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Abstract. This paper derives a generalization of the Granger-Johansen Representation Theorem

valid for H-valued autoregressive (AR) processes, where H is an infinite dimensional separable

Hilbert space, under the assumption that 1 is an eigenvalue of finite type of the AR operator

function and that no other non-zero eigenvalue lies within or on the unit circle. A necessary and

sufficient condition for integration of order d = 1, 2, . . . is given in terms of the decomposition of

the space H into the direct sum of d+ 1 closed subspaces τh, h = 0, . . . , d, each one associated with

components of the process integrated of order h. These results mirror the ones recently obtained

in the finite dimensional case, with the only difference that the number of cointegrating relations

of order 0 is infinite.

1. Introduction

The theory and applications of time series that take values in infinite dimensional separable

Hilbert spaces, or H-valued processes, are recently gaining increasingly attention in econometrics.

They allow to represent directly the dynamics of infinite-dimensional objects, such as bounded

continuous function on a compact.

An important early contribution to the literature of functional time series is Bosq (2000), where

a theoretical treatment of linear processes in Banach and Hilbert spaces is developed. There,

emphasis is given to the derivations of laws of large numbers and central limit theorems that allow

to discuss estimation and inference for H-valued autoregressive (AR) models.

Empirical applications of functional time series analysis include studies on the term structure of

interest rates, Kargin and Onatski (2008), and on intraday volatility, Hörmann et al. (2013) and

Gabrys et al. (2013). The recent monographs by Horváth and Kokoszka (2012) and Kokoszka and

Reimherr (2017) and the review in Hörmann and Kokoszka (2012) report additional examples.
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Johansen Representation Theorem.
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In a recent paper, Chang et al. (2016) present statistical tools for functional time series that are

integrated of order one, I(1), and find evidence of unit root persistence and cointegration in the

time series of the several coordinates of the cross-sectional distributions of individual earnings and

the intra-month distributions of stock returns.1 The framework proposed by Chang et al. (2016) has

(by construction) a finite number of I(1) stochastic trends and an infinite dimensional cointegrating

space. The theory is developed starting from the infinite moving average representation of the first

differences of the process; the potential unit roots are identified and tested through a functional

principal components analysis.

In a different vein, Hu and Park (2016) start from an AR process of order one with compact

AR operator and provide an I(1) condition that extends the Granger-Johansen Representation

Theorem, see Theorem 4.2 in Johansen (1996), to I(1) H-valued AR(1) processes. The corre-

sponding common trends representation, or functional Beveridge-Nelson decomposition, displays a

finite number of I(1) stochastic trends and an infinite dimensional cointegrating space. They fur-

ther propose an estimator for the functional autoregressive operator which builds on Chang et al.

(2016).

Beare et al. (2017) consider an H-valued AR(s), s > 1, process with compact AR operators

and provide a reformulation of the Johansen I(1) condition that extends the Granger-Johansen

Representation Theorem to this more general setup. Again here, the number of I(1) stochastic

trends is finite and the dimension of the cointegrating space is infinite.

Finally, Chang et al. (2016) consider an error correction form with compact error correction

operator and show that in this case the number of I(1) stochastic trends is infinite and the dimension

of the cointegrating space is finite. Moreover, the Granger-Johansen Representation Theorem

continues to holds in a form similar to the finite dimensional case.

The present paper provides an extension of the representation results in Beare et al. (2017) and

Hu and Park (2016) for H-valued AR processes in the generic I(d), d = 1, 2, . . . case, under the

assumption that 1 is an eigenvalue of finite type of the AR operator function and that no other

non-zero eigenvalue of the AR operator lies within or on the unit circle. It is found that the

conditions and properties in the H-valued cointegrated AR processes coincide with those the finite

dimensional AR processes, except for the fact that the number of cointegrating relations of order

0 is infinite for H-valued cointegrated AR processes.

The assumption that 1 is an eigenvalue of finite type of the AR operator function means that

the inverse of the AR operator function has an isolated pole at 1, as in the finite dimensional case.

The assumptions in Hu and Park (2016) and Beare et al. (2017) imply that 1 is an eigenvalue of

finite type (but not viceversa), and hence the present analysis applies to those setups as special

cases.

1Beare (2017) argues that the nonnegativity property of densities is not compatible with the postulated unit

root nonstationarity. Nevertheless, while concurring that the framework in Chang et al. (2016) is useful for generic

H-valued processes.
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A necessary and sufficient condition for I(d), d = 1, 2, . . . , in terms of the decomposition of the

space H into the direct sum of d + 1 closed subspaces, that are defined recursively from the AR

operators, H = τ0 ⊕ τ1 ⊕ · · · ⊕ τd, where τ0 is closed and infinite dimensional and τh, is closed

and finite dimensional for h = 1, . . . , d. The infinite dimensional subspace τ0 ⊕ τ1 ⊕ · · · ⊕ τd−1 is

the cointegrating space of xt while the finite dimensional subspace τd is the attractor space of the

I(d) stochastic trends. Hence an H-valued cointegrated AR process xt has a finite number of I(d)

stochastic trends and infinitely many cointegrating relations.

The properties of 〈v, xt〉 vary with v in H: for v ∈ τ0, which is infinite dimensional, one can

combine 〈v, xt〉 with differences ∆nxt for n = 1, . . . , d − 1 to find I(0) polynomial cointegrating

relations, for v ∈ τ1, which is finite dimensional (and can as well be equal to 0), one can combine

〈v, xt〉 with with differences ∆nxt for n = 1, . . . , d−2 and find at most I(1) polynomial cointegrating

relations, and so on up to v ∈ τd−1, which is finite dimensional (and possibly of 0 dimension), for

which 〈v, xt〉 ∼ I(d− 1) does not allow for polynomial cointegration. When v ∈ τd, which is finite

dimensional and different from 0, one has 〈v, xt〉 ∼ I(d), i.e. there is no cointegration.

For any v in the cointegrating space, the explicit expression of the coefficients of the polynomial

cointegrating relations is provided in terms of operators that are defined recursively from the AR

operators together with the sequence of τh.

The present results show that the infinite dimensionality of the space does not introduce addi-

tional elements in the analysis, apart from the fact that the number of I(0) cointegrating relations

is infinite. That is, the conditions and properties of H-valued cointegrated AR process coincide

with those that apply in the finite dimensional case.

The present derivations parallel the development of the representation theory for finite dimen-

sional autoregressive processes developed by Johansen (1996) for the I(1) and I(2) cases and ex-

tended in Franchi and Paruolo (2016) to I(d) processes. The present treatment makes extensive

use of projection matrices in the ambient space, as well as of Moore-Penrose generalised inverses.

These tools have direct counterparts both in the finite dimensional case in Franchi and Paruolo

(2016) and in the present infinite dimensional space.

The rest of the paper is organized as follows: the remaining part of this introduction reports

notation and preliminaries; Section 2 presents basic definitions and concepts and Section 3 reports

an existence result. Section 4 provides a characterization of I(1) and I(2) cointegrated H-valued

AR processes, Section 5 extends the result to the general I(d), d = 1, 2, . . . , case and Section 6

concludes. Appendix A reviews notions and results on separable Hilbert spaces and on operators

acting on them, Appendix B presents basic facts on H-valued random variables and Appendix C

contains proofs.

