(1 − R−1), P = −1, Q = σwR
−1. This state space representation is controllable and

observable, and hence minimal. The unimodularity condition is not satisfied and its failure correctly signals

that yt does not admit a finite order VAR representation. A similar reasoning applies to the poor man’s

invertibility condition. Remark that the economic model behind the two state space representations is just

the same; it is only the assumption on what is observed that makes one being minimal and the other not,

hence transforming the conditions from being necessary and sufficient to being only sufficient.

Finally note that similar situations arise when dropping observable variables in order to make a singular

system become square, as proposed in Canova et al. (2013). This is illustrated in the supplement to Komunjer

and Ng (2011) when discussing identification of the An and Schorfheide (2007) model.

4. Reduction to a minimal state space representation

A minimal representation of (1) always exists. In Proposition 4.1 it is shown how to find it. This result

is a consequence of the Kalman’s decomposition theorem, see e.g. Section 6.2.3 in Antsaklis and Michel

(2007). It is important to note that the reduction does not affect the observed variables and the economic

shocks and hence the economic assumptions that define the square case are unchanged. Furthermore, the

impulse response functions (IRFs) of equivalent non-minimal and minimal systems are the same and also

the coefficients of the VAR representation are uniquely defined. Hence the economic interpretation of the

solution is invariant with respect to this transformation. In the following, spanA indicates the space spanned

by the columns of A and by rank decomposition of A we mean finding ϑ and ϕ bases of spanA and spanA′

so that A = ϑϕ′; ϕ⊥ indicates a basis of the orthogonal complement of spanϕ, i.e. ϕ′ϕ⊥ = 0 and (ϕ,ϕ⊥) is

square and invertible.

Proposition 4.1. Let C = αβ′ and O = δγ′ be rank decompositions of the controllability and observability

matrices in (4) and let ξ be a basis of the intersection of spanα and span γ⊥. Then there exists µ, orthogonal

to ξ and normalized so that µ′µ = Inm , such that (µ, ξ) is a basis the space spanned by α; moreover, Pm = Pµ,

Rm = µ′Rµ, Sm = µ′S, and xm,t = µ′xt are such that

(6)

yt = Pmxm,t−1 +Qzt

xm,t = Rmxm,t−1 + Smzt

zt =
∑q
i=1 Zizt−i + εt

is a minimal representation of (1). Furthermore for all h ≥ 0, one has

PRhS = PmR
h
mSm, P (R− SQ−1P )hS = Pm(Rm − SmQ−1Pm)hSm.
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It is important to note that the state space representations (1) and (6) share the same observable variables

yt, the same economic shocks εt and the same matrix Q, i.e. the reduction to a minimal representation does

not affect the economic assumptions that define the square case. Furthermore, because PRhS = PmR
h
mSm

and zt is the same in the two systems, the impulse response functions of (1) and (6) are the same. Also note

that P (R− SQ−1P )hS = Pm(Rm − SmQ−1Pm)hSm implies that the coefficients of the VAR representation

of (1) and (6) are the same. This shows that irrelevant states, i.e. those that are non-controllable, non-

observable or both and are cancelled by the transformation xm,t = µ′xt, do not affect the definition of the

square case, the VAR representation of yt and the IRFs of the solution of the DSGE. Hence the economic

interpretation of (1) and (6) is the same.

Next we analyse how the transformation xm,t = µ′xt acts on xt in order to eliminate the possibile irrelevant

states. There are four possibilities: first suppose rank C = rankO = nx, so that (1) is both controllable and

observable. Then one can take α = Inx , β = C′, δ = O, γ = Inx ; because γ⊥ = 0, ξ = 0 is the only vector

in the intersection of spanα and span γ⊥, and hence one has µ = α = Inx . This shows that xm,t = xt,

i.e. the dimension nm of the minimal state vector is equal to nx and no reduction in the dimension of xt is

possibile. That is, xt does not contain irrelevant states and (1) is already a minimal representation. Next

suppose that the system is non-controllable and observable, i.e. rC = rank C < nx and rankO = nx; then

