
Dipartimento di Scienze Statistiche 

Sezione di Statistica Economica ed Econometria

Massimo Franchi    

On the structure of state space systems 
with unit roots

DSS Empirical Economics and Econometrics
Working Papers Series

DSS-E3 WP 2017/4



Dipartimento di Scienze Statistiche
Sezione di Statistica Economica ed Econometria

“Sapienza” Università di Roma
P.le A. Moro 5 – 00185 Roma - Italia

http://www.dss.uniroma1.it



On the structure of state space systems with unit roots

MASSIMO FRANCHI

JULY 20, 2017

Abstract. Minimality of the state space representation of a stochastic process places restrictions

on the rank of certain matrices that show up in the leading coefficient of the principal part of the MA

transfer functions implied by the system. When unit roots are allowed for, those restrictions and

the reduced rank structure of the state process shape the integration and cointegration properties

of the state and the observed processes. A characterization of cointegration is presented in the I(d)

case and it is further found that the present results lead to a construction of the canonical form in

Bauer and Wagner (2012) Econometric Theory, 28, 1313-49.

1. Introduction

The structure of (A,B,C) in the state space system xt+1 = Axt + Bεt, yt = Cxt + εt plays a

central role in determining the properties of xt and yt and given that the dynamics of the system is

fully described by the state equation, the Jordan structure of A is crucial in this respect. Moreover,

the triple (A,B,C) shapes the transfer functions which dictate how the state xt, the observable

yt and the white noise process εt are connected, see Hannan and Deistler (1988) for the relations

between various system representations in the stationary case.

The present paper provides a characterization of the link between the structure of (A,B,C) at

each nonzero eigenvalue of A and the behaviour of the transfer functions around the corresponding

singular points. The linear combinations that lead to a pole cancellation are fully described and

when the results are specialized for unit modulus eigenvalues, these linear combinations are shown

to characterize the (multiple-frequency) cointegration properties of xt and yt in the general I(d)

case. These results are achieved by combining the rank restriction implied by minimality of the
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state space representation with those in the extended local rank factorization (elrf) developed

in Franchi and Paruolo (2011, 2016), which is a recursive procedure that enables to construct the

local Smith form and extended canonical systems of root functions of a generic matrix function,

see Gohberg et al. (1993) for definitions and properties, and is here applied to the matrix pencil

I −Az.
The present results are closely related to the ones in Bauer and Wagner (2012), who prove

the existence of a canonical form for processes with unit roots with integer integration orders at

arbitrary frequencies and use it to describe the cointegration properties of the system. These

are characterized via orthogonality conditions in potentially large systems of equations defined by

stacking the matrices of the canonical form. The connections with their analysis are investigated

and it is shown that the elrf provides to a construction of their canonical form. However, the

characterization of cointegration presented here avoids stacking and it may thus be preferred when

the number of observables is large, as in the case of Dynamic Factor Models considered in Barigozzi

et al. (2016a,b).

The results in the present paper complement the literature on the representation theory of

cointegration in the state space framework, see Aoki (1990) and Aoki and Havenner (1989, 1991)

for the I(1) case, and in the ARMA framework, which is far more numerous. The first result of the

kind is the celebrated Granger Representation Theorem in Engle and Granger (1987), which allows

to derive the infinite lag Error Correction form of an I(1) process starting from its MA form. In

the same MA framework Phillips (1991) introduced the Triangular Representation of I(1) processes

and this was subsequently generalised to I(d) systems by Stock and Watson (1993). Still starting

from the MA form of an I(1) process an approach based on the Smith form was presented in Yoo

(1986); this was further extended to the case of I(2) systems in Engle and Yoo (1991) and Haldrup

and Salmon (1998) and to seasonal roots in Hylleberg et al. (1990).

In a parallel strand of literature, the so-called cointegrated VAR literature, Johansen (1991)

derived conditions under which a VAR process is I(1) and the Granger Representation Theorem

holds. A generalization to I(2) and to seasonal roots was given in Johansen (1992) and Johansen

and Schaumburg (1998) respectively, and the case of generic I(d) processes in the AR framework

was considered in D’Autume (1992), la Cour (1998) and Franchi (2007, 2010). See Franchi and

Paruolo (2017) for a general inversion theorem that links the different approaches.

More recently, Barigozzi et al. (2016a,b) obtained a version of the Granger Representation Theo-

rem for I(1) Dynamic Factor Models with singular factors and Deistler and Wagner (2017) showed
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that the cointegration properties of singular I(1) ARMA processes only depend upon the autore-

gressive polynomial at one. The results presented here apply to Dynamic Factor Models with

singular factors as well, since they can be written in state space form.

The rest of the paper is organized as follows: the remaining part of this introduction reports

notational conventions and preliminaries, Section 2 presents rank restrictions implied by minimality

and relates them to the order of integration of the system while Section 3 describes the elrf and

the subsequent pole cancellations that characterize cointegration. Section 4 provides a description

of the cointegration structure and a numerical illustration of the results, Section 5 discusses the

connections with Bauer and Wagner (2012) and Section 6 concludes. Appendix A contains proofs.

Notation. The techniques presented in the paper make repeated use of projections and rank

factorizations, whose notation is introduced here. Let x be a n × r full column rank matrix;

x⊥ indicates a n × n − r full column rank matrix that forms a basis of span⊥ x, the orthogonal

complement of spanx. Px := x̄x′ = xx̄′, where x̄ := x(x′x)−1, is the orthogonal projection onto

spanx and Px⊥ := I − Px = x̄⊥x
′
⊥ = x⊥x̄

′
⊥ is the orthogonal projection onto span⊥ x. Given a

n × q matrix ϕ of rank 0 < r < min(n, q), its rank factorization is written as ϕ = cαβ′, where α

and β are n× r, q× r full column rank matrices that respectively form a basis of the column space

and of the row space of ϕ and c ∈ R is chosen for convenience in the calculations. When r = 0, i.e.

ϕ = 0, set α = β = ᾱ = β̄ = 0 and α⊥ = β⊥ = ᾱ⊥ = β̄⊥ = I of the appropriate dimension. When

r = q, i.e. ϕ has full column rank, set β = Iq and β⊥ = β̄⊥ = 0 and when r = n, i.e. ϕ has full row

rank, set α = In and α⊥ = ᾱ⊥ = 0.

2. Rank restrictions in minimal state space systems and order of integration

Consider the minimal state space system

xt+1 = Axt +Bεt, A ∈ Rnx×nx , B ∈ Rnx×ny ,

yt = Cxt + εt, C ∈ Rny×nx ,
(2.1)

where the observed process yt has dimension ny × 1, the state process xt has dimension nx× 1 and

the white noise process εt has dimension ny × 1 and positive definite covariance matrix Ω.

Remark that no restriction is involved in assuming that (2.1) is minimal; in fact, see Theorem

2.3.1 in Hannan and Deistler (1988), the class of observationally equivalent state space realizations

of a given covariance structure always contains a representation with minimal dimension nx and

such a representation can always be constructed via the Kalman’s decomposition theorem, see e.g.

Antsaklis and Michel (2007, Section 6.2.3).
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A well known necessary and sufficient condition for minimality of (2.1), see Theorem 6.2-3 in

Kailath (1980), is that the couple (A,B) is controllable and the couple (A,C) is observable, i.e.

rank(B,AB, . . . , Anx−1B) = rank(C ′, A′C ′, . . . , (Anx−1)′C ′) = nx.

An equivalent characterization of controllability, observability and minimality is presented next.

This is based on the Popov-Belovich-Hautus (PBH) rank tests, see Theorem 6.2-6 in Kailath (1980).

