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INVERTING A MATRIX FUNCTION AROUND A SINGULARITY

VIA LOCAL RANK FACTORIZATION
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Abstract. This paper proposes a recursive procedure that characterizes the order of the pole and the coefficients of the

Laurent series representation of the inverse of a regular analytic matrix function. The algorithm consists in performing a finite

sequence of rank factorizations of matrices of non-increasing dimension, at most equal to the dimension of the original matrix

function. The order of the pole is established by a full rank condition and the Laurent coefficients Bn are calculated recursively

as Bn = Hn +
∑n

k=1 FkBn−k, where Hn, Fk have simple closed form expressions in terms of the quantities generated by the

algorithm. It is further shown that the complete reduction process in [1], which provides an efficient computational method for

the Laurent coefficients, corresponds to this procedure; hence the present results also provide the explicit recursive formula to

compute Bn when that complete reduction process is performed. Moreover, one finds that the number of reductions is equal

to the number of distinct non-zero partial multiplicities and each reduction step decreases the dimension of the coefficients by

the number of partial multiplicities that are equal to a given value. This links the characteristics of the reduction process to

the structure of the local Smith form.
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1. Introduction. Consider a regular analytic matrix function A(z) defined an open set U ⊆ C and let

A(z) =

∞∑
n=0

An(z − z0)n, An ∈ Cp×p, A0 6= 0, z ∈ U, (1.1)

be its representation around a point z0 ∈ U . Assume that A(z0) = A0 is singular and let the Laurent

representation of the inverse of A(z) be

A(z)−1 =

∞∑
n=0

Bn(z − z0)n−m, B0 6= 0. (1.2)

This paper discusses a recursive procedure to determine m, the order of the pole of A(z)−1 at z0, and

the Laurent coefficients {Bn}∞n=0 given {An}∞n=0.

A classical approach to characterize the relation between (1.1) and (1.2) is via the local spectral theory,

based on the concepts of root functions, Jordan chains and local Smith form, see [3, 10, 14]. The case

of matrix polynomials is an important special case, see [11, 12, 13, 23, 24, 26, 29] and [9, 25, 30, 32] for

matrix polynomials of degree one. The tools derived from the local spectral theory are used in the study

of similarity of matrices [9, 25, 30], for the solutions of systems of differential equations [12, 13], in linear
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control theory [2, 19, 22], as well as in time series econometrics [5, 6, 7, 16, 21, 31]. The same tools are

also employed in numerical algorithms, such as the ones in [33, 34], for calculating the global Smith form of

matrix polynomials and the Laurent represent of the inverse.

A different approach to the calculation of the Laurent coefficients Bn is found [1], see also [20]: building

on the results of [19] and on the reduction technique developed in [17, 18], [1] provide efficient computational

procedures for the Laurent series coefficients. In particular, they obtain recursive formulae to compute Bn

when 0 or 1 reduction steps are performed on the system of equations

Cn = Dn = δn,mI, Cn :=

n∑
k=0

AkBn−k, Dn :=

n∑
k=0

BkAn−k, n ≥ 0, (1.3)

where δn,m is Kronecker’s delta and Cn, Dn are defined by convolution from A(z)A(z)−1 =
∑∞
n=0 Cn(z −

z0)n−m and A(z)−1A(z) =
∑∞
n=0Dn(z − z0)n−m respectively. Moreover, [1] outline how the complete

reduction process can be performed but do not provide a closed form expression for Bn in the general case.

The procedure presented in this paper consists in performing a sequence of rank factorizations of matrices

of non-increasing dimension derived from (1.3). The order of the pole is established when a full rank condition

is verified and the Laurent coefficients are then calculated recursively as

Bn = Hn +

n∑
k=1

FkBn−k, n ≥ 0, (1.4)

where Hn, Fk have simple closed form expressions in terms of the quantities generated by the algorithm.

The present procedure is called ‘extended local rank factorization’ (elrf) and it is an extension of the

‘local rank factorization’ (lrf) in [8]. In that paper it is shown that the lrf delivers the partial multiplicities

and the number of partial multiplicities of a given value, i.e. the local Smith form of (1.1); it also shows

how the lrf can be used to construct an extended canonical system of root functions and a canonical set

of Jordan chains. Moreover, the lrf algorithm stops after a finite number of iterations by construction and

this finite number is equal to the order of the pole.

In this paper we show that the extension contained in the elrf allows to compute the Laurent coefficients

Bn as in (1.4). Moreover, we find that the complete reduction process in [1] coincides with the elrf

procedure; hence the present results provide the explicit recursive formula to compute Bn when the complete

reduction process is performed. Furthermore, the characteristics of the complete reduction process are linked

to the structure of the local Smith form: the number of reductions is equal to the number of distinct non-zero

partial multiplicities and each reduction step decreases the dimension of the coefficients by the number of

partial multiplicities that are equal to a given value.

The paper is organized as follows: the rest of this introduction defines notational conventions and

Section 2 motivates and defines the elrf algorithm. Section 3 contains the main results of the paper, namely

the recursive formula for the calculation of the Laurent coefficients, the relation of elrf with the complete

reduction process in [1] and the link between the characteristics of reduction process and the structure of the

local Smith form. Section 5 contains an example and Section 6 concludes. Proofs are collected in Appendix A

and a MATLAB script that implements the elrf is provided in the Additional Material.
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1.1. Notation. The following notation will be used throughout: a := b and b =: a indicate that a

is defined by b; any sum in which the lower limit is greater than the upper one is defined equal to 0, i.e.∑b
h=a ch := 0 if a > b. For any matrix ϕ ∈ Cp×q, ϕ′ denotes its conjugate transpose. We indicate by

colϕ := {ϕv, v ∈ Cq} the column space of ϕ and by colϕ′ the row space of ϕ; this is in line with current use,

see [28] p. 170. ϕ⊥ indicates a basis of col⊥ ϕ, the orthogonal complement of colϕ in Cp, where orthogonality

is with respect to the standard inner product in Cp, 〈x, y〉 := y′x. The matrix rank factorization of ϕ is

written as ϕ = −ξη′, where ξ and η are bases of colϕ and colϕ′, see Theorem 1 in [27] and the following

section; the negative sign is chosen here for convenience in the calculations. When ϕ has full column rank,

the following definition is used ϕ̄ := ϕ(ϕ′ϕ)−1 and ϕ̄′ := (ϕ̄)′ = (ϕ′ϕ)−1ϕ′ while when ϕ = 0, one sets

ϕ̄ := 0; with this notation the orthogonal projection matrix onto colϕ can be written as Pϕ := ϕ̄ϕ′ = ϕϕ̄′

and Pϕ⊥ := I − Pϕ indicates the orthogonal projection matrix onto col⊥ ϕ. Horizontal concatenation of a

and b is indicated by (a, b) and #A indicates cardinality of the set A.

2. Extended local rank factorization. This section contains a motivation and the definition of

the ‘extended local rank factorization’ (elrf) algorithm. As the elrf makes repeated use of matrix rank

factorizations, preliminaries are first reviewed, see e.g. [27].

Consider a square non-zero p× p matrix ϕ of rank r, and its rank decomposition ϕ = −ξη′ where ξ and

η are p× r full column rank matrices. The existence of the rank decomposition can be proven simply by i)

observing that the column space of ϕ has dimension r = rankϕ, ii) obtaining a basis ξ for this space (e.g.

by Gram-Schmidt orthogonalization of the columns of ϕ) and iii) by representing each column of ϕ in terms

of the basis ξ (up to a change of sign); this step can be performed computing η′ = −ξ̄′ϕ. When ϕ = 0 one

has r = 0 and one can take ξ = η = ξ̄ = η̄ = 0 and ξ⊥ = η⊥ = ξ̄⊥ = η̄⊥ = I. In the following {r, ξ, η}
are said to be given by the matrix rank factorization of ϕ; it is also assumed that ξ̄, η̄, ξ⊥, η⊥, ξ̄⊥, η̄⊥ are

simultaneously computed, as illustrated in the following remark.

Remark 2.1 (Rank factorization via SVD). Several standard matrix procedures can be used perform the

matrix rank factorization {r, ξ, η} of ϕ; here computations are illustrated using the Singular Value Decompo-

sition (SVD), which is the standard preferred numerical method to compute the rank of a matrix, given its

numerical stability, see e.g. [15].