α is an nx × rC full column rank matrix and, because γ⊥ = 0, ξ = 0 is the only vector in the intersection

of spanα and span γ⊥. Hence one can take µ = α(α′α)−1/2 and xm,t = µ′xt reduces the dimension of the

state vector from nx to nm = rC by eliminating nx − rC non-controllable states. The third possibility is

that the system is controllable and non-observable, i.e. rank C = nx and rO = rankO < nx; then γ is an

nx × rO full column rank matrix and, because α = Inx , ξ = γ⊥ is a basis of intersection of spanα and

span γ⊥. Hence one can take µ = γ(γ′γ)−1/2 and xm,t = µ′xt reduces the dimension of the state vector

from nx to nm = rO by eliminating nx − rO non-observable states. The fourth and final case arises when

the system is non-controllable and non-observable, rank C < nx and rankO < nx, and α and γ⊥ are full

column rank matrices of dimension nx × rC and nx × nx − rO respectively. If spanα and span γ⊥ have

only the zero vector in common, ξ = 0 is a basis of their intersection and there are no states that are

controllable and non-observable, i.e. all the states that are controllable are also observable. Hence one can

take µ = α(α′α)−1/2 and xm,t = µ′xt reduces the dimension of the state vector from nx to nm = rC by

eliminating nx − rC non-controllable states. Otherwise, if ξ 6= 0 is a basis of the intersection of spanα and

span γ⊥, then ξ′xt contains rξ = rank ξ states that are controllable and non-observable while µ′xt contains

rC − rξ states that are controllable and observable. Hence xm,t = µ′xt reduces the dimension of the state

vector from nx to nm = rC − rξ by eliminating nx− rC + rξ non-controllable and non-observable states. This

exhausts all possible cases and illustrates that Proposition 4.1 covers all of them.
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4.1. Illustration via the example in Subsection 2.1. The state space form in the example in Subsection

2.1 is controllable but not observable, i.e. it is non-minimal, because nx = 2 and

C =
(
I2 R

)
, O =

(
P

PR

)
=

1

3


−1 1

−1 1

0 0

0 0


imply rank C = 2 and rankO = 1. This falls into the third case described below Proposition 4.1. Apply

Proposition 4.1 to find a minimal representation: take α = I2, β′ = (I2, R), δ = 1
3 (−1,−1, 0, 0)′, γ = (1,−1)′,

and γ⊥ = (1, 1)′; then ξ = γ⊥, µ = γ(γ′γ)−1/2 = 1√
2
(1,−1)′ and one finds

Pm = Pµ =

√
2

3

(
−1

−1

)
, Rm = µ′Rµ = 0, Sm = µ′S =

1√
2

(
1 −1

)
.

Because xm,t = µ′xt is a scalar, one has nm = 1; the corresponding controllability and the observability

matrices are thus Cm = Sm 6= 0, Om = Pm 6= 0 so that rank Cm = rankOm = 1 = nm, i.e. (6) is a minimal

representation of (1). Moreover, one has that

Rm − SmQ−1Pm =
1

3

(
1 −1

)( 1

1

)
= 0

is nilpotent, i.e. 1−(Rm−SmQ−1Pm)L = 1 is unimodular. The unimodularity condition holds in the minimal

representation and correctly signals that yt admits a finite order VAR representation. Note that the economic

shocks and the observed variables are the same in the two representations, i.e. Q is not affected by the

transformation. Moreover, note that PRhS = PmR
h
mSm and P (R−SQ−1P )hS = Pm(Rm−SmQ−1Pm)hSm

so that (1) and (6) have the same IRFs and the same VAR representation. The reduction of the system to

a minimal form allows one to use the unimodularity condition in order to determine the existence of a finite

order VAR.

