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interpret) and forecasting (parsimonious models typically deliver superior
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ticular, no currently available test is entirely suitable for the empirically
important case of non-stationary data. Building on the intuition that de-
factoring the data under a correct set of restrictions will lower the number of
factors, we propose a procedure based on the comparison of the number of
factors selected for the raw and de-factored data. To control and reduce the
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analytically to be asymptotically valid and by simulation to have good small
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1 Introduction

In recent years factor models have become increasingly popular, both in
the literature and in practical usage. As is well known, the general idea of
factor models is that a small number of unobserved variables, the factors,
may be able to explain the dynamics of a large number of series, which
can be different variables or the same variable measured over different units
(countries, industries, etc.). A general survey of the more popular methods
for stationary variables is provided by Stock and Watson (2011). Meth-
ods suitable for the empirically important case of non-stationary data, still
scarce, are reviewed in Barigozzi, Lippi and Luciani (2016) and Banerjee,
Marcellino and Masten (2016). Examples of applications for forecasting and
the construction of cyclical indicators are respectively given by, e.g., Gian-
none, Reichlin and Small (2008) and Altissimo, Cristadoro, Forni, Lippi and
Veronese (2010).

Exactly as in traditional econometric modelling, economic theory or ex-
post evaluation of an estimated model may suggest restrictions on the co-
efficients linking factors and variables (loadings). The most likely to occur
are exclusion and homogeneity restrictions (respectively, a given unit is not
affected by a given factor, and all units in a given group are equally affected
by a given factor). Homogeneity constraints may arise in a particularly nat-
ural way in factor models applied to, e.g., asset returns (for the loadings
of companies active in the same industry or market) and regional datasets
(for the loadings of neighbouring regions). Constrained factor models are
interesting for two different reasons. First, for structural analysis, as fac-
tor loadings may be parameters of interest in their own sake, and simpler
structures are easier to interpret. Second, for forecasting, as parsimonious
models typically deliver superior performances.

Acknowledging this point, a stream of literature of Bayesian inspiration
exploits data-driven shrinkage methods inducing sparsity in the loadings ma-
trix (e.g., Hacioglu Hoke and Tuzcuoglu, 2016, and the references therein).
However, the problem of testing hypothesis on the loadings remains largely
unexplored. In fact, to the best of our knowledge, the only exceptions are
Reis and Watson (2010) and Amengual and Repetto (2014). The former
tested an homogeneity assumption by means of separate t-tests from the
regressions of each of the series of the dataset on the estimated factor.

This approach presents two major problems. First, it ignores the con-
sequences of cross-section correlation. Second, the family wise error rate is
not controlled. To avoid both shortcomings Amengual and Repetto (2014)
proposed a joint F−type test, deriving the asymptotic distribution under
the fully general assumption that the number of restrictions grows with the
sample size but the restrictive one of stationary variables and factors. For
the more general case of non stationary data and factors the procedure de-
veloped by Bai (2004), henceforth simply Bai, does include asymptotically

2



conditionally Gaussian estimators of the loadings. However, the empirical
use of asymptotic tests will encounter two problems. First, the number of
constraints will grow with the sample size, so that conflicts among the tests
are very likely to appear (Evans and Savin, 1982). Second, the distribution
will depend on some asymptotic covariance matrices, troublesome to esti-
mate. In fact, Bai does not provide an empirical illustration, and we are not
aware of any empirical applications of these results.

To circumvent these difficulties we propose a much simpler alternative,
based upon the comparison of the number of factors estimated for the uncon-
strained and constrained models: a difference between the two values clearly
provides evidence against the data-compatibility of the constraints. Since
such evidence would hinge upon the model selection procedure, consistent
but possibly biased in small samples, we include in the testing procedure
a bootstrap evalutation of the probability of rejecting correct restrictions
(”false positive”). The algorithm is shown by simulation to have overall
good small sample properties, and analytically to be asymptotically valid
for the special case of Bai’s estimators and model selection criteria. The
extension to other estimators and criteria is straightforward.

As an illustration we consider an example of a study in which allowing for
non-stationarity is essential, namely the factor model estimated by Ciccarelli
and Fachin (2017) for a set of 19th century value added series for the Italian
economy disaggregated by industries and regions.

We now (section 2) proceed to outline the proposed procedure, then re-
port the empirical illustration (section 3) and the results of some simulations
(section 4). Section 5 concludes, while the proof of the asymptotic validity
of the bootstrap procedure is reported in the Appendix.

2 Evaluating restrictions on factor loadings through
model selection

Consider a panel of N non-stationary time series of length T and assume
that long-run growth of this panel is driven by a small number, say r, of
latent non-stationary factors. Let F be the T × r matrix collecting these
factors, u a T × r matrix of independent zero mean stationary noises, and
assume for the sake of presentation only that the factors follow independent
random walks with no drift, so that ∆F = u. Denoting further by Y the
T × N data matrix, by Λ a r × N matrix of deterministic factor loadings,
by ε the T ×N matrix of errors which can be weakly dependent over both
time and units, the approximate static factor model of Y is

Y= FΛ + ε (1a)

=
∑r

j=1FjΛj+ε (1b)
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where the j−th factor Fj is a T × 1 vector (the j− th column of the matrix
F) and its loadings Λj are collected in a 1×N vector (the j− th row of the
matrix Λ). This model, which is a special case of Bai’s under deterministic
loadings, can be easily generalised to allow for dynamic or cointegrated non
stationary common factors and stationary factors. However, in the interest
of clarity we will first develop the analysis for the simplest case of a static
model including non stationary, non cointegrated factors only, and later
briefly discuss these more general cases.