Notation and preliminaries. In the present paper H is an infinite dimensional separable Hilbert

space with inner product 〈 · , · 〉 and norm ‖ · ‖, where separable means that H admits a countable
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orthonormal basis. A random variable that takes values in H is said to be an H-valued random

variable and a sequence of H-valued random variables is called an H-valued stochastic process.

Let B(H) be the (Banach) space of bounded linear operators from H to H and consider A ∈
B(H); the closed subspace {x ∈ H : Ax = 0}, written KerA, is called the kernel of A and the

subspace {Ax : x ∈ H}, written ImA, is called the image of A. The dimension of ImA, written

rankA, is called the rank of A. The set {v ∈ H : 〈v, y〉 = 0 for all y ∈ S ⊆ H} is called the

orthogonal complement of S, written S⊥, and PS denotes the orthogonal projection on S, i.e.

PSx = x for all x ∈ S and KerPS = S⊥.

Let z0 ∈ C and 0 < ρ ∈ R; the set {z ∈ C : |z−z0| < ρ} is called the open disc centered in z0 with

radius ρ, written D(z0, ρ). If a power series
∑∞

n=0An(z−z0)n, An ∈ B(H), is absolutely convergent

for all z ∈ D(z0, ρ), i.e. that
∑∞

n=0 ‖An‖|z − z0|n <∞ for all z ∈ D(z0, ρ), then
∑∞

n=0An(z − z0)n

converges in the operator norm to A(z) ∈ B(H), i.e. that ‖
∑N

n=0An(z − z0)n − A(z)‖ → 0 as

N → ∞ for all z ∈ D(z0, ρ). In this case, the operator function A(z) =
∑∞

n=0An(z − z0)n is said

to be absolutely convergent on D(z0, ρ).

Appendix A reviews notions and results on separable Hilbert spaces and on operators acting on

them and Appendix B presents the definitions of expectation, covariance and cross-covariance for

H-valued random variables.

2. Basic definitions and concepts

This section introduces stochastic processes that take values in a separable Hilbert space H and

presents the notions of weak stationarity, white noise, linear process, integration and cointegration.

The definitions of weak stationarity and white noise are taken from Bosq (2000) while those of

linear process, integration and cointegration are adapted from Johansen (1996) and are similar to

those employed in Beare et al. (2017).

Definition 2.1 (Weak stationarity). An H-valued stochastic process {εt, t ∈ Z} is said to be weakly

stationary if i) E(‖εt‖2) < ∞, ii) the expectation of εt does not depend on t and iii) the cross-

covariance function of εt and εs is such that cεt,εs(h, x) = cεt+u,εs+u(h, x) for all h, x ∈ H and all

s, t, u ∈ Z.

The basic notion of H-valued white noise is introduced next.

Definition 2.2 (White noise). An H-valued stochastic process {εt, t ∈ Z} is said to be a white

noise if i) 0 < E(‖εt‖2) <∞, ii) the expectation of εt is equal to 0, iii) the covariance operator of

εt does not depend on t, and iv) the cross-covariance function of εt and εs, cεt,εs(h, x), is equal to

0 for all h, x ∈ H and all s 6= t, s, t ∈ Z.

It is evident from the definition that any white noise is weakly stationary. The same property

applies to linear combinations of a white noise with suitable weights, which defines the class of

linear processes.
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Definition 2.3 (Linear process). An H-valued stochastic process {ut, t ∈ Z} is said to be a linear

process if

ut =
∞∑
n=0

Bnεt−n, B0 = I,

where {εt, t ∈ Z} is white noise, Bn : H → H is a bounded linear operator and B(z) =
∑∞

n=0Bnz
n

is absolutely convergent on D(0, ρ) for some ρ > 1.

As discussed in Section 7.1 in Bosq (2000), existence and weak stationarity of ut =
∑∞

n=0Bnεt−n

are guaranteed if
∑∞

n=0 ‖Bn‖2 <∞. Observe that the requirement that B(z) is absolutely conver-

gent D(0, ρ) for some ρ > 1 is stronger. In fact,
∑∞

n=0 ‖Bn‖|z|n < ∞ for all z ∈ D(0, ρ), ρ > 1,

implies that
∑∞

n=0 ‖Bn‖ is finite, so that
∑∞

n=0 ‖Bn‖2 is finite and ut in Definition 2.3 is a well

defined and weakly stationary process.

Moreover, the absolute convergence of B(z) implies that
∑∞

n=0Bnz
n = B(z) ∈ B(H) for all

z ∈ D(0, ρ), ρ > 1, so that B(1) =
∑∞

n=0Bn is a well defined bounded linear operator. This is

needed for the notions of integration and cointegration in Definition 2.4 below.

Finally note that the series obtained by termwise k times differentiation,
∑∞

n=k n(n−1) · · · (n−k+

1)Bnz
n−k, is absolutely convergent on D(0, ρ), ρ > 1, and coincides with the k-th derivative of B(z)

for each z ∈ D(0, ρ). Hence an absolutely convergent operator function is infinitely differentiable

on D(0, ρ). In the following ∆ := 1− L is the difference operator at frequency 0.

For simplicity, only the case of integration and cointegration at frequency 0 is considered in the

following; similar definitions hold for any other root on the unit circle.

Definition 2.4 (Integrated and cointegrated processes at frequency 0). A linear process ut =

B(L)εt is said to be integrated of order 0, written ut ∼ I(0), if B(1) =
∑∞

n=0Bn 6= 0. An H-

valued stochastic process {xt, t = 0, 1, . . . } is said to be integrated of order d (at frequency zero),

written xt ∼ I(d), if ∆dxt = B(L)εt ∼ I(0). An I(d) process xt is said to be cointegrated (at

frequency zero) if B(1) is non-invertible; in this case any non-zero vector v ∈ (ImB(1))⊥ is such

that 〈v, xt〉 ∼ I(d−j) for some j > 0 and any non-zero vector v ∈ ImB(1) is such that 〈v, xt〉 ∼ I(d).

(ImB(1))⊥ is called the cointegrating space of xt and ImB(1) is called the attractor space of the

I(d) trends.

Observe that I(0)-ness implies weak stationarity but not viceversa and that a white noise is

necessarily I(0). Also note that the notions of integration and cointegration in Definition 2.4 are

invariant to bounded linear invertible transformations of the process. That is, if xt ∼ I(d) and

A is a bounded linear invertible transformation then Axt ∼ I(d). Remark that the same invari-

ance property holds replacing A with A(z) =
∑∞

n=0Anz
n, An ∈ B(H), invertible and absolutely

convergent for all z ∈ D(0, ρ), ρ > 1.

The next definition introduces the class of processes that is studied in the present paper.
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Definition 2.5 (Cointegrated H-valued AR at frequency 0). Consider an H-valued AR process of

order s

xt = A◦1xt−1 + · · ·+A◦sxt−s + εt,

where A◦n : H → H, n = 1, . . . , s, is a bounded linear operator and {εt, t ∈ Z} is white noise as

in Definition 2.2, and define the AR operator function A(z) = I − A◦1z − · · · − A◦szs, z ∈ C. An

H-valued AR process A(L)xt = εt is said to be cointegrated (at frequency zero) if i) A(1) 6= 0, ii)

A(z) has an eigenvalue of finite type at z = 1, and iii) A(z) is invertible in the punctured disc

D(0, ρ) \ {1} for some ρ > 1.