Theorem 2.1 (Rank restrictions in minimal state space systems). Let σ(A) be the set of distinct

eigenvalues of A; for each λu ∈ σ(A), let r0 := rank(A− λuI) and consider the rank factorization

A− λuI = α0β
′
0. Then

i) λu is controllable if and only if α′0⊥B of dimension nx − r0 × ny has full row rank;

ii) λu is observable if and only if Cβ0⊥ of dimension ny × nx − r0 has full column rank;

iii) (2.1) is minimal if and only if rank(α′0⊥B) = rank(Cβ0⊥) = nx − r0 for any λu ∈ σ(A).

The nx × nx − r0 matrices α0⊥, β0⊥ are respectively bases of the left and right eigenspaces of

A associated to the eigenvalue λu; in fact α′0⊥(A − λuI) = α′0⊥α0β
′
0 = 0 shows that any left

eigenvector of A that corresponds to λu lies in the span of the columns of α0⊥ and similarly for

(A − λuI)β0⊥ = α0β
′
0β0⊥ = 0. Hence Theorem 2.1 highlights the relation between B and the left

eigenspace of A for controllability and between C and the right eigenspace of A for observability.1

The MA representations of xt and of yt implied by (2.1) are

xt = Tx,ε(L)εt

yt = Ty,ε(L)εt

Tx,ε(z) := (I −Az)−1Bz
Ty,ε(z) := I + C(I −Az)−1Bz

, z ∈ C, (2.2)

and involve (I − Az)−1, which has a pole of some order d ∈ N+ := {1, 2, . . . } at the reciprocal

of each nonzero eigenvalue of A, zu := λ−1u , 0 6= λu ∈ σ(A). In fact, for any 0 6= λu ∈ σ(A),

A − λuI = −λu(I − Azu) is non-invertible and hence (I − Az)−1 has a singularity at zu. Because

(I − Az)−1 is a rational function, the singularity is a pole and its Laurent representation around

at zu has the form

(I −Az)−1 =: (1− λuz)−dB(z) =
∞∑
n=0

Bn(1− λuz)n−d, B0 6= 0, |B0| = 0. (2.3)

1For the Generalized Dynamic Factor Model yt = Λft + ξt, A(L)ft = Rut, minimality places restrictions on the

number nu of shocks ut and the number ny of observables yt. In fact Theorem 2.1 implies that an eigenvalue λu of the

companion matrix A in f̃t = Af̃t−1 + R̃ut is controllable only if nu ≥ nf − q and it is observable only if ny ≥ nf − q,
where nf is the number of factors ft and q = rankA(λ−1

u ).
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Note that (I−Az)−1 is expanded around zu, B(zu) = B0 6= 0 is singular and the first d coefficients

{Bn}d−1n=0 characterize the singularity of (I −Az)−1 at z = zu. In the following, {Bn}∞n=0 are called

the Laurent coefficients.

The next proposition states that the poles of the MA transfer functions in (2.2) coincide with

those of (I −Az)−1.

Theorem 2.2 (No pole cancellations in the MA transfer functions). Let zu := λ−1u , 0 6= λu ∈ σ(A),

and consider the rank factorization A− λuI = α0β
′
0. Then B(zu) = β0⊥φα

′
0⊥ 6= 0 for some φ and

Tx,ε(z) =
B(z)Bz

(1− λuz)d
, Ty,ε(z) = I +

CB(z)Bz

(1− λuz)d
, CB(zu)B = Cβ0⊥φα

′
0⊥B 6= 0,

have a pole of some order d ∈ N+ at zu.

Note that in principle the presence of B or C could imply φα′0⊥B = 0 or Cβ0⊥φ = 0 and hence

change the order of the pole in the MA transfer functions. However, because in a minimal system

α′0⊥B and Cβ0⊥ are full rank matrices, see Theorem 2.1, and φ 6= 0 such pole cancellations arise only

when the eigenvalue is non-controllable or non-observable, i.e. only in non-minimal representations.

As discussed in the next proposition, under the assumption that the largest eigenvalue of A is

equal to 1, the order of the pole at z = 1 determines the order of integration of the state space

system.2

Theorem 2.3 (Order of integration). Assume that 1 ∈ σ(A) and that 1 6= λu ∈ σ(A) implies

|λu| < 1 and let d ∈ N+ be the order of the pole of (I −Az)−1 at z = 1. Then

∆dxt = B(L)Bεt−1 ∼ I(0), ∆dyt = CB(L)Bεt−1 + ∆dεt ∼ I(0), CB(1)B 6= 0,

i.e. xt ∼ I(d) and yt ∼ I(d).

Similarly, the order of integration of given transformations ζx(L)′xt and ζy(L)′yt of xt and yt

coincides with the order of the pole of ζx(z)′Tx,ε(z) and ζy(z)
′Ty,ε(z) at z = 1. For this reason,

the characterization of the pole cancellations in the MA transfer functions presented in the next

section leads to a full description of the cointegration structure of xt and yt, see Section 4 below.

2The definition of order of integration in Johansen (1996) is employed: a generic process ut is integrated of order

d if ∆dut ∼ I(0), i.e. ∆dut = U(L)εt, where εt is white noise, U(z) is finite for all z ∈ C : |z| < 1 + δ for some δ > 0

and U(1) 6= 0.
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3. Pole cancellations via extended local rank factorization

This section first describes the relation between the structure of the state matrix A and the

order of the pole of (I − Az)−1. This relation is fully characterized by the extended local rank

factorization (elrf) developed in Franchi and Paruolo (2011, 2016), which is a recursive procedure

that enables to construct the Laurent coefficients, the local Smith form and extended canonical

systems of root functions of a generic matrix function. These results are then used to characterize

the pole cancellations in the MA transfer functions; when specialized for zu = 1, these cancellations

characterize the cointegration properties of xt and yt, see Section 4 below.

In the present context, the elrf is performed on I − Az at zu; because I − Az is a matrix

polynomial of degree one, the results in Franchi and Paruolo (2016) simplify as follows.

Theorem 3.1 (elrf and Laurent coefficients). Let zu := λ−1u , 0 6= λu ∈ σ(A), r0 := rank(A−λuI),

and consider the rank factorization A− λuI = α0β
′
0. Then (I − Az)−1 has a pole of order d ∈ N+

at zu if and only if{
rj < rmax

j (reduced rank condition) for j = 1, . . . , d− 1

rd = rmax
d (full rank condition) for j = d

,

where rmax
j := nx −

∑j−1
i=0 ri, rj is the rank of αj and βj in the rank factorization Paj⊥QjPbj⊥ =

−zuαjβ′j and

aj := (α0, . . . , αj−1)

bj := (β0, . . . , βj−1)
, Qj :=

{
Azu for j = 1

λuQj−1
∑j−2

i=0 β̄iᾱ
′
iQi+1 for j = 2, . . . , d+ 1

.

Moreover, the Laurent coefficients {Bn}∞n=0 in (2.3) satisfy

Bn =


−λuβ̄dᾱ′d for n = 0

λu (MBn−1 +Nn) for n = 1, . . . , d

λuMBn−1 for n = d+ 1, d+ 2, . . .

,
M :=

∑d
j=0 β̄jᾱ

′
jQj+1

Nn :=
∑d

j=d−n β̄jᾱ
′
jCj+1,n

, (3.1)

where

Cj+1,n :=

{
−1n=dI for j = 0

Cj,n+1 + λuQj
∑j−1

i=d−n β̄iᾱ
′
iCi+1,n for j = 1, . . . , d

, n = 0, . . . , d,

and 1· is the indicator function.