Bai showed that the space spanned by the factors and their number can
in all cases be consistently estimated using Principal Components (PC) and
derived the asymptotic properties of the estimators under a set of assump-
tions which we adapt to our case as follows:

Assumption 1: {ut} and {εt} are mutually independent stochastic vari-
ables.

Assumption 2: The following assumptions in Bai hold (for details, Bai,
p. 140-141): Assumption A (stochastic trends of data), C (time and
cross-section dependence and heteroskedasticity), E (weak dependence
of idiosyncratic errors), B (heterogenous factor loadings) for the de-
terministic case.

Our goal is to verify if a set of restrictions on model (1a) is sustained
by the data. More precisely, we suppose that the loadings Λj of each factor
j, j = 1, . . . , r, can be obtained multiplying a 1 × mj row vector of free
parameters, θj , by a mj ×N matrix of constraints Hj :

Λj = θjHj

In this paper we shall confine our attention with no loss of generality to
the case when the constraints are applied only to the first factor (i.e., that
associated to the highest eigenvalue), and the remaining (r − 1) are left
unconstrained. Then, under the null hypotheses H0 : Λ0

1 = θ1H1 we can
write the constrained factor model as:

Y=F1θ1H1+
∑r

j=2FjΛj+ε
0 (2)

= F0
1Λ

0
1+F2Λ2 + ε0 (3)

where F0
1 is the T × 1 vector of the first factor assuming the constrained

loadings structure, F2 the T×(r−1) matrix of the other factors, Λ0
1 = θ1H1

the 1×N vector of loadings of the first factor obeying the desired constraints,
Λ2 the (r − 1) × N matrix of loadings for the remaining factors, and ε0 a
matrix of stationary errors.

Obviously, the set of constraints Λ0
1 = θ1H1 applies also to the stationary

model obtained taking the first differences of both sides of (3):

∆Y =∆F0
1Λ

0
1+∆F2Λ2+∆ε0 (4)
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Applying to model (4) the F−test developed by Amengual and Repetto
(2014) for the stationary factor model may appear as a simple solution to
the problem of testing H0 : Λ0

1 = θ1H1 for the non-stationary model (1a).
Unfortunately, this is not the case, as Amengual and Repetto’s Assumption
B1 on the moments of the model errors, which is crucial for the derivation
of the asymptotic distribution of their test, is not satisfied by the errors
∆ε0. Simulations, not reported here for reasons of space but available on
request, showed that as a consequence the distribution of test is strongly
skewed, with extremely high Type I errors (over 70%). In order to apply
an F−test we would thus need to derive its asymptotic behaviour for the
non-stationary factor model, a complex task.

Given these difficulties, we might consider taking a totally different route.
Exclusively to fix ideas1 suppose that the approximate factor model (1a) has
been estimated for the data Y following Bai’s procedure, and let k̂ be the
number of factors selected using one of the three available consistent infor-
mation criteria (IPC1, IPC2, IPC3, defined in Bai’s eq. (12), p. 145). Pro-
vided a maximum number of factors kmax > r was allowed for, from Bai’s
Theorem 1 under Assumptions 1-2 it holds that limN,T→∞ Pr(k̂ = r) = 1.
Accordingly, we write model (1b) for unit i at time t as

yti = λ1iFt1 +
∑k̂

j=2λjiFtj + εti (5)

Assume, without much loss of generality, that we are interested in testing
homogeneity of the loadings of F1 within M groups of units:

H0 : λ1i = λ1Gj , ∀i ∈ Gj , j = 1, . . . ,M (6)

Then the restricted factor model for unit i at time t is

yti = λ1GjF
0
t1 +

∑k̂
j=2λjiFtj + ε0

ti, i ∈ Gj , j = 1, . . . ,M

where F0
1 is the first factor under the constrained loadings structure, and the

1×N vector of loadings of the first factor obeying the null of homogeneity
is Λ0

1 = [λ1G1 . . . λ1GM ].
For our purpose it is convenient to introduce the partially de-factored

data Z, obtained subtracting the restricted common component F0
1Λ

0
1 (whose

estimation will be discussed below) from Y. Under the assumption of static,
orthogonal factors Z has the following structure:

Z= Y − F0
1Λ

0
1 (7)

Substituting for Y from (1b):

Z = F1Λ1+F2Λ2 + ε− F0
1Λ

0
1. (8)

1The following arguments can be easily adapted to other factor estimators and criteria
for the choice of the number of factors, such as Onatski’s (2010) ED algorithm.
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When H0 holds, by Bai’s Theorem 4 the estimate of the restricted com-
mon component F0

1Λ
0
1 will converge to the true common component F1Λ1.

Then, for N and T large enough Z will satisfy

Z= F2Λ2 + ε

and thus depend only upon the kZ =(k̂ − 1) unrestricted factors collected
in F2.

Hence, when H0 holds performing Bai’s analysis on Z allowing for a
maximum of k̂ factors with probability 1 we will asymptotically select k̂Z =
(k̂ − 1) factors.