Let ϕ = USV ′ represent the SVD of ϕ, where U ′U = V ′V = I and S = diag(s21, . . . , s
2
p), with s21 ≥ · · · ≥

s2p ≥ 0. The rank of ϕ is numerically computed as the largest integer r for which s21 ≥ · · · ≥ s2r > 0 and

s2r+1 = · · · = s2p = 0. Given r, one can define ξ = −U1, η = V1S1, ξ⊥ = U2, η⊥ = V2, where U = (U1, U2)

and V = (V1, V2) are partitioned into blocks of the first r columns (with subscript 1) and the last p−r columns

(with subscript 2), and S1 = diag(s21, . . . , s
2
r).

With this choice, one has ξ′ξ = Ir, ξ
′
⊥ξ⊥ = η′⊥η⊥ = Ip−r so that ξ̄ = ξ, ξ̄⊥ = ξ⊥, η̄⊥ = η⊥; that is, no

matrix inversion is involved when computing the ‘bar’ operation ϕ̄ := ϕ(ϕ′ϕ)−1 in these cases. Moreover,

one has η̄ = V1 diag(s−21 , . . . , s−2r ). This requires the inversion of the diagonal matrix S1 which is just a

diagonal matrix with reciprocal entries on the main diagonal, i.e. it can be computed element-wise. Note

that this is one possible choice of bases of the various spaces; this specific choice is convenient, because no

matrix inversion is involved.
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The rank conditions in the elrf are a generalization of the so called I(1) and I(2) conditions in [21],

which are necessary and sufficient rank conditions for a pole of order 1 or 2; see also [19] for results similar

to the first order case. Here the I(1) condition is introduced in order to provide the intuition behind the

Definition 2.2 of the elrf algorithm below. Because A(z0) = A0 6= 0 is singular, 0 < r0 := rankA0 < p and

α0, β0 in the matrix rank factorization A0 = −α0β
′
0 are full-column-rank matrices of dimension p× r0.

Consider C0, D0 in (1.3); from C0 = D0 = 0, one has A0B0 = B0A0 = 0 and because B0 6= 0 one

finds B0 = β0⊥ϕ1α
′
0⊥ for some ϕ1 6= 0. Now consider C1, D1 in (1.3); substituting A0 = −α0β

′
0 and

B0 = β0⊥ϕ1α
′
0⊥ in C1, one then finds α′0⊥C1ᾱ0⊥ = α′0⊥ (A0B1 +A1B0) ᾱ0⊥ = α′0⊥A1β0⊥ϕ1 and similarly

β̄′0⊥D1β0⊥ = β̄′0⊥ (B1A0 +B0A1)β0⊥ = ϕ1α
′
0⊥A1β0⊥. If m = 1, C1 = D1 = I implies α′0⊥A1β0⊥ϕ1 = I

and hence rankα′0⊥A1β0⊥ = p − r0, ϕ1 = (α′0⊥A1β0⊥)−1 and B0 = β0⊥(α′0⊥A1β0⊥)−1α′0⊥. Conversely,

if rankα′0⊥A1β0⊥ = p − r0 and m > 1, the equation α′0⊥A1β0⊥ϕ1 = 0 implies ϕ1 = 0 and leads to a

contradiction. This shows that m = 1 if and only if the so-called I(1) condition r1 := rankα′0⊥A1β0⊥ = p−r0
holds. This condition is hence necessary and sufficient for the pole to be of order 1.

When the I(1) condition fails but a further full rank condition (the I(2) condition) holds the pole is of

order 2. The generalization of this idea leads to the definition of the elrf algorithm given below.

Definition 2.2 (Extended local rank factorization (elrf) algorithm).

Input: The inputs are the p × p matrices {An}∞n=0 and the number q of Laurent coefficients B0, . . . , Bq−1

to be computed.1

Output: The outputs are the scalar µ and the p× p matrices {Fµ+1,k}q−1k=1, {Hµ+1,k}q−1k=0.

Initialization: Set j = 0, rmax
0 := p, J0 = 0 and a0 = b0 = 0. Compute {r0, ξ0, η0} as the matrix rank

factorization of A0,

A0 = −ξ0η′0, (2.1)

and set a1 := α0 := ξ0, b1 := β0 := η0, θ0 := β̄0ᾱ
′
0. Go to Recursion.

Recursion: If rj = rmax
j , then go to Final Loops; else increase j by 1 and perform all the following

computations. Set rmax
j := rmax

j−1 − rj−1, compute A1,j := Aj, F1,j := θ0A1,j, and for s = 2, . . . , j compute

As,j−s+1 and Fs,j−s+1 using

As,k := As−1,k+1 +As−1,1Fs−1,k, Fs,k := Fs−1,k + θs−1As,k. (2.2)

Next calculate {rj , ξj , ηj} as the matrix rank factorization of a′j⊥Aj,1bj⊥,

a′j⊥Aj,1bj⊥ = −ξjη′j , (2.3)

where aj⊥ = aj−1⊥ξj−1⊥ and bj⊥ = bj−1⊥ηj−1⊥. If rj = 0, define Jj := Jj−1, aj+1 := aj, bj+1 := bj, and

θj := 0; else (i.e. 1 ≤ rj ≤ rmax
j ) set Jj := (Jj−1, j), αj := āj⊥ξj, βj := b̄j⊥ηj, θj := β̄jᾱ

′
j, aj+1 := (aj , αj),

and bj+1 := (bj , βj).

1Because Aj is used in Recursion j and the elrf stops after a finite number of iterations, in practise only a finite number

of coefficients is used as input.
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Final loops: Set µ := j, J := Jj, a := aj+1, b := bj+1 and compute Fµ+1,k using (2.2) for k = 1, . . . , q−1.

Next let G1,k := −δk,µI, H1,k := −θ0δk,µ and compute Hµ+1,k for k = 0, . . . , q − 1 using the following

recursions for s ≥ 2:

Gs,k := Gs−1,k+1 +As−1,1Hs−1,k, Hs,k := Hs−1,k + θs−1Gs,k. (2.4)

The initialization and the main recursions of the elrf correspond to the lrf in [8] and allow to determine

the order of the pole m. The extension is contained in the Final loops and allows to compute the q

coefficients B0, . . . , Bq−1 as shown in Theorem 3.1 below.

The procedure determines the order of the pole m by checking the ranks of the rmax
j × rmax

j matrices

a′j⊥Aj,1bj⊥ in (2.3) until full rank is found. This stopping condition terminates the recursion and determines

the index µ of the elrf, which in [8] is shown to be equal to the order of the pole m.

We note that successive rank decompositions are performed on matrices of non-increasing dimension, i.e.

rmax
j ≤ rmax

j−1 ≤ p− r0, where p is the dimension of An and r0 is the rank of A0. At each iteration the elrf

defines the orthogonal subspaces col ξj , col ξj⊥ (col ηj , col ηj⊥), see (2.3); a basis of the first subspace is used

to construct αj = āj⊥ξj (βj = b̄j⊥ηj) and the remaining orthogonal subspace is used to define αj+1 (βj+1).

This construction implies that a = (α0, . . . , αµ) and b = (β0, . . . , βµ) are p × p matrices with orthogonal

blocks.

Because in a rank decomposition the factors are not unique, one of them can be chosen to be orthonormal,

for instance the first one as in Remark 2.1. In this case one has ξj = ξ̄j (αj = ᾱj) so that only η̄j (β̄j)

needs to be computed. Similarly, because ξj⊥, ηj⊥ are any bases of the orthogonal complements of col ξj and

col ηj , one can choose them to be orthonormal. In this case, because aj⊥ can also be chosen orthonormal,

one finds aj+1⊥ = aj⊥ξj⊥. Similar remarks apply to ηj⊥ and bj⊥. Finally note that the outputs of the elrf

are invariant with respect to the choice of bases.

Remark 2.3 (The elrf and Moore-Penrose inverses). Note that

Fs,k =
∑

j∈Js−1

β̄jᾱ
′
jAj+1,k, Hs,k =

∑
j∈Js−1

β̄jᾱ
′
jGj+1,k.

These expressions include β̄jᾱ
′
j = (αjβ

′
j)

+, where + denotes the Moore-Penrose inverse, see e.g. Theorem

5, p. 48, in [4].