The elrf is defined by the sequence of calculations in Theorem 3.1 and delivers the output3

d and {αj , βj , rj , Qj+1, Cj+1,n}j=0,...,d, n=0,...,d. (3.2)

3When j is different from 0 or d, rj (and thus αj and βj) can be equal to 0; in what follows, every statement

implicitly assumes that they are nonzero, because the modifications required in the case rj = 0 are straightforward.
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While d and {rj}dj=0 do not depend on the choice of bases in the rank factorizations and are thus

uniquely defined, {αj , βj , Qj+1, Cj+1,n}j=0,...,d, n=0,1,... depend on such choices. In any case, i.e. for

any choice of bases in the rank factorizations, the nx × nx matrices (α0, . . . , αd) and (β0, . . . , βd)

have mutually orthogonal components, namely α′hαj = β′hβj = 0, h 6= j, and deliver bases of Cnx

(or of Rnx , when λu ∈ R), so that the orthogonal projection identities Inx =
∑d

j=0 Pαj =
∑d

j=0 Pβj

hold. Moreover, remark that minimality implies

rank(α′jB) = rank(Cβj) = rj , j = 1, . . . , d, (3.3)

i.e. that α′jB has full row rank and Cβj has full column rank for j = 1, . . . , d. This follows

from rank(α′0⊥B) = rank(Cβ0⊥) = nx − r0, see Theorem 2.1, and from α0⊥ = (α1, . . . , αd) and

β0⊥ = (β1, . . . , βd). Furter note that minimality does not play a role in determining the rank of

α′0B and Cβ0.

The necessary and sufficient condition for a pole of order d given in Theorem 3.1 is stated

recursively in terms of d+ 1 rank restrictions on functions of sub-blocks of A, found by projecting

its column and row spaces into appropriate subspaces, Paj⊥QjPbj⊥ : the first j = 1, . . . , d conditions

are reduced rank restrictions that establish that the order of the pole is greater than j − 1 and the

last one is the full rank condition that establishes that the order of the pole is exactly d. For d = 1

the elrf coincides with the rank condition in Theorem 3 of Howlett (1982) and the I(1) condition

in Theorem 4.1 in Johansen (1991) and for d = 2 with the I(2) condition in Theorem 3 in Johansen

(1992). The elrf is thus a generalization of the approach in Howlett (1982) and Johansen (1991,

1992), in which the order of the pole (1 or 2 only) is established recursively by checking the rank

of a sequence of matrices until a full rank condition is satisfied.

The second part of Theorem 3.1 gives a recursive expression of the Laurent coefficients {Bn}∞n=0

in terms of the output of the elrf: the leading coefficient B0 = −λuβ̄dᾱ′d is the Moore-Penrose

inverse of the last rank factorization in the elrf, Pad⊥QdPbd⊥ = −zuαdβ′d, and the remaining ones

are calculated recursively via (3.1). Pre-multiplying (3.1) by β′j , one finds

β′dB0 = −λuᾱ′d, β′jBn =


0 for n = 0

λuᾱ
′
jQj+1Bn−1 for n = 1, . . . , d− j − 1

λuᾱ
′
jQj+1Bn−1 − λuᾱ′j for n = d− j

, j = 0, . . . , d−1.

These relations dictate the reductions in the order of the pole of (I−Az)−1 that can be achieved

by linear combinations. These are described in the next proposition, which states that knowl-

edge of {rj}dj=0 fully characterizes the (unique) local Smith form Λ(z) of I − Az at zu while
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{αj , βj , Qj+1, Cj+1,n}j=0,...,d, n=0,...,d enable to construct two (non-unique) extended canonical sys-

tems of root functions Γ(z) and Ψ(z), see Gohberg et al. (1993) for definitions and properties.

Theorem 3.2 (Local Smith factorization via elrf). Given the output of the elrf in (3.2), for

j = 0, . . . , d define the rj × nx matrix functions γj(z)
′ and ψj(z)

′ as

γj(z)
′ :=

{
β′j − λuᾱ′jQj+1(1− λuz) for j = 0, . . . , d− 2

β′j for j = d− 1, d
(3.4)

and ψj(z)
′ := −ᾱ′j +

∑j
k=1 ᾱ

′
jCj+1,d−j+k(1 − λuz)k and the nx × nx matrix functions Γ(z), Λ(z)

and Ψ(z) as

Γ(z) :=


γ0(z)

′

...

γd(z)
′

 , Λ(z) :=


(1− λuz)0Ir0

. . .

(1− λuz)dIrd

 , Ψ(z) := λu


ψ0(z)

′

...

ψd(z)
′

 .

Then

Ψ(z)(I −Az) = Λ(z)Γ(z), |Ψ(zu)| 6= 0, |Γ(zu)| 6= 0, (3.5)

i.e. Λ(z) is the local Smith form of I −Az at zu and Ψ(z),Γ(z) are extended canonical systems of

root functions.

This shows that the distinct partial multiplicities of I − Az at zu coincide with {j : rj > 0} in

the elrf and that there are exactly rj partial multiplicities equal to a given j. This characterizes

the local Smith form and thus, see Corollary 4.4 in Franchi and Paruolo (2016), the Jordan form

of A results

J =

(
Jλu

Jσ(A)\λu

)
, Jλu :=


Ird ⊗ Jλu,d

. . .

Ir1 ⊗ Jλu,1

 , (3.6)

where Jλu is the Jordan structure of A that corresponds to the eigenvalue λu, Jσ(A)\λu collects

the Jordan structure of the remaining eigenvalues and Jλu,j is a Jordan block of dimension j with

eigenvalue λu. Eq. (3.6) shows that there are exactly rj Jordan blocks of dimension j = 1, . . . , d in

Jλu , which has thus dimension
∑d

j=1 jrj . Moreover, using Γ(z) or Ψ(z) one can construct similarity

transformations X such that AX = XJ , see Corollary 4.4 in Franchi and Paruolo (2016).

Since (3.5) implies Γ(z)(I −Az)−1 = Λ(z)−1Ψ(z), one has

γj(z)
′(I −Az)−1 =

λuψj(z)
′

(1− λuz)j
, ψj(zu)′ = −ᾱ′j , j = 0, . . . , d, (3.7)
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which shows that the blocks γj(z)
′ of rj rows in Γ(z) = (γ0(z), · · · , γd(z))′ are root functions of

order d− j of (I −Az)−1; moreover, because ψj(zu)′ has full row rank, v′γj(z)
′(I −Az)−1 has pole

of order j for any 0 6= v ∈ Cnx , and in this case the pole is said to be irreducible.

It is next shown that knowledge of Γ(z), Λ(z) and Ψ(z) fully describes the pole cancellations in

the MA transfer functions. Substituting εt = yt − Cxt in the state equation and rearranging one

finds the associate (AS) state space form

xt+1 = Fxt +Byt, F := A−BC ∈ Rnx×nx ,

yt = Cxt + εt,

from which one finds the representation of xt in terms of yt, i.e.

xt = Tx,y(L)yt, Tx,y(z) := (I − Fz)−1Bz.

Because Tx,ε(z) = Tx,y(z)Ty,ε(z), see Theorem 2.1 in Bart et al. (2008), it follows from (3.7) that

γj(z)
′Tx,ε(z) = ξ̃j(z)

′Ty,ε(z) =
λuψj(z)

′Bz

(1− λuz)j
, ψj(zu)′B = −ᾱ′jB, j = 0, . . . , d, (3.8)

where ξ̃j(z)
′ := γj(z)

′Tx,y(z), so that γj(z)
′Tx,ε(z) and ξ̃j(z)

′Ty,ε(z) have an irreducible pole of order

j = 1, . . . , d and no pole for j = 0 at zu. Truncation of ξ̃j(z)
′ up to degree max(0, d− j − 1) leads

to the following result.