On the other hand, if H0 is false F0
1Λ

0
1 will not converge to F1Λ1 and

the two terms will not cancel out. In this case the number of factors ofZ
will depend upon the relationship between F0

1 and the latent factors of Y.
If F0

1 is orthogonal to F1 and F2 by defactoring under a wrong null hy-
pothesis we are actually adding a new (spurious) factor to the data, so that
asymptotically we will select k̂Z = (k̂ + 1) factors with probability 1. In
the more likely case that F0

1 is not orthogonal to the original factors, Z will
instead simply depend upon the latter, so that asymptotically we will choose
k̂Z = k̂ with probability 1. In either of these cases, if H0 is false asymptot-
ically we will choose with probability 1 some k̂Z ≥ k̂. . To summarise, we
can conclude that the difference between the number of factors estimated
for the unconstrained and constrained models,

(
k̂ − k̂Z

)
, may be used to

assess the data compatibility of the null hypothesis: k̂Z = (k̂ − 1) supports

H0, while
(
k̂ − k̂Z

)
≤ 0 does not.

Thus, an hypothesis on the loadings of the factor model can be alter-
natively formulated as one on the number of factors of the restricted factor
model, and a test on the number of factors can be used to test restric-
tions on the loadings. However, only few tests for the number of factors
have been developed so far, and to the best of our knowledge none of them
is adequate for our needs (non-stationary data, weakly dependent errors).
Connor and Korajczyk (1993) consider stationary data and a very specific
two-step estimation method, with factors estimated by principal compo-
nents and loadings by OLS. The version of the test by Onatski (2009) for
the approximate factor model in the time domain requires stationary fac-
tors and non-autocorrelated errors. Finally, Kapetanios (2010) relies on an
assumption on the eigenvalues that has been argued to require errors not
cross-sectionally nor temporally correlated (see, e.g., Onatski, 2010). We
thus need to devise a different way to proceed.

A natural option is to define a ”Naive test” based on a direct application
of the considerations made above:

Naive test

If k̂Z = (k̂ − 1): do not reject H0.
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Else, if k̂Z ≥ k̂: reject H0.

The properties of this Naive test depend on the probability distribution
of the estimator of the number of factors of the restricted model, k̂Z . Let
us consider the probability of rejecting a true null hypotheses, the analogue
of the Type I error of classical tests. Define this event as a ”false positive”,
and its probability as pf . Since k̂Z is chosen on the basis of a consistent
criterion, under the null hypothesis we have

lim
N,T→∞

Pr(k̂Z = (k̂ − 1)|H0) = 1

so that
lim

N,T→∞
pf = Pr(k̂Z ≥ k̂|H0) = 0

Hence, in large samples true null hypotheses will never be rejected. However,
this is not guaranteed to happen in finite samples, when the number of
factors may be overestimated and thus pf > 0. The Naive test as outlined
above does not allow any control of this probability, and thus does not satisfy
an essential requirement of any testing procedure. We need to extend it to
include an estimate of pf . This is not a simple task: because of its degenerate

shape, the asymptotic probability distribution of k̂Z offers no guidance in
small samples, and we need to find a different solution. Our proposal is to
construct a bootstrap test, modifying the Naive test as follows:

Boostrap test

If k̂Z = (k̂ − 1): do not reject H0.

Else, if k̂Z ≥ k̂: compute the bootstrap estimate p∗f of pf . Reject
H0 if, and only if, p∗f ≤ pf , where pf is the maximum acceptable
value of the probability of a ”false positive”.

To recapitulate, the procedure we propose involves three successive steps:

(A) Estimation of the constrained part of model (3), F 0
1 Λ0

1. This task can
be carried out through an iterative algorithm based on that proposed
by Amengual and Repetto (2014). Broadly speaking, the idea is to
alternate steps in which the factor is taken as given and the loadings
estimated under the desired constraints, and steps in which the factor
is estimated taking as given the loadings as estimated in the previous
step.

(B) Estimation of the unconstrained part of model (3), F2Λ2. This can be
done applying Bai’s procedure to the partially de-factored data Z ob-
tained subtracting the constrained common components, as estimated
in (A), from the data.
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(C) Assessment of the null hypothesis on the basis of the comparison be-
tween the number of factors estimated for the unconstrained model
(1a) and for the partially de-factored data obtained in Step B, and of
the bootstrap estimate of the probability of a ”false positive”.

The details are discussed below.

2.1 A three-stages hypothesis evaluation procedure

Step A Iterative estimation of the constrained common component F0
1Λ

0
1.

Algorithm 1 Constrained estimation

1. Estimate using Bai’s procedure the unconstrained factor model Y = FΛ
+ε. Label the unrestricted estimates of the first factor and its loadings

as F
(1)
1 ,Λ

(1)
1 .

2. Given F
(1)
1 , obtain estimates of the loadings under the homogeneity

constraint. In this set-up the easiest way is by M separate pooled
time series regressions of Y on the first factor, one for each group:

Yti = λ1GjF
(1)
1t , t = 1, . . . , T , i ∈ Gj , j = 1, . . . ,M. In this way all

units of a groups are forced to have the same loading. Collect this new

set of estimates in the 1×N vector Λ
(2)
1 =

[
λ

(2)
11 . . . λ

(2)
1N

]
.

3. Given Λ
(2)
1 , obtain a new estimate of the first factor by running the

T cross-section regressions Yti = λ
(2)
1i Ft1 , i = 1, . . . , N , with Yti, λ

(2)
1i

as observables and Ft1 as unknown parameter. Collect this new set of

estimates in the T × 1 vector F
(2)
1 =

[
F

(2)
11 . . . F

(2)
T1

]′
.