Remark 2.6. Beare et al. (2017) consider H-valued AR processes Φ(L)xt = εt, Φ(z) = I − Φ1z −
· · · − Φkz

s, for which whenever Φ(z) is non-invertible one has either z = 1 or |z| > 1, and where

Φn are compact if s > 1. Hu and Park (2016) consider H-valued AR processes A(L)ft = εt,

A(z) = I −Az, such that A is compact and 1 is an isolated eigenvalue of A.

The present setup contains the ones considered in Beare et al. (2017) and Hu and Park (2016)

as special cases. In fact, because the sum of compact operators is compact, see Theorem 16.1 in

Chapter II in Gohberg et al. (2003), and I − B is Fredholm of index 0 if B ∈ B(H) is compact,

see Theorem 4.2 in Chapter XV in Gohberg et al. (2003), Φ(1) in Beare et al. (2017) and A(1) in

Hu and Park (2016) are Fredholm of index 0 and 1 is isolated, i.e. 1 is an eigenvalue of finite type.

For this reason both the processes considered by Beare et al. (2017) and Hu and Park (2016) are

cointegrated H-valued AR process in the sense of Definition 2.5. Hu and Park (2016) also discuss

estimators and asymptotic results for H-valued AR(1) models with a compact operator.

Remark 2.7. Chang et al. (2016), see their Assumption 2.1, study processes that satisfy ∆wt =

Φ(L)εt =
∑∞

n=0 Φnεt−n, where
∑∞

n=0 n‖Φn‖ < ∞ and Im Φ(1) is finite dimensional. As shown

below, a cointegrated H-valued AR process necessarily meets these requirements. Hence their

asymptotic analysis applies and their test can be employed in the present setup as well.

Remark 2.8. As shown in Chapter XI in Gohberg et al. (1990), the assumption that 1 is an

eigenvalue of finite type of A(z) implies that A(1) is Fredholm of index 0, which means that

dim KerA(1) and codim ImA(1) = dim(H/ ImA(1)) are finite and equal. Because KerA(1) is

finite dimensional, it is complemented, see Theorem 5.7 in Chapter XI in Gohberg et al. (2003),

and hence its orthogonal complement (KerA(1))⊥ is closed. Moreover, because H/ ImA(1) is

finite dimensional, ImA(1) is closed, see Corollary 2.3 in Chapter XI in Gohberg et al. (1990).

This shows that the subspaces ImA(1) and (KerA(1))⊥ are closed and infinite dimensional while

their orthogonal complements (ImA(1))⊥ and KerA(1) are closed and finite dimensional. Hence

(KerA(1))⊥ = ImA(1)∗, where A(1)∗ is the adjoint of A(1).



7

3. Existence results for cointegrated H-valued AR processes

This section presents an existence result in Theorem 3.1 for cointegrated H-valued AR processes

A(L)xt = εt. This result is a direct consequence of Theorem A.1 in Appendix A. Theorem 3.1

shows that xt ∼ I(d) for some d = 1, 2, . . . has necessarily finitely many I(d) trends, finitely many

I(j), 1 ≤ j ≤ d− 1, cointegrating relations and infinitely many I(0) cointegrating relations. Apart

from the fact that the number of I(0) cointegrating relations is infinite, this mirrors the finite

dimensional case in Franchi and Paruolo (2017).

Theorem 3.1 (Existence results for cointegrated H-valued AR processes). Let A(L)xt = εt be a

cointegrated H-valued AR process and assume that xt is I(d) for some d = 1, 2, . . . . Then there

exist integers 0 = j0 < j1 < j2 < · · · < jw = d and projections P0, P1, . . . , Pw such that

H = ImP0 ⊕ ImP1 ⊕ · · · ⊕ ImPw,

where ImP0, ImP1, . . . , ImPw are closed, dim ImP0 = ∞ and 0 < dim ImPh < ∞, h = 1, . . . , w.

In this case,

xt = C0sd,t + C1sd−1,t + · · ·+ Cd−1s1,t + C?(L)εt + v0, ImC0 = ImPw,

where sh,t =
∑t

i=1 sh−1,i ∼ I(h), s0,t = εt, C
?(L)εt is a linear process, and v0 collects initial

values. This shows that ImP0 ⊕ ImP1 ⊕ · · · ⊕ ImPw−1 is the cointegrating space of xt and ImPw

is the attractor space of the I(d) trends. Moreover, there exists an operator function G(z) =∑∞
n=0Gn(1− z)n, G0 = I, invertible and absolutely convergent for all z ∈ D(0, ρ), ρ > 1, such that

〈v, xt〉+

d−jh−1∑
n=1

〈v,Gn∆nxt〉

is I(jh) for all v ∈ ImPh.

Remark 3.2. In the I(1) case, one has w = 1, 0 = j0 < j1 = 1 in Theorem 3.1 and

xt = C0

t∑
i=1

εi + C?(L)εt + v0, ImC0 = ImP1, H = ImP0 ⊕ ImP1,

where C?(L)εt is a linear process, v0 collects initial values, ImPh, h = 0, 1 is closed, dim ImP0 =∞
and 0 < dim ImP1 < ∞. Because ImC0 = ImP1 one has that ImP0 is the cointegrating space of

xt and ImP1 is the attractor space of the I(1) trends. Moreover,

〈v, xt〉 ∼ I(0) for all v ∈ ImP0, 〈v, xt〉 ∼ I(1) for all v ∈ ImP1.

Observe that the number of I(1) trends in xt is equal to dim ImP1 and the number of I(0) cointe-

grating relations is equal to dim ImP0, so that xt has finitely many I(1) trends and infinitely many

I(0) cointegrating relations. This fact is also documented in Hu and Park (2016) and in Beare

et al. (2017). Apart from the fact that the number of I(0) cointegrating relations is infinite, this

echoes the finite dimensional case, see Theorem 4.2 in Johansen (1996).
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Remark 3.3. In the I(2) case, one has either w = 1 or w = 2. If w = 1, 0 = j0 < j1 = 2 and

xt = C0

t∑
s=1

s∑
i=1

εi + C1

t∑
i=1

εi + C?(L)εt + v0, ImC0 = ImP1, H = ImP0 ⊕ ImP1,

where C?(L)εt is a linear process, v0 collects initial values, ImPh, h = 0, 1 is closed, dim ImP0 =∞
and 0 < dim ImP1 < ∞. Because ImC0 = ImP1 one has that ImP0 is the cointegrating space of

xt and ImP1 is the attractor space of the I(2) trends. Moreover,

〈v, xt〉+ 〈v,G1∆xt〉 ∼ I(0) for all v ∈ ImP0, 〈v, xt〉 ∼ I(2) for all v ∈ ImP1.

Observe that the number of I(2) trends in xt is equal to dim ImP1 and the number of I(0) cointe-

grating relations is equal to dim ImP0, so that xt has finitely many I(2) trends and infinitely many

I(0) cointegrating relations. Futher observe that v is either not cointegrating (when v ∈ ImP1) or

it allows for polynomial cointegration (when v ∈ ImP0) of order 0.