5. Irrelevant eigenvalues

Propositions 2.2, 3.1 and 4.1 show that, when (1) is non-minimal, it is the eigenvalues of Rm−SmQ−1Pm
and not those of R− SQ−1P that determine whether the observables of the DSGE admit a VAR represen-

tation. The following proposition illustrates the relationship between the eigenvalues of those two matrices.

Proposition 5.1. Consider the state space representations (1) and (6); if λi is an eigenvalue of Rm −
SmQ

−1Pm, then it is also an eigenvalue of R− SQ−1P . The converse holds if and only if (1) is minimal.

When (1) is non-minimal, the eigenvalues of R − SQ−1P are divided into two groups: the first group

contains the eigenvalues of Rm−SmQ−1Pm and the second one all the remaining eigenvalues. The eigenvalues

in the first group are associated to the minimal state representation and determine whether yt admits a

VAR representation, whereas those in the second are associated to irrelevant states, i.e. those that are
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non-controllable, non-observable or both, and are cancelled by the transformation xm,t = µ′xt. These

eigenvalues neither affect the VAR representation nor the IRFs of the solution of the DSGE and hence they

are irrelevant. Relating the non-existence of a finite order VAR representation to the presence of non-zero

irrelevant eigenvalues leads to a wrong conclusion because those eigenvalues play no role. This explains why

the failure of the unimodularity condition does not necessarily rule out the existence of a finite order VAR

representation: its failure may as well be due to non-zero irrelevant eigenvalues. When (1) is minimal, the

eigenvalues of R−SQ−1P and those of Rm−SmQ−1Pm coincide, i.e. all the eigenvalues of R−SQ−1P are

relevant; thus, in order for a finite order VAR representation to exist, each of them must be zero. In this case

the unimodularity condition becomes necessary. A similar reasoning applies to the poor man’s invertibility

condition: the failure of this condition does not necessarily imply non-invertibility because it may as well

be due to unstable irrelevant eigenvalues. Relevant and irrelevant eigenvalues do not have the same role in

shaping the properties of the system and hence distinguishing them is crucial. The reduction of the system

to a minimal form allows one to do that.

5.1. Illustration via the example in Subsection 2.1. The eigenvalues of R − SQ−1P are {0, 2/3};
the eigenvalue at 0 is due to Rm − SmQ−1Pm = 0, see subsection 4.1 and determines the existence of the

finite order VAR representation while the eigenvalue at 2/3 is associated to the non-observable state and it is

cancelled by the transformation xm,t = µ′xt. Relating the non-existence of a finite order VAR representation

to the irrelevant eigenvalue at 2/3 leads to a wrong conclusion because that eigenvalue plays no role, i.e. all

the relevant information is contained in Rm − SmQ−1Pm = 0.

It is interesting to observe how a slight modification of the example leads to the opposite situation. Let

R, S and Q be as above and define P to be the transpose of P above, i.e. let

P =
1

3

(
−1 −1

1 1

)
.

Then

R− SQ−1P = R− P =
2

3

(
1 1

0 0

)
,

is the transpose of the matrix R − SQ−1P above and has the same set of eigenvalues {0, 2/3}. As in the

previous case, this state space form is controllable but not observable, i.e. it is non-minimal, because nx = 2,

C is the same as above and

O =

(
P

PR

)
=

1

3


−1 −1

1 1

− 2
3 − 2

3
2
3

2
3


implies rankO = 1. Applying Proposition 4.1 one finds a minimal representation: take α = I2, β′ = (I2, R),

δ = 1
3 (−1, 1,−2/3, 2/3)′, γ = (1, 1)′, and γ⊥ = (1,−1)′; then ξ = γ⊥, µ = γ(γ′γ)−1/2 = 1√

2
(1, 1)′ and one
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finds

Pm = Pµ =

√
2

3

(
−1

1

)
, Rm = µ′Rµ =

2

3
, Sm = µ′S =

1√
2

(
1 1

)
.