4. Iterate steps 2 and 3 until the maximum difference over all units and
periods between the estimates of the common components in two suc-

cessive iterations, maxt,i(F
(n)
1 Λ

(n)
1 − F

(n−1)
1 Λ

(n−1)
1 ), meets the chosen

convergence criterion. Define the restricted estimates of factor and

loadings as F̂0
1 = F

(n)
1 , Λ̂0

1 = Λ
(n)
1 .

This iterative algorithm can be seen as an implementation of the EM prin-
ciple based on the calibration principle2. Given the constraints on the load-
ings, defining in Step 4 of Algorithm 1 the convergence criterion in terms
of the common components is fully equivalent to defining it in terms of

2A very general and efficient example of this principle can be found in Calzolari (2017),
where an indirect inference procedure is used to simulate data guaranteed to yield param-
eters of statistical models respecting a given set of constraints.
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loadings and factors (in other terms, convergence in terms of common com-
ponents implies convergence in terms of both loadings and factors). In a set
of simulation trials convergence was always reached very rapidly, less than
50 iterations (details available on request).

As anticipated above here we treated only homogeneity constraints in-
volving all units, but other type of constraints are easily handled in this
framework. Homogeneity constraints involving a subset of the units may be
imposed running step 2 only for those cases, while leaving the other load-
ings at the values estimated unrestrictedly in step 1. Exclusion restrictions
(λij = 0 for some factor j and unit i) are trivially imposed setting these
loadings at zero in step 2, and the other loadings at their restricted or unre-
stricted estimates as required. For constraints on the second factor, proceed
as above on the data partially de-factored from the rst factor. Finally, for
constraints on other factors, proceed sequentially in the same manner.

Step B Estimation of the uncostrained common components F2Λ2

Estimate the unconstrained common components applying Bai’s procedure
to the partially de-factored data Z = Y − F̂1 Note that since consistent
selection requires kmax > r in this step we must choose kmax ≥ (k̂+ 2), as
when H0 is false Z may depend upon (r + 1) factors.

Step C Evaluation of the null hypothesis H0 : Λ1 = Λ0
1

1. Compare the number of factors estimated for the data (k̂) and for
the data partially de-factored under the constraint of interest (k̂Z). If
k̂Z = (k̂ − 1) do not reject H0 : Λ1 = Λ0

1; the evaluation procedure is

completed. Else, if k̂Z ≥ k̂, proceed to steps 2-3.

2. compute the bootstrap estimate p∗f of the probability of a ”false posi-
tive”;

3. for a given maximum acceptable value of the probability of a ”false
positive” pf , if p∗f ≤ pf : reject H0; if p∗f > pf : do not reject H0.

The bootstrap estimate p∗f of the probability of a "false positive" can
be computed as the frequency of rejections of the Naive test on a large
number of pseudo-datasets Y∗ with the same time series properties of Y
and obeying the null hypothesis H0. Such pseudo-data can be constructed
adding three elements: (i) the common components of the first factor under
the desired constraints, F̂0

1Λ̂
0
1; (ii) the pseudo-common components of the

unconstrained factors, (F; (iii) weakly dependent pseudo-residuals, ε∗:

Y∗ = F̂0
1Λ̂ (9)
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Let us now see in detail which resampling schemes should be applied to
construct (F2Λ2)∗ and ε∗. The latter may be easily obtained resampling
the residuals ε̂ of the unconstrained model. Since this model fully cap-
tures non-stationarity and strong cross-section dependence of the data, its
residuals are only weakly dependent over time and cross-sectionally. Their
dependence structure over time may be reproduced applying a resampling
scheme suitable for weakly dependent series, such as the Stationary Boot-
strap (SB, Politis and Romano, 1994), while that over units simply by resam-
pling blocks of entire rows. In this way observations are swapped over time
but column-wise (cross-sectionally) fixed, to obtain pseudo-data reproduc-
ing weak dependence in both dimensions. Constructing the pseudo-common
components of the unconstrained factors, (F, from the estimated common
components F̂2Λ̂2 known to be I(1), is a more delicate problem. Parker,
Paparoditis and Politis (2006) showed that asymptotically valid unit root
tests can be carried out resampling by the SB the first differences of an I(1)
series, and then cumulating the pseudo-differences to obtain non-stationary
pseudo-levels. Di Iorio and Fachin (2014) extended this result to cointe-
gration and panel cointegration tests. Applying the same principle we can
devise the bootstrap algorithm described below. Note that since the SB
can be applied to any weakly dependent series, the factors included in F2

do not need to be simple random walks, as it was assumed for illustratory
purposes in the Introduction. We do need however the following technical
assumptions to hold for the factor model (Parker et al., 2006):

Assumption 3
For j = 1, . . . , r and i = 1, . . . , N :

(i) E |uj1|6+δ <∞;

(ii) E |εi1|6+δ <∞;

(iii) E |Fj1|6+δ <∞;

(iv)
∑

k k
2[αuj (k)]

δ
6+δ <∞;

(v)
∑

k k
2[αεyi (k)]

δ
6+δ <∞;

(vi) fuj satisfies fuj (0) > 0.