Theorem 3.3 (Pole cancellations in the MA transfer functions). Consider γj(z)
′ in (3.4) and

let ξj(z)
′ =

∑max(0,d−j−1)
n=0 ξ′j,n(1 − λuz)n be the truncation of ξ̃j(z)

′ := γj(z)
′Tx,y(z) up to degree

max(0, d− j−1). Then γj(z)
′Tx,ε(z) and ξj(z)

′Ty,ε(z) have an irreducible pole of order j = 1, . . . , d

and no pole for j = 0 at zu and

ξ′j,n = β′jTn − λuᾱ′jQj+1Tn−1,

Tn := −G0(I −G0)
n−1T0,

T−1 := 0,

G0 := (I − Fzu)−1,

T0 := G0Bzu,

F := A−BC.
(3.9)

This shows that the matrix polynomial γj(z)
′ (of degree 0 or 1) is a root function of order d− j

of the MA transfer function Tx,ε(z) and the matrix polynomial ξj(z)
′ (of degree max(0, d− j − 1))

is a root function of order d − j of the MA transfer function Ty,ε(z). Because of (3.5), this fully

describes the pole cancellations in the MA transfer functions.

As discussed in the next section, under the assumption that the largest eigenvalue of A is equal to

1, the order of integration of γj(L)′xt and ξj(L)′yt is given by the order of the pole of γj(z)
′Tx,ε(z)

and ξj(z)
′Ty,ε(z) at z = 1 and hence Theorem 3.3 provides a full description of the cointegration

structure of xt and yt.
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4. Cointegration structure

The following notation is employed: ut ∼ Inc(d) indicates that ut is integrated of order d and it is

non-cointegrated, i.e. ∆dut = U(L)εt, where εt is white noise, U(z) is finite for all z ∈ C : |z| < 1+δ

for some δ > 0 and U(1) 6= 0 has full row rank.

Theorem 4.1 (Cointegration structure). Assume that 1 ∈ σ(A) and that 1 6= λu ∈ σ(A) implies

|λu| < 1, let (3.2) be the output of the elrf of I − Az at zu = λu = 1 and define ϕ, ζ by the rank

factorization −ᾱ′0B = ϕζ ′. Then xt ∼ I(d) and yt ∼ I(d) if and only if rd = nx −
∑d−1

i=0 ri > 0,

∆dxt = B(L)Bεt−1 ∼ I(0), ∆dyt = CB(L)Bεt−1 + ∆dεt ∼ I(0), where B(1) = −β̄dᾱ′d, and

ϕ′γ0(L)′xt ∼ Inc(0),

ϕ′ξ0(L)′yt ∼ Inc(0),

ϕ′⊥γ0(L)′xt = 0,

ϕ′⊥ξ0(L)′ = 0,

γj(L)′xt ∼ Inc(j),
ξj(L)′yt ∼ Inc(j),

, j = 1, . . . , d,

where γj(z)
′ and ξj(z)

′ are found by setting zu = λu = 1 in (3.4) and (3.9) respectively.

Henceq (2.1) displays s0 := rank ᾱ′0B ≤ r0 relations that are Inc(0) and rj relations that are

Inc(j), j = 1, . . . , d. These have the following expressions

ϕ′(β′0xt − ᾱ′0Q1∆xt) ∼ Inc(0)

β′1xt − ᾱ′1Q2∆xt ∼ Inc(1)
...

β′d−2xt − ᾱ′d−2Qd−1∆xt ∼ Inc(d− 2)

β′d−1xt ∼ Inc(d− 1)

β′dxt ∼ Inc(d)

,

ϕ′(β′0T0yt + ξ′0,1∆yt + · · ·+ ξ′0,d−1∆
d−1yt) ∼ Inc(0)

β′1T0yt + ξ′1,1∆yt + · · ·+ ξ′1,d−1∆
d−2yt ∼ Inc(1)

...

β′d−2T0yt + ξ′d−2,1∆yt ∼ Inc(d− 2)

β′d−1T0yt ∼ Inc(d− 1)

β′dT0yt ∼ Inc(d)

,

which highlight how the properties of the processes change in the different directions provided by

the basis (β0, . . . , βd) and how the Q· and the T· coefficients in the output of the elrf and in the

associate transfer function Tx,y(z) can be used to find the ξ·,· that deliver polynomial cointegration.

Observe that β′0xt − ᾱ′0Q1∆xt = ϕζ ′εt−1 is white noise and that the r0 − s0 relations in xt and in

yt that are equal to 0 are of different type, because ϕ′⊥β
′
0xt = ϕ′⊥ᾱ

′
0Q1∆xt while ϕ′⊥ξ

′
0,n = 0 follows

from the fact that the column spaces of the ξ′0,n coefficients belong to spanϕ.

Finally note that for d = 1 Theorem 4.1 reads xt ∼ I(1) and yt ∼ I(1) if and only if r1 =

nx − r0 > 0, ∆xt = B(L)Bεt−1 ∼ I(0), ∆yt = CB(L)Bεt−1 + ∆εt ∼ I(0), where B(1) = −β̄1ᾱ′1,
and

ϕ′β′0xt ∼ Inc(0),

ϕ′β′0T0yt ∼ Inc(0),

ϕ′⊥β
′
0xt = 0,

ϕ′⊥β
′
0T0 = 0,

β′1xt ∼ Inc(1),

β′1T0yt ∼ Inc(1),
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while for d = 2 one has xt ∼ I(2) and yt ∼ I(2) if and only if r2 = nx − r0 − r1 > 0, ∆2xt =

B(L)Bεt−1 ∼ I(0), ∆2yt = CB(L)Bεt−1 + ∆2εt ∼ I(0), where B(1) = −β̄2ᾱ′2, and

ϕ′ (β′0xt − ᾱ′0A∆xt) ∼ Inc(0),

ϕ′
(
β′0T0yt + ξ′0,1∆yt

)
∼ Inc(0),

ϕ′⊥ (β′0xt − ᾱ′0A∆xt) = 0,

ϕ′⊥β
′
0T0 = ϕ′⊥ξ

′
0,1 = 0,

β′jxt ∼ Inc(j),
β′jT0yt ∼ Inc(j),

j = 1, 2,

where ξ′0,1 = −(β′0G0 + ᾱ′0A)T0.

4.1. A numerical illustration. This example is taken from Bauer and Wagner (2012) and it is

used to illustrate the results; consider (2.1) with

A =


1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 0.5

 , B =


1 0 0

1 0 1

1 1 0

1 0 0

 , C =

 1 0 1 0.2

0 1 1 −0.4

0 0 1 1

 ,

nx = 4,

ny = 3,

σ(A) = {1, 0.5}.

The state matrix A is already in Jordan form (3.6), so that d = 2, r2 = r1 = 1 and r0 =

nx − r1 − r2 = 2 and the elrf of I −Az at z = 1 delivers

α0 =


1 0

0 0

0 0

0 1

 , α0⊥ =


0 0

0 −1

−1 0

0 0

 = (α1, α2), β0 =


0 0

1 0

0 0

0 −0.5

 , β0⊥ =


0 1

0 0

1 0

0 0

 = (β1, β2).