In the I(2) case when w = 2, this does not hold; in fact, one has that 0 = j0 < j1 = 1 < j2 = 2

and

xt = C0

t∑
s=1

s∑
i=1

εi + C1

t∑
i=1

εi + C?(L)εt + v0, ImC0 = ImP2, H = ImP0 ⊕ ImP1 ⊕ ImP2,

where C?(L)εt is a linear process, v0 collects initial values, ImPh, h = 0, 1, 2 is closed, dim ImP0 =

∞ and 0 < dim ImPh < ∞, h = 1, 2. Because ImC0 = ImP2 one has that ImP0 ⊕ ImP1 is the

cointegrating space of xt and ImP2 is the attractor space of the I(2) trends. Moreover,

〈v, xt〉+ 〈v,G1∆xt〉 ∼ I(0) for all v ∈ ImP0, 〈v, xt〉 ∼ I(1) for all v ∈ ImP1

and 〈v, xt〉 ∼ I(2) for all v ∈ ImP2, so that there are cointegrating vectors that allow for polynomial

cointegration (when v ∈ ImP0) of order 0 and others that don’t (when v ∈ ImP1). Observe that

the number of I(2) trends in xt is equal to dim ImP2, the number of I(1) cointegrating relations

is equal to dim ImP1 and the number of I(0) cointegrating relations is equal to dim ImP0. Hence

xt has finitely many I(2) trends, finitely many I(1) cointegrating relations and infinitely many

I(0) cointegrating relations. Apart from the fact that the number of I(0) cointegrating relations is

infinite, this mimics the finite dimensional case, see Theorem 4.6 in Johansen (1996).

The same structure applies in general: from Theorem 3.1 one has that the number of I(d)

trends is equal to dim ImPd and the number of I(jh) cointegrating relations is equal to dim ImPh,

h = 0, . . . , w − 1. Because dim ImP0 = ∞ and 0 < dim ImPh < ∞, h = 1, . . . , w, xt has finitely

many I(d) trends, finitely many I(jh), h = 1, . . . , w − 1, cointegrating relations and infinitely

many I(0) cointegrating relations. As in the I(1) and I(2) cases above, the finite and the infinite

dimensional cases are similar, apart from the fact that the number of I(0) cointegrating relations

is infinite, see Theorem 3.3 in Franchi and Paruolo (2017).

Finally observe that Theorem 3.1 provides information about the existence of the projections

Ph, the dimensions of their images, the orders of integration jh, and the Gn operators which are
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relevant to describe the properties of a generic I(d) cointegrated H-valued AR process. However,

it is completely silent about how those relevant quantities are related to the structure of the AR

operators and how one can construct them in practice. Their form is described in Section 4 for the

I(1) and I(2) cases and in Section 5 for the generic I(d) case.

4. A characterization of I(1) and I(2) cointegrated H-valued AR processes

This section presents a characterization of I(1) and I(2) cointegrated H-valued AR processes

A(L)xt = εt. The I(1) case parallels the results in Beare et al. (2017), while the results for the I(2)

case are novel for the infinite dimensional case. All the relevant quantities are expressed in terms

of the coefficients of the expansion of the AR operator function A(z) = I −
∑s

n=1A
◦
nz

n around 1,

A(z) =

∞∑
h=0

Ah(1− z)h, Ah =

{
I −

∑s
n=1A

◦
n for h = 0

(−1)h+1
∑s−h

n=0

(
n+h
h

)
A◦n+h for h = 1, 2, . . .

. (4.1)

In Theorem 4.1 below a necessary and sufficient condition for xt ∼ I(1) is given in terms of the

decomposition of the space into the sum of two closed subspaces, H = τ0 ⊕ τ1, that are defined

using A0 and A1, see (4.2) and (4.3) below. The infinite dimensional cointegrating space coincides

with τ0 and the finite dimensional attractor space of the I(1) trends with τ1. In Remark 4.2 the

equivalence with the condition in Beare et al. (2017) is proved.

In Theorem 4.4 a necessary and sufficient condition for xt ∼ I(2) is given in terms of the

decomposition of the space into the sum of three closed subspaces, H = τ0 ⊕ τ1 ⊕ τ2, where τ2 is

defined in (4.4) below using A0, A1 and A2. The infinite dimensional cointegrating space coincides

with τ0⊕τ1 and τ2 is the finite dimensional attractor space of the I(2) trends. In τ0, which is infinite

dimensional, one finds the cointegrating vectors that allow for polynomial cointegration and in τ1,

which is finite dimensional (and can as well be equal to 0), those that don’t allow for polynomial

cointegration.

The following notation is employed: consider A0 in (4.1) and define

ζ0 = ImA0, ζ⊥0 = (ImA0)⊥, τ0 = (KerA0)⊥, τ⊥0 = KerA0. (4.2)

As shown in Remark 2.8, the assumption that 1 is an eigenvalue of finite type of A(z) implies that

the subspaces ζ0 and τ0 are closed and infinite dimensional, so that τ0 = (KerA0)⊥ = ImA∗0, while

their orthogonal complements ζ⊥0 and τ⊥0 are closed and finite dimensional. In the following, Px

indicates the orthogonal projection on x.

Theorem 4.1 (A characterization of I(1) cointegrated H-valued AR processes). Consider a coin-

tegrated H-valued AR process A(L)xt = εt, where A(z) is written as in (4.1). Let ζ0 and τ0 be as

in (4.2) and define

ζ1 = ImPζ⊥0
A1Pτ⊥0

, τ1 = (KerPζ⊥0
A1Pτ⊥0

)⊥. (4.3)

Then xt is I(1) if and only if

H = τ0 ⊕ τ1,
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called the I(1) condition, where τ0 and τ1 are closed, dim τ0 = ∞ and 0 < dim τ1 < ∞. In this

case,

xt = C0

t∑
i=1

εi + C?(L)εt + v0, ImC0 = τ1,

where C?(L)εt is a linear process and v0 collects initial values. This shows that τ0 is the cointegrating

space of xt and τ1 is the attractor space of the I(1) trends. Moreover,

〈v, xt〉 ∼ I(0) for all v ∈ τ0

and 〈v, xt〉 ∼ I(1) for all v ∈ τ1. Finally, the I(1) condition can be equivalently stated as H = ζ0⊕ζ1,

where ζ0 and ζ1 are closed, dim ζ0 =∞ and 0 < dim ζ1 <∞.

Remark 4.2. As shown next, the I(1) condition in Theorem 4.1 is equivalent to the I(1) condition

in Beare et al. (2017), H = ζ0⊕A1τ
⊥
0 , see their equation (4.15). First assume that H = ζ0⊕A1τ

⊥
0 ;

then I = Pζ0 + PA1τ⊥0
, so that I − Pζ0 = Pζ⊥0

= PA1τ⊥0
. This implies that A1τ

⊥
0 = Pζ⊥0

A1τ
⊥
0 =

ImPζ⊥0
A1Pτ⊥0

= ζ1. This shows that H = ζ0 ⊕ ζ1, i.e. the I(1) condition in Theorem 4.1 holds.

Conversely, assume that H = ζ0 ⊕ ζ1. Because ζ1 = ImPζ⊥0
A1Pτ⊥0

, one has that ζ⊥0 = ζ1 ⊆
ImA1Pτ⊥0

and hence dim ζ⊥0 ≤ dimA1τ
⊥
0 ; because dimA1τ

⊥
0 ≤ dim τ⊥0 = dim ζ⊥0 , one thus has

ζ1 = ImA1Pτ⊥0
= A1τ

⊥
0 . This shows that H = ζ0 ⊕ A1τ

⊥
0 , i.e. the I(1) condition in Beare et al.