(vii) fεi satisfies fεi(0) > 0.

where α(k) denotes the strong mixing coefficient, δ is an arbitrary strictly
positive constant and fz the spectral density of z. We can now define the
following resampling algorithm.

Algorithm 2 Bootstrap estimation of the probability of a ”false positive”
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1. resample applying the Stationary Bootstrap the first differences of
the estimates of uncostrained common components from the uncon-
strained factor model (1a), ∆(F̂2Λ̂2), obtaining the pseudo-differences
(∆F2Λ2)∗; cumulate them using as starting values the level estimates
for t = 1,

∑k
j=2λ̂jiF̂1j , i = 1, . . . , N , and obtain (F2Λ2)∗.

2. resample applying the Stationary Bootstrap the residuals ε̂ of the un-
constrained factor model (1a) obtaining the pseudo-residuals ε∗.

3. append [(F2Λ2)∗ + ε∗] to F̂0
1Λ̂

0
1, obtaining the pseudo-data Y∗ =

F̂0
1Λ̂

0
1+ (F2Λ2)∗ + ε∗ which have k̂ common factors and obey H0 :

Λ1 = Λ0
1.

4. estimate the unrestricted factor model on the pseudodata Y∗ allowing
for a maximum of (k̂ + 1) factors. Let k̂∗ be the selected number of
factors.

5. using the iterative algorithm described in Step A obtain an estimate
of the factor F̂0∗

1 and the associated loadings Λ̂0∗
1 respecting the ho-

mogeneity constraint.

6. construct the partially de-factored pseudo-data Ẑ∗ = Y∗ − F̂0∗
1 Λ̂0∗

1 .

7. estimate the unrestricted factor model on Ẑ∗ allowing for a maximum
of (k̂∗ + 2) factors. Let k̂∗Z be the selected number of factors.

8. if k̂∗Z = (k̂∗ − 1) do not reject H0 : Λ1 = Λ0
1; else, if k̂∗Z ≥ k̂∗, reject it.

9. repeat 1-8 a large number of times and compute the proportion p∗f of
cases in which H0 is rejected. This is the bootstrap estimate of the
probability under H0 of a ”false positive”.

The asymptotic validity of p∗f as an estimator of pf is proved by Lemma
1 below, in which we show that pseudodata Y∗ respect all assumptions
required by Bai’s theorem 1 as well as the null hypothesis. Thus, the boot-
strap probability distribution Pr∗N,T (k̂∗Z |H0) will have the same degenerate

asymptotic behaviour of the empirical probability distribution PrN,T (k̂.

Lemma 1 Let r∗ be the number of factors of the pseudodata constructed
according to Algorithm 2 and k̂∗ the number of factors selected using any of
Bai’s information criteria (IPC1, IPC2, or IPC3). Then lim

N,T→∞
Pr∗N,T (k̂∗ = r∗) = 1.

Proof. See Appendix.

Lemma 1 ensures that asymptotically p∗f = pf = 0. We shall assess the
accuracy of p∗f as an estimator of pf in small samples through a Monte Carlo
experiment described in section 4.
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2.2 Generalisations: dynamic, cointegrated and stationary
factors

Assuming the restrictions are placed upon the loadings of a non stationary
factor, the extension of the procedure describe above to the more general
cases of models including dynamically loaded or cointegrated non stationary
factors and stationary ones is much simpler than it might appear at first
sight. Let us see the various cases in turn.

(i) models with static non stationary and stationary factors. The number of
the former, of the latter and all loadings and factors can be consistently
estimated as described in Bai’s section 5. We then essentially proceed
as above, with the only difference that the partially de-factored data
are modelled using that generalised procedure. The bootstrap pseu-
dodata will now be the sum of four terms, instead of three as in (??),
as the resampled stationary common components will appear as well.
These are easily obtained applying the Stationary Bootstrap to the
estimated stationary common components.

(ii) models with dynamic non stationary factors. These models can be
reparametrised as static in the non stationary factors and dynamic
in their first differences, which are in fact stationary common factors

(Bai, p. 152). For a lag length p, denoting by λ
(l)
ji the loading linking

the i-th unit to the j-th factor with lag l:

yti =
∑r

j=1

∑p
l=0λ

(l)
ji Ft−l,j

=
∑r

j=1

[(∑p
l=0λ

(l)
ji

)
Ftj −

(∑p
l=1λ

(l)
ji

)
∆Ftj + . . .− λ(p)

ji ∆Ft−p+1,j

]
+εti

In this reparametrisation the loadings of the static non stationary fac-
tors are the sum of the loadings at all lags in the dynamic model.
Since in dynamic models structural hypothesis, such as homogeneity
or exclusion restrictions, are always formulated as constraints on the
sum of the coefficients at all lags we are exactly as in case (i).

(iii) models with cointegrated non stationary factors. Precisely the same
applies to this case, as these models can be reparametrised to in-
clude non-stationary, non-cointegrating factors and the stationary lin-
ear combinations of the cointegrating ones (Bai, p. 153).