Hence

α′0⊥B = −

(
1 1 0

1 0 1

)
, Cβ0⊥ =

 1 1

1 0

1 0

 , −ᾱ′0B =

(
1

1

)
(−1 0 0) = ϕζ ′,

so that 1 ∈ σ(A) is controllable and observable by Theorem 2.1, which implies xt ∼ I(2) and

yt ∼ I(2), and ᾱ′0B has reduced rank s0 = 1. The Laurent coefficients {Bn}∞n=0 in ∆2xt =

B(L)Bεt−1 ∼ I(0), ∆2yt = CB(L)Bεt−1 + ∆2εt ∼ I(0), where B(z) =
∑∞

n=0Bn(1 − z)n, are

computed via (3.1) and result

B0 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , B1 =


1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , Bn = (−1)n


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

 , n = 2, 3, . . . .
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The statements in Theorem 4.1 can thus be checked by direct computation as follows. Regarding

xt, from

 β′2
β′1
β′0

B0B =


1 0 1

0 0 0

0 0 0

0 0 0

 ,

(
β′1
β′0

)
B1B =

 1 1 0

1 0 1

0 0 0

 , β′0BnB = (−1)n−1

(
0 0 0

1 0 0

)
,

ᾱ′0AB0B =

(
1 0 1

0 0 0

)
, ᾱ′0AB1B =

(
1 0 0

0 0 0

)
, ᾱ′0ABnB = (−1)n

(
0 0 0

1 0 0

)
,

for n = 2, 3, . . . , one verifies that β′2B0B has full row rank and hence β′2xt ∼ Inc(2), that β′1B1B −
δ′B0B has full row rank for any δ and hence β′1xt ∼ Inc(1) and that β′0B1B − ᾱ′0AB0B = 0 and

hence β′0xt − ᾱ′0A∆xt ∼ I(0). Moreover, β′0B2B − ᾱ′0AB1B = ϕζ ′ and β′0BnB − ᾱ′0ABn−1B = 0,

n = 3, 4, . . . , confirm that ϕ′(β′0xt − ᾱ′0A∆xt) ∼ Inc(0) and ϕ′⊥(β′0xt − ᾱ′0A∆xt) = 0.

Regarding yt, from

 ξ′2,0
ξ′1,0
ξ′0,0

 =

 β′2T0

β′1T0

β′0T0

 = c


1/c 0.4 −4.2

0 1 2.8

0 1 −1

0 1 −1

 ,

ξ′0,1 = −(β′0G0 + ᾱ′0A)T0 = ϕ(−c c1c − c1c)

c = 0.2632,

c1 = 0.3684

,

where the expressions of ξ′·,·, T0 = G0B, G0 = (I − F )−1, and F = A − BC are found by setting

zu = λu = 1 in (3.9), and from

 ξ′2,0
ξ′1,0
ξ′0,0

CB0B =


1 0 1

0 0 0

0 0 0

0 0 0

 ,

(
ξ′1,0
ξ′0,0

)
CB1B = c

 4.8 1/c 0

1 0 1

1 0 1

 , ξ′0,0CBnB = (−1)nϕζ ′0,

ξ′0,1CB0B = −c

(
1 0 1

1 0 1

)
, ξ′0,1CB1B = ϕζ ′1, ξ′0,1CBnB = (−1)n−1ϕζ ′2,

for n = 2, 3, . . . , where ζ ′0 = 2c1ζ
′, ζ ′1 = c(−0.6216, 1, 1.3684) and ζ ′2 = (0.3767, 0, 0), one verifies

that ξ′2,0CB0B has full row rank and hence ξ′2,0yt ∼ Inc(2), that ξ′1,0CB1B − δ′CB0B has full

row rank for any δ and hence ξ′1,0yt ∼ Inc(1) and that ξ′0,0CB1B + ξ′0,1CB0B = 0 and hence

ξ′0,0yt + ξ′0,1∆yt ∼ I(0). Moreover, the above expressions confirm that the column spaces of the ξ′0,·

coefficients belong to spanϕ and hence ϕ′(ξ′0,0yt + ξ′0,1∆yt) ∼ Inc(0) and ϕ′⊥ξ
′
0,0 = ϕ′⊥ξ

′
0,1 = 0.
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5. A characterization of the canonical form in Bauer and Wagner (2012)

Assume that e±iωu ∈ σ(A), where u = 1, . . . , ` and 0 ≤ ω1 < · · · < ω` ≤ π, and that e±iωu 6= λu ∈
σ(A) implies |λu| < 1. In this case, Theorem 2 in Bauer and Wagner (2012) proves the existence

of a canonical form that highlights the unit root structure of the system, defined in that paper as4

(ωu, (g1, . . . , gh)), 1 ≤ g1 ≤ · · · ≤ gh, u = 1, . . . , `, (5.1)

where h is the smallest integer such that (Hu − e−iωuI)h = 0, gk := rank(Hu − e−iωuI)h−k −
rank(Hu − e−iωuI)h−k+1 and

Hu := e−iωu


Ig1 Q1

Ig2
. . .

. . . Qh−1

Igh

 , Qk := eiωu(Igk 0gk×gk+1−gk).

Because Hu is a reordering of the Jordan structure of A that corresponds to the eigenvalue e−iωu

and the latter is characterized by the elrf in (3.6), the following result holds.

Theorem 5.1 (State space unit root structure via elrf). The state space unit root structure in

(5.1) is such that h = d and gk =
∑d

j=d−k+1 rj, where d and {rj}j=0,...,d are defined by the elrf of

I −Az at zu = eiωu.

Thus the elrf provides a characterization of the canonical form in Bauer and Wagner (2012),

which is a realization of the state space unit root structure.

6. Conclusions

The rank restrictions implied by minimality and those related to the Jordan structure of the

state matrix fully characterize the integration and cointegration properties of a state space system

in the general I(d) case. The elrf has been shown to deliver a full description of all the relevant

quantities and because it can be performed at any (stationary, unit, explosive) eigenvalue, the

present results are not specific to the unit root case.
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Appendix A. Proofs

Proof of Theorem 2.1. For the PBH rank test, see e.g. Theorem 6.2-6 in Kailath (1980),

(2.1) is controllable if and only if rank(A − λuI,B) = nx for all λu ∈ C and it is observable

if and only if rank(A′ − λuI, C
′) = nx for all λu ∈ C. Because rank(A − λuI) = nx implies

rank(A− λuI,B) = rank(A′ − λuI, C ′) = nx, such rank conditions are not informative unless λu is

an eigenvalue of A. Let λu be an eigenvalue of A, use A−λuI = α0β
′
0 and the projection identities

I = α0ᾱ
′
0 + ᾱ0⊥α

′
0⊥ = β̄0β

′
0 + β0⊥β̄

′
0⊥ to write(

A− λuI B
)

=
(
α0β

′
0 α0ᾱ

′
0B + ᾱ0⊥α

′
0⊥B

)
=
(
α0 ᾱ0⊥

)( β′0 ᾱ′0B

0 α′0⊥B

)
,(

A− λuI
C

)
=

(
α0β

′
0

Cβ̄0β
′
0 + Cβ0⊥β̄

′
0⊥

)
=

(
α0 0

Cβ̄0 Cβ0⊥

)(
β′0
β̄′0⊥

)
.

This shows that λu is controllable if and only if rank(α′0⊥B) = nx − r0 and it is observable

if and only if rank(Cβ0⊥) = nx − r0. Because (2.1) is minimal if and only if each eigenvalue is

controllable and observable, minimality is equivalent to rank(α′0⊥B) = rank(Cβ0⊥) = nx − r0 for

each λu ∈ σ(A). �

Proof of Theorem 2.2. Substituting I − Az = (I − Azu) + (1 − λuz)Azu and (I − Az)−1 =

(1− λuz)−dB(z) in (I −Az)(I −Az)−1 = I, one finds

(I −Azu)
B(z)

(1− λuz)d
+Azu

B(z)

(1− λuz)d−1
= I.