(2017) holds.

Remark 4.3. In the finite dimensional case H = Rp, Franchi and Paruolo (2016) show that the I(1)

condition in Theorem 4.2 in Johansen (1996) can be equivalently stated as Rp = ζ0 ⊕ ζ1 = τ0 ⊕ τ1,

where ζh = span(αh), τh = span(βh), h = 0, 1, and the bases αh, βh are defined by the rank

factorizations A0 = α0β
′
0 and Pα⊥0

A1Pβ⊥0
= α1β

′
1, i.e. they are full column rank matrices that

respectively span the column space and the row space of the corresponding matrix. Apart from

the fact that dim ζ0 = dim τ0 = rankA0 is finite when H = Rp, this mirrors what happens in the

present infinite dimensional case.

The I(2) case is presented next.

Theorem 4.4 (A characterization of I(2) cointegrated H-valued AR processes). Consider a coin-

tegrated H-valued AR process A(L)xt = εt, where A(z) is written as in (4.1). Let ζ0 and τ0 be as

in (4.2), let ζ1 and τ1 as in (4.3) and let Z2 = ζ0 ⊕ ζ1 and T2 = τ0 ⊕ τ1; further define

ζ2 = ImPZ ⊥2
A2,1PT ⊥2

, τ2 = (KerPZ ⊥2
A2,1PT ⊥2

)⊥, A2,1 = A2 −A1Q0A1, Q0 = A+
0 ,

(4.4)

where Q0 is the generalized inverse of A0. Then xt is I(2) if and only if

H = τ0 ⊕ τ1 ⊕ τ2,
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called the I(2) condition, where τ0, τ1 and τ2 are closed, dim τ0 = ∞, 0 ≤ dim τ1 < ∞, and

0 < dim τ2 <∞. In this case,

xt = C0

t∑
s=1

s∑
i=1

εi + C1

t∑
i=1

εi + C?(L)εt + v0, ImC0 = τ2,

where C?(L)εt is a linear process and v0 collects initial values. This shows that τ0 ⊕ τ1 is the

cointegrating space of xt and τ2 is the attractor space of the I(2) trends. Moreover,

〈v, xt〉+ 〈v,Q0A1∆xt〉 ∼ I(0) for all v ∈ τ0, 〈v, xt〉 ∼ I(1) for all v ∈ τ1

and 〈v, xt〉 ∼ I(2) for all v ∈ τ2. Finally, the I(2) condition can be equivalently stated as H =

ζ0 ⊕ ζ1 ⊕ ζ2, where ζ0, ζ1 and ζ2 are closed, dim ζ0 =∞, 0 ≤ dim ζ1 <∞, and 0 < dim ζ2 <∞.

Remark 4.5. As shown in Theorem 3 in Chapter 9 in Ben-Israel and Greville (2003), if A ∈ B(H)

and ImA is closed, then its generalized inverse A+ exists and it is the unique solution of the

system AA+A = A,A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A. The assumption that 1 is an

eigenvalue of finite type of A(z) implies that ζ0 = ImA0 is closed, see Remark 2.8; hence Q0 exists

and it is unique.

Remark 4.6. In the finite dimensional case H = Rp, Franchi and Paruolo (2016) show that the I(2)

condition in Theorem 4.6 in Johansen (1996) can be equivalently stated as Rp = ζ0 ⊕ ζ1 ⊕ ζ2 =

τ0 ⊕ τ1 ⊕ τ2, where ζh = span(αh), τh = span(βh), h = 0, 1, 2, and the bases αh, βh are defined by

the rank factorizations A0 = α0β
′
0, Pα⊥0

A1Pβ⊥0
= α1β

′
1 and Pa⊥2

(A2 − A1Q0A1)Pb⊥2
= α2β

′
2, where

a2 = (α0, α1), b2 = (β0, β1) and Q0 = β0(β′0β0)−1(α′0α0)−1α′0. Again here, apart from the fact

that dim ζ0 = dim τ0 = rankA0 is finite when H = Rp, this is exactly what happens in the infinite

dimensional case.

Summing up, Theorem 4.1 shows that d = 1 if and only if 2 circumstances hold: the first, τ0 ⊂ H
(or equivalently ζ0 ⊂ H), establishes that d > 0 and the second, τ1 = τ⊥0 (or equivalently ζ1 = ζ⊥0 ),

establishes that d = 1. In τ0, which is infinite dimensional, one finds the I(0) cointegrating compo-

nents and in τ1, which is finite dimensional and different from 0, those that are not cointegrating.

The combinations of these circumstances makes up the I(1) conditions.

Similarly, Theorem 4.4 shows that d = 2 if and only if 3 circumstances hold: the first, τ0 ⊂ H

(or equivalently ζ0 ⊂ H), establishes that d > 0, the second, τ1 ⊂ τ⊥0 (or equivalently ζ1 ⊂ ζ⊥0 ),

establishes that d > 1 and the third, τ2 = (τ0 ⊕ τ1)⊥ (or equivalently ζ2 = (ζ0 ⊕ ζ1)⊥) establishes

that d = 2. In τ0, which is infinite dimensional, one finds the cointegrating components that allow

for polynomial cointegration of order 0, in τ1, which is finite dimensional (and can as well be equal

to 0), those that are I(1) and don’t allow for polynomial cointegration, and in τ2, which is finite

dimensional (and different from 0), those that are not cointegrating. The combinations of these

circumstances makes up the I(2) conditions.

As shown in the next section, this construction is true in the general I(d) case.
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5. The general result

This section extends the results in Section 4 to the general I(d), d = 1, 2, . . . , case. Theorem

5.4 provides a necessary and sufficient condition for an H-valued AR processes A(L)xt = εt to be

I(d) and it is shows that under this condition the space is decomposed into the sum of d+ 1 closed

subspaces, H = τ0⊕ τ1⊕· · ·⊕ τd, that are defined in terms of A0, A1, . . . , Ad in (4.1), see Definition

5.1 below. The infinite dimensional cointegrating space coincides with τ0 ⊕ τ1 ⊕ · · · ⊕ τd−1 and τd

is the finite dimensional attractor space of the I(d) trends. In τ0, which is infinite dimensional,

one finds the cointegrating vectors that allow for polynomial cointegration of order 0, in τh, h =

1, . . . , d−2, which is finite dimensional and can as well be equal to 0, those that allow for polynomial

cointegration of order h and in τd−1, which is finite dimensional and can as well be equal to 0, those

that are I(d − 1) and don’t allow for polynomial cointegration. Finally, in τd, which is finite

dimensional and different from 0, those that are I(d) and don’t allow for cointegration.

Definition 5.1 (ζh, τh subspaces and Qh, Ah,n operators). Consider a cointegrated H-valued AR

process A(L)xt = εt, where A(z) is written as in (4.1). Let

ζ0 = ImA0, τ0 = (KerA0)⊥, Q0 = A+
0 ,

where Q0 is the generalized inverse of A0, and for h = 1, 2, . . . define

Sh = PZ ⊥h
Ah,1PT ⊥h

, ζh = ImSh, τh = (KerSh)⊥, Qh = S+
h ,

where Qh is the generalized inverse of Sh,

Zh = ζ0 ⊕ · · · ⊕ ζh−1, Th = τ0 ⊕ · · · ⊕ τh−1,

and

Ah,n =

{
An for h = 1

Ah−1,n+1 +Ah−1,1
∑h−2

j=0 QjAj+1,n for h = 2, 3, . . .
, n = 1, 2, . . . .