The corresponding controllability and the observability matrices are Cm = Sm 6= 0, Om = Pm 6= 0 so that

rank Cm = rankOm = 1 = nm, i.e. (6) is a minimal representation of (1). Finally,

Rm − SmQ−1Pm =
2

3
− 1

3

(
1 1

)( −1

1

)
=

2

3

is not nilpotent. Again here the unimodularity condition is violated because of the eigenvalue at 2/3.

However, it is now this eigenvalue, which is due to Rm − SmQ−1Pm = 2/3, to be relevant and hence to

determine the non-existence of the finite order VAR representation. The irrelevant eigenvalue is now at 0

and it is cancelled by the transformation xm,t = µ′xt. Because the eigenvalues of R− SQ−1P are the same

in the two cases one cannot disentangle one from the other, and hence conclude that a VAR representation

does not exist because the unimodularity condition fails, unless he identifies which eigenvalues are relevant

and which are irrelevant. Transforming the system to a minimal representation allows one to do that.

6. Application to the Smets and Wouters (2007) model

This section applies the analysis developed above to the Smets and Wouters (2007) model.2 We consider

the version of the model implemented in Iskrev (2010), to which we refer for a detailed description of the

equations.3 The model has 14 endogenous variables and 7 economic shocks; the endogenous variables are

output (yt), consumption (ct), investment (it), utilized and installed capital (kst , kt), capacity utilization (zt),

rental rate of capital (rkt ), Tobin’s q (qt), price and wage markup (µpt , µ
w
t ), inflation rate (πt), real wage (wt),

total hours worked (lt), and nominal interest rate (rt). The economic shocks are innovations to total factor

productivity (ηat ), investment-specific technology (ηIt ), government purchases (ηgt ), risk premium (ηbt ), price

and wage markup (ηpt , η
w
t ), and monetary policy (ηrt ).

The MATLAB implementation of the model is as in the replication programs associated to Iskrev (2010)

and consists of a system of 40 equations framed into the Sims (2002) setup. For a given value of the

parameters, the model is solved via gensys.m;4 this delivers the nx × nx matrix A and the nx × nε matrix

B in xt = Axt−1 + Bεt, where nx = 40 and nε = 7. The number of observable variables ny is set equal

to the number of economic shocks, ny = nε = 7, and the vector yt is defined by selecting the entries of xt

that correspond to output (yt), consumption (ct), investment (it), inflation rate (πt), real wage (wt), total

hours worked (lt), and nominal interest rate (rt). This is done by letting yt = Hxt, where H is an ny × nx

2The replication programs can be downloaded from http://w3.uniroma1.it/mfranchi/.
3The log-linearized equilibrium conditions of the model can be found in Table 1 and Table 2 in Iskrev (2010).
4The replication programs associated to Iskrev (2010) are available at the JME Science Direct web page. The same code is

employed for the analysis of the Smets and Wouters (2007) model in the supplementary material of Komunjer and Ng (2011).

gensys.m can be downloaded from http://sims.princeton.edu/yftp/gensys/.
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selection matrix of 0s and 1s. In this way one finds yt = Cxt−1 + Dεt, where C = HA and D = HB have

respectively dimension ny × nx and nε × nε. Thus the solution of the model takes the ABCD form

(7)
xt = Axt−1 +Bεt

yt = Cxt−1 +Dεt,

where nx = 40 and ny = nε = 7, and fits into the framework of (1).

First we set the values of the parameters at their prior means, see Table 3 in Iskrev (2010). The resulting

system (7) is non-minimal because it is non-controllable and non-observable; indeed, the controllability

and observability matrices C = (B,AB, · · · , Anx−1B) and O = (C ′, A′C ′, · · · , A′nx−1C ′)′ are such that

rank C = 17 < 40 = nx and rankO = 16 < 40 = nx. Reduction to minimality leaves unaffected yt

and εt and delivers Am, Bm and Cm such that xm,t = Amxm,t−1 + Bmεt, yt = Cmxm,t−1 + Dεt is a

minimal representation of original ABCD form.5 The matrices Am, Bm and Cm have respectively dimension

nm×nm, nm×nε and ny ×nm, where nm = 14 is the dimension of the minimal state vector. When setting

the values of the parameters at their posterior means, see Table 3 in Iskrev (2010), again one finds that

the corresponding system (7) is non-controllable and non-observable and hence non-minimal. In this case,

rank C = 19 < 40 = nx, rankO = 16 < 40 = nx and the dimension of the minimal state vector turns out to

be nm = 16. These results are reported in the next table.