Because (I − Azu)B(zu) is the only term that loads (1− λuz)−d in (I − Az)(I − Az)−1 = I, then

(I −Azu)B(zu) = 0. Similarly, starting from (I −Az)−1(I −Az) = I one finds B(zu)(I −Azu) = 0

and hence (I − Azu)B(zu) = B(zu)(I − Azu) = 0. Because I − Azu = −zu(A − λuI) = −zuα0β
′
0

and B(zu) 6= 0, it follows that B(zu) = β0⊥φα
′
0⊥ for some non-zero φ. Then Cβ0⊥φα

′
0⊥Bzu is the

leading coefficient of Ty,ε(z) = I+(1−λuz)−dCB(z)Bz at zu. By Theorem 2.1, λu is controllable if

and only if rank(α′0⊥B) = nx− r0 and it is observable if and only if rank(Cβ0⊥) = nx− r0; because

Cβ0⊥φα
′
0⊥B = 0 and rank(Cβ0⊥) = rank(α′0⊥B) = nx−r0 imply φ = 0, one reaches a contradiction

and hence it follows that Cβ0⊥φα
′
0⊥B 6= 0. This shows that the poles of Tx,ε(z) = B(z)Bz

(1−λuz)d and

Ty,ε(z) = I + CB(z)Bz
(1−λuz)d coincide with those of (I −Az)−1. �

Proof of Theorem 2.3. The assumption 1 ∈ σ(A) and |λu| < 1 for any 1 6= λu ∈ σ(A) implies

(I − Az)−1 = (1− z)−dB(z), where B(z) is finite for all |z| ≤ 1 + δ for some δ > 0 and B(1) 6= 0;

then, see Theorem 2.2, the same holds for the MA transfer functions Tx,ε(z) = (1 − z)−dB(z)Bz
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and Ty,ε(z) = I + (1 − z)−dCB(z)Bz, where CB(1)B 6= 0 by minimality, and thus one finds

∆dxt = B(L)Bεt−1 ∼ I(0) and ∆dyt = CB(L)Bεt−1 + ∆dεt ∼ I(0), which show that xt ∼ I(d)

and yt ∼ I(d). �

Proof of Theorem 3.1. Substituting I − Az = A0 + A1(1 − λuz), where A0 := I − Azu and

A1 := Azu, and (I −Az)−1 =
∑∞

n=0Bn(1− λuz)n−d in (I −Az)(I −Az)−1 = I, one finds

A0B0 = 0, A0Bn +A1Bn−1 = 1n=dI, n = 1, 2, . . . , (A.1)

where 1· is the indicator function. In the following, equations in system (A.1) are indexed according

to the highest value of the subscript of Bn; for instance A0B0 = 0 is referred to as equation 0. Note

that the identity appears in equation d, which is the order of the pole. Because I−Azu = −zuα0β
′
0,

equation 0 implies β′0B0 = 0 so that B0 = Pβ0B0 + Pβ0⊥B0 = Pβ0⊥B0 and equation 1 reads

A0B1 + A1Pβ0⊥B0 = 11=dI. Moreover, because A1 = Azu = I + zuα0β
′
0, one has Pα0⊥A1 = Pα0⊥

and A1Pβ0⊥ = Pβ0⊥ and hence equation 1 becomes −zuα0β
′
0B1 + Pβ0⊥B0 = 11=dI.

The proof of Theorem 3.1 is based on rewriting equation n ≥ j = 0, 1, . . . in system (A.1) as

zuαjβ
′
jBn−j = Paj⊥Qj+1Bn−j−1 + Paj⊥Cj+1,n−j , (A.2)

where αj , βj are defined by the rank factorization

Paj⊥QjPbj⊥ = −zuαjβ′j ,
aj := (α0, . . . , αj−1)

bj := (β0, . . . , βj−1)
,

Qj is defined by the recursions

Qj :=

{
Azu for j = 1

λuQj−1
∑j−2

i=0 β̄iᾱ
′
iQi+1 for j = 2, . . . , d+ 1

, (A.3)

and Cj+1,n is defined by the recursions

Cj+1,n :=

{
−1n=dI for j = 0

Cj,n+1 + λuQj
∑j−1

i=0 β̄iᾱ
′
iCi+1,n for j = 1, . . . , d

. (A.4)

The proof of (A.2) is by induction. For j = 0, (A.2) reads zuα0β
′
0Bn = Pa0⊥Q1Bn−1+Pa0⊥C1,n,; by

definition, Q1 = Azu, C1,n = −1n=d and a0 = b0 = 0, which implies Pa0⊥ = Pb0⊥ = I. Hence (A.2)

for j = 0 coincides with equation n in (A.1). Next assume that (A.2) holds for j = 0, . . . , ` − 1

for some ` > 1; one wishes to show that it also holds for j = `. Write (A.2) for j = ` − 1,

zuα`−1β
′
`−1Bn−`+1 = Pa`−1⊥Q`Bn−`+Pa`−1⊥C`,n−`+1, pre-multiply by Pa`⊥ and rearrange terms to

find

0 = Pa`⊥Q`Bn−` + Pa`⊥C`,n−`+1 := U + V. (A.5)



18

Inserting I = Pb` + Pb`⊥ between Q` and Bn−` in U one finds

U = Pa`⊥Q`Pb`⊥Bn−` + Pa`⊥Q`Pb`Bn−` =: U1 + U2.

Substituting Pb` = Pβ0 + · · ·+ Pβ`−1
, one has U2 = Pa`⊥Q`

∑`−1
i=0 PβiBn−`, where

PβiBn−` = λuβ̄iᾱ
′
iQi+1Bn−`−1 + λuβ̄iᾱ

′
iCi+1,n−`,

is derived using the induction assumption and replacing n with n − ` + j and j with i in (A.2).

Substituting in U2, one finds

U2 = Pa`⊥

(
λuQ`

`−1∑
i=0

β̄iᾱ
′
iQi+1

)
Bn−`−1 + Pa`⊥

(
λuQ`

`−1∑
i=0

β̄iᾱ
′
iCi+1,n−`

)
;

hence using (A.3) and (A.4), one has U2+V = Pa`⊥Q`+1Bn−`−1+Pa`⊥C`+1,n−` so that substituting

the rank factorization Pa`⊥Q`Pb`⊥ = −zuα`β′` in U1 and rearranging terms, (A.5) is rewritten as

zuα`β
′
`Bn−` = Pa`⊥Q`+1Bn−`−1 + Pa`⊥C`+1,n−`.

This shows that (A.2) holds for j = ` and completes the proof by induction. Replacing n− j with

n one rewrites (A.2) as

zuαjβ
′
jBn = Paj⊥Qj+1Bn−1 +Paj⊥Cj+1,n, j = 0, . . . , d, n = 0, 1, . . . , B−1 := 0, (A.6)

where

Cj+1,n =


0 for n < d− j
−I for n = d− j
0 for n > d

(A.7)

follows from the definition of Cj+1,n in (A.4). Setting n = 0 in (A.6) and substituting Paj⊥QjPbj⊥ =

−zuαjβ′j one then finds Paj⊥QjPbj⊥B0 = 0, j = 0, . . . , d − 1, and Pad⊥QdPbd⊥B0 = Pad⊥ , be-

cause the identity is in equation d in (A.1). This shows that (I − Az)−1 has a pole of order

d ∈ N+ at zu if and only if rj := rank(Paj⊥QjPbj⊥) < rankPaj⊥ =: rmax
j , j = 1, . . . , d − 1, and

rd := rank(Pad⊥QdPbd⊥) = rankPad⊥ =: rmax
d . This completes the proof of the first part of the

statement of Theorem 3.1. The recursion for the Laurent coefficients in (3.1) is found as follows:

pre-multiplying (A.6) by β̄jᾱ
′
j to find

zuPβjBn = β̄jᾱ
′
jQj+1Bn−1 + β̄jᾱ

′
jCj+1,n, (A.8)

sum over j, use the projection identity
∑d

j=0 Pβj = I and rearrange to find

Bn =

λu d∑
j=0

β̄jᾱ
′
jQj+1

Bn−1 +

λu d∑
j=0

β̄jᾱ
′
jCj+1,n

 . (A.9)
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This completes the proof. �

Proof of Theorem 3.2. Pre-multiplying (A.9) by β′j and rearranging one finds

β′jBn − λuᾱ′jQj+1Bn−1 = λuᾱ
′
jCj+1,n. (A.10)

Next consider

(I −Az)−1 =

∞∑
n=0

Bn(1− λuz)n−d

and pre-multiply respectively by β′j and by (1− λuz)λuᾱ′jQj+1 to find

β′j(I−Az)−1 =

∞∑
n=0

β′jBn(1−λuz)n−d, (1−λuz)λuᾱ′jQj+1(I−Az)−1 =

∞∑
n=1

λuᾱ
′
jQj+1Bn−1(1−λuz)n−d.