Remark 5.2. As shown in Remark 2.8, the assumption that 1 is an eigenvalue of finite type of

A(z) implies that the subspaces ζ0 = ImA0 and τ0 = (KerA0)⊥ = ImA∗0 are closed and infinite

dimensional while their orthogonal complements ζ⊥0 = (ImA0)⊥ and τ⊥0 = KerA0 = (ImA∗0)⊥ are

closed and finite dimensional. This implies that the subspaces ζh, τh, h = 1, 2, . . . , are closed and

finite dimensional. Because ζh, h = 0, 1, . . . , is closed, the corresponding generalized inverse Qh,

h = 0, 1, . . . , exists and it is unique, see Remark 4.5.

Remark 5.3. By construction, for h 6= s, ζs is orthogonal to ζh and τs is orthogonal to τh; moreover,

it is possible that ζh, τh, h 6= 0, are equal to 0.

Theorem 5.4 (A characterization of I(d) cointegrated H-valued AR processes). Consider a coin-

tegrated H-valued AR process A(L)xt = εt, where A(z) is written as in (4.1), and let ζh, τh, Qh,

and Ah,n be as in Definition 5.1. Then xt is I(d) if and only if

H = τ0 ⊕ τ1 ⊕ · · · ⊕ τd,
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where τ0, τ1, . . . , τd are closed, dim τ0 =∞, 0 ≤ dim τh <∞ for any h 6= 0, d, and 0 < dim τd <∞.

In this case,

xt = C0sd,t + C1sd−1,t + · · ·+ Cd−1s1,t + C?(L)εt + v0, ImC0 = τd,

where sh,t =
∑t

i=1 sh−1,i ∼ I(h), s0,t = εt, C
?(L)εt is a linear process, and v0 collects initial values.

This shows that τ0 ⊕ τ1 · · · ⊕ τd−1 is the cointegrating space of xt and τd is the attractor space of

the I(d) trends. Moreover,

〈v, xt〉+
d−h−1∑
n=1

〈v,QhAh+1,n∆nxt〉 ∼ I(h) for all v ∈ τh, h = 0, . . . , d− 2,

〈v, xt〉 ∼ I(d− 1) for all v ∈ τd−1,

and 〈v, xt〉 ∼ I(d) for all v ∈ τd. Finally, the I(d) condition can be equivalently stated as H =

ζ0 ⊕ ζ1 ⊕ · · · ⊕ ζd, where ζ0, ζ1, . . . , ζd are closed, dim ζ0 = ∞, 0 ≤ dim ζh < ∞ for any h 6= 0, d,

and 0 < dim ζd <∞.

Remark 5.5. In the finite dimensional case H = Rp, Franchi and Paruolo (2016) show that d =

1, 2, . . . if and only if Rp = ζ0 ⊕ · · · ⊕ ζd = τ0 ⊕ · · · ⊕ τd, where ζh = span(αh), τh = span(βh),

h = 0, 1, . . . , and the bases αh, βh are defined by the rank factorizations Pa⊥h
Ah,1Pb⊥h

= αhβ
′
h, where

ah = (α0, . . . , αh−1), bh = (β0, . . . , βh−1), Qh = βh(β′hβh)−1(α′hαh)−1ζ ′h and Ah,1 is as in Definition

5.1. Again here, apart from the fact that dim ζ0 = dim τ0 = rankA0 is finite when H = Rp, this

mirrors what happens in the infinite dimensional case. Hence the infinite dimensionality of the

space does not introduce additional elements in the I(d) analysis.

Summing up, Theorem 5.4 shows that d = 1, 2, . . . if and only if d + 1 conditions hold: the

first, τ0 ⊂ H (or equivalently ζ0 ⊂ H), establishes that d > 0 and for h = 1, . . . , d − 1, τh ⊂
(τ0⊕ · · ·⊕ τh−1)⊥ (or equivalently ζh ⊂ (ζ0⊕ · · ·⊕ ζh−1)⊥), establishes that d > h and the last one,

τd = (τ0⊕· · ·⊕τd−1)⊥ (or equivalently ζd = (ζ0⊕· · ·⊕ζd−1)⊥), establishes the value of d = 1, 2, . . . .

The infinite dimensional cointegrating space coincides with τ0 ⊕ τ1 ⊕ · · · ⊕ τd−1 and τd is the finite

dimensional attractor space of the I(d) trends. In τ0, which is infinite dimensional, one finds the

cointegrating vectors that allow for polynomial cointegration of order 0, in τh, h = 1, . . . , d−2, which

is finite dimensional and can as well be equal to 0, those that allow for polynomial cointegration

of order h and in τd−1, which is finite dimensional and can as well be equal to 0, those that

are I(d − 1) and don’t allow for polynomial cointegration. The coefficients of the polynomial

cointegrating relations are QhAh+1,n, which are calculated recursively as in Definition 5.1.

6. Conclusion

The present paper characterizes the cointegration properties of anH-valued AR processA(L)xt =

εt under the assumptions that i) A(1) 6= 0, ii) A(z) has an eigenvalue of finite type at z = 1, and

iii) A(z) is invertible in the punctured disc D(0, ρ) \ {1} for some ρ > 1.
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A necessary and sufficient condition for xt ∼ I(d), d = 1, 2, . . . , is given and it is shown that

under this condition the space is decomposed into the sum of d + 1 closed subspaces that are

defined recursively from the AR operators, H = τ0 ⊕ τ1 ⊕ · · · ⊕ τd, where τ0 is closed and infinite

dimensional and τh, h = 1, . . . , d is closed and finite dimensional. The infinite dimensional subspace

τ0 ⊕ τ1 ⊕ · · · ⊕ τd−1 is the cointegrating space of xt while the finite dimensional subspace τd is the

attractor space of the I(d) stochastic trends. Hence an H-valued cointegrated AR process has a

finite number of I(d) trends and infinitely many cointegrating relations.

The properties of 〈v, xt〉 vary with v in the cointegrating space: for v ∈ τ0, which is infinite

dimensional, one can combine 〈v, xt〉 with differences of the process and find I(0) polynomial

cointegrating relations, for v ∈ τ1, which is finite dimensional and can as well be equal to 0,

one can combine 〈v, xt〉 with differences and find at most I(1) polynomial cointegrating relations,

and so on up to v ∈ τd−1, which is finite dimensional and can as well be equal to 0, for which

〈v, xt〉 ∼ I(d − 1) does not allow for polynomial cointegration. For any v in the cointegrating

space, the explicit expression QhAh+1,n of the coefficients of the polynomial cointegrating relations

is provided in terms of operators that are defined by the same recursion of the τh.