The dimension of the Moore-Penrose inverses β̄jᾱ
′
j = (αjβ

′
j)

+ is p. It may be noted that in fact one can

compute Moore-Penrose inverses of smaller matrices. Because ᾱj = aj⊥ξ̄j and β̄j = bj⊥η̄j, the terms β̄jᾱ
′
j

that appear in these expressions can be written as β̄jᾱ
′
j = bj⊥η̄j ξ̄ja

′
j⊥. Here η̄j ξ̄

′
j = (ξjη

′
j)

+, with dimension

of the Moore-Penrose inverses equal to rmax
j = p−

∑
i∈Jj−1

ri.

It can also be noted that no matrix inversion is required in the computation of these Moore-Penrose

inverses, if one performs the matrix rank factorizations in (2.1) and (2.3) as illustrated in Remark 2.1,

where the only matrix inversion is that of a rmax
j × rmax

j diagonal matrix which can be performed element-

wise.
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Remark 2.4 (Simplifications). Applying the definition in (2.4), it is straightforward to verify that

Gs,k = Hs,k = 0 for s+ k < µ+ 1 and

Hµ+1,0 = −θµ = −β̄mᾱ′m.

Moreover, it can also be observed that Gs,k = Hs,k = 0 for k > µ, which yields

Hµ+1,k = 0, k ≥ µ+ 1.

All these zero entries do no need to be computed, and the only relevant nonzero coefficients Gs,k, Hs,k are

found in the triangle 0 ≤ k ≤ µ, 1 ≤ s ≤ µ+ 1− k.

Finally, if A(z) is a matrix polynomial of degree d, i.e. Ak = 0 for k > d, one has As,k = 0 for k > d,

which implies Fs,k = 0 for k > d and hence

Fµ+1,k = 0, k ≥ d+ 1.

3. Main results. This section contains the main results of the paper. Theorem 3.1 proves that the elrf

delivers the coefficients of the Laurent representation and Theorem 3.3 shows that the complete reduction

process in [1] coincides with the elrf. Finally Theorem 3.4 links the characteristics of the reduction process

to the structure of the local Smith form of A(z) at z0.

Theorem 3.1 (Laurent coefficients). Let µ, {Fµ+1,k}q−1k=1, {Hµ+1,k}q−1k=0 be the outputs of the elrf with

inputs {An}∞n=0 and q. Then m = µ and the Laurent coefficients in (1.2) satisfy the recursion

Bn = Hn +

n∑
k=1

FkBn−k, 0 ≤ n ≤ q − 1, (3.1)

with Hn = Hm+1,n and Fk = Fm+1,k, i.e.

Fk =
∑
j∈J

θjAj+1,k, Hk =
∑
j∈J

θjGj+1,k, θj = β̄jᾱ
′
j . (3.2)

Proof. See Appendix A.

Remark that the coefficients of the Laurent representation are calculated using rank factorizations and

Moore-Penrose inverses of matrices of decreasing dimensions, see Remark 2.1 and 2.3, and not by stacking

matrices in large-dimensional systems.

Remark 3.2 (Simplifications of Laurent coefficients). As direct consequences of Remark 2.4 and Theo-

rem 3.1, one finds

B0 = −β̄mᾱ′m, Bn =

{
Hn +

∑g
k=1 FkBn−k if 1 ≤ n ≤ m∑g

k=1 FkBn−k if m+ 1 ≤ n ≤ q − 1
, g = n. (3.3)

When A(z) is a matrix polynomial of degree d, one has (3.3) with g = min(n, d).
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Next attention is turned to the relation between the elrf and the reduction process in [1]. Given

that in Theorem 3.3 below the two procedures are shown to coincide, it follows that (3.1) provides the

explicit recursive formula to compute the Laurent coefficients when the complete reduction process in [1] is

performed.

Theorem 3.3 (Complete reduction in [1] and elrf). The complete reduction process in [1] coincides

with the elrf.

Proof. See Appendix A.

Inspection of the proof of Theorem 3.3 reveals that the equations at the basis of the elrf can be written

in the format of equations (8.0)-(8.t) in [1], i.e. as the reducible system2

C0Vn +

n∑
k=1

CkVn−k = Rn,

where the dimension of Ck is rmax
j ×rmax

j and C0 = ξjη
′
j ; after applying a reduction step, the reduced system

can be rewritten in the format of equations (10.0)-(10.t− 1) in [1], i.e. as the reduced system

D0Ws +

s∑
k=1

DkWs−k = Ss,

where the dimension of Dk is rmax
j+1 × rmax

j+1 and D0 = a′j+1⊥Aj+1,1bj+1⊥. Because rmax
j+1 = rmax

j − rj and

rj = rankC0, this shows that a reduction occurs if and only if rj > 0 and the dimension of the coefficients

is decreased by rj .

Next the characteristics of the reduction process are linked to the structure of the local Smith form of

A(z) at z0, see e.g. [10], with form
(z − z0)κsI`s

. . .

(z − z0)κ2I`2

I`1

 ,

where κs > · · · > κ2 > 0, `i > 0,
∑s
i=1 `i = p, and the empty elements are equal to 0. Wet set κ1 = 0 and

say that κi ≥ 0 is a partial multiplicity of A(z) at z0 and that there are `i > 0 partial multiplicities that are

equal to κi.

Theorem 3.4 (Partial multiplicities and reduction steps). Let κs > · · · > κ2 > κ1 = 0 be the partial

multiplicities of A(z) at z0 and for i = 1, . . . , s let `i > 0 be the number of partial multiplicities that are

equal to κi. Then s = #J ≤ m + 1 and the complete reduction process in [1] consists of s − 1 reduction

steps; reduction step i = 1, . . . , s− 1 decreases the dimension of the coefficients by `i, the number of partial

multiplicities that are equal to κi.

Proof. See Appendix A.

The result follows from the fact that each and only j ∈ J is a partial multiplicity of A(z) at z0 and

that there are exactly rj partial multiplicities that are equal to j, see [8]. That is, s = #J ≤ m+ 1 and for

2Here the letters C and D are used to match the notation in [1] and they do not refer to (1.3) as in the rest of the paper.
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i = 1, . . . , s one has κi = ji and `i = rji , where J = (j1, . . . , js) = (0, . . . ,m); that is, the local Smith form

of A(z) at z0 is equal to

diag((z − z0)jIrj )j∈J↓ =


(z − z0)mIrm

. . .

(z − z0)rj2 Irj2
Ir0

 , (3.4)

where J↓ = (js, . . . , j1) = (m, . . . , 0) indicates the vector of indices J in reversed order.

The structure of the local Smith form is fully characterized by the elrf; via Theorem 3.3, the charac-

teristics of the reduction process are thus linked to the structure of the local Smith form.

4. Computational complexity. In this section we evaluate the computational complexity of the elrf

in terms of floating point operations (flops); because of Theorem 3.3, this corresponds to the computational

complexity of the complete reduction process in [1]. In particular it is shown that the flops associated to the

one-step reduction process are always greater or equal to those of the complete reduction process, where the

former requires previous knowledge of m, unlike the elrf.

The AB + C operation, where A,B and C are p × p matrices, requires O(p3) flops; the same order of

complexity holds for the rank decomposition of a p × p matrix via SVD, see e.g. p. 18 and p. 253 in [15].

In each recursion, j operations of the type AB + C are performed to compute As,k in (2.2) and the same

number of AB +C operations is required for Fs,k in (2.2). Hence the total number of AB +C operations is

2
∑m
j=1 j = m(m+ 1), corresponding to O(m2p3) flops.

The total complexity of the rank decompositions is always less than O(mp3) flops, because it consists of

O(p3) flops for (2.1) and of O((rmax
j )3) flops for (2.3), where rmax

j ≤ p− r0. Next consider final loops; each

iteration involves AB + C operations to compute As,k and Fs,k in (2.2) and Gs,k and Hs,k in (2.4). Hence

this requires O(m2p3) flops. Because there are q − 1 final loops, this leads to a total O((q − 1)m2p3) flops.

Summing up, it can be seen that the elrf computes m and B0, . . . , Bq−1 with O(qm2p3) flops, see

(3.1). Remark that this complexity is determined by the AB + C operations and not by the matrix rank

decompositions. Note also that this estimate of the complexity does not include the simplifications due to

the presence of zero matrices, see Remarks 2.4 and 3.2.