Parameters set at Prior means Posterior means

Dimension of the original state 40 40

Rank of the controllability matrix 17 19

Rank of the observability matrix 16 16

Original state minimal No No

Dimension of the minimal state 14 16

Table 1. Prior and posterior means as in Table 3 in Iskrev (2010).

For both choices of parameters values, the system is non-minimal because it is both non-controllable

and non-observable and hence both situations are instances of the fourth case described below Proposition

4.1. Moreover, the dimension of the minimal state is in both cases less than the rank of the controllability

matrix, nm < rC , so that both situations present states that are non-controllable and non-observable, see

the ξ 6= 0 subcase described below Proposition 4.1. Indeed, when the parameters are set at the prior means

there are rξ = rC − nm = 17 − 14 = 3 states that are controllable and non-observable and one can reduce

the dimension of the state vector from nx = 40 to nm = 14 by eliminating nx − nm = 40 − 14 = 26 non-

controllable and non-observable states. Similarly, when the parameters are set at the posterior means there

are rξ = rC − nm = 19− 16 = 3 states that are non-controllable and non-observable and one can reduce the

dimension of the state vector from nx = 40 to nm = 16 by eliminating nx−nm = 40−16 = 24 non-controllable

5Reduction to minimality is performed using the MATLAB Control System Toolbox.
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and non-observable states. This additional linear dependence among equations causes non-identificability of

the model, as discussed in the supplementary material of Komunjer and Ng (2011).

Next we compute A−BD−1C and Am−BmD−1Cm for both choices of parameters values; the next table

reports the eigenvalues of the two matrices for each choice of parameters values.

Parameters set at Prior means Posterior means

A−BD−1C Am −BmD−1Cm A−BD−1C Am −BmD−1Cm

Dimension of the matrix 40× 40 14× 14 40× 40 16× 16

# of non-zero eigenvalues 6 4 6 6

# of zero eigenvalues 34 10 34 10

|λ1| 0.97728 0.97728 0.97716 0.97716

|λ2| 0.97728 0.97728 0.96358 0.96358

|λ3| 0.77493 0.77493 0.84080 0.84080

|λ4| 0.50000 0.54316 0.54316

|λ5| 0.50000 0.54316 0.54316

|λ6| 0.41080 0.41080 0.42763 0.42763

Table 2. Prior and posterior means as in Table 3 in Iskrev (2010). Zero eigenvalues have absolute value

less than 1e− 07.

The A−BD−1C matrices have a total of 40 eigenvalues; for both choices of parameters values, 34 of them

are equal to zero and 6 are non-zero. The moduli of the non-zero eigenvalues are reported in decreasing

order in Table 2. Because the original state space representations are non-minimal, one needs to identify

which eigenvalues are relevant and which are irrelevant before concluding for the non-existence of a VAR

representation. As illustrated in Section 5, this can be done by computing the eigenvalues of the matrices

Am − BmD−1Cm in the minimal representations. The results are reported in Table 2. First consider the

case in which parameters are set at the prior means; the 40 eigenvalues of A − BD−1C are divided into

a group of 14 relevant eigenvalues, those that belong to Am − BmD
−1Cm, and a group of 26 irrelevant

eigenvalues, all the remaining ones, see Proposition 5.1. Because not each relevant eigenvalue is equal to

0, one concludes that the observables do not admit a finite order VAR representation. It is interesting to

observe that λ4 = λ5 = 0.5 are absent from the set of eigenvalues of Am−BmD−1Cm and are thus irrelevant.