The present results show that the infinite dimensionality of the space does not introduce addi-

tional elements in the analysis, under the assumption that 1 is an eigenvalue of finite type of the AR

operator function and that no other non-zero eigenvalue of the AR operator lies within or on the

unit circle. That is, apart from the fact that the number of I(0) cointegrating relations is infinite,

the conditions and properties of H-valued cointegrated AR process coincide with those that apply

in the finite dimensional case.
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Appendix A. Separable Hilbert spaces and operators acting on them

This section reviews definitions (typewritten in italics) and basic facts on separable Hilbert spaces

and on operators that act on them. The material is based on Chapter I, II and XV in Gohberg

et al. (2003) and Chapter XI in Gohberg et al. (1990). This section also introduces the basic system

(A.2), which is central in the proofs in Appendix C, and a useful intermediate result in Lemma

A.2.

Let H be an Hilbert space; H is called separable if there exist vectors v1, v2, . . . which span a

subspace dense in H, i.e. every vector in H is the limit of a sequence of vectors in span(v1, v2, . . . ).

It can be shown that (only) separable Hilbert spaces have countable orthonormal bases and that a

closed subspace of a separable Hilbert space is separable. A separable Hilbert space H is said to

be the direct sum of subspaces M and N , written H = M ⊕N , if every vector v ∈ H has a unique

representation of the form v = x + y, where x ∈ M and y ∈ N . The dimension of N , written

codimM , is called the codimension of M and M is said to be complemented if N is closed.

Let H be a separable Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖; a function A

which maps H into H, A : H → H, is called a linear operator if for all x, y ∈ H and c ∈ C,

A(x+ y) = Ax+ Ay and A(cx) = cAx, where Az and A(z) both indicate the action of A on z. A

linear operator A : H → H is called bounded if sup‖x‖=1 ‖Ax‖ < ∞ and its norm ‖A‖ is given by

sup‖x‖=1 ‖Ax‖. The set of bounded linear operators which map H into H is denoted by B(H).

An operator A ∈ B(H) is said to be invertible if there exists an operator B ∈ B(H) such that

BAx = ABx = x for every x ∈ H; in this case B is called the inverse of A, written A−1. A ∈ B(H)

is said to be a projection if A2 = A and it can be shown that if A is a projection, KerA is

complemented, i.e. H = ImA⊕KerA and ImA = Ker(I −A) is closed.

An operator A ∈ B(H) is said to be Fredholm of index n(A) − d(A) if the numbers n(A) =

dim KerA and d(A) = codim ImA are finite. It can be shown that if H is finite dimensional, any

operator is Fredholm of index 0. Let D(u, ρ) = {z ∈ C : |z − u| < ρ} be the open disc centered in

u with radius ρ > 0 and let F : D(u, ρ) → B(H) be an absolutely convergent operator function; a

point z0 ∈ D(u, ρ) is said to be an eigenvalue of finite type of F (z) if F (z0) is Fredholm, F (z0)x = 0

for some non-zero x ∈ H and F (z) is invertible for all z in some punctured disc D(z0, ρ) \ {z0}. It

can be shown that if z0 is an eigenvalue of finite type then F (z0) is Fredholm of index 0.
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Let T,W : D(u, ρ)→ B(H) be absolutely convergent operator functions; T (z) is said to be locally

equivalent at z0 to W (z) if i) T (z) = E(z)W (z)G(z) in some disc D(z0, ρ) and ii) E(z) and G(z)

are invertible and absolutely convergent on D(z0, ρ).

Theorem A.1. Let T : D(u, ρ) → B(H) be an absolutely convergent operator function. Assume

that there exists z0 ∈ D(u, ρ) such that T (z0) 6= 0 is Fredholm of index 0 and non-invertible. Then

T (z) is locally equivalent at z0 to

W (z) = W0 +W1(z − z0)m1 + · · ·+Ws(z − z0)ms , WhWj = δhjWh,
s∑

h=0

Wh = I,

where m1 ≤ m2 ≤ · · · ≤ ms are positive integers, δhj is the Kronecker delta, W0,W1, . . . ,Ws are

mutually disjoint projections that decompose the identity, W0 is Fredholm of index 0 and W1, . . . ,Ws

have rank one. That is, there exists ρ > 0 such that

T (z) = E(z)W (z)G(z) for all z ∈ D(z0, ρ),

where E(z) and G(z) are invertible and absolutely convergent on D(z0, ρ). Hence T (z)−1 =

G(z)−1W (z)−1E(z)−1 has a pole of order d = ms at z0 and it admits representation

T (z)−1 =
∞∑
n=0

Un(z − z0)n−d, z ∈ D(z0, ρ) \ {z0}, (A.1)

where U0, . . . , Ud−1 are operators of finite rank and Ud is Fredholm of index 0.

Proof. See Theorem 8.1, Corollary 8.4 and eq.(2) in section XI.9 in Gohberg et al. (1990). �

Consistently with the terminology employed in the finite dimensional case, see Gohberg et al.

(1993), the operator function W (z), the positive integers m1 ≤ m2 ≤ · · · ≤ ms and the operator

functions E(z), G(z) are respectively called the local Smith factorization, the partial multiplicities

and extended canonical system of root functions of T (z) at z0.

Expanding T (z) around z0 as T (z) =
∑∞

n=0 Tn(z − z0)n and considering (A.1), one writes the

identity T (z)T (z)−1 = I = T (z)−1T (z) as the following linear systems in the Tn, Un operators

T0U0 = 0 = U0T0

T0U1 + T1U0 = 0 = U0T1 + U1T0

...

T0Ud−1 + · · ·+ Td−1U0 = 0 = U0Td−1 + · · ·+ Ud−1T0 (A.2)

T0Ud + T1Ud−1 + · · ·+ TdU0 = I = U0Td + U1Td−1 + · · ·+ UdT0

T0Ud+1 + T1Ud + · · ·+ Td+1U0 = 0 = U0Td+1 + U1Td + · · ·+ Ud+1T0

...

In the following, equations in the system (A.2) are indexed according to the highest value of the

subscript of Un; for instance the identity appears in equation d, which is the order of the pole.
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The equations that derive from T (z)T (z)−1 = I are called left versions and those that derive from

I = T (z)−1T (z) are called right versions; for instance T0Ud+T1Ud−1 + · · ·+TdU0 is the left version

of equation d.

Lemma A.2. Let T (z) be as in Theorem A.1 and define ζ0 = ImT0 and τ0 = (KerT0)⊥. Then U0

in (A.1) satisfies U0 = Pτ⊥0
U0 = U0Pζ⊥0

= Pτ⊥0
U0Pζ⊥0

6= 0.

Proof. The left version of equation 0, T0U0 = 0, implies that ImU0 ⊆ KerT0. Let τ0 = (KerT0)⊥,

so that τ⊥0 = KerT0, and define the associated orthogonal projections Pτ0 and Pτ⊥0
. Clearly

Pτ0 and Pτ⊥0
are disjoint and decompose the identity. Hence U0 = Pτ0U0 + Pτ⊥0

U0 = Pτ⊥0
U0.

Similarly, from the right version of equation 0, U0T0 = 0, one has ImT0 ⊆ KerU0. Defining

ζ0 = ImT0, so that ζ⊥0 = (ImT0)⊥, and the associated orthogonal projections Pζ0 and Pζ⊥0
, one has

U0 = U0Pζ0 + U0Pζ⊥0
= U0Pζ⊥0

and hence the statement. �

Appendix B. Random variables in separable Hilbert spaces

The following definitions are taken from Bosq (2000). Let H be a separable Hilbert space with

inner product 〈 · , · 〉, norm ‖ · ‖ and Borel σ-algebra σ(H) and let (Ω,A, P ) be a probability space.