Subtracting the two expressions and rearranging one has

(
β′j − (1− λuz)λuᾱ′jQj+1

)
(I −Az)−1 =

∞∑
n=0

(
β′jBn − λuᾱ′jQj+1Bn−1

)
(1− λuz)n−d,

and hence, substituing (A.10) in the rhs of the equation, one finds

γj(z)
′(I −Az)−1 = λu

∞∑
n=0

ᾱ′jCj+1,n(1− λuz)n−d,

where γj(z)
′ := β′j − (1 − λuz)λuᾱ′jQj+1. Because Cj+1,n = 0 for n + j < d and Cj+1,n = 0 for

n > d, see (A.7), one finds

γj(z)
′(I −Az)−1 = λu

d∑
n=d−j

ᾱ′jCj+1,n(1− λuz)n−d = (1− λuz)−jλu
j∑

n=0

ᾱ′jCj+1,d−j+n(1− λuz)n

i.e.

γj(z)
′(I −Az)−1 =

λuψj(z)
′

(1− λuz)j
, j = 0, . . . , d, (A.11)

where ψj(z)
′ :=

∑j
n=0 ᾱ

′
jCj+1,d−j+n(1− λuz)n. Note that γj(zu)′ = β′j and because Cj+1,d−j = −I

for j = 0, . . . , d, see (A.7), ψj(zu)′ = −ᾱ′jCj+1,d−j = −ᾱ′j , so that Γ(z) := (γ0(z), . . . , γd(z))
′ and

Ψ(z) := λu(ψ0(z), . . . , ψd(z))
′ are non-singular at zu. Stacking (A.11) one thus finds

Γ(z)(I −Az)−1 = Λ(z)−1Ψ(z), |Γ(zu)| 6= 0, |Ψ(zu)| 6= 0,

which shows that Λ(z) := diag((1− λuz)0Ir0 , . . . , (1− λuz)dIrd) is the local Smith form of I − Az
at zu and Γ(z), Ψ(z) are extended canonical systems of root functions. �

The proof of Theorem 3.3 is based on the following lemma.
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Lemma A.1 (Tn coefficients). Let F := A−BC and zu := λ−1u , 0 6= λu ∈ σ(A). Then I − Fzu is

non-singular and Tx,y(zu) = (I − Fzu)−1Bzu 6= 0, i.e. the poles of the AS transfer function do not

coincide with those of (I −Az)−1. Moreover,

Tx,y(z) =
∞∑
n=0

Tn(1− λuz)n, Tn =

{
G0Bzu 6= 0 for n = 0

−G0(I −G0)
n−1T0 for n = 1, 2, . . .

, (A.12)

where G0 := (I − Fzu)−1.

Proof of Lemma A.1. It is first shown that if λu ∈ σ(A) is controllable and observable then

λu /∈ σ(F ) and hence I − Fzu = −zu(F − λuI) is non-singular at zu. Use the projection identities

I = α0ᾱ
′
0 + ᾱ0⊥α

′
0⊥ = β̄0β

′
0 + β0⊥β̄

′
0⊥ to write

F − λuI = A− λuI −BC = α0β
′
0 −BC =

(
α0 −B

)( β′0
C

)

=
(
α0 ᾱ0⊥

)( Ir0 −ᾱ′0B
0 −α′0⊥B

)(
Ir0 0

Cβ̄0 Cβ0⊥

)(
β′0
β̄′0⊥

)
.

Because rank(α′0⊥B) = rank(Cβ0⊥) = nx−r0, one has that F −λuI is non-singular and hence λu is

not an eigenvalue of F . Because F −λuI = −λu(I−Fzu), this shows that I−Fzu is invertible and

thus zu is not a pole of Tx,y(z) := (I−Fz)−1Bz. Moreover, because Tx,y(zu) = (I−Fzu)−1Bzu = 0

implies B = 0, this proves the first part of the statement. Next it is proved that

Tx,y(z) =
∞∑
n=0

Tn(1−λuz)n, Tn =

{
G0Bzu 6= 0 for n = 0

−G0(I −G0)
n−1T0 for n = 1, 2, . . .

, G0 := (I−Fzu)−1.

Let (I − Fz)−1 =
∑∞

n=0Gn(1− λuz)n and write I − Fz = F0 − F1(1− λuz), where F0 = I − Fzu
and F1 = −Fzu. Then (I − Fz)(I − Fz)−1 = I implies G0F0 = I and GnF0 = Gn−1F1 for

n = 1, 2, . . . ; hence G0 = F−10 and Gn = Gn−1F1G0 for n = 1, 2, . . . , i.e. Gn = (G0F1)
nG0

for n = 0, 1, . . . . Because F1 = F0 − I one has G0F1 = I − G0 and hence Gn = (I − G0)
nG0,

n = 0, 1, . . . . Summing and subtracting (I − Fz)−1Bzu in Tx,y(z) := (I − Fz)−1Bz one finds

Tx,y(z) = (I−Fz)−1Bzu− (I−Fz)−1Bzu(1−λuz); substituting (I−Fz)−1 =
∑∞

n=0Gn(1−λuz)n

and rearranging one has Tx,y(z) = G0Bzu +
∑∞

n=1GnBzu(1 − λuz)n −
∑∞

n=1Gn−1Bzu(1 − λuz)n

and hence

Tx,y(z) = G0Bzu +

∞∑
n=1

(Gn −Gn−1)Bzu(1− λuz)n.

Using Gn = (I − G0)
nG0, n = 0, 1, . . . , one finds Gn − Gn−1 = −G0(I − G0)

n−1G0, n = 1, 2, . . . ,

and hence Tn = −G0(I −G0)
n−1T0 for n = 1, 2, . . . . This completes the proof. �
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Proof of Theorem 3.3. Eq. (3.8) shows that γj(z)
′Tx,ε(z) has an irreducible pole of order j =

1, . . . , d and no pole for j = 0 at zu. From the convolution of γj(z)
′ := β′j−λuᾱ′jQj+1(1−λuz) in (3.4)

and Tx,y(z) =
∑∞

n=0 Tn(1−λuz)n in (A.12) one finds ξ̃j(z)
′ := γj(z)

′Tx,y(z) =
∑∞

n=0 ξ
′
j,n(1−λuz)n,

where

ξ′j,0 = β′jT0, ξ′j,n =

{
β′jTn − λuᾱ′jQj+1Tn−1 for j = 0, . . . , d− 2

β′jTn for j = d− 1, d
, n = 1, 2, . . . . (A.13)

Writing ξ̃j(z)
′ = ξj(z)

′ + (1− λuz)d−jρj(z)′, where

ξj(z)
′ :=

{ ∑d−j−1
n=0 ξ′j,n(1− λuz)n for j = 0, . . . , d− 2

ξ′j,0 for j = d− 1, d
(A.14)

is the truncation of ξ̃j(z)
′ up to degree max(0, d−j−1) and ρj(z)

′ is defined accordingly, and using

Ty,ε(z) = I + (1− λuz)−dCB(z)Bz, one finds

ξ̃j(z)
′Ty,ε(z) = ξj(z)

′Ty,ε(z) + (1− λuz)d−jρj(z)′ + (1− λuz)−jρj(z)′CB(z)Bz.