In [1] it is shown that (for known order of the pole) the one-step reduction process computes B0 with

O(max{m2p3,m3(p − r0)3}) flops. Hence when max{m2p3,m3(p − r0)3} = m2p3, i.e. if m ≤ p3/(p− r0)3,

the computational complexity of the one-step reduction coincides with the one of the elrf (which however

also provides the order of the pole), as can be seen by setting q = 1. When m > p3/(p− r0)3 there is

a computational gain in using the elrf, i.e. the complete reduction processes, with respect to the one-

step reduction process. This arises because stacking matrices in a large-dimensional system and performing

a Moore-Penrose inverse on it dominates the computational complexity of the AB + C operations as m

increases.
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5. Example. This section illustrates results using a numerical example. Consider the matrix polyno-

mial

A(z) =


1 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

A0

+


0 0 0

0 −1 0
1
2 0 0


︸ ︷︷ ︸

A1

z +


0 0 − 1

2

0 0 0
1
2 0 0


︸ ︷︷ ︸

A2

z2 +


0 0 − 1

2

0 0 0

0 0 − 1
4


︸ ︷︷ ︸

A3

z3

and observe that A(0) = A0 is singular. We use the elrf at z0 = 0 to determine the order of the pole of

A(z)−1 at z0 = 0 and to compute the coefficients of its principal part.

Inizialization delivers rmax
0 = 3, J0 = 0 and

A0 = −


−1

0

0


︸ ︷︷ ︸

ξ0

(
1 0 0

)
︸ ︷︷ ︸

η′0

, a1 = α0 = ξ0, b1 = β0 = η0, θ0 = β̄0ᾱ
′
0 =


−1 0 0

0 0 0

0 0 0

 .

Given that 1 = r0 < rmax
0 = 3, the counter is increased to j = 1 and Recursion 1 delivers rmax

1 = 2,

A1,1 = A1 =


0 0 0

0 −1 0
1
2 0 0

 , F1,1 = θ0A1,1 = 0, a′1⊥A1,1b1⊥ = −

(
1

0

)
︸ ︷︷ ︸

ξ1

(
1 0

)
︸ ︷︷ ︸

η′1

, J1 = (0, 1),

α1 = ā1⊥ξ1 =


0

1

0

 , β1 = b̄1⊥η1 =


0

1

0

 , θ1 = β̄1ᾱ
′
1 =


0 0 0

0 1 0

0 0 0

 ,

and a2 = (α0, α1), b2 = (β0, β1). Since 1 = r1 < rmax
1 = 2, the counter is incremented to j = 2 and

Recursion 2 delivers rmax
2 = 1,

A1,2 = A2 =


0 0 − 1

2

0 0 0
1
2 0 0

 , F1,2 = θ0A1,2 =


0 0 1

2

0 0 0

0 0 0

 ,

and because F1,1 = 0,

A2,1 = A1,2 =


0 0 − 1

2

0 0 0
1
2 0 0

 , F2,1 = θ1A2,1 = 0.

Next one finds a′2⊥A2,1b2⊥ = 0 and hence J2 = J1, a3 = a2, b3 = b2, and θ2 = 0. Because 0 = r2 < rmax
2 = 1,

the counter is upgraded to j = 3 and Recursion 3 delivers rmax
3 = 1,

A1,3 = A3 =


0 0 − 1

2

0 0 0

0 0 − 1
4

 , F1,3 = θ0A1,3 =


0 0 1

2

0 0 0

0 0 0

 ,
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A2,2 = A1,3 +A1,1F1,2 =


0 0 − 1

2

0 0 0

0 0 0

 , F2,2 = F1,2 + θ1A2,2 =


0 0 1

2

0 0 0

0 0 0

 ,

and

A3,1 = A2,2 +A2,1F2,1 =


0 0 − 1

2

0 0 0

0 0 0

 , F3,1 = F2,1 + θ2A3,1 = 0.

Hence one finds a′3⊥A3,1b3⊥ = 0 so that J3 = J2, a4 = a3, b4 = b3, and θ3 = 0. Because 0 = r3 < rmax
3 = 1,

the counter is raised to j = 4 and Recursion 4 delivers rmax
4 = 1, A1,4 = A4 := 0, F1,4 = θ0A1,4 = 0,

A2,3 = A1,4 +A1,1F1,3 =


0 0 0

0 0 0

0 0 1
4

 , F2,3 = F1,3 + θ1A2,3 =


0 0 1

2

0 0 0

0 0 0

 ,

A3,2 = A2,3 +A2,1F2,2 =


0 0 0

0 0 0

0 0 1
2

 , F3,2 = F2,2 + θ2A3,2 =


0 0 1

2

0 0 0

0 0 0

 ,

A4,1 = A3,2 +A3,1F3,1 =


0 0 0

0 0 0

0 0 1
2

 , F4,1 = F3,1 + θ3A4,1 = 0.

Hence one has a′4⊥A4,1b4⊥ = 1
2 , ξ4 = 1, η4 = − 1

2 , J4 = (0, 1, 4), and

α4 = ā4⊥ξ4 =


0

0

1

 , β4 = b̄4⊥η4 =


0

0

− 1
2

 , θ4 = β̄4ᾱ
′
4 =


0 0 0

0 0 0

0 0 −2

 ,

a5 = (α0, α1, α4), b5 = (β0, β1, β4).

Given that the full rank condition 1 = r4 = rmax
4 = 1 is reached, the algorithm enters the Final loops

and defines µ = j = 4, J = J4 = (0, 1, 4), a = a5, b = b5. Setting q = µ = 4, one can then compute

Fk = F5,k for k = 1, 2, 3 and Hk = H5,k for k = 0, 1, 2, 3 using (2.2) and (2.4); one finds

F1 =


0 0 0

0 0 0

0 0 − 1
2

 , F2 = F3 =


0 0 1

2

0 0 0

0 0 0

 ,

H0 =


0 0 0

0 0 0

0 0 2

 , H1 = H2 =


0 0 0

0 0 0

−1 0 0

 , H3 =


0 0 0

0 −1 0

0 0 0

 .
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Hence, see Theorem 3.1, A(z) has a pole of order m = µ = 4 at z0 = 0 and the coefficients of the principal

part of A(z)−1 at z0 = 0 are given by

B0 = H0 =


0 0 0

0 0 0

0 0 2

 , B1 = H1 + F1B0 =


0 0 0

0 0 0

−1 0 −1

 ,

B2 = H2 + F1B1 + F2B0 =


0 0 1

0 0 0

− 1
2 0 1

2

 , B3 = H3 + F1B2 + F2B1 + F3B0 =


− 1

2 0 1
2

0 −1 0
1
4 0 − 1

4

 .

A direct computation shows that (1.3) is satisfied. Because m = 4, p = 3 and p−r0 = 2, one has m > p3

(p−r0)3

and thus a computational gain arises by performing the complete reduction processes instead of the one-step

reduction. Also recall that the latter requires previous knowledge of m which on the contrary is determined

within the elrf.

Finally consider the application of Theorem 3.4. Given the elrf, the local Smith form of A(z) at z0 = 0

can be computed using (3.4); because J↓ = (4, 1, 0) and r0 = r1 = r4 = 1, one finds

diag((z − z0)jIrj )j∈J↓ =


z4 0 0

0 z 0

0 0 1

 .

The complete reduction process consists of #J − 1 = 2 reduction steps: reduction step 1 occurs because

j1 = 0 is a partial multiplicity of A(z) at z0 and the dimension of the system is decreased by the number

of partial multiplicities that are equal to 0, r0 = 1 in this case. Reduction step 2 occurs because j2 = 1 is

a partial multiplicity of A(z) at z0 and the dimension of the system is decreased by the number of partial

multiplicities that are equal to 1, r1 = 1 in this case.

6. Conclusion. The elrf delivers a recursive formula to compute the order of the pole and the Laurent

coefficients of the inverse of a regular analytic matrix function, without stacking matrices in large-dimensional

systems. The procedure consists in performing a finite sequence of rank factorizations of matrices of non-

increasing dimension at most equal to the dimension of the original matrix function. The complete reduction

process in [1] coincides with the elrf; hence the latter provides the explicit recursive formula to compute

the Laurent coefficients when that complete reduction process is performed. The present paper also shows

that the number of reductions is equal to the number of distinct non-zero partial multiplicities and each

reduction step decreases the dimension of the coefficients by the number of partial multiplicities that are

equal to a given value. This links the characteristics of the reduction process to the structure of the local

Smith form. Finally it is shown that the computational complexity of the elrf compares favourably with

the one of the one-step reduction process.
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Appendix A. Proofs.

The proof of Theorem 3.1 is based on the following lemma.

Lemma A.1. Let µ,J , αj , βj , As,k, Gs,k be defined as in the elrf algorithm; then for j ∈ J and n ≥ 0

one has

αjβ
′
jBn = Paj⊥

n∑
k=1

Aj+1,kBn−k + Paj⊥Gj+1,n. (A.1)

Proof. Pre and post-multiplying (2.3) by āj⊥ and b̄′j⊥ respectively, the rank factorization (2.3) can be

rewritten as Paj⊥Aj,1Pbj⊥ = −αjβ′j . This shows that the initialization and main recursions of the elrf

coincide with the lrf in [8]; hence, by Theorem 3.2 in [8] one has that the index of the elrf equals the

order of the pole, i.e. µ = m. Next observe that 0 = Paj⊥(Cn − δn,mI) by definition. We wish to show that

for j ∈ J and n ≥ j one has

0 = Paj⊥(Cn − δn,mI) = −αjβ′jBn−j + Paj⊥

n−j∑
k=1

Aj+1,kBn−j−k + Paj⊥Gj+1,n−j ; (A.2)

remark that (A.2) implies that (A.1) holds. The proof of (A.2) is by induction. Let J` := (j1, . . . , j`), with

Ju = J = (j1, . . . , ju) = (0, . . . ,m). We first consider (A.2) for j1 = 0. Because Pa0⊥ = I, A0 = −α0β
′
0,

A1,k = Ak, and G1,n = −δn,µI, by definition of Cn one can rewrite (1.3) as

0 = −α0β
′
0Bn + Pa0⊥

n∑
k=1

A1,kBn−k + Pa0⊥G1,n

and this shows that (A.2) holds for j = j1 = 0. Next assume that (A.2) holds for j ∈ J` for ` < u; one

wishes to show that it also holds for j = j`+1 ∈ J`+1 for ` + 1 ≤ u. Let t := j` + 1; pre-multiply (A.2) by

Pat⊥ and re-arrange terms to find

0 = Pat⊥At,1Bn−t + Pat⊥

n−t∑
k=1

At,k+1Bn−t−k + Pat⊥Gt,n−t+1 =: U + V, (A.3)

where U := Pat⊥At,1Bn−t and V is defined accordingly. Next use projections, inserting I = Pbt⊥ + Pbt

between At,1 and Bn−t in U ; one finds

U = Pat⊥At,1Pbt⊥Bn−t + Pat⊥At,1PbtBn−t =: U1 + U2.

The term U2 involves Pbt =
∑
h∈J` β̄hβ

′
h, and one has U2 = Pat⊥At,1

∑
h∈J` β̄hβ

′
hBn−t.

We next observe that for h ∈ J` one has

β′hBn−t = ᾱ′h

n−t∑
k=1

Ah+1,kBn−t−k + ᾱ′hGh+1,n−t.

This is derived from (A.2) choosing j equal to h ∈ J` and replacing n with n − t + j. Substituting in the

expression of U2, one finds

U2 = Pat⊥

n−t∑
k=1

At,1 ∑
h∈J`

β̄hᾱ
′
hAh+1,k

Bn−t−k + Pat⊥At,1
∑
h∈J`

β̄hᾱ
′
hGh+1,n−t.
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Summing U + V and using (2.2), one finds

0 = U1 + Pat⊥

n−t∑
k=1

At+1,kBn−t−k + Pat⊥Gt+1,n−t, (A.4)

where Gt+1,n−t = Gt,n−t+1 +At,1
∑
h∈J` β̄hᾱ

′
hGh+1,n−t.

If t < j`+1 then Pat⊥At,1Pbt⊥ = 0 and hence U1 = 0; in this case (A.4) reduces to (A.3) with the counter

t increased by one and the process is repeated increasing the counter again until t = j`+1. If t = j`+1 then

U1 = −αj`+1
β′j`+1

Bn−j`+1
which makes (A.4) equal to (A.2). This completes the proof of (A.2) and hence

of (A.1).

Proof of Theorem 3.1. Pre-multiply (A.1) by ᾱ′j to find

β′jBn = ᾱ′j

n∑
k=1

Aj+1,kBn−k + ᾱ′jGj+1,n;

using projections, one then has

Bn =
∑
j∈J

β̄jβ
′
jBn =

∑
j∈J

β̄j

(
ᾱ′j

n∑
k=1

Aj+1,kBn−k + ᾱ′jGj+1,n

)

=

n∑
k=1

∑
j∈J

β̄jᾱ
′
jAj+1,k

Bn−k +
∑
j∈J

β̄jᾱ
′
jGj+1,n =

n∑
k=1

Fµ+1,kBn−k +Hµ+1,n,

where the last equality follows by definition from (2.2) and (2.4), see also (3.2).

Proof of Theorem 3.3. Pre-multiply (A.1) by a′j⊥ and use the definitions αj = āj⊥ξj , βj = b̄j⊥ηj to find

ξjη
′
j b̄
′
j⊥Bn = a′j⊥

n∑
k=1

Aj+1,kBn−k + a′j⊥Gj+1,n

=

n∑
k=1

a′j⊥Aj+1,kPbj⊥Bn−k +

n∑
k=1

a′j⊥Aj+1,kPbjBn−k + a′j⊥Gj+1,n, (A.5)

where the last equality follows from inserting the projection identity I = Pbj⊥ + Pbj between Aj+1,k and

Bn−k.

We note that (A.5) for j = 0 gives the original system (1.3). We next show that, given the system (A.5),

the application of one reduction step in the sense of [1] leads to the next matrix rank factorization in the

elrf. This shows that the complete reduction process in [1] coincides with the elrf.

First observe that (A.5) can be written in the format of equations (8.0)-(8.t) in [1],3

C0Vn +

n∑
k=1

CkVn−k = Rn, (A.6)

3In this proof the letters C and D are used to match the notation in [1] and they do not refer to (1.3) as in the rest of the

paper.
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by setting C0 = ξjη
′
j , Ck = −a′j⊥Aj+1,kbj⊥, Vn = b̄′j⊥Bn and Rn =

∑n
k=1 a

′
j⊥Aj+1,kPbjBn−k + a′j⊥Gj+1,n.

We next apply a reduction step to (A.5) pre-multiplying it by a basis of the left null space of C0 to find

n∑
k=1

ξ′j⊥CkVn−k = ξ′j⊥Rn;

because ξ′j⊥CkVn−k = −ξ′j⊥a′j⊥Aj+1,kPbj⊥Bn−k = −a′j+1⊥Aj+1,kPbj+1⊥Bn−k−a′j+1⊥Aj+1,kPβj
Bn−k, where

the last equality follows by definition from aj+1⊥ = aj⊥ξj⊥ and Pbj⊥ = Pbj+1⊥ +Pβj
, rearranging terms and

setting s = n− 1 one has

−a′j+1⊥Aj+1,1Pbj+1⊥Bs −
s∑

k=1

a′j+1⊥Aj+1,k+1Pbj+1⊥Bs−k = Ss,

where Ss = ξ′j⊥Rs+1 +
∑s+1
k=1 a

′
j+1⊥Aj+1,kPβjBs+1−k. This can be rewritten in the format of equations

(10.0)-(10.t− 1) in [1],

D0Ws +

s∑
k=1

DkWs−k = Ss, (A.7)

where Dk = −a′j+1⊥Aj+1,k+1bj+1⊥, Ws−k = b̄′j+1⊥Bs−k for k = 0, . . . s and s = 0, . . . ,m − 1. Because the

reduced system (A.7) is again reducible if and only if D0 = a′j+1⊥Aj+1,1bj+1⊥ is of reduced rank, which is

the rank condition in (2.3), this proves that the complete reduction process in [1] coincides with the elrf.

Proof of Theorem 3.4. In the proof of Theorem 3.3 it is shown that dimension of the Ck coefficients

of the reducible system (A.6) is rmax
j × rmax

j , where rmax
j = p −

∑
h∈Jj−1

rh, and the dimension of the Dk

coefficients of the reduced system (A.7) is rmax
j+1 × rmax

j+1 , where rmax
j+1 = rmax

j − rj and rj = rankC0. Hence a

reduction occurs if and only if rj > 0, i.e. j ∈ J , and the dimension of the coefficients is decreased by rj .

Because each and only j ∈ J is a partial multiplicity of A(z) at z0 and there are rj partial multiplicities

that are equal to j, see (3.4), the statement is proved.
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Additional material for:

Inverting a matrix function around a singularity

via local rank factorization

MASSIMO FRANCHI∗ AND PAOLO PARUOLO∗∗

Abstract. This file contains MATLAB routines that implement the elrf.

1. Description

This file describes and includes the following MATLAB routines:

• main.m: call to the elrf with the example in the paper;

• ELRF.m: performs the elrf;

• recursionAF.m: recursions to compute {As,k} and {Fs,k};
• recursionGH.m: recursions to compute {Gs,k} and {Hs,k};
• MatRnkDecSvd.m: function that performs a matrix rank decomposition, based on the SVD

function of MATLAB.

The scripts are embedded as PDF ‘file attachment annotations’, which requires PDF version 1.4

or higher (Adobe Acrobat 4.0 or higher). The embedding was generated with the attachfile Latex

package, see Pakin (2011).

To open the scripts, you need to either

• right click on the icons and choose ‘Save Embedded File to Disk...’

• or double-click on the icons .

Note that in Adobe Acrobat, annotations never print unless the Annotations box is checked in

the Print dialog.

2. script main.m

This function calls the elrf for a specific example in Section 4 of the paper.

%% Main file ------------------------------------------------------------------

clear all; clc;

aA(:,:,1) =[1 0 0; 0 0 0; 0 0 0];
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\begin{verbatim}
%% Main file ------------------------------------------------------------------
clear all; clc;
aA(:,:,1) =[1 0 0; 0 0 0; 0 0 0];
aA(:,:,2) =[0 0 0; 0 -1 0; 0.5 0 0];
aA(:,:,3) =[0 0 -0.5; 0 0 0; 0.5 0 0];
aA(:,:,4) =[0 0 -0.5; 0 0 0; 0 0 -1/4];
%% ELRF -----------------------------------------------------------------------
[out,all] = ELRF(aA,10);
\end{verbatim}


main.m
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aA(:,:,2) =[0 0 0; 0 -1 0; 0.5 0 0];

aA(:,:,3) =[0 0 -0.5; 0 0 0; 0.5 0 0];

aA(:,:,4) =[0 0 -0.5; 0 0 0; 0 0 -1/4];

%% ELRF -----------------------------------------------------------------------

[out,all] = ELRF(aA,10);

3. function ELRF.m

This function perform the elrf.

%% ELRF function --------------------------------------------------------------

function [out,all] = ELRF(aA,q)

% PURPOSE: compute the order of the pole and the first q Laurent

% coefficients via ELRF. If q is left empty return the

% coefficients of the principal part.

%------------------------------------------------------------------------------

% USAGE: [out,all] = ELRF(aA,q)

% where: aA = array {A_i} i=0:d of size p x p x (d+1) for

% A(z)=A_0+A_1(z-z_0)+...+A_{d}(z-z_0)^{d}

% q = scalar >=0 the first q Laurent coefficients are saved in

% all.B. If left empty, all.B contains the coefficients of

% the principal part.

%------------------------------------------------------------------------------

% RETURNS:

% out = structure with

% out.m = scalar >=0, the order of the pole

% out.B = array {B_{n}} n=0:q-1 of size p x p x q,

% the first q Laurent coefficients. If q is left empty,

% all.B contains the coefficients of

% the principal part B_0,...,B_{m-1}

%

% all = structure with additional output

% all.a = p x p matrix a=[alpha_0,...,alpha_{mu}]

% all.b = p x p matrix b=[beta_0,...,beta_{mu}]

% all.vr = 1 x mu+1 vector vr=[r_0,...,r_mu]=[r_j]

% all.vJ = 1 x mu+1 vector vJ=[0,...,mu]

% all.theta = p x p x mu+1 array {bar(betaj)bar(alphaj)’}j=0:mu

% all.aA = p x p x h+1 array {A_{n}} n=0:h


\begin{verbatim}

%% ELRF function --------------------------------------------------------------

function [out,all] = ELRF(aA,q)

%  PURPOSE: compute the order of the pole and the first q Laurent

%           coefficients via ELRF. If q is left empty return the

%           coefficients of the principal part.

%------------------------------------------------------------------------------

% USAGE:     [out,all] = ELRF(aA,q)

% where:     aA = array {A_i} i=0:d of size p x p x (d+1) for

%                 A(z)=A_0+A_1(z-z_0)+...+A_{d}(z-z_0)^{d}

%            q =  scalar >=0 the first q Laurent coefficients are saved in

%                 all.B. If left empty, all.B contains the coefficients of

%                 the principal part.

%------------------------------------------------------------------------------

% RETURNS:

% out = structure with

% out.m = scalar >=0, the order of the pole

% out.B = array {B_{n}} n=0:q-1 of size p x p x q,

%         the first q Laurent coefficients. If q is left empty,

%         all.B contains the coefficients of

%         the principal part B_0,...,B_{m-1}

%

% all = structure with additional output

% all.a = p x p matrix a=[alpha_0,...,alpha_{mu}]

% all.b = p x p matrix b=[beta_0,...,beta_{mu}]

% all.vr = 1 x mu+1 vector vr=[r_0,...,r_mu]=[r_j]

% all.vJ = 1 x mu+1 vector vJ=[0,...,mu]

% all.theta = p x p x mu+1 array {bar(betaj)bar(alphaj)'}j=0:mu

% all.aA = p x p x h+1 array {A_{n}} n=0:h

% all.aB = p x p x h+1 array {B_{n}} n=0:h

% all.daA = p x p x mu+1 x h double array {A_{s,i}} s=1:mu+1,i=1:h

% all.daF = p x p x mu+1 x h double array {F_{s,i}} s=1:mu+1,i=1:h

% all.daG = p x p x mu+1 x h double array {G_{s,i}} s=1:mu+1,i=1:h

% all.daH = p x p x mu+1 x h double array {H_{s,i}} s=1:mu+1,i=1:h

% all.aF = p x p x h array {F_{mu+1,i}}i=1:h

% all.aH = p x p x h array {H_{mu+1,i}}i=1:h

% -----------------------------------------------------------------------------

% NOTES: in all arrays where one the theoretical index starts from 0,

%        entries are shifted by 1

%% Define dimensions ----------------------------------------------------------

% and define maximum order of the pole, zero and identity

% and inizialize matrices before the proper 'ELRF Inizialization' step

[p,p,w]=size(aA); d=w-1; mumax=d*p; all.mu=mumax; Z=zeros(p,p); I=eye(p);

all.minusI=-I; all.aA=zeros(p,p,mumax+1); all.aA(:,:,1:w)=aA;

all.daA=zeros(p,p,mumax,mumax); all.daF=all.daA;

all.theta=zeros(p,p,mumax+1); all.a=Z; all.b=all.a;

all.vJ=zeros(1,mumax+1); vuJ=all.vJ; all.vr=all.vJ; vcumr=all.vJ;

%% ELRF Inizialization --------------------------------------------------------

j=0;

[xi0,eta0,r0,xi0ort,eta0ort,eta0bar]= MatRnkDecSvd(aA(:,:,1));

rj=r0; aj=xi0; bj=eta0; aj_1ort=I; bj_1ort=I; rjmax=p;

all.a(:,1:r0)=xi0; all.b(:,1:r0)=eta0;

xij_1ort=xi0ort; etaj_1ort=eta0ort;

all.theta(:,:,1)=eta0bar*xi0';

all.vr(1)=r0; vcumr(1)=r0;

vuJ(1)=1;

%% ELRF Recursion -------------------------------------------------------------

while rj < rjmax;

    j=j+1;

    rjmax=rjmax-rj;

    all=recursionAF(all,j); % F(s,j-s+1) and A(s,j-s+1)

    ajort =aj_1ort*xij_1ort;

    bjort =bj_1ort*etaj_1ort;

    mM=ajort'*all.daA(:,:,j,1)*bjort;