Hence the set of irrelevant eigenvalues of A − BD−1C is composed of 34 − 10 = 24 zero eigenvalues and

6− 4 = 2 non-zero eigenvalues.

When parameters are set at the posterior means, A − BD−1C has 16 relevant eigenvalues, those that

belong to Am − BmD
−1Cm, and 24 irrelevant eigenvalues, all the remaining ones. Again here not each

relevant eigenvalue is equal to 0, and hence one concludes that the observables do not admit a finite order

VAR representation. Finally note that in this case the set of irrelevant eigenvalues of A−BD−1C is composed

of 34− 10 = 24 zero eigenvalues and 6− 6 = 0 non-zero eigenvalues.
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7. Conclusion

In the present paper we have shown that minimality of the state space representation of a solution of a

DSGE matters if one wants to determine whether the observables of the DSGE admit a VAR representation.

In particular, we have first provided a counterexample which shows that, unlike stated in Proposition 2.1

and Corollary 2.2 in Ravenna (2007), if the state space representation of the solution is non-minimal, the

observables of a DSGE may admit a finite order VAR representation even though the unimodularity condition

fails. This implies that the class of DSGE models that admit a finite order VAR representation is larger than

the one described by that condition. It is further shown that if the state space representation of the solution

is minimal, then the unimodularity condition is necessary. Given that a minimal state space representation

always exists, before applying the unimodularity condition one simply needs to check whether the state

space representation of the solution of the DSGE is minimal and if not transform it into an equivalent

minimal form. A discussion of how to perform such reduction is presented. The results are illustrated via

the counterexample and then applied to the Smets and Wouters (2007) model. Similar results apply to the

poor man’s invertibility condition in Fernández-Villaverde et al. (2007).

Appendix A. Proofs

Proof of Proposition 2.2. Let F = R − SQ−1P ; the proof consists in showing that F (z) = Inx − Fz is

unimodular if and only if F is nilpotent. Observe that λ0 6= 0 is an eigenvalue of F if and only if z0 = λ−10

is a root of |Inx − Fz| = 0. We next show that if the eigenvalues of F are all equal to zero, then F (z)

is unimodular. Suppose that this is not the case, namely that there exists z0 6= 0 such that |F (z0)| = 0.

Because Inx − Fz0 = (−z0)(F − z−10 Inx), one has |F − z−10 Inx | = 0, i.e. λ0 = z−10 6= 0 is an eigenvalue of

F . This contradicts the hypothesis and hence F (z) must be unimodular. Similarly one proves that if F (z)

is unimodular, then the eigenvalues of F are all equal to zero. �

Proof of Proposition 3.1. Write (2) as

yt = Pxt−1 + ut, ut = Qzt,

xt = Fxt−1 + SQ−1yt, F = R− SQ−1P,
ut =

∑q
i=1 Uiut−i +Qεt, Ui = QZiQ

−1.

Write the second equation as xt = (Inx − FL)−1SQ−1yt, lag it and substitute it into the first equation

to find (Iny − P (Inx − FL)−1SQ−1L)yt = ut; from the third equation one has ut = U(L)−1Qεt, where

U(L) = Inε −
∑q
i=1 UiL

i, and one then finds

U(L)V (L)yt = Qεt, V (L) = (Iny − P (Inx − FL)−1SQ−1L).

Because U(L) is a polynomial, this shows that yt admits a finite order VAR representation if and only if V (L)

is a polynomial. (Suff.) If |Inx −FL| = c 6= 0, then (Inx −FL)−1 is a polynomial and hence the same holds

for V (L) irrespectively of minimality of (1). (Nec.) If V (L) is a polynomial, then the same must hold for
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P (Inx −FL)−1S. Because in minimal systems P and S cannot cancel the poles of (Inx −FL)−1, see Franchi

and Vidotto (2013) for the proof, it must be that (Inx − FL)−1 is a polynomial, i.e. |Inx − FL| = c 6= 0. �

Proof of Proposition 4.1. The result is found by applying Kalman’s decomposition theorem, see e.g.