3 An empirical illustration

As an empirical illustration we applied our procedure to a model estimated
by Ciccarelli and Fachin (2017) on Value Added (VA) data for 10 manufac-
turing in- dustries in the 16 Italian regions (but one industry was totally
absent in one region, so that the cross-section di- mension was N = 159)
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over 1861-1913 (thus T = 53). Routinary tests showed all the VA series
(normalised by regional population, to avoid scale problems) to be clearly
I(1), with non-stationarity fully explained by a rather simple common fac-
tor structure: using Bai’s procedure the selected model has only two non-
stationary factors, a trend and a Kondratie cycle with a period of about 25
years. The spatial distribution of the loadings of the trend is particularly
interesting: the leading role of the North-Western regions stands out clearly,
and so does the well-known (see, e.g, Barro and Sala-i-Martin, 1991, p. 150-
151) tendency of the South to lag behind. Setting the average of all the
loadings in the NW regions at 100, the averages of the loadings in the NE
and in the Centre are both about 70, and that of the loadings of the South-
ern industries about 60. These large regional differentials suggest testing
the hypothesis that the loadings are constant for all industries and regions
within each of these four macroareas. This would imply that (i) regional
differences mattered more than industrial ones, and, (ii), the North-South
divide has deep roots in Italian economic history. Formally we can state the
null hypothesis as:

H0 : λ1i = λ1Gj , ∀i ∈ Gj , j = NW,NE,Centre, South (10)

As argued in the Introduction, in practice no classical testing procedure is
available to evaluate if this restriction is supported by the data. We thus
apply the procedure described above. Using ach of Bai’s three selection
criteria (IPC1, IPC2, IPC3) we obtain slightly different results, summarised
in Table 1. According to IPC1 the number of factors for the data defactored
under H0, k̂Z , turns out to be equal to that selected for the raw data, so
that k̂ − k̂Z = 2− 2 = 0 and the Naive test rejects H0. However, using 5000
redrawings we obtain a bootstrap estimate p∗f of the probability that this is
a false positive equal to 85.1%. We thus definitely overturn the conclusion
of the Naive test and do not reject H0. This conclusion is confirmed by
model selection on the basis of the second criterion, IPC2: this also leads
to k̂ − k̂Z = 0, thus rejection on the basis of the Naive test. The bootstrap
estimate p∗f is however also very large, 78.1%, and we similarly conclude
for no rejection. Finally, if we rely on the third criterion, IPC3, we select
k̂Z = 1. Thus k̂ − k̂Z = 2− 1 = 1, and, contrary to the first two cases,
according to the Naive test H0 is not rejected and the evaluation procedure
ends here. Note that according to the simulations reported by Bai3 this
criterion has some tendency to underestimate the number of factors, so that
the results for the criteria are entirely consistent with a priori expectations.

To summarise, the homogeneity hypothesis for the loadings of all indus-
tries within the four macroareas appears largely compatible with the data.
The next interesting step would be to test the hypothesis that homogeneity
holds for the loadings of some industries only, a partial hypothesis which

3Confirmed by simulations of ours which do not report here for reasons of space.
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may be tested as discussed in the remarks following Algorithm 1. This fur-
ther investigation is beyond the scope of this illustration and will not be
considered it here.

Table 1
Evaluation of the homogeneity hypothesis for

the factor model by Ciccarelli and Fachin (2017)

Step Criterion: IPC1

C-1 k̂Z = 2: compute p∗f
C-2 p∗f = 85.1

C-3 H0 not rejected for pf = 10%

Criterion: IPC2

C-1 k̂Z = 2: compute p∗f
C-2 p∗f = 78.1

C-3 H0 not rejected for pf = 10%

Criterion: IPC3

C-1 k̂Z = 1: H0 not rejected

k̂Z : number of factors estimated for the data
de-factored under H0;
p∗f : bootstrap estimate of Pr(”false positive”)×100

pf : maximum acceptable value of Pr(”false positive”).

4 Monte Carlo experiment

The small sample performances of the proposed procedure have been evalu-
ated by simulation. To facilitate the comparison with the literature we use a
Monte Carlo data generating process (DGP) derived from that used by Bai,
with some minor changes introduced in order to mimick the structure of the
regional data used in the empirical illustration. Two statically loaded inde-
pendent I(1) common factors (Fj , j = 1, 2), the first with a drift δ = 0.01,
shape long-term growth over time (with T = 50, 100, 150) and pervasive de-
pendence across N spatial units, hereafter regions (with N = 50, 100, 150).
Short-term and local fluctuations of the error at time t for unit i, εt,i, are
governed by a STARMA(1,1,1) process (that is, an ARMA(1,1) augmented
with a spatial lag term at time (t−1); see, e.g, Dai and Billard, 1998). Thus,
the value of the variable Y at time t for region i is generated as follows:
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yt,i = λ1iFt,1 + λ2iFt,2 + εt,i (11a)

∆F1,t = δ + ut,1 (11b)

∆F2,t = ut,2 (11c)

εt,i = φiεt−1,i + ρ
∑N

j=1wijεt,j + ξt,i + θiξt−1,i (11d)

The spatial weight wij is binary, taking the value 1 if units (i, j) share
a border and zero else (the so-called rook case, see e.g., Fingleton, 1999).
The choice of the spatial structure is obviously inevitably arbitrary. In view
of the empirical illustration on Italian data we chose a highly stylised rep-
resentation of this country, with the units distributed over a rather narrow
rectangular grid of fixed width 5 units: the length of the grid is thus 10 units
for N = 50, 20 for N = 100, and 30 for N = 150. The first-order neighbours
of a given unit are defined to be, on the same row, those on its right and its
left, and, in the rows above and below, those in its same column. Units at
the first and last column of a row do not respectively have the left and right
neighbour. Hence, for a pair of units i, j placed in the same row wij = 1
if |i− j| = 1, and for any pair located in different rows wij = 1 only if
|i− j| = 5, the width of the grid. In all other cases wij = 0. The spatial
autoregressive coefficient is fixed at ρ = 0.25; setting ρ = 0 equation (11d)
collapses to an usual ARMA process with no spatial structure. In order to
respect the spatial links the datasets for N = 50 and 100 are always obtained
as subsets of the the full dataset of 150 units. Time samples will also range
from 50 to 150, values quite representative of empirical applications.