Substituting into (3.8) and rearranging, one has

ξj(z)
′Ty,ε(z) =

λuψj(z)
′Bz − ρj(z)′CB(z)Bz

(1− λuz)j
− (1− λuz)d−jρj(z)′, (A.15)

where

λuψj(zu)′B − ρj(zu)′CB(zu)B = −(λuIrj − ξ′j,d−jCβ̄d)

(
ᾱ′jB

ᾱ′dB

)
(A.16)

has full row rank for j = 1, . . . , d by minimality. This shows that ξj(z)
′Ty,ε(z) has an irreducible

pole of order j = 1, . . . , d and no pole for j = 0 at zu. This completes the proof. �

Proof of Theorem 4.1. The first part of the statement follows directly from Theorems 2.3 and

3.1. Next set zu = λu = 1 in γj(z)
′ in (3.4) and ξj(z)

′ in (3.9) and consider γj(L)′xt and ξj(L)′yt for

j = 1, . . . , d. Because γj(z)
′Tx,ε(z) and ξj(z)

′Ty,ε(z) have an irreducible pole of order j = 1, . . . , d at

z = 1, see Theorem 3.3, one has γj(L)′xt ∼ Inc(j) and ξj(L)′yt ∼ Inc(j) for j = 1, . . . , d. Next set

j = 0 and consider γ0(L)′xt and ξ0(L)′yt. Regarding ξ0(L)′yt, from (3.8) one has γ0(z)
′Tx,ε(z) =

−ᾱ′0Bz, where the rank of −ᾱ′0B is unrestricted, see the discussion below (3.3); from the rank

factorization −ᾱ′0B = ϕζ ′ one then has ϕ′γ0(z)
′Tx,ε(z) = ζ ′z and ϕ′⊥γ0(z)

′Tx,ε(z) = 0 and hence

ϕ̄′γ0(L)′xt = ζ ′εt−1 ∼ Inc(0), ϕ′⊥γ0(L)′xt = 0.
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Finally consider ξ0(L)′yt; it is first proved that ϕ′ξ0(L)′yt ∼ Inc(0). From (A.15) and (A.16) one

has ξ0(z)
′Ty,ε(z) = ψ0(z)

′Bz − ρ0(z)′CB(z)Bz − (1− z)dρ0(z)′, where

ψ0(1)′B − ρ0(1)′CB(1)B = (Ir0 ξ′0,dCβ̄d)

(
−ᾱ′0B
ᾱ′dB

)
= (ϕ̄ ξ′0,dCβ̄d)

(
ζ ′

ᾱ′dB

)
.

The last matrix has full row rank because B = α0ᾱ
′
0B + ᾱ0⊥α

′
0⊥B = (−α0ϕ ᾱ0⊥)

(
ζ ′

α′0⊥B

)
, so

that rankB = nx − r0 + s0, where s0 := rank(ᾱ′0B); hence

ϕ′(ψ0(1)′B − ρ0(1)′CB(1)B) = (Is0 ϕ′ξ′0,dCβ̄d)

(
ζ ′

ᾱ′dB

)

has full row rank and thus ϕ′ξ0(L)′yt ∼ Inc(0).

It is next proved that ϕ′⊥ξ0(z)
′ = 0; setting j = 0 and λu = 1 in (A.13) and (A.14) one finds

ξ0(z)
′ =

∑d−1
n=0 ξ

′
0,n(1− z)n, where

ξ′0,n =

{
β′0T0 for n = 0

β′0Tn − ᾱ′0Q1Tn−1 for n = 1, 2, . . .
, Tn =

{
G0B for n = 0

−G0(I −G0)
n−1T0 for n = 1, 2, . . .

and G0 = (I − F )−1. It is next shown that

ξ′0,n =


ϕζ ′(I − CT0) for n = 0

ϕζ ′CG0T0 − ξ′0,0 for n = 1

ϕζ ′CG0Tn−1 for n = 2, 3, . . .

, (A.17)

which implies ϕ′⊥ξ
′
0,n = 0 for n = 0, 1, . . . and hence ϕ′⊥ξ0(z)

′ = 0.

First consider ξ′0,0 = β′0G0B; from F = A−BC and A− I = α0β
′
0, one has I−F = −α0β

′
0 +BC

and hence post-multiplying by G0 one has I = −α0β
′
0G0 +BCG0. Pre-multiplying by ᾱ′0 one finds

ᾱ′0 = −β′0G0 + ᾱ′0BCG0 (A.18)

and rearranging one has β′0G0 = −ᾱ′0 − ϕζ ′CG0, where the rank factorization −ᾱ′0B = ϕζ ′ has

been employed. Post-multiplying by B one thus has β′0G0B = ϕζ ′(I − CG0B). This shows that

(A.17) holds for n = 0.

Next consider ξ′0,n = β′0Tn − ᾱ′0Q1Tn−1, n = 1, 2, . . . ; from Q1 = A and A − I = α0β
′
0, one has

ᾱ′0Q1 = ᾱ′0(I + α0β
′
0) = ᾱ′0 + β′0 so that

ξ′0,n = β′0(Tn − Tn−1)− ᾱ′0Tn−1, n = 1, 2, . . . , Tn − Tn−1 =

{
−G0T0 − T0 for n = 1

−G0Tn−1 for n = 2, 3, . . .
,



23

where the expression of Tn − Tn−1 follows from (A.12). Pre-multiplying Tn − Tn−1 by β′0 one finds

β′0(Tn − Tn−1) =

{
−β′0G0T0 − β′0T0 for n = 1

−β′0G0Tn−1 for n = 2, 3, . . .

and substituing −β′0G0 = ᾱ′0 +ϕζ ′CG0, which follows from (A.18), and −β′0T0 = −β′0G0B = −ξ′0,0
one has

β′0(Tn − Tn−1) =

{
ᾱ′0T0 + ϕζ ′CG0T0 − ξ′0,0 for n = 1

ᾱ′0Tn−1 + ϕζ ′CG0Tn−1 for n = 2, 3, . . .
,

which shows that (A.17) holds for n = 1, 2, . . . and completes the proof. �

Proof of Theorem 5.1. The Jordan structure Jλu of A that corresponds to the eigenvalue λu =

e−iωu has exactly rj Jordan blocks of dimension j = 1, . . . , d, see (3.6). Because h is by definition

the index of λu as an eigenvalue of A, and this is equal to the size of the largest Jordan block, one has

h = d. Moreover, because Hu and Jλu are similar, gk := rank(Hu−λuI)d−k−rank(Hu−λuI)d−k+1 =

rank(Ju−λuI)d−k−rank(Ju−λuI)d−k+1 =: wd−k+1, so that (gd, . . . , g1) = (w1, . . . , wd) is the Weyr

characteristic of A associated to λu and hence gd−j+1 − gd−j = wj −wj+1 is the number of Jordan

blocks of dimension j, see Section 3.1 in Horn and Johnson (2013). Solving gd−j+1 − gd−j = rj ,

where g0 := 0, one finds gk =
∑d

j=d−k+1 rj for k = 1, . . . , d. �


