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Abstract

We review the methods currently available for the analysis of regional
datasets characterised by possible non-stationarity over time and both strong
and weak spatial dependence and present, as a representative case study, a
comparative analysis of the regional development of the Italian manufactur-
ing industries in the second halves of the 19th and 20th centuries. For highly
heterogenous datasets we suggest a two-stages approach: (1) fit a dynamic
factor model with endogenous determination of the number of factors; (2)
estimate a spatial model for the de-factored data. Applying this strategy we
find two similar non-stationary factors sufficient to explain long-run growth
of the whole set of series examined in both centuries. Further, the results
suggest that some conditional spatial error correction mechanisms seem to
have been in action in both centuries.
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1 Introduction

Regional panel data of economic variables such as GDP or unemployment typically
appear as sets of time series following closely related paths. In fact, often the links
among the different series are so evident that it is natural to suspect all of them to
depend upon some “common factor”™ a striking example are the Dutch provincial
unemployment rates studied by Halleck Vega and Elhorst (2016). Interestingly,
this seemingly obvious fact has for a long time been largely neglected by the spatial
econometric literature, typically developed under the assumption that the value of
a variable in each spatial unit is determined by a mixture of idiosyncratic shocks
and spillovers from other units which, in accord with Tobler’s (1970) “First law
of geography”, decay with distance. In other terms, the fundamental assumption
of this literature is that the data are only weakly dependent over space. Spatial
autoregressive (SAR), spatial error autocorrelation (SEM), and spatial Durbin
(SDM) models, in static or panel form (see e.g., Elhorst, 2010, 2014) have all been
developed as modelling tools for spatially weakly dependent data, and are perfectly
adequate in these circumstances. However, if the units included in the panel do
depend upon some common factor their links will not decay with distance: in fact,
two neighbouring units may be even less correlated than two units which are far-
ther away from each other, but more strongly correlated with the common factor.
Then spatial dependence is strong (or pervasive), and the SAR/SEM models are
clearly not adequate any more. Which in these circumstances may be an adequate
modelling strategy is however not so clear: Bailey, Holly and Pesaran (2016) sug-
gested a two-stage approach, while on the other Halleck Vega and Elhorst (2016)
(and later also Ciccarelli and Elhorst, 2016) a simultaneous one. In this paper we
review the topic and present, as a case study, a comparative disaggregate analy-
sis of the regional development of the Value Added in the Italian manufacturing
industries in two periods about a century apart, 1861-1913 and 1970-2003'. This
case study will highlight the need to consider for highly heterogenous panels a
fully general method allowing endogenous determination of the number of factors.
The paper is organized as follows: section 2 discusses the modelling set-up; sec-
tion 3 provides a descriptive analysis of the data; section 4 presents the empirical
estimates, while Section 5 concludes.

'In different ways, these are both important periods from the point of view of regional de-
velopment in Italy. The first is indeed considered as a nodal point for all advanced capitalist
countries (see e.g. Maddison 1995), while during the latter growth, strongly concentrated in
the industrialised regions of North-West Italy in the 1950’s and ’60’s, spread to the rest of the
country as well (see e.g., Terrasi, 1999; Bianchi, 2002).



2 Modelling Set-up

A panel of regional time series characterised by strong spatial dependence due to
common factors and weak dependence due to spatial spillovers can be modelled
following different approaches, with increasing degrees of generality. For the sake
of simplicity we shall review them in turn assuming univariate spatial modelling,
as the multivariate generalisation (Spatial Durbin models) is immediate.

Case A: Observed factor(s)

The simplest approach is assuming that the spatial units share one (or possibly
more, the number clearly does not matter) observed common factor. From a
univariate perspective a natural candidate is the national level of the variable
of interest, as in the Brechling (1967) model of British regional unemployment.
For a set of regions, other obvious examples of exogenous variables which may
qualify as observable common factors include global variables, e.g., oil prices, and
national policy variables, e.g., interest rates. Augmenting a spatial model with this
observable common factor(s), so to model strong and weak spatial dependence
simultaneously, is then a rather natural idea. For the sake of simplicity let us
consider the case of a single, static factor, as the generalisation to dynamic factors
is immediate.

Let Y be the variable of interest measured over ¢ = 1,...,T periods in r =
1,..., R regions, and Y the T' x R matrix collecting the time series for the R
regions. Denoting by W the spatial weights matrix W of dimension R x R, by F
the T'x 1 vector of the observed common factor and by € the matrix of idiosyncratic
errors assumed to be spatially uncorrelated, a model including common factors and
spatial lags can be essentially written as follows:

where A, the 1 x R vector of loadings mapping F onto Y, and 7, the scalar spatial
autoregressive coefficient, are estimated simultaneously. By analogy with Factor-
Augmented VARs (FAVARs; Bernanke, Boivin, and Eliasz, 2005), model (1) can
be labeled Factor-augmented Spatial Autoregressive model, FASAR. Rearranging
and expanding the inverse of (I — W) as a sum with geometrically decaying
weights we obtain

Y = (FA +&)(I—Wn) !
= (FA+e)I+Wryo+ W2 +..)
=FAI+Wry+ W2+ .. ) +e(I+ Wy + W33 +..)
—FA+c(I+Wro+ W2 +..) (2)



where A = AT+ Wro + W342 + ) measures the impact of the common
factor on each region taking into account both direct and indirect effects, and
(I4+ W + W32 4 ...) describes the spatial transmission of the shocks . As
remarked above, this model has the clear advantage of allowing spatial spillovers
to originate from both the idiosyncratic shocks, ¢, and the common permanent
components, FA, and estimating their coefficients simultaneously. On the other
hand, it hinges on the assumption that the common component is adequately
captured by the observed factor F' both in the time and space domain. The first
part of the assumption is particularly important if Y is non-stationary. If this
is the case and Y does not cointegrate with F we will have a unit root in the
autoregressive part of the model, or, in case this is absent, in the model residuals.
A formal test of cointegration between Y and F' may be devised exploiting the rich
literature on panel cointegration with dependent units (e.g., Palm, Smeekens and
Urbain, 2010, Di Torio and Fachin, 2014). Further, the naive solution of thrusting
the model as long as the point estimate of the AR coefficient is comfortably smaller
than 1 will probably be adequate in most circumstances.

As far the space domain is concerned, the problem is that if the common fac-
tor does not capture all pervasive spatial dependence in Y the SAR part of the
model, which assumes weak spatial dependence, is not legitimate. As discussed in
Ciccarelli and Elhorst (2016), two diagnostics may help to test for the presence of
unmodelled strong spatial dependence in the residuals: the C'D cross-dependence
test by Pesaran (2015) and the o measures of cross-sectional dependence by Bai-
ley, Kapetanios and Pesaran (2015). The former, essentially the average cross-
correlation coefficient rescaled for the time and cross-section sample sizes, is a test
for the null hypothesis of weak dependence. To define more precisely what this
means let us consider the behaviour of the average cross-correlation (p) as the
cross-section sample size N grows. To this end, let us write it as a function of
the sample size as p = O(N?*72), so that « is the contraction rate of 5. Then,
if & = 1 average correlation tends to a non-zero value, as O(N?*72?) = O(1). If
instead 0 < o < 1, p will converge to zero as N grows. However, the speed of
convergence will be fast enough to define the spatial dependence as weak only for
a < 0.5. When instead we have about 0.75 < a < 1 the convergence will be so
slow that the dependence can be defined strong. Suppose now that these spatial
diagnostics (p, «) point to unmodelled strong spatial dependence in the residuals.
The first hypothesis we might take into account is that the single factor assump-
tion is correct, but the observed variable does not capture it adequately. We can
then move to the next case.



Case B: A single unobservable factor

As anticipated above, this is the most obvious generalisation of the case of a single
observable factor. Following Pesaran (2006), a simple consistent estimate of a
single unobservable factor influencing a set of regional time series can be easily
obtained taking their simple average. Obviously, in most circumstances this will
not give a result appreciably different from using the national value, as done on
a priori grounds in Case A above following the Brechling approach. Recalling
that national values are weighted averages of the regional ones, Halleck Vega and
Elhorst (2016) point out that the two solutions (simple averages and national
values) are in fact also formally equivalent, as Pesaran (2006) remarks that any
weighted average with weights O(1/N) will satisfy the consistency requirement.

Once obtained the factor estimate we can then proceed exactly as in Case
A, estimating the factor-augmented univariate or multivariate spatial model of
interest. For instance, Ciccarelli and Elhorst (2016) estimate a Spatial Durbin
model of the spatial diffusion of cigarette consumption in the 19th century Italian
provinces including, along a set of explanatory variables, the simple average across
provinces of the dependent variable (at time ¢ and ¢t — 1, as in Halleck Vega and
Elhorst, 2016) as an estimate of the common nation-wide trend. Carrion-i-Silvestre
and Surdeanu (2016) use a similar approach to model a production function for
the Spanish regions.

Now, suppose that the spatial diagnostics turn out to be still unsatisfactory:
clearly, the necessary conclusion is that the assumption of a single factor is too re-
strictive. One solution might be to search for additional aggregate variables which
may qualify as observable common factors, or, in case of plausible regional growth
clubs, identify these groups on the basis of a priori information and compute the
estimates of their respective common factors taking group averages. However, this
is arguably a rather awkward process, with no guarantee to converge to a satisfac-
tory model. Essentially, we need to allow for a more general structure, allowing
from the outset for N > 1 unobservable factors. These may still be rather easily
estimated, but at the cost of abandoning simultaneous modelling of strong and
weak dependence and moving to the two-stages strategy advocated by Bailey et
al (2016). Here we have two options, assuming the number N to be known or
unknown. Let us see the former first.

Case C: A known number of unobservable factors

Since static factors are by definition orthogonal, if their number is known their
estimation is easily carried out by iterated simple averages. More precisely, the
estimate of the first latent factor will be the simple average of the Y/s, and its
loadings obtained by regression of the Y/s on the estimated factor. The second



factor, orthogonal to the first, is simply the average of the regression residuals, and
the loadings estimated in the same way; and so forth. Having estimated in this first
stage the common components we may move in the second stage to model the de-
factored data. These, provided the assumption on the number of common factors
is correct and the cross-section sample size is large enough to yield good estimates
of the latent factors, will be weakly dependent over space and time, and may be
modelled using spatial econometric techniques, similarly to what prescribed by the
spatial filtering approach by Getis and Griffith (2002). Formally, and using for the
sake of exposition only, a static spatial model:

Y=FA+7Z (3a)
Z=7ZW~vy+u (3b)

The assumption of cointegration between data and estimated factors may be
tested, as suggested above, adapting some panel cointegration test. Since equa-
tion (3b) is a spatial model specified for the de-factored data, Z, which are the
residuals of the approximate factor model (3a), we can describe (3a)-(3b) as a
Factor-augmented SEM, FASEM. Expanding the inverse the second equation may
be written as:

Z

u(l— Wy)! (4)
u(I+Wry+ W2+ .. (5)

and the FASEM model in single-equation form as
Y=FA+ul+Wy+W3>2+..)

which shows clearly how now the effects of the common factor on the various units
are assumed to not produce any spillovers, while the shocks u are allowed to?.
This assumption is thus added to the one that the number of common factors is
known. Indirect indications on the validity of the latter assumption can be gained
from the spatial properties of the residuals u, which will be weakly dependent only
if the number of factors included in (3b) is not smaller than the true number of
latent factors. In other terms, the number of factors in (3a) can be simply fixed
at a number large enough to ensure spatially uncorrelated residuals. Although
this pragmatic approach may prove to be practically efficient, it could be argued

2 Alternatively, substituting from (3a) into (3b) and rearranging, we can see that the spa-
tial spillover coefficient of the factor is constrained to be equal to that of the spatially lagged
dependent variable. This is the spatial analogue of what in the 1980’s literature on dynamic
modelling was defined the “common factor restriction” of the Cochrane-Orcutt transformation
(Hoover, 1988). Clearly the term factor was used in a completely different sense.



that estimating the number of factors on the basis of a formalised procedure with
known properties may be preferable to checking ez-post if the assumed number is
adequate. The last, and most general, approach answers to this objection.

Case D: Unknown number of unobservable factors

This fully general set-up is at the basis of the approximate factor model literature.
In this modelling tradition the most common solution is to estimate the latent
factors using principal components (PC); Maximum Likelihood estimation is also
possible, but definitely less popular (two examples are Watson and Engle, 1983,
and Doz, Giannone and Reichlin, 2012). Approximate factor models, which allow
for data-based consistent selection of the number of factors, enjoy growing pop-
ularity in macroeconometric and financial applications® where they are typically
applied to datasets including a very large number of time series (in our case, the
variable of interest over regions). For our purpose a fundamental difference with
the average-based estimation method is that the PC procedure can only yield an
estimate of the common components Y = FA; the common factor F as such is
not identified. We will thus not be able to estimate FASARs including factors as
regressors, and the two-stage approach leading to a FASEM specification (either
static or dynamic) is the only feasible option even in the simplest case of a single
factor.

In their more general form, approximate factor models allow for the possible
existence of both non-stationary (trend) factors and stationary (cyclical) factors:

Y=FA+G®+7Z (6)

where now F is a T' x k1 matrix of non-stationary common factors, A the k; x N
matrix of their loadings, G a T'x ky matrix of stationary common factors and ® the
ko x N matrix of their loadings, Z the matrix of weakly dependent (over space and
time) de-factored data. Since the stationary factors can be first differences of the
non-stationary ones this more general model allows for dynamic factors. Although
most of both the theoretical developments and applications of factor models are
for stationary variables, results allowing consistent estimation of the number of
factors (say, k) are discussed by Bai (2004) and, more recently, Barigozzi, Lippi and
Luciani (2016). Estimation of factors and loadings is essentially based on PCs, as
in the stationary case. An important advantage of PC estimation is that, since the
estimated residuals converge asymptotically to the population unobserved values

3See, e.g., Stock and Watson (2002a, 2002b), Forni, Hallin, Lippi and Reichlin (2005)
Kapetanios and Pesaran (2007). Examples of applications to forecasting and construction of
cyclical indicators are given by e.g., Giannone, Reichlin and Small (2008) and Altissimo, Crista-
doro, Forni, Lippi and Veronese (2010).



(Bai, 2004, lemma 1), their time series properties can be studied using standard
(panel) unit root tests for observed data. An application along these lines using PC
estimators of the common factors is included in Carrion-i-Silvestre and Surdeanu
(2016), who use (along the cross-section averages mentioned above) the Cup-type
estimators by Bai, Kao and Ng (2009).

Summing up, regional datasets showing signs of strong and weak spatial de-
pendence may tackled following approaches with increasing degrees of generality,
discussed above from Case A, known number of observable factor(s), to Case D,
unknown number of unobservable factors. While some datasets may be success-
fully modelled using the simpler approaches, highly heterogenous ones are likely
to require the the most complex one. In these circumstances the most general
modelling strategy, which does not hinge upon any assumption on the number
and observability of the factors, seems to be the following generalisation of the
two-stage approach. First, fit the dynamic factor model (6) to the data, with the
number of factors estimated using one of the information criteria proposed in the
literature and factors and loadings estimated by PCs. Second, evaluate the hy-
potheses that the estimated residuals are weakly dependent over space (C'D test,
a exponent) and time (unit root tests, in standard and panel version). If neither
is rejected, the factor model is adequate and a spatial model, possibly in panel
form, for the de-factored data can be estimated.

We can now move to our case study, which will give the opportunity to discuss
some important details.

3 Patterns of regional industrial growth

Understanding the processes driving regional development ideally requires annual
time series of data disaggregated at both the spatial and industrial level. His-
torical data with this level of detail are generally not available, but Italy consti-
tutes an exception. As a result of a long-term project sponsored by the Bank
of Ttaly, Ciccarelli and Fenoaltea (2009, 2014) constructed annual time series of
value added at 1911 prices for 12 manufacturing industries and 16 NUTS 2 areas
(regioni, hereafter regions) for the period 1861, the year when the Kingdom of
Italy was officially declared, to 1913, the eve of the First World War. Based on
this recent dataset, we analyze consider 10 manufacturing industries (Foodstuffs,
Textiles, Clothing, Leather, Wood, Metalmaking, Engineering, Non-metallic min-
eral products, Chemical and rubber, and Paper) in 16 regions, for a total of 159
industry /region combinations observed over 53 years.*

4The only exception is the Metalmaking sector, virtually absent in the southern region of
Basilicata. We note that we omitted the data on the Tobacco and Sundry industries. The former
was very small (on average accounting for less than 1% of total value added in manufacturing)



Paradoxically, historical data on industry are richer than those available for
the more recent decades. In our case the longest and most detailed dataset avail-
able, assembled by the research centre CRENoS of the University of Cagliari and
based on Istat data, covers value added at 1995 prices for six broad industry ag-
gregates (Food, Beverages and Tobacco; Textiles, clothing, leather and footwear;
Minerals and non-metallic mineral products; Metal products and machinery and
transport equipment; Paper, and printing products; Wood, rubber and other in-
dustrial products) for 20 NUTS 2 regions. The time period cover the years from
1970 (the beginning of detailed Italian national accounts series) to 2003. We thus
have 120 industry/region combinations observed over 34 years.’

The Italian manufacturing industry developed later than in more advanced
European countries, so that our study covers the early phases of the country’s
industrialization. During 1861-1913 value added at 1911 prices of the aggregate
of the 10 industries here considered grew at an average annual rate of about 2.3
percent. As a consequence, the 1913 figure was over three times that of 1861.
Approximately a century later, average aggregate real growth turned out to be
strikingly similar: about 2.5% from 1970 to 2003 for the entire Manufacturing
industry.

Figure 1 shows that in both periods the contributions to growth varied signif-
icantly, with distributions of average growth rates over the industry/region pairs
which at first sight also appear strikingly similar. The shapes are indeed almost
identical, but examining their supports we can see that the 1970-2003 distribu-
tion is slightly more concentrated and shifted to the right with respect to that for
1861-1913 (1970-2003: minimum -0.4, maximum 9.3, range 9.7; 1861-1913: min
-2.6, max 8.4, range 11.0). Consistently, the number of negative values identifying
shrinking industry /region pairs was slightly higher in the 19th century (five against
three). Even taking such a simplified view there clearly is a wide heterogeneity to
be explained.

We can go into some detail by examining the marginal row and columns of
Tables 1 and 2, which report simple averages® for each region and industry over
the two periods. Let us discuss the 19th century first (Table 1). The traditional
industries producing consumption goods (including Food and Textiles) generally
grew more slowly (rates between 1.2 and 1.5 percent) than those essentially tied
to the production of investment and intermediate goods (especially Metalmaking,
Non metallic minerals, Chemicals and Paper, with growth rates between 3.5 and

and run as a State monopoly, hence with peculiar localisation and growth patterns. Sundry
industries had an even smaller share, on average about 0.5% of total value added, and is far too
an heterogenous aggregate to be of any interest.

SFurther details on both datasets are provided in the Appendix.

6Giving equal weight to all values, these reflect the underlying heterogeneity better than
average growth rates of the regional and national industry aggregates.



Figure 1: Distribution over industries and regions of value added rates of growth.

A. 1861-1913 B.1970-2003
(16 regions, 10 industries) (20 regions, 6 industries)

Source: see text.

4.6 percent). The extremes of the ranking are on one side the stagnating Leather
industry, with an average growth rate of just 0.3 percent, on the other the Metal-
making industry, with a growth rate larger than 10 percent. Wide heterogeneity
is also present among regions, with manufacturing valued added in Liguria (in the
North-West; a map is reported in the Appendix) expanding three times as fast
as Basilicata, in the South (respectively, 4.6 and 1.5 percent). Reading Table 1
row-wise is informative about regional growth of total manufacturing industry. In
this metric, the leading role of the North-West (Piedmont, Liguria and Lombardy)
is evident. A North-South divide is also clearly visible.” The North-West average,
3.4, is much higher than both that of the North-East (Emilia, Venetia) and of
the Centre (from Tuscany to Latium), respectively 2.6 and 2.7 percent. These, in
turn, are clearly higher than that of the South, 2.1 percent.

Table 2 refers to the more recent 1970-2003 period. Comparisons between
historical and modern data are of course to be taken with caution, both for the
broader definition of industry aggregates in modern data, and for the different
internal composition of each industrial sector. With this important caveats in
mind, we can see that in 1970-2003, as already in 1861-1913, the slowest growth
of the aggregate take place in the core consumption goods industries, Food and
Textiles (respectively, 2.9 and 1.7 p.c.). Metal and Non-metal, two industries
producing essentially investment and intermediate goods, have instead two of the
highest average rates of growth (both slightly above 3.5 p.c.).

The considerations made so far refer to long-run averages. Figures 2-3 illustrate

"Since the 1950’s the area with a triangular shape with vertices in the main cities of these three
regions Turin, Genoa, and Milan, has been commonly referring to as “the industrial triangle”, to
emphasise its leading role as the core of the Italian industrial system.
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Table 1: Average growth rates of value added at 1911 prices (x 100) during
1861-1913, by sectors and regions

o @ 6 @ 6 © @O © (9 (10
Food Text Cloth Leath Wood Metal Eng NMet Chem Paper Average
PI 1.33 3.19 2.55 1.69 1.37 4.97 3.50 3.80 4.47 4.94 3.18
LI 2.35 2.79 274 2.09 190 6.20 4.20 492 4.89 3.75 3.58
LO 1.51 3.48 235 195 192 480 3.89 479 497 5.12 3.48

VE 120 3.26 1.41 1.58 1.56 3.9 197 3.70 3.71 3.92 2.59
EM 2.03 -028 249 184 1.64 3.51 2.56 3.65 3.74 447 2.57

TU 118 2.43 1.75 1.88 1.62 5.94 2.58 3.26 4.56 4.65 2.99
MA 096 032 1.61 1.80 1.33 286 1.51 4.11 3.59 5.12 2.32
UM 0.83 2.62 1.41 1.86 1.08 8.36 206 4.39 7.34 4.85 3.48
LA 1.14 -09 2.68 1.96 1.28 1.04 274 2.46 3.26  5.78 2.14

AB 078 135 133 1.86 148 7.40 0.66 244 342 4.94 2.57
CM 141 -0.61 160 2.19 144 4.42 228 181 2.67 3.97 2.12
AP 1.50 094 215 2.26 2.20 2.89 2.24 3.07 287 5.88 2.60
BA 0.34 -0.08 096 1.62 0.92 - 0.16 1.79 0.20 3.30 1.02
CL 112 059 148 2.05 1.77 -2.63 0.67 5.18 1.74 4.34 1.63
ST 1.41 -215 217 219 1.69 246 193 4.16 241 4.41 2.07
SA 2.22 2,70 2.40 2.18 2.20 4.08 1.73 3.09 1.53 4.17 2.63
Average 1.33 1.2% 1.94 1.92 1.9 399 2.17 3.54 346  4.60 2.57

Column headers: Food: Foodstuffs; Text: Textiles; Cloth: Clothing; Leath: Leather; Metal:
Metalmaking; Eng: Engineering; NMet: Non-metal mineral products; Chem: Chemicals and
rubber. Row headers: PI: Piedmont; LI: Liguria; LO: Lombardy; VE: Venetia; EM = Emilia-
Romagna; TU: Tuscany; MA: Marches; UM = Umbria; LA: Latium; AB = Abruzzi; CM =
Campania; AP: Apulia; BA: Basilicata; CL: Calabria; SI: Sicily; SA; Sardinia. In bold case:
values greater than the national column average (bottom row).

Source: Authors’ elaborations on Ciccarelli and Fenoaltea (2009, 2014).

instead the annual evolution of value added in manufacturing, by regions and
industries. Aggregate regional value added (Figure 2) tend to move together, even
though the co-movement differ among the various regions. Cyclical peaks in the
late 1880s and late 1970s occurred for instance in several regions.

Patterns of sectoral growth (Figure 3) are also of some interest. The upper
part of the figure refers to the 1861-1913 period, and show that sectors tied to
the production of consumption goods (Panel A.1) tends to evolve gradually, while
cyclical variations are more pronounced for sectors related to the production of
durables such as engineering, metalmaking, and wood (Panel A.2). The lower
part of the figure refers to the more recent time period. The early 1980s registered
a generalized slowdown in both the sector tied to the production of consumption
goods and the production of durables.

The pictures, as expected, convey the general image of non-stationary, trending

11



Table 2: Average growth rates of value added (x 700) during 1970-2003, by
sectors and regions

(1) (2) (3) (4) (5) (6)
Food Text Wood Metal NMet Paper Average

PI 3.04 -0.16 1.35 -0.43 1.83 2.18 1.30
AV 1.39 0.34 1.09 -0.31 5.44 3.38 1.89
LO 2.65 1.74 2.43 2.12 2.90 3.68 2.59
LI 0.69 0.88 1.81 1.43 1.44 3.76 1.67
TA 2.42 1.90 3.36 3.36 4.88 5.42 3.56
VE 3.10 2.80 4.25 4.53 3.81 6.14 4.11
FV 3.46 0.81 3.29 2.93 3.62 4.17 3.05
EM 2.39 2.02 2.86 3.93 3.23 4.64 3.18
TU 1.71 0.64 2.73 3.29 2.81 5.06 2.70
UM 3.15 2.64 4.50 2.61 4.57 4.45 3.65
MA 3.38 2.37 3.88 4.60 2.93 217 3.22
LA 3.25 0.50 2.53 4.60 3.62 5.14 3.27
AB 6.19 4.43 4.00 7.39 4.10 5.56 5.28
MO 6.72 3.00 6.51 8.65 3.72 1.83 5.07
CM 2.57 1.59 2.82 3.34 2.54 4.04 2.82
AP 1.84 2.76 3.29 3.55 3.45 3.74 3.11
BA 4.12 1.61 5.67 9.32 4.28 2.45 4.57
CL 2.65 1.99 3.48 5.04 2.69 6.67 3.75
ST 0.89 1.17 3.29 3.08 4.37 3.80 2.77
SA 2.56 1.96 4.41 3.54 5.00 2.79 3.38
Average  2.91 1.75 3.38 3.83 3.56 4.05 3.25

Column headers: Food: Food, Beverages and Tobacco; Textiles; Textiles, Clothing, Leather
and footwear; Wood: Wood, rubber and sundries products; Metal: Metal products, machinery
and transport equipment; NMet: Non-metallic minerals and mineral products; Paper: Paper
and printing. Row headers: PI: Piedmont; AV: Aosta Valley; LI: Liguria; TA: Trentino-Alto
Adige; LO: Lombardy; VE: Venetia; EM = Emilia-Romagna; TU: Tuscany; MA: Marches; UM =
Umbria; LA: Latium; AB = Abruzzi; MO: Molise; CM = Campania; AP: Apulia; BA: Basilicata;
CL: Calabria; SI: Sicily; SA; Sardinia. In bold case: values greater than the national column
average (bottom row).

Source: Authors’ elaborations on CRENoS data.

regional series. Following routine practice, we formally tested the hypothesis of
non-stationarity using the ADF-GLS test by Elliot et al. (1996), allowing for a
linear deterministic trend and selecting the lag length on the basis of the modified
AIC criterion. The results, as detailed in section A2.1 of the Appendix, imply that
the series as a panel are non-stationary.
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Figure 2: Value added: regional aggregates, 1861-1913 and 1970-2003

A. 1861-1913 B.1970-2003
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Source: Panel A: Ciccarelli and Fenoaltea (2009, 2014). Panel B: CRENoS.

4 Modelling strong dependence

The descriptive analysis considered so far confirmed that our datasets, referring to
1861-1913 and 1970-2003, are non-stationary and considerably heterogenous. Of
course, this is hardly surprising in view of the rather large cross-section sample sizes
(respectively, 159 and 120 industry-region pairs), the large regional differentials,
and, in the case of the 19th century data, the rather high level of detail of the
disaggregation over industries, and long time span. The assumption of a single
common factor is thus hardly defendable, and we shall follow the more general
strategy outlined at the end of Section 2, estimating the factors and their loadings
using PCs. Given the rather large combined industriesxregions cross-sectional
dimension, the computationally convenient solution is to estimate the latent factors
as the eigenvectors corresponding to the k largest eigenvalues of the T" x T" matrix
YY' (e.g., Bai, 2004). Given the factor estimates, the loadings are obtained as
A = Y'F/T?. An often delicate point of principal components studies is dealing
with the scale of the variables. Here we adopt total population as the scale element.
While total population is available with annual frequency for 1970-2003, for the
19th century we have only data for selected benchmark years, when the population
censuses were taken (1861, 1871, 1901, 1911).® In this case annual estimates have
then been constructed by linear interpolation. We pass to illustrate the estimation
of the factor models for the two datasets in turn.

8Due to financial difficulties, the population census of 1891 was not taken.
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Figure 3: Value added in the Italian industries.
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4.1 Non-stationary common factors, 1861-1913

The first step of our analysis involves estimating the non-stationary factors through
a static factor analysis, as in Bai (2004). Table 3 shows that by allowing for
a maximum of four factors the three information criteria suggested by Bai give
partially contrasting results.

The first information criterion, I PC', is minimised by three factors, but the
difference with the value for two factors is marginal. The second, I PCs, is equal at
the second decimal point with two and three factors, and the third, I PCj3, favours
one factor. With the maximum set at three factors I PC and I PC, suggest instead
two factors, while I PC} still one. Considering also that I PC'; is consistent only
when the cross-section dimension is not large relatively to the time dimension, the
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Table 3: Static Factor Model Information Criteria, 1861-1913

Max=/ Mazr=3
Factors IPCl IPCQ IPCg IPCl IPCQ IPCg
1 3.20 3.24 3.99 3.41 3.47 4.53
2 2.55 2.64 4.13 2.99 3.11 5.19

3 2.51 2.64 4.85 3.17 3.35 6.45
4 2.82 2.99 5.91

Figures in bold represent minimum value for each column (=best)

suggestions stemming from I PC; and I PC5 may be considered overall as more
reliable, and two factors seems a reasonable choice. This conclusion is further
supported from the finding that the residuals are indeed stationary, implying that
two I(1) factors are sufficient to capture all non-stationarity of our dataset. Since
the estimated residuals of factor models converge asymptotically to the population
unobserved values (Bai, 2004, lemma 1) their time series properties can be studied
using unit root tests designed for observed data. To this end we computed standard
univariate ADF tests and the bootstrap panel unit root test by Chang (2004); all
the results fully support stationarity.’

Figure 4, panel A illustrates the temporal evolution of the two non-stationary
factors, that is the two orthogonal components that contribute to explain the
growth of the manufacturing industries. The first factor is an essentially monotonous
trend capturing long-term growth (hence, the “Trend” label). The second one is
a long cycle, with peaks at the extremes of the sample and through in the 1890’s
(when the trend also slowed down, with a few years of negative growth), a period
long enough to make it non-stationary for the sample at hand. We shall refer to
this second factor as “Cycle”.1?

It is instructive to compare the paths followed by these two factors with the
periodization proposed by Italy’s economic historians. The literature acknowledges
that the years 1880-1887 ca. were of rapid industrial growth, the years 1887-1895
ca of economic crisis, and the years 1895-1913 ca of sustained growth again (Bachi,
1919; Luzzato, 1963, p. 263 referring to the 1889-1894 period as the “darkest years
since unification”.

9Results are reported in section A2.2 of the Appendix.

10But again this label should not be taken to imply that it is stationary, and a “Long Cycle”
label might be admittedly more appropriate. Effectively this long cycle is remarkably close to
the one identified by Kondratieff in his 1925 work (see, e.g., Papageorgiou and Tsoulfidis, 2012).
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Figure 4: Estimates of non-stationary common factors and loadings, 1861-1913
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NW=North-West (Piedmont, Liguria, Lombardy); NE = North-East (Venetia, Emilia); Center
(Tuscany, Marches, Umbria, Latium); South (Abruzzi, Campania, Apulia, Basilicata, Calabria,
Sicily, Sardinia).
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Based on extremely detailed and documented statistical reconstructions Fenoal-
tea (2011) shows that the long swings of the Italian industry described above (the
growth of the 1880s, the crisis of the 1890s, and the upswing of the new century)
where not only an Italian phenomena. Rather, they represented a cofeature shared
by the peripheral countries of the time, tied to the exogenous shift in the supply
of foreign capital, and much involved the construction sector. The historical data
show that during the 1890s new constructions in the railway sector, other pub-
lic works and urban construction dropped considerably.!! The historical data by
Fenoaltea further confirm that the first decade of the 20th century was of rapid
economic upsurge (on the point also see Ciccarelli and Fenoaltea, 2007). The above
narrative is fully in line with the evidence of Figure 4, with mutually reinforcing
rising Trend and Cycle since 1895 ca fueling the big spurt of the Italian economy
during the belle époque.

The two non-stationary factors considered so far are not separately identified
from the corresponding regional and sectoral loadings. The latter reveal essentially
how national factors impact on regional and sectoral growth. Figure 4, panel B
illustrate the averages over manufacturing sectors.!? The 16 regions are ordered
following the same North to South geographical order of Table 1. Even a quick
glance at the loadings of the Trend, reveals immediately that the NW constitutes
the leading area, the NE and Center the intermediate ones, and the the South the
lagging behind. Setting the average over all industries for Piedmont=100, those of
Liguria and Lombardy (the other two regions of the North-West) are respectively
91 and 97: the grand national average over industries and regions, 67, is almost
one third lower. Both NE regions (Venetia and Emilia), have means close to the
national average. The same holds for Centre (Tuscany, Marches, Umbria, Latium),
where however the regional values vary widely between a minimum of 32 (Latium)
and a maximum of 100 (Umbria), the latter tied to the rapid development of the
State-protected Terni steel plant and ironworks since the mid-1880s. Finally, the
average of the southern regions is 52, with values below the average registered in
Basilicata, Calabria, and Sicily.

Figure 4, panel B also illustrates the average loading of the second non-stationary
component, the Cycle (which, as panel A shows, has a minimum about in the mid-

Tn 1887 the collapse of the real estate bubble caused a severe financial crisis. A number of
major banks which had extended generous credit to the building sector ran into serious difficulties.
The 1893 bankruptcy of the “Banca Romana” (one of the six national banks authorized at the
time to issue paper money) and the arrest of its Governor Tanlongo marked an epoch. The
Italian banking system was completely reshaped and the creation in the same year of the Bank
of Ttaly, was one of the main institutional innovation of this period. It marked a decisive step
towards the unification of note issuance and the control of money supply.

12Al] these remarks largely hold if we look at the medians, not reported here for reasons of
space.
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dle of the sample period, and approximately similar values at the extremes). We
notice that the north-eastern and southern regions appear to be the most vulner-
able to cyclical swings.'> On the opposite, the north-western ones are the least
affected by long-term cyclical fluctuations.

The joint analysis of Figure 4, panel A and B is particularly informative. The
two factors have an opposite tendency up to the late 1880s (the Trend rises, the
Cycle falls) but later, after the mid 1890s, tend to move together. It is interesting
to note that the in North-West macro area, but to some extent also Tuscany, we
find both high values of the average loadings of the Trend and positive values for
those of the Cycle, so that it benefited particularly from the rapid acceleration of
the manufacturing industry experienced by the Italian economy at about the turn
of the century.!

Table 4: Averages across regions of the loadings of the non-stationary factors,
1861-1913

Food Text Clothing Leather Wood
Trend 100  98.5 229.9 212.7 2274
Cycle -100 16.3 -16.3 190.4  -18.6

Metal Eng NMet, Chem  Paper
Trend 586.6 236.4  343.7 440.1  609.4
Cycle -19.3 -25.7  -205.0 -196.1  -145.7

Food: Foodstuffs; Text: Textiles; Cloth: Clothing; Leath: Leather; Metal: Metalmaking; Eng:
Engineering; NMet: Non-metal mineral products; Chem: Chemicals and rubber.

Taking averages of the loadings in the other directions, over regions, is infor-
mative on the role played by the various manufacturing sectors. In Table 4 we
report the averages over all regions taking (arbitrarily) Textiles as a reference sec-
tor, hence with its average normalised to 100 for the Trend and -100 for the Cycle,
in order to preserve the signs. We can see that the highest loadings of the Trend
are associated with industries producing investment and intermediate goods (Pa-
per, Metalmaking, Chemicals). On the other hand, Non Mineral Metal products,
Chemicals and Leather were amongst the sectors most sensitive to the Cycle.

13The case of Basilicata, the only region with positive and sizeable average loading of the
Cycle is interesting and at the same time hard to interpret. It could be tied to its migration
outflows. According to the population censuses of 1871, 1881, 1901 and 1911 Basilicata is the
only Italian region registering a systematic reduction of its male labor force (men of age 15
years and above). Note that despite improving economic conditions during 1895-1913 ca, Italian
emigration outflows were particularly sizeable.

14Gee Ciccarelli and Fachin (2016) for an empirical investigation of manufacturing productivity
growth in Italian provinces during 1871-1911.
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Overall, the evidence considered so far is consistent with the view that during
1861-1913 the Italian economy was characterized by the emergence and consoli-
dation of the North-West as the main industrial area of the country. This devel-
opment was in turn tied to the emergence and development of heavy manufactur-
ing sectors, often subsidized by the State, such as metalmaking and engineering
(Bianchi, 2002; Felice, 2015).

4.2 Stationary common factors, 1861-1913

We assess the existence of common stationary factors using two measures of cross-
dependence, the C'D test and the « exponent.

Table 5: Cross-section dependence statistics, 1861-1913

Data Residuals Step 1  Residuals Step 2

CD 530.55 15.32 —1.10
[0.00] [0.00] [0.86]
« 0.96 0.64 0.50

CD: H, : weak cross-section dependence, p-value in brackets. Residuals Step 1: residuals of Bai
model with two non-stationary factors estimated by PC. Residuals Step 2: residuals of regression
of Residuals Step 1 on two cross-section averages.

Comparing the values obtained for the original data (Table 5, row 1, label
“Data”) and for the residuals of the Bai model allowing for two non-stationary
factors (row 2, label “Residuals Step 1”) we can see that accounting only for these
leaves a considerable amount of unexplained pervasive dependence in the data. The
« exponent'®, although much reduced (from 0.96 to 0.64) is still greater than 0.5
(the threshold value separating weak and strong dependence), and the hypothesis
of weak dependence for and de-factored data is strongly rejected by the CD test
in favour of that of strong dependence. Hence, there definitely seem to be some
stationary common factors we need to estimate and remove before proceeding to
the estimation of spatial models. Bai (2004) describes a generalized estimation
procedure supposed to yield estimates of these factors and associated loadings.
Unfortunately, implementation of this algorithm led to rather poor results, with
all information criteria always suggesting the maximum number of factors, for any
choice of this value. This is not entirely surprising, since Bailey, et al. (2016) and
Maciejowska (2010) report exactly the same problem. Given the unreliability of
Bai’s algorithm we devised an hybrid approach, estimating the stationary factors
a la Pesaran (2006) by cross-section averages of the residuals of the non-stationary

15Bailey et al. (2015) propose three different estimators of «, that here turned to be always
identical.
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factor model. Loadings can then obtained simply regressing the data to be de-
factored on these estimates.

Figure 5: Estimates of stationary common factors, 1861-1913
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The structure of our data leads naturally to hypothesise two factors, respec-
tively common to the consumption goods industries (briefly, CG: Food, Textiles,
Clothing, Leather) and the intermediate and investment goods ones (briefly, IIG:
Wood, Metalmaking, Engineering, Non metallic mineral products, Chemicals, Pa-
per). These averages are plotted in Figure 5.!° The average of the residuals of
the IIG industries shows much wider fluctuations than that over the CG ones.
Our estimates of the /(1) unobserved permanent components appear thus able to
explain a much larger fraction of the fluctuations of value added for the CG indus-
tries than for the IIG ones. Further, in both cases the values around the downturn
of the 1890s are positive (i.e., our estimates of the I(1) unobserved permanent
components are smaller than the actual data), while the opposite happens during
the recovery that took place in the following decades. This pattern is particu-
larly evident for the IIG industries. Transitory factors thus seem to have reduced
both the adverse impact of the crisis and the speed of the recovery. Note further
that from the third row of Table 5 (label “Residuals Step 2”) we can see that by

6Interestingly, a similar pattern is illustrated in Fenoaltea (2011), p. 39 Figure 1.05, panel
B, illustrating the temporal evolution of the annual changes in production during 1861-1913
separately for durable and non-durable industries.
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subtracting from the residuals of the non-stationary Bai model the estimates of
the common stationary components obtained in this way, no unexplained strong
cross-section dependence is left in the data.

4.3 Common factors, 1970-2003

Let us now examine the static factor estimation for the 20th century data. Table 6
shows that the first two information criteria are minimised by the choice of two
factors, while the third one by one factor only. However, recalling that I PC} is
not reliable with the sample sizes at hand (large N/T ratio) we settle for two
non-stationary factors.

Table 6: Static Factor Model Information Criteria, 1970-2003

Max=/
Factors IPCy IPCy IPC4
1 2.98 3.04 4.06
2 2.91 3.02 5.03
3 3.18 3.35 6.33
4 3.66 3.87 7.80

Bold face: min for each column (=best).

The two factors (Figure 6, panel A), are strikingly similar to those estimated
for the 19th century: a trend, hereafter “Trend”, and a very long cycle, hereafter
“Cycle”, with a single peak around 1980, when the Trend also slows down notice-
ably.!” During the 1970s both factors grew, the Cycle at a more accelerate rate
than the Trend, while since 1980 they essentially send opposite impulses, except
a short swing upwards of the Cycle at the end of the sample. These patterns are
fully in line with the widely accepted view of the Italian industrialization over the
last 50 years (see, among others, Graziani, 2000; Bianchi, 2002.) After the end of
the Bretton Woods era in 1971, currency devaluation was often used to gain price
competitiveness against trade partners, especially so after the oil shocks of the
1970s. It was clear that CPI inflation rates above 20% were not sustainable. Italy
joined the European Monetary System (EMS) in 1979 and the country was not
allowed to devalue the currency as in the routine practice of the previous years.'®

17As already noticed when considering the 19th century data, the “Cycle” label attached to
the second factor should not be taken to imply that it is stationary, and a “Long Cycle” label
might be in this respect considered more appropriate).

8Under the EMS member currencies agreed to keep their foreign exchange rates within a
band of +/- 2.25%. An institutional arrangement resembling ultimately the market-based “gold
points” mechanism of the Gold Standard international monetary regime operating in the 19th
century.
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Figure 6: Estimates of non-stationary common factors, 1970-2003
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NW=North-West (Piedmont, Aosta Valley, Liguria, Lombardy); NE = North-East (Trentino-
Alto Adige, Venetia, Friuli-Venezia Giulia); Center (Emilia, Tuscany, Marches, Umbria, Latium);
South (Abruzzi, Molise, Campania, Apulia, Basilicata, Calabria, Sicily, Sardinia).
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After the so called “divorce” of 1981, the Bank of Ttaly was freed from the obli-
gation to purchase the unsold public debt at the Treasury auctions, and monetary
policy become ultimately more restrictive (Toniolo, 2013). The changing macroe-
conomic scenario had a crucial impact on the structure and regional reallocation of
Italian industry (Graziani 2000, Bianchi 2002, Bianco 2003). Employment in large
firms, prevalently located in the North-West, reduced considerably in the 1980s
(Toniolo, 2013, p. 471 reporting evidence on employees in plants with more than
500 hundred workers from 1927 to 2006). The reduction in employment went along
with a general renewal of plants and machineries, and more flexible and innovative
type of organization to increase productivity at levels at least compatible with the
limits imposed by the EMS, and the related regime of restrictive monetary policy
(Rossi, 2007).

Turning back to the empirical analysis, to check if our estimated factors are
actually able to account for long-run growth of value added over regions and in-
dustries we first of all compute the ADF-GLS tests on the de-factored series. The
plot of their p—values (see FigureA3 in the Appendix), shows that in most cases
de-factoring appears to be effective and the residual series stationary. However,
for a non-negligible number of series this is not the case. Of course, this is hardly
surprising in view of the complex events rapidly summarised above. More pre-
cisely, we ind that out of 120 tests 13 are not significant at 5%, and 8 even at 10%.
Consistently, Chang’s panel F'—test for the hypothesis that the de-factored data
are (1), turns out to be equal to 61.34, not significant according to the bootstrap
estimate of the p-value equal to 16.4 percent. Problems seem to be particularly
common in the Textile industry, where the de-factored data for eight regions follow
closely related paths with long swings away from the mean. We thus proceeded
to further de-factor these series by simple OLS regressions from a factor defined
as their average!?. Formally we could say that the model has three factors, with
the loadings of the third factor constrained to be zero for the all the other se-
ries. After this second-stage de-factoring the panel unit root test is 63.09, with a
bootstrap p-value 12.1. This is somehow borderline, suggesting a non entirely neg-
ligible number of residuals still follow non-stationary patterns. Clearly, iterating
the approach used for the Textile industry we could easily reduce to stationar-
ity all the remaining non-stationary residuals. However, since these are scattered
across different regions and industries with no obvious common links these other
factors would be void of any meaning and only serve the purpose of mechanically
capturing the residual long-run dependence. We thus decided to favour parsimony
and settle for what we can label as a “two+one” specification of the non-stationary
part of the factor model. The hypothesis that these three factors provide an ade-

YDetails (residuals, tests and estimates) are not reported here for reasons of space, but are
available on request.
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quate representation is supported that the result of the cross-section dependence
test, which does not reject the null hypothesis of weak dependence with a p-value
close to 0.90 (see Table 7). We thus do not need to proceed to the estimation of
stationary common factors, as it was instead necessary for the 19th century data.
This conclusion however, does not exclude the existence of “cyclical clubs”, i.e.
groups of regions or industries following common idiosyncratic stationary cycles.
Although clearly interesting to investigate for their own sake, in our modelling
strategy such clubs are irrelevant, and the issue will thus not be pursued here.

Table 7: Cross-section dependence statistics, 1970-2003

Data Residuals Step 2

CD 346.91 —1.18
[0.00] [0.88]
« 0.96 0.47

CD: Hj : weak dependence, p-value in brackets. Residuals Step 2: residuals of Bai model with
two non-stationary factors estimated by PC and one factor for the textile industry in eight
regions.

Figure 6, panel B illustrates the regional averages of the loadings of both fac-
tors. The regions are ordered according to a geographical criterium with regions of
the North-West followed by the regions of North-East, Center, and South. First of
all, North-East and South have broadly comparable loadings of the Trend, in both
cases much higher than those of the North-West, with the Centre falling somewhere
in between. As far as the NE and the Centre are concerned this is consistent with
the standard view that by the mid-"90’s these two areas had caught up with the
North-West. As noticed in Bianchi (2002) since the 1980s, production became less
homogeneous and standardized, and more diverse and differentiated as organiza-
tions and economies of scale were replaced with organizations and economies of
scope. Firms or relatively reduced size, often clustered in relatively small geograph-
ical areas and specialized in light sectors like foodstuffs, textile, leather, furniture
flourished (on the so called “industrial districts” see e.g. Becattini et al., 2001).
The phenomenon was particulary pronounced in the North-East and the Center
of Ttaly, at the point that the traditional North-South partition of the country
was more and more replaced in the literature with the three macro area North-
West (NW), Center /North-East (NEC), and South (S), the so called “three Italies”
(see Bagnasco 1977). The high values of the certain Southern regions (above all
Abruzzi and Molise) are, on the contrary, somehow unexpected, as the catching-
up process of South with the North is commonly considered to have stopped by
the mid-"70s (inter alia, Terrasi, 1999, Di Liberto, 2008). However, one has to
consider the possible counterbalancing role played by the loadings of the Cycle.
Effectively, the joint analysis of Figure 6, panels A-B shows that the loadings of
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the Cycle, are positive in most Central regions, but also in certain Northern (see
the case of Liguria) and Southern regions (see the cases of Abruzzo and Sardinia).
Hence, in the expansionary phase (from 1980 until the mid-90’s) the contributions
to growth of the Cycle (Ag; AFy;) are generally positive in most Northern regions
(thus strengthening those coming from the Trend) and negative in the Central and
Southern regions (thus weakening those from the Trend). Within the North-West,
one notice the case of Liguria, once among leading industrial regions, with load-
ings not dissimilar by that of other Central and Southern regions (compare, for
instance, with the loadings os Sardinia).

Table 8: Averages across regions of the loadings of the non-stationary factors,
1970-2003

Food Textiles Non Met Metal Paper Wood
Trend 100 61 102 124 141 110
Cycle -100 64 33 168 22 69

Food: Food, Beverages and Tobacco; Textiles; Textiles, Clothing, Leather and footwear; Wood:
Wood, rubber and sundries products; Metal: Metal products, machinery and transport equip-
ment; Nmmp: Non-metallic minerals and mineral products; Paper: Paper and printing. In bold
case: values greater than the national column average (bottom row). NB: the loadings of the
trend are normalised on the Food industry (Food = 100 for the Trend and food =-100 for the
Cycle.)

Comments for the structure across industries (Table 8) are unfortunately lim-
ited by the small number of cases. Two points stand out clearly: on one hand the
decline of the Textile, Clothing and Leather industry, which has the smallest av-
erage loadings of the Trend and largest loadings of the Cycle (thus receiving large
negative contributions to growth after 1980) and on the other the robust growth
of the Paper and printing industry, which has opposite features (large Trend load-
ings and small Cycle loadings). The Food industry has an interesting loadings
structure, with those of the Trend relatively small (hence, comparatively small
contributions to growth) but those of the Cycle negative. Hence, the latter gave a
negative contribution when the Cycle was in the expansionary phase (1970-1980),
but a positive one in the contraction phase (1980-2003, most of the sample).

5 Modelling weak dependence

We have seen in the previous sections that using factor modelling we obtained for
both temporal periods de-factored series that are stationary over time and only
weakly dependent over the cross-section dimension. Ideally, the next step would
be to estimate a full panel spatial autoregressive model including all regions and
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industries, so to model all their interactions. In principle, this is a straightforward
task; the log-likelihood of model of this type is reported by e.g., Elhorst (2014).
In practice, this is not the case. First, we would need a spatial weight matrix with
entries for all industry/region pairs. To construct such a matrix we would need
information on disaggregated interregional trade flows which simply do not exist.
Second, the likelihood would include a matrix of dimension (7'- R- N)?, in our case
of an order so high (about 72 x 10°) to be likely to cause serious computational
problems. Clearly, in these circumstances we are forced to abandon the ambition of
modelling all the interactions across industries and regions. Since for each industry
we can construct a purely spatial weight matrix from geographic information, we
may follow an option which is standard practice in the related literature on multi-
regional input-output analysis (see, e.g., Hewings, 1985), namely assuming that
the global regions/industries spatial weight matrix is block-diagonal. In other
terms, the weights are non-zero only for the spatial weights for the same industry
in different regions. Formally, let W;; be the R x R weights matrix measuring the
proximity between industries ¢ and j across the R regions. Then, under block-
diagonality W;; = Or«p if 7 # j, and the overall spatial weight matrix is:

Wi 0 C 0

0 Wy ... 0

Wrxr= : : . :
0 0 ... Wxy

Under this contiguity structure the spatial models are estimated separately for
each industry. Given the rather large dimension of the spatial units we adopted
for all industries binary contiguity weights, with w,, = 1 for regions r, s sharing a
border and zero else. For the two main islands, Sicily and Sardinia, we proceeded
as follows. Sicily has been considered a neighbour of Calabria, from which it is
separated by the narrow (less than 5 km wide) strait of Messina. The regions
closest to the other island, Sardinia, are Liguria, Tuscany and Latium. Since basic
official statistics on Italian regional sea trade for the 20th century show that the
three regions had good connections with Sardinia, they have been each included in
Sardinia’s neighbourhood. However, things were different in the previous century.
Although Latium is close to Sardinia in bird fly distance, it had no important

ports, present instead in Liguria and Tuscany.*
Denote by Z = Y—FA—G® the estimated de-factored data, where the hat

20For instance, we consulted historical sources on sea transport and found that in 1871 the
total tonnage of ships registered in Liguria was above 600 thousands tonnes (of which 25 steam
vessells), in Tuscany above 50 thousands, and in Latium only about 2 thousands. Thus, for this
period we decided to include in the neighbourhood of Sardinia only Liguria and Tuscany.
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indicates estimate?!. Further, let Z’ be the T x R block of Z including the data
for industry 7 in the R regions and Z! its t-th row, which collects the observations
for all regions at time t. These can be modelled using a Spatial Dynamic Panel:

Zi = ’VOZiWWL’YlZLlW + /)Zifl + U—i (7)

The key parameter of (7) is the long-run, or static, spillover coefficient (yo+71)/(1—
p). From the dynamic point of view the understanding of (7) may be considerably
enhanced rewriting it in Spatial Equilibrium Correction (SEC) form, i.e. as

AZi = %AZW + (Yo +n)(Zi W —Zi )+ (p+70+7 —DZi_, +ui  (8)

The global (time and spatial) stationarity condition of model (7) is (p + 7o +
1) < 1, which implies that the own starting level must have a negative effect,
precisely the condition for regional convergence in the f—convergence literature.

According to equation (8), growth of value added of industry ¢ in each region
at time t around the path determined by the effect of the common factors depends
upon three elements:

(i) contemporaneous growth of the same industry in the neighbouring regions, or
dynamic spillover effect, 70 AZIW;

(it) a SEC, or convergence, term, active in presence of differentials between neigh-
bouring regions®?, (yo + 71 )(Z:_ W — Z¢_,);

(74i) finally, the own starting level, (p+ v+ — 1)Z¢_,.

Hence, conditionally on the common components, growth is expected to be
higher in regions with lower own initial levels and with neighbours which have (7)
high growth rates and (ii) higher initial levels.

The estimates for the preferred specifications, obtained using the ML estimator
by Yu, de Jong and Lee (2008), are reported, respectively for the 19th century and
20th century datasets, in Tables 9 and 10. Let us examine them in turn.

2IThe data for the Leather industry in the 19th century appeared to be almost perfectly
correlated with a common cycle, not captured by the filtering. We thus proceeded to further
de-factor them fom their simple mean.

22Note that this univariate SEC (which has the effect of shrinking spatial differentials of a
given variable) has nothing to do with the Error Correction Mechanism which may be defined
for a set of variables cointegrated over space (which has the effect of making these to “move in
harmony through space”, Fingleton, 1999, p. 13).
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Table 9: Dynamic Spatial Panel models of de-factored data - 1861-1913

o (ot (p+wt+n-1) R LR =-—y) H

CG Industries

Food 0.67 0.14 —0.10 0.49 22.94 0.58
(0.02) (0.03) (0.02) [0.0]

Textiles —0.15 - —0.18 0.53 0.0001 —
(0.04) (0.02) [99.1]

Clothing 0.49 0.16 —0.14 0.50 23.49 0.53
(0.03) (0.03) (0.03) [0.0]

Leather 0.25 0.05 —0.11 0.74 3.98 0.32
(0.04) (0.03) (0.03) 4.6]

Wood 0.84 0.21 —0.06 0.38 71.3 0.79
(0.007) (0.02) (0.008) [0.0]

IIG Industries

Metal 0.25 — —0.26 0.54 1.90 —
(0.04) (0.02) [16.8]

Eng 0.38 0.13 —0.17 0.53 15.66 0.45
(0.04) (0.03) (0.03) [0.0]

Non Met 0.27 0.11 —0.15 0.59 10.54 0.43
(0.04) (0.03) (0.03) [0.01]

Chemicals 0.27 0.08 —0.14 0.61 4.48 0.35
(0.04) (0.04) (0.04) (3.4]

Paper 0.66 0.19 —0.10 0.57 46.16 0.67
(0.02) (0.03) (0.02) [0.0]

mean 0.48% 0.13° —0.12 0.55 0.51°

median 0.44* 0.14° —0.12 0.53 0.49°

In brackets: s.e.’s of coefficient estimates, p-value x100 of LR test; R?: squared correlation
coefficient between observed and fitted values; ¢: of the positive values; : excluding the missing
values.

5.1 1861-1913

First of all, from the third column of Table 9 we notice that the term (p + o +
v — 1) is always smaller enough than zero to conclude that the global stationarity
condition is satisfied. Note that this implies a (coeteris paribus) negative link
between initial level of the value added in a given region and its rate of growth.
A second remark is that there seem to be considerable heterogeneity within both
the consumption goods industries (Food, Textiles, Clothing, Leather) and the
intermediate and investment goods ones (Wood, Metalmaking, Engineering, Non
metallic mineral products, Chemicals, Paper), so that we shall comment from a
general point of view. As a first step, let us examine the last column, which reports
the long-run spillover coefficients (7o +71)/(1 — p), the key parameter of the model
in the form (7). There obviously is some heterogeneity, but mean and median are
both close to 0.50, suggesting presence of rather strong spillover effects. Of course,
we should keep in mind that these effects are conditional on those of the common
factors, which vary considerably over regions. Moving to the coefficients of the
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SEC reparametrisation (8), we can see from columns 1 and 2 that with two only
exceptions both vy and (7 + 1) have always the expected sign and are strongly
significant. The two anomalies are the Textile and, partially, the Metal industry. In
the former the restriction (79 + 1) = 0 cannot be rejected, so that no convergence
effects seem to have been in action, and the dynamic spillover coefficient v, has a
puzzling negative sign, while in the latter there is no convergence effect.

The dynamic spillover coefficient 7 is otherwise rather large, ranging from 0.25
to 0.84 with a median of 0.38. The equilibrium correction coefficients, (7o + 1),
ranging from 0.05 to 0.21 with mean and median about 0.14, are somehow smaller
but generally strongly significant. These values imply coeteris paribus adjustment
periods ranging from 5 to 20 years with a typical length around 6 years, a rather
short time (but again, conditionally on the effects of the common factors).

5.2 1970-2003

From Table 10 we first see that the global stationarity condition appears to be
safely satisfied for the 1970-2003 models as well, confirming the (coeteris paribus)
negative link between initial value and speed of growth. Second, there are again
no obvious differences between the consumption goods industries (Foods, Textiles)
on one side and the investment and intermediate goods industries on the other.
Third, in the industries where the time-lagged spatial lag coefficient ~; is signif-
icant the hypothesis of no spatial equilibrium correction (73 = —7p) is always
rejected, very strongly in two cases (Food and Non Metals, p—values practically
zero) and rather strongly in the other two (Textiles and Metals, p—values 0.03 and
0.01). Conditional spatial equilibrium correction seems thus to have taken place
in all industries. The long-run coefficients (v + 1) are all but one in the 0.25-
0.35 range. This implies adjustment periods between 3 and 4 years, shorter than
those estimated for the 19th century. Finally, the long-run spillover coefficients
(70 + 71)/(1 — p) range from 0.45 to 0.59, with median 0.47, smaller than that
estimated for the 19th century data but nevertheless suggesting presence of non
negligible spillover effects. Of course, we should always keep in mind that all these
spatial correction effects are conditional on those of the common factors, which
vary considerably over industries and regions.

6 Conclusions

Our purpose was twofold. First of all, to review the methods currently available
for the analysis of regional datasets characterised by possible non-stationarity over
time and both strong and weak spatial dependence. Second, to present a represen-
tative case study, a comparative analysis of the regional development of the Italian
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Table 10: Dynamic Spatial Panel models of de-factored data - 1970-2003

0 (otn) (ptwtm-1) R LR =-v)

Food 0.50 0.32 —0.22 0.28 17.69 0.59
(0.04) (0.05) (0.05) [0.0]

Textiles  0.18 0.09 —0.36 0.33 4.59 0.20
(0.04) (0.05) (0.06) [0.03]

Metal 0.44 0.30 —0.32 0.16 6.04 0.49
(0.04) (0.06) (0.06) [0.01]

Non Met 0.44 0.26 —0.32 0.18 12.4 0.45
(0.04) (0.06) (0.06) [0.0]

Paper 0.30 0.30¢ —0.36 0.13 - 0.45
(0.04) (0.04) (0.05)

Wood 0.34 0.34¢ —0.31 0.14 — 0.53
(0.04) (0.04) (0.05)

mean 0.37 0.27 —0.32 0.20 0.45

median 0.39 0.30 —0.32 0.17 0.47

In brackets: s.e.’s of coefficient estimates, p-value x100 of LR test. @ : v, = 0. R?: squared
correlation coefficient between observed and fitted values.

manufacturing industry in the second halves of the 19th and 20the century.

With the respect to the first point, our conclusion is that the choice of the
modelling strategies must be dictated by the characteristics of the dataset: how
many common factors are likely to be present, and if they are observable or not.
In the simple case when the common factor structure can be adequately specified
a priori, the best option is arguably to follow Halleck Vega and Elhorst (2016),
specifying factor-augmented spatial models capturing simultaneously weak and
strong spatial dependence. In the more general (and probably common) case
when the data depend upon an unknown number of unobservable common factors
we suggest a two-step modelling strategy, similar to that advocated by Bailey et
al. (2016). First, fit a dynamic factor model, with the number of factors estimated
using one of the information criteria proposed in the literature and factors and
loadings by PCs. As discussed below, in some circumstances an hybrid approach
making joint use of PC and simple averages may be required. Second, test the
hypotheses that the estimated residuals are (i) non-stationary over time, and, (i7)
weakly dependent over space. If the former is rejected and the latter is not proceed
to estimate a dynamic spatial panel model for the de-factored data.

Following this modelling strategy we have been able to explore thoroughly our
datasets. The first step was to estimate the number of non-stationary factors.
Exploiting the procedure by Bai (2004) we found just two non-stationary factors
sufficient to explain long-run growth of the all the series examined both for the 19th
and the 20th century. The factors are remarkably similar for the two datasets, an
essentially monotonous trend and a very long cycle, non stationary over the period
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of study.

The second step, estimating the common stationary factors, turned out to be
unnecessary for the 20th century data, as the weak dependence hypothesis cannot
be rejected for the de-factored data. For the 19th century data the stationary
factors could have been in principle be carried out also applying Bai’s methods,
but in practice this turned out to be unreliable. We thus opted for an hybrid
approach, setting a priori the number of common stationary factors to two (the
common cycles of consumption goods industries and intermediate and investment
goods industries) and estimating them using cross-section averages as in Pesaran
(2006). This choice, although entirely a priori, is supported by the finding that
de-factored data are only weakly dependent over the cross-section dimension.

The final step of the study, namely the estimation of dynamic spatial panel
models, revealed for both datasets a tendency to conditional convergence across
neighbouring regions. In view of the large regional differentials typical of the Ital-
ian economy this may appear surprising. However, we should recall that these
convergence effects are conditional on those of the common factors. The spatial
structure of the loadings highlights a deep regional reallocation of the Italian man-
ufacturing industry occurred over the last 150 years. In the 19th century factor
loadings have a clear spatial pattern resulting in growth much faster in the North,
especially the North-West, than in the South: we could thus have growing regional
differentials in presence of significant conditional convergence effects. In the 20th
century the spatial structure of the loadings changes, with the NW lagging behind,
and the NE and some of the regions of the Centre and the South undergoing a
phase of more accelerated growth, with positive contribution from both factors in
the 1970’s. Since about 1980, negative contributions from the second factor result
in the convergence process of the South reaching an end, while this continued for
the North-Eastern regions.

Appendix A
Al Data

The data for 1861-1913 are taken from a comprehensive dataset of annual time
series of value added at 1911 prices, disaggregated for 12 industries and 16 Italian
regions at 1911 borders (Ciccarelli and Fenoaltea, 2009, 2014). The series are avail-
able at the Bank of Italy website https://www.bancaditalia.it/pubblicazioni/
altre-pubblicazioni-storiche/produzione-industriale-1861-1913/, while
others (including Food, Wood, Paper) are still preliminary, and are based on ongo-
ing research. The data have been constructed on the basis of a wide set of primary
historical sources, including industrial and population census. The estimation
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strategy varies with the industrial sector and the historical sources available, and
thus cannot be described in full detail here. However, the first step has always
been to obtain data for physical production of the single products at the regional
level. For instance, in the case of the Chemical industry regional volume time
series for about 100 products (various acids, fertilizers, rubber, etc.) have been
constructed. Then, each volume series has been transformed into a value added
series at 1911 prices using a unit value added coefficient evaluated for 1911. These
coefficients have been estimated using historical data on wage and capital (for
details see Ciccarelli and Fenoaltea, 2009, 2014 and references therein).

The data on value added at 1995 prices for 1970-2003 which cover six industries
for 20 regions have been downloaded on October, 2, 2016 from the website of the
CRENOoS research centre of the University of Cagliari (http://crenos.unica.
it/crenos/databases/database-regio-it-1970-2004).

Figure A1l: Ttalian regions

Trentino-Alto Adige

Lombardy

Aosta Valley Friuli-Venezia Giulia
Veneto

Piedmont Emilia-Romagna

Marche

Tuscany =~ < Abruzzo

Molise
Umbria

Lazio
Campania ‘

Sardinia

Basilicata

Calabria

The colors are broadly indicative of the macroareas (North-West, North-East,Center, Continental
South and Islands) usually considered in the literature.

The four regions added to the 16 already existing in the 19th century are Aosta
Valley, a small area of the Western Alps formerly included in Piedmont; Friuli-
Venezia Giulia, formed by the north-eastern part of Venetia and the towns of
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Trieste and Gorizia, part of the Austrian empire until 1918; Trentino-Alto Adige,
north of Venetia, also annexed from Austria after the First World War; Molise,
a small area formerly part of Abruzzi. Consequently, the modern regions Veneto
and Abruzzi are respectively (and approximately) defined as 19th century Venetia
minus Friuli-Venezia Giulia, and 19th century Abruzzi minus Molise. The borders
of the 20 regions are mapped in Figure Al.

A2 Unit root tests

A2.1 Data

Following routine practice, we tested the hypothesis of non-stationarity of the data
using the ADF-GLS test by Elliot et al. (1996), allowing for a linear deterministic
trend and selecting the lag length on the basis of the modified AIC criterion.
Results are summarised in Figure A2, panel A. As it is immediately seen, using
customary significance values almost all statistics fall in the non-rejection region.
More precisely, no statistic falls below the 1% critical value (the smallest statistic
is —3.32, much higher than the 1% critical value, —3.77), and only two and five
(out of 159, hence 1% and 3% of the total) respectively exceed the 5% and 10%
critical values. In the light of this overwhelming evidence we did not consider
necessary to run a proper panel unit root test to conclude the all the series of our
dataset are non-stationary.

Figure A2: ADF-GLS unit root tests with constant and trend

A. 1861-1913 B. 1970-2003

The vertical lines represent the critical values of the test (10%=-2.89; 5%=-3.19;1%=-3.77)
From Figure A2, panel B we can see that a century later behaviour appears

somehow less non-stationary: for instance, at the 5% significance level one tenth
of the tests suggest rejection. We thus run a formal panel unit root test, the
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bootstrap F-test by Chang (2004). The estimated F' statistic for Hy : “all series
are I(1)” is 20.95, with a probability under Hj estimated by the bootstrap (1000
redrawings) as 29.9 percent, comfortably higher than any customary value. We
can then conclude that the series as a panel are non-stationary.

A2.2 Factor model residuals

Here we provide some more detail for the 19th century tests, as those for the
modern period, also graphically illustrated in this Appendix, are discussed in the
main text. Consistently with a priori expectations of stationarity, from Fig. A3
we can see that 90% of the p-values of the statistics for the individual residual
series are smaller than 0.10. The impression of stationarity is fully confirmed by
Chang’s (2004) testing procedure. The F-statistic for Hy : “all residuals are 1(1)”
is 165.26. Using 1000 redrawings the entire bootstrap estimate of the distribution
of the statistics lies on the left of this value, so that the bootstrap estimate of its
p-value is zero at all decimal digits.

Figure A3: P-values of the ADF unit root tests of non-stationarity of the
residuals of the factor model with two non-stationary factors.

A) 1861-1913 B) 1970-2003
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