    [xij,etaj,rj,xijort,etajort,etajbar]= MatRnkDecSvd(mM);

    all.vr(j+1)=rj; vcumr(j+1)=vcumr(j)+rj; % r and cumr (they are shifted)

    if rj > 0;

        alphaj=ajort*xij; all.a(:,vcumr(j)+1:vcumr(j+1))=alphaj; % a

        betaj=bjort*etaj; all.b(:,vcumr(j)+1:vcumr(j+1))=betaj;  % b

        all.theta(:,:,j+1)=(bjort*etajbar)*(xij'*ajort'); % theta (shifted)

        all.vJ(vuJ(j)+1)=j; vuJ(j+1)=vuJ(j)+1; % vJ and vuJ (shifted)

    else

        all.vJ(vuJ(j)+1)=all.vJ(vuJ(j)); % vJ (shifted)

        vuJ(j+1)=vuJ(j); % vuJ (shifted)

    end; % rj  >  0;

    aj_1ort=ajort; bj_1ort=bjort; xij_1ort=xijort; etaj_1ort=etajort;

end; % while r < rjmax;

%% Empty un-needed entries ----------------------------------------------------

% and inizialize matrices after ELRF Recursion and before ELRF Final loops

all.theta(:,:,j+2:end)=[]; all.vJ(:,j+2:end)=[]; vuJ(:,j+2:end)=[];

all.vr(:,j+2:end)=[]; vcumr(:,j+2:end)=[]; all.daA(:,:,j+1:end,:)=[];

all.daA(:,:,:,j+1:end)=[];

all.daF(:,:,j+1:end,:)=[]; all.daF(:,:,:,j+1:end)=[];

if nargin == 1

    q=j;

end

h=max(2*j+2,j+q-1); all.aA=zeros(p,p,max(h,d)+1); all.aA(:,:,1:w)=aA;

daZ=zeros(p,p,j+1,h); all.daG=daZ; all.daH=daZ;

foo=daZ; foo(:,:,1:j,1:j)=all.daA; all.daA=foo;

foo=daZ; foo(:,:,1:j,1:j)=all.daF; all.daF=foo;

all.aF=zeros(p,p,h); all.aH=zeros(p,p,h); all.aB=zeros(p,p,h+1);

%% ELRF Final loops -----------------------------------------------------------

all.mu=j; % Index of the ELRF

all.H0=-all.theta(:,:,all.mu+1); % H_0=H(mu+1,0)=-theta_mu

all=recursionGH(all,all.mu); % G(s,j-s+1) and H(s,j-s+1)

for j=all.mu+1:h;

    all=recursionAF(all,j); % F(s,j-s+1) and A(s,j-s+1)

    all=recursionGH(all,j); % G(s,j-s+1) and H(s,j-s+1)

end;

all.aF=squeeze(all.daF(:,:,all.mu+1,:)); % F(mu+1,k)

all.aH=squeeze(all.daH(:,:,all.mu+1,:)); % H(mu+1,k)

%% compute B_k ----------------------------------------------------------------

all.aB(:,:,1)=all.H0;

for n=2:h+1

    all.aB(:,:,n)=all.aH(:,:,n-1);

    for k=2:n

        all.aB(:,:,n)=all.aB(:,:,n)+all.aF(:,:,k-1)*all.aB(:,:,n+1-k);

    end % for k=2:n

end % for n=2:h+1

%% save output ----------------------------------------------------------------

out.m=all.mu; out.B=all.aB(:,:,1:q);

\end{verbatim}
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% all.aB = p x p x h+1 array {B_{n}} n=0:h

% all.daA = p x p x mu+1 x h double array {A_{s,i}} s=1:mu+1,i=1:h

% all.daF = p x p x mu+1 x h double array {F_{s,i}} s=1:mu+1,i=1:h

% all.daG = p x p x mu+1 x h double array {G_{s,i}} s=1:mu+1,i=1:h

% all.daH = p x p x mu+1 x h double array {H_{s,i}} s=1:mu+1,i=1:h

% all.aF = p x p x h array {F_{mu+1,i}}i=1:h

% all.aH = p x p x h array {H_{mu+1,i}}i=1:h

% -----------------------------------------------------------------------------

% NOTES: in all arrays where one the theoretical index starts from 0,

% entries are shifted by 1

%% Define dimensions ----------------------------------------------------------

% and define maximum order of the pole, zero and identity

% and inizialize matrices before the proper ’ELRF Inizialization’ step

[p,p,w]=size(aA); d=w-1; mumax=d*p; all.mu=mumax; Z=zeros(p,p); I=eye(p);

all.minusI=-I; all.aA=zeros(p,p,mumax+1); all.aA(:,:,1:w)=aA;

all.daA=zeros(p,p,mumax,mumax); all.daF=all.daA;

all.theta=zeros(p,p,mumax+1); all.a=Z; all.b=all.a;

all.vJ=zeros(1,mumax+1); vuJ=all.vJ; all.vr=all.vJ; vcumr=all.vJ;

%% ELRF Inizialization --------------------------------------------------------

j=0;

[xi0,eta0,r0,xi0ort,eta0ort,eta0bar]= MatRnkDecSvd(aA(:,:,1));

rj=r0; aj=xi0; bj=eta0; aj_1ort=I; bj_1ort=I; rjmax=p;

all.a(:,1:r0)=xi0; all.b(:,1:r0)=eta0;

xij_1ort=xi0ort; etaj_1ort=eta0ort;

all.theta(:,:,1)=eta0bar*xi0’;

all.vr(1)=r0; vcumr(1)=r0;

vuJ(1)=1;

%% ELRF Recursion -------------------------------------------------------------

while rj < rjmax;

j=j+1;

rjmax=rjmax-rj;

all=recursionAF(all,j); % F(s,j-s+1) and A(s,j-s+1)

ajort =aj_1ort*xij_1ort;

bjort =bj_1ort*etaj_1ort;

mM=ajort’*all.daA(:,:,j,1)*bjort;

[xij,etaj,rj,xijort,etajort,etajbar]= MatRnkDecSvd(mM);

all.vr(j+1)=rj; vcumr(j+1)=vcumr(j)+rj; % r and cumr (they are shifted)
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if rj > 0;

alphaj=ajort*xij; all.a(:,vcumr(j)+1:vcumr(j+1))=alphaj; % a

betaj=bjort*etaj; all.b(:,vcumr(j)+1:vcumr(j+1))=betaj; % b

all.theta(:,:,j+1)=(bjort*etajbar)*(xij’*ajort’); % theta (shifted)

all.vJ(vuJ(j)+1)=j; vuJ(j+1)=vuJ(j)+1; % vJ and vuJ (shifted)

else

all.vJ(vuJ(j)+1)=all.vJ(vuJ(j)); % vJ (shifted)

vuJ(j+1)=vuJ(j); % vuJ (shifted)

end; % rj > 0;

aj_1ort=ajort; bj_1ort=bjort; xij_1ort=xijort; etaj_1ort=etajort;

end; % while r < rjmax;

%% Empty un-needed entries ----------------------------------------------------

% and inizialize matrices after ELRF Recursion and before ELRF Final loops

all.theta(:,:,j+2:end)=[]; all.vJ(:,j+2:end)=[]; vuJ(:,j+2:end)=[];

all.vr(:,j+2:end)=[]; vcumr(:,j+2:end)=[]; all.daA(:,:,j+1:end,:)=[];

all.daA(:,:,:,j+1:end)=[];

all.daF(:,:,j+1:end,:)=[]; all.daF(:,:,:,j+1:end)=[];

if nargin == 1

q=j;

end

h=max(2*j+2,j+q-1); all.aA=zeros(p,p,max(h,d)+1); all.aA(:,:,1:w)=aA;

daZ=zeros(p,p,j+1,h); all.daG=daZ; all.daH=daZ;

foo=daZ; foo(:,:,1:j,1:j)=all.daA; all.daA=foo;

foo=daZ; foo(:,:,1:j,1:j)=all.daF; all.daF=foo;

all.aF=zeros(p,p,h); all.aH=zeros(p,p,h); all.aB=zeros(p,p,h+1);

%% ELRF Final loops -----------------------------------------------------------

all.mu=j; % Index of the ELRF

all.H0=-all.theta(:,:,all.mu+1); % H_0=H(mu+1,0)=-theta_mu

all=recursionGH(all,all.mu); % G(s,j-s+1) and H(s,j-s+1)

for j=all.mu+1:h;

all=recursionAF(all,j); % F(s,j-s+1) and A(s,j-s+1)

all=recursionGH(all,j); % G(s,j-s+1) and H(s,j-s+1)

end;

all.aF=squeeze(all.daF(:,:,all.mu+1,:)); % F(mu+1,k)

all.aH=squeeze(all.daH(:,:,all.mu+1,:)); % H(mu+1,k)

%% compute B_k ----------------------------------------------------------------

all.aB(:,:,1)=all.H0;
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for n=2:h+1

all.aB(:,:,n)=all.aH(:,:,n-1);

for k=2:n

all.aB(:,:,n)=all.aB(:,:,n)+all.aF(:,:,k-1)*all.aB(:,:,n+1-k);

end % for k=2:n

end % for n=2:h+1

%% save output ----------------------------------------------------------------

out.m=all.mu; out.B=all.aB(:,:,1:q);

4. function recursionAF

This function performs recursions to compute {As,k} and {Fs,k}.