The noises u1, u2 are independent standard gaussians as in Bai, while
the ξ′is are heteroskedastic independent normal variates with variance σ2

ξi
∼

Uniform(0.5, 1.5). Balancing the opposite requirements of generality and
simplicity we assume homogenous MA coefficients θi = 0.5 as in Bai, but
we allow AR parameters φi to be heterogenous over units generating them
as φi ∼ Uniform(0.4, 0.6).With no loss of generality, the loadings of the
second factor, λ2i, are generated as independent gaussians with unit mean
and standard deviation.

The first aim of our experiment is to evaluate the performances of the
model selection procedure when valid constraints on the loadings of the first
factor are imposed. To this end, we assume that these are homogenous
within two groups, taken for simplicity of equal size (N1 = N2 = 0.5N).
The loadings of the first group are fixed at λ1G1 = 1 and those of the second
at λ1G2 = 2:

λ1i =

{
1, i ≤ 0.5N
2, i > 0.5N

(12)

The true null hypothesis is thus expressed as:

H0 : λ1i =

{
λ1G1 , i ≤ 0.5N
λ1G2 , i > 0.5N

(13)
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The loadings of the second factor, λ2i, are generated as Uniform(1, 3)
and fixed across simulations as all other random parameters.Since compu-
tational convenience will be important for the experiments involving the
bootstrap, we set the maximum number of factors at the smallest value re-
quired to ensure consistency, kmax = (r + 1) = 3. Exploratory simulations
confirmed that, as expected, setting a much higher value such as kmax = 8
as in Bai’s experiment, does not change the results. Since if a single factor
is selected for Y the factor model does not make any sense for Z the full
two-stages procedure has been carried out (with the convergence criterion
fixed at 1e−5) only if the selected number of factors was greater than 1.
Finally, we used 1000 Monte Carlo replications and bootstrap redrawings.
The block lengths for the Stationary Bootstrap have been generated with
a geometric distribution with mean parameter computed as 1.75 3

√
T , as in

Palm, Smeekes and Urbain (2011).
Since in our simulations, consistently with Bai’s, IPC1 and IPC2 deliv-

ered essentially equivalent estimates of the number of factors while IPC3

tended to somehow underestimate it, we report here in Table 2 only the re-
sults obtained using IPC1. First of all, we notice that using the Naive test
the risk of rejecting the true restriction is very high, approximately between
25% and 30%: this procedure is thus not advisable. Using the bootstrap
this risk is instead always very small: for instance, with sample sizes close to
those of the empirical illustration (N = 150, T = 50) and maximum accept-
able riskpf = 5% the frequency of false positives is only 3.2%. Of course,
in order to be recommended a testing procedure should also have a good
power to detect false restrictions. Unfortunately, given the dimension of the
parameter space estimating this power is an essentially unfeasible task. In
some exploratory analysis with the loadings of the trending factor in the
Monte Carlo DGP either N(1, 1) or Uniform(0, 1) across units and the
same restriction considered above we obtained, even with the smallest sam-
ple sizes, nearly 100% rejections. This evidence is clearly extremely limited,
but it nevertheless suggests that the procedure may be empirically useful.
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Table 2
Naive and Bootstrap test: frequency (×100) of ”false positives”

N=50 N=100 N=150

Naive test

T 50 25.0 25.9 25.0
100 22.7 26.4 30.6
150 25.1 29.2 31.3

Bootstrap test

pf 1 5 10 1 5 10 1 5 10

T 50 1.2 4.8 14.8 0.3 3.7 12.0 1.6 3.2 9.6
100 0.9 3.5 11.0 0.8 3.0 6.8 0.0 1.6 5.6
150 0.4 3.2 7.2 1.7 3.8 6.5 0.3 1.3 2.9

pf : maximum acceptable value of Pr(”false positive”)
1000 bootstrap redrawings and Monte Carlo replications
selection criterion: IPC1.

5 Conclusions

Research in factor modeling is very active to say the least, but the problem
of evaluating constraints on the loadings has not received much attention
yet. We examined this issue for the non-stationary factor model by Bai
(2004), developing a bootstrap procedure that can be easily adapted to other
estimators and consistent model selection procedures. Our proposal is to
evaluate if a set of constraints is compatible with the data by comparing the
estimated number of factors of the unconstrained and constrained models:
a difference between the two values clearly provides evidence against the
data-compatibility of the constraints. The probability of rejecting correct
constraints (”false positives”) can be controlled using the bootstrap. In
our simulation experiments this probability has been always found to be
very low, and its bootstrap estimates accurate: the proposed evaluation
procedure may thus be a useful tool for empirical factor modelling of non
stationary data.
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7 Appendix Proof of Lemma 1

Before moving to the proof we briefly recall the essential lines of the Station-
ary Bootstrap by Politis and Romano (1994). Let L1,. . . , LT , be a sequence
of values randomly chosen from a geometric distribution of parameter θ.
The first L1 observations of the pseudoseries are given by L1 observations
from the originary series starting at a location randomly chosen from a uni-
form distribution on {2, ..., T}, followed by L2 observations starting at a
different randomly chosen location, and so on. The process ends when the
pseudoseries, which will will reproduce the weak dependence links between
the data, reaches the desired length.

In order to prove Lemma 1 we need to show that the pseudodata Y∗ =
F̂0

1Λ̂
0
1+ (F2Λ2)∗+ ε∗ are a function of the errors u and ε, exactly as the ob-

served data Y object of the modelling selection procedure whose properties
are stated in Bai’s Theorem 1.

Under Assumption 4 the Stationary Bootstrap can be applied to ∆(F̂2Λ̂2)
and ε̂.

We now examine in turn each of the three components of the pseudodata
Y∗, that is, F̂0

1Λ̂
0
1, (F2Λ2)∗ and ε∗.

(a) F̂0
1Λ̂

0
1 is the common component due to the first factor as estimated

under the homogeneity constraint by regressions with the observed
data as dependent variable, and respectively the estimated factor and
loadings as the independent variable (see Algorithm 1, steps 2 and
3). With standard notation, define PF and PΛ the OLS projection
matrices used in the two regressions. Then,

Λ̂0
1 = PFY

= PF (FΛ + ε)

since Ft· =
∑t

s=1 us· , where Ft· and ut· denote respectively the t-th
rows of the factor matrix F and of the error matrix u, it is immediately
seen that Λ̂0

1 depends on u and ε. Analogously,

F̂0
1 = PΛY

= PΛ(FΛ + ε)

so that the same holds for the factor estimate F̂0
1.

(b) Assume for convenience and without loss of generality that there are
only two factors, so that the matrix F2 collapses to a column vector.
For each unit i and time t (F2Λ2)∗ can then be written as

(F2tλ2i)
∗ =

t∑
q=1

(∆F2qλ2i)
∗ (14)
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where, again, the first difference of the common component for time q and
unit i in the bootstrap sample, (∆F2qλ2i)

∗, is simply the difference of the
estimated common component for the same unit and some period q defined
according to the SB rules. We now need to make explicit the dependence of q
from the block structure of the SB algorithm, and write the cumulative sum
in (14) as a double sum over and within blocks. To this end, for t ∈ [1, T−1],
let:

(i) Ln be the length of block n;

(ii) Kt = inf{k : L1 + . . .+ Lk ≥ t} the number of blocks to be cumu-
lated to have a string of length t;

(iii) Mt = L1 + . . .+ Lk their total length;

(iv) ςKt the starting observation for block Kt, drawn from a uniform dis-
tribution over [1, T − 1];

(v) finally, define τm = (ςKm + (m−Mm))mod(T − 1) + 2 .

Then, analogously to the notation used by Parker et al. (2006) in the proof
of their Lemma 4, p. 626, we can write

(F2tλ2i)
∗ =

Kt∑
m=1

Lm∑
s=1

∆F̂2τm+pλ̂2i (15)

= λ̂2i

[
Km∑
m=1

Lm∑
s=1

(∆F̂2τm+s)

]
.

The next step is writing the factor estimate as (Bai, p. 142):

F̂2t =
Yt·Λ̂2

N

where Yt· is row t of the data matrix Y. Since

Yt· = Ft·Λ + εt·

where εt· is row t of the error matrix ε, we can also write

F̂2t =
(Ft·Λ + εt·)Λ̂2

N

so that:

∆F̂2t =
1

N
(∆Ft·Λ + ∆εt·)Λ̂2 (16)

=
1

N
(ut·Λ + ∆εt·)Λ̂2.
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Inserting (16) into (15) we eventually have

(λi2F2t)
∗ =λ̂i2

Km∑
m=1

Lm∑
s=1

(∆F̂2τm+s)

= λ̂i2

[
Km∑
m=1

Lm∑
s=1

1

N
(uτm+sΛ + ∆ετm+s)Λ̂2

]
(17)

which shows that the resampled common component (λi2F2t)
∗ also depends

upon u e ε only.

(c) The pseudo-error for time t and unit i, ε∗ti, is simply the estimated error
for the same unit and a different period, say τt, chosen according to
the SB rules. Then, denoting by Fτt· and Λ·i respectively the row τt
of the matrix of factors and the column i of that of the loadings,

ε∗ti = ε̂τti

= yτti − F̂τm·Λ̂·i

= Fτt·Λ·i + ετti − F̂τt·Λ̂·i

= ετti − (F̂τt·Λ̂·i − Fτt·Λ·i)

Assuming N/T → 0 and exploiting the asymptotic convergence of
the estimated common component F̂τt·Λ·i to their true values (Bai,
theorem 4, p. 174), we have:

ε∗ti = ετti −

H′
(

Λ′Λ

N

)−1 1√
N

N∑
j=1

λjετtj + op(1)

H−1Λ +Op(1/T
1/2)

where H depends upon F, hence u (see Bai, p. 164). The pseudo-errors ε∗

are thus a function of ε and u.
Summing up, from (a), (b) and (c) it follows that all the three compo-

nents of Y∗, that is, F̂0
1Λ̂

0
1, (F2Λ2)∗ and ε∗, are a function of ε and u, so

that Bai theorem 1 applies. This completes the proof. �
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