Section 6.2.3 in Antsaklis and Michel (2007). In order to do so, rank decompose C and O in (4) as C = αβ′

and O = δγ′, where α and γ are respectively nx× rC = rank C ≤ nx and nx× rO = rankO ≤ nx full column

rank matrices that span the column and the row spaces of C and O respectively. Let γ⊥ be a basis of the

orthogonal complement of the space spanned by γ, i.e. γ⊥ is a nx × (nx − rO) full column rank matrix such

that γ′⊥γ = 0. If rO = nx, let γ⊥ = 0. Next consider the intersection of the space spanned by α and that

spanned by γ⊥ and let ξ be a basis of this intersection. Because ξ belongs to the intersection, it belongs

to spanα and to span γ⊥. Hence one can find µ orthogonal to ξ so that (µ, ξ) is a basis of spanα and ζ

orthogonal to ξ so that (ζ, ξ) is a basis of span γ⊥. Further one can normalize µ, ξ and ζ so that µ′µ = Inm ,

ξ′ξ = Inξ and ζ ′ζ = Inζ . Finally define ψ such that M = (µ, ξ, ψ, ζ) is square and non-singular and normalize

ψ so that ψ′ψ = Inψ . Observe that M ′M = Inx , i.e. M−1 = M ′; then, see Theorem 6.6 in Antsaklis and

Michel (2007, p.245),

R̂ = M ′RM =


µ′Rµ 0 µ′Rψ 0

ξ′Rµ ξ′Rξ ξ′Rψ ξ′Rζ

0 0 ψ′Rψ 0

0 0 ζ ′Rψ ζ ′Rζ

 , Ŝ = M ′S =


µ′S

ξ′S

0

0

 ,

P̂ = PM =
(
Pµ 0 Pψ 0

)
;

hence Pm = Pµ, Rm = µ′Rµ, Sm = µ′S, and xm,t = µ′xt are such that (6) is a minimal representation

of (1). Finally note that PRhS = PmR
h
mSm; in fact PRhS = PMM ′RhMM ′S = P̂M ′RhMŜ and Rh =

RR · · ·R = RMM ′RMM ′ · · ·MM ′R imply PRhS = P̂ R̂hŜ and

P̂ R̂hŜ =
(
PmR

h
m 0 ∗ 0

)
Sm

ξ′S

0

0

 = PmR
h
mSm.

Similarly, because PFhS = P̂ F̂hŜ, where F = R− SQ−1P , and

(8) F̂ = M ′FM = R̂− ŜQ−1P̂ =


Fµµ 0 Fµψ 0

Fξµ Rξξ Fξψ Rξζ

0 0 Rψψ 0

0 0 Rζψ Rζζ

 ,

where the shorthand notation Fjk = j′Fk and Rjk = j′Rk for j, k = µ, ξ, ψ, ζ is employed, one finds

PFhS = PmF
h
mSm, having defined Fm = Fµµ = µ′(R− SQ−1P )µ = Rm − SmQ−1Pm. �

Proof of Proposition 5.1. Let M , R̂, Ŝ, P̂ , F , and F̂ be as in the proof of Proposition 4.1 and observe

that F − λInx = MM ′(F − λInx)MM ′ = M(F̂ − λInx)M ′ implies |F − λInx | = |F̂ − λInx |. Hence, see (8),
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one has

|F − λInx | = |F̂ − λInx | = |Fm − λInm ||Rξξ − λInξ ||Rψψ − λInψ ||Rζζ − λInζ |.

This shows that the eigenvalues of F are the union of the eigenvalues of Fm and those of Rjj , j 6= µ, so that

if λi is an eigenvalue of Fm then it is also an eigenvalue of F . The second part of the statement follows from

the fact that (1) is minimal if and only if µ = Inx , see Proposition 4.1. �
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