%% recursionAF function -------------------------------------------------------

function all=recursionAF(all,j)

%% PURPOSE: computes A(s,k) and F(s,k) along the j-th diagonal

%------------------------------------------------------------------------------

% USAGE: all=recursionAF(all,j)

% where: j =1, 2, ...

% all = structure

%------------------------------------------------------------------------------

% RETURNS:

% all = structure

%------------------------------------------------------------------------------

% NOTES: see ELRF

%% A_{1,j} and F_{1,j} --------------------------------------------------------

all.daA(:,:,1,j)=all.aA(:,:,j+1);

all.daF(:,:,1,j)=all.theta(:,:,1)*all.daA(:,:,1,j);

%% A_{s,j-s+1} and F_{s,j-s+1} ------------------------------------------------

foo=min(j,all.mu+1); for s=2:foo;

all.daA(:,:,s,j+1-s)=all.daA(:,:,s-1,j+2-s)+...

all.daA(:,:,s-1,1)*all.daF(:,:,s-1,j+1-s);

all.daF(:,:,s,j+1-s)=all.daF(:,:,s-1,j+1-s)+...

all.theta(:,:,s)*all.daA(:,:,s,j+1-s);

end

5. function recursionGH

This function performs recursions to compute {Gs,k} and {Hs,k}.


\begin{verbatim}

%% recursionAF function -------------------------------------------------------

function all=recursionAF(all,j)

%% PURPOSE: computes A(s,k) and F(s,k) along the j-th diagonal

%------------------------------------------------------------------------------

% USAGE:     all=recursionAF(all,j)

% where:     j =1, 2, ...

%            all =  structure

%------------------------------------------------------------------------------

% RETURNS:

%            all =  structure

%------------------------------------------------------------------------------

% NOTES: see ELRF

%% A_{1,j} and F_{1,j} --------------------------------------------------------

all.daA(:,:,1,j)=all.aA(:,:,j+1);

all.daF(:,:,1,j)=all.theta(:,:,1)*all.daA(:,:,1,j);

%% A_{s,j-s+1} and F_{s,j-s+1} ------------------------------------------------

foo=min(j,all.mu+1); for s=2:foo;

    all.daA(:,:,s,j+1-s)=all.daA(:,:,s-1,j+2-s)+...

        all.daA(:,:,s-1,1)*all.daF(:,:,s-1,j+1-s);

    all.daF(:,:,s,j+1-s)=all.daF(:,:,s-1,j+1-s)+...

        all.theta(:,:,s)*all.daA(:,:,s,j+1-s);

end

\end{verbatim}
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%% recursionGH function -------------------------------------------------------

function all=recursionGH(all,j)

%% PURPOSE: computes G(s,k) and H(s,k) along the j-th diagonal

%------------------------------------------------------------------------------

% USAGE:     all=recursionGH(all,j)

% where:     j =1, 2, ...

%            all =  structure

%------------------------------------------------------------------------------

% RETURNS:   all =  structure

%------------------------------------------------------------------------------

% NOTES: see ELRF

%% G_{1,j} and H_{1,j} --------------------------------------------------------

all.daG(:,:,1,j)=(j==all.mu)*all.minusI;

all.daH(:,:,1,j)=all.theta(:,:,1)*all.daG(:,:,1,j);

%% G_{s,j-s+1} and H_{s,j-s+1} ------------------------------------------------

foo=min(j,all.mu+1);

for s=2:foo;

    all.daG(:,:,s,j+1-s)=all.daG(:,:,s-1,j+2-s)+...

        all.daA(:,:,s-1,1)*all.daH(:,:,s-1,j+1-s);

    all.daH(:,:,s,j+1-s)=all.daH(:,:,s-1,j+1-s)+...

        all.theta(:,:,s)*all.daG(:,:,s,j+1-s);

end

\end{verbatim}
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%% recursionGH function -------------------------------------------------------

function all=recursionGH(all,j)

%% PURPOSE: computes G(s,k) and H(s,k) along the j-th diagonal

%------------------------------------------------------------------------------

% USAGE: all=recursionGH(all,j)

% where: j =1, 2, ...

% all = structure

%------------------------------------------------------------------------------

% RETURNS: all = structure

%------------------------------------------------------------------------------

% NOTES: see ELRF

%% G_{1,j} and H_{1,j} --------------------------------------------------------

all.daG(:,:,1,j)=(j==all.mu)*all.minusI;

all.daH(:,:,1,j)=all.theta(:,:,1)*all.daG(:,:,1,j);

%% G_{s,j-s+1} and H_{s,j-s+1} ------------------------------------------------

foo=min(j,all.mu+1);

for s=2:foo;

all.daG(:,:,s,j+1-s)=all.daG(:,:,s-1,j+2-s)+...

all.daA(:,:,s-1,1)*all.daH(:,:,s-1,j+1-s);

all.daH(:,:,s,j+1-s)=all.daH(:,:,s-1,j+1-s)+...

all.theta(:,:,s)*all.daG(:,:,s,j+1-s);

end

6. function MatRnkDecSvd

This script performs a Matrix Rank Decomposition using the SVD.

%% MatRnkDecSvd function ------------------------------------------------------

function [mA,mB,r,mAort,mBort,mBbar]= MatRnkDecSvd(mP)

% PURPOSE: computes Matrix Rank Decomposition, mP=-mA*mB’ based on svd

%------------------------------------------------------------------------------

% USAGE: [mA,mB,r,mAort,mBort]= MatRnkDecSvd(mP)

% where: mP = m x n matrix

%------------------------------------------------------------------------------

% RETURNS: mA = m x r matrix

% mB = n x r matrix,

% r = rank(mP)

% mAort = m x (m-r) matrix, basis of ort.complement of col(mA)


\begin{verbatim}

%% MatRnkDecSvd function ------------------------------------------------------

function [mA,mB,r,mAort,mBort,mBbar]= MatRnkDecSvd(mP)

% PURPOSE: computes Matrix Rank Decomposition, mP=-mA*mB' based on svd

%------------------------------------------------------------------------------

% USAGE:     [mA,mB,r,mAort,mBort]= MatRnkDecSvd(mP)

% where:     mP = m x n matrix

%------------------------------------------------------------------------------

% RETURNS:   mA = m x r matrix

%            mB = n x r matrix,

%            r = rank(mP)

%            mAort = m x (m-r) matrix, basis of ort.complement of col(mA)

%            mBort = n x (n-r) matrix, basis of ort.complement of col(mB)

%------------------------------------------------------------------------------

[U,S,V] = svd(mP); vs=diag(S); tol = max(size(mP))*eps(max(vs));

r = sum(vs > tol);

mA=-U(:,1:r); mAort=U(:,(r+1):end);

mV=V*S';

mB=mV(:,1:r);

if r > 0

    mBbar=V(:,1:r)*diag(ones(r,1)./vs(1:r));

else % this is to capture errors when rank is 0

    mBbar=mB;

end;

mBort=V(:,(r+1):end);

\end{verbatim}
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% mBort = n x (n-r) matrix, basis of ort.complement of col(mB)

%------------------------------------------------------------------------------

[U,S,V] = svd(mP); vs=diag(S); tol = max(size(mP))*eps(max(vs));

r = sum(vs > tol);

mA=-U(:,1:r); mAort=U(:,(r+1):end);

mV=V*S’;

mB=mV(:,1:r);

if r > 0

mBbar=V(:,1:r)*diag(ones(r,1)./vs(1:r));

else % this is to capture errors when rank is 0

mBbar=mB;

end;

mBort=V(:,(r+1):end);

References
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