A function Z : Ω → H is called an H-valued random variable on (Ω,A, P ) if it is measurable, i.e.

for every subset S ∈ σ(H), {ω : Z(ω) ∈ S} ∈ A. For a C-valued random variable U on (Ω,A, P ),

define E(U) =
∫

Ω U(ω)dP (ω); the expectation of an H-valued random variable Z, written µZ , is

defined as the unique element of H such that

E(〈h, Z〉) = 〈h, µZ〉 for all h ∈ H.

It can be shown that the existence of µZ is guaranteed by the condition E(‖Z‖) < ∞. The

covariance function of an H-valued random variable Z is defined as

cZ(h, x) = E(〈h, Z − µZ〉〈x, Z − µZ〉), h, x ∈ H.

It is immediate to see that cZ(h, x) = E(〈h, Z〉〈x, Z〉)−〈h, µZ〉〈x, µZ〉 = E(〈h, 〈x, Z〉Z〉)−〈h, µZ〉〈x, µZ〉.
If E(‖〈x, Z〉Z‖) <∞, the expectation of the H-valued random variable 〈x, Z〉Z exists and it is the

unique element of H such that E(〈h, 〈x, Z〉Z〉) = 〈h, µ〈x,Z〉Z〉 for all h ∈ H. One thus has

cZ(h, x) = 〈h, µ〈x,Z〉Z〉 − 〈h, µZ〉〈x, µZ〉, h, x ∈ H.

Because ‖〈x, Z〉Z‖ = |〈x, Z〉|‖Z‖ ≤ ‖x‖‖Z‖2, the existence of the covariance function of Z is

guaranteed by the condition E(‖Z‖2) < ∞. Define the operator CZ : H → H that maps x into

µ〈x,Z〉Z and rewrite the covariance function as

cZ(h, x) = 〈h,CZ(x)〉 − 〈h, µZ〉〈x, µZ〉, h, x ∈ H.

As Cz is completely determined by the covariance function, it is called the covariance operator of

Z. Similarly, the cross-covariance function of two H-valued random variables Z and U is defined
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as

cZ,U (h, x) = E(〈h, Z − µZ〉〈x, U − µU 〉), h, x ∈ H.

This completely determines the cross-covariance operators of Z and U , CZ,U and CU,Z , respectively

defined as the mappings x 7→ µ〈x,Z〉U and x 7→ µ〈x,U〉Z .

Appendix C. Proofs

Proof of Theorem 3.1. The result is a direct consequence of Theorem A.1 in Appendix A. By

definition, a cointegrated H-valued AR process A(L)xt = εt is such that A(1) 6= 0, A(z) has an

eigenvalue of finite type at z = 1 and A(z) is invertible in some punctured disc D(0, ρ)\{1}, ρ > 1.

Hence A(1) is Fredholm of index 0. Because A : C → B(H), one can apply Theorem A.1. This

states that there exists ρ > 0 such that

A(z) = E(z)W (z)G(z) for all z ∈ D(1, ρ), (C.1)

where E(z) and G(z) are invertible and absolutely convergent on D(1, ρ) and

W (z) = W0 +W1(1− z)m1 + · · ·+Ws(1− z)ms , WhWj = δhjWh,

s∑
h=0

Wh = I,

where the positive integers m1 ≤ m2 ≤ · · · ≤ ms are the partial multiplicities of A(z) at 1,

W0,W1, . . . ,Ws are mutually disjoint projections that decompose the identity, W0 is Fredholm of

index 0 and W1, . . . ,Ws have rank one.

Given that G0 = G(1) is invertible, one can normalize it to be equal to I, in fact A(z) =

E0(z)W0(z)G0(z), where E0(z) = E(z)G0, W0(z) = G−1
0 W (z)G0, and G0(z) = G−1

0 G(z) share

the same properties of E(z), W (z) and G(z) in (C.1). In the following one can set G(1) = I.

Moreover, A(z) is invertible in the punctured disc D(0, ρ) \ {1}, ρ > 1, and because A(z)−1 =

G(z)−1W (z)−1E(z)−1, this implies that E(z) and G(z) are invertible and absolutely convergent for

all z ∈ D(0, ρ), ρ > 1.

Let w be the number of distinct partial multiplicities and organize them as in

m1 = · · · = mq1︸ ︷︷ ︸
=j1

< mq1+1 = · · · = mq1+q2︸ ︷︷ ︸
=j2

< · · · < m∑w−1
i=1 qi+1 = · · · = ms︸ ︷︷ ︸

=jw

,

where qh is the number of partial multiplicities that are equal to the given value jh. This leads to

define the projections Ph as the sum of the projections Wn that load the same partial multiplicity

into W (z), i.e.

P1 = W1 + · · ·+Wq1 , P2 = Wq1+1 + · · ·+Wq1+q2 , . . . , Pw = W∑w−1
i=1 qi+1 + · · ·+Ws,

so that W (z) =
∑w

h=0 Ph(1−z)jh , where j0 = 0, P0 = W0 and Ph =
∑jh

n=1Wn+
∑h−1

i=1 qi
, h = 1, . . . , w.

Observe that PhPj = δhjPh and
∑w

h=0 Ph = I, where P0 has infinite rank q0 = dim ImP0 =∞ and

P1, . . . , Pw have finite rank qh. This leads to the direct sum decomposition

H = ImP0 ⊕ ImP1 ⊕ · · · ⊕ ImPw, (C.2)
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where ImP0 is closed because P0 is a projection. Substituting (C.1) in A(L)xt = εt and rearraging

one has

W (L)yt = ut, yt = G(L)xt, ut = E(L)−1εt,

and using W (z) =
∑w

h=0 Ph(1− z)jh and
∑w

h=0 Ph = I one finds

P0yt + ∆j1P1yt + · · ·+ ∆jwPwyt = P0ut + P1ut + · · ·+ Pwut,

where Phyt and Phut belong to ImPh. As a consequence of the direct sum decomposition in (C.2),

one has ∆jhPhyt = Phut and hence Phyt = Phujh,t + Phvh,0, where ujh,t ∼ I(jh) is the jh-th

cumulation of ut ∼ I(0) and vh,0 collects initial values. As yt =
∑w

h=0 Phyt =
∑w

h=0 Phujh,t +∑w
h=0 Phvh,0, one has

yt = P0uj0,t + P1uj1,t + · · ·+ Pwujw,t + v0, uh,t =
t∑
i=1

uh−1,i ∼ I(h), u0,t = ut ∼ I(0),

where v0 =
∑w

h=0 Phvh,0 collects initial values. This shows that yt = G(L)xt ∼ I(jw), qh =

dim ImPh is the number of I(jh) processes in yt and 〈v, yt〉 ∼ I(jh) if and only if v ∈ ImPh.

Because G(1) = I, xt = G(L)−1yt = yt + F1∆yt + . . . , where G(z)−1 = F (z) =
∑∞

n=0 Fn(1 − z)n,

one has

xt = (P0uj0,t + P1uj1,t + · · ·+ Pwujw,t + v0) + F1∆ (P0uj0,t + P1uj1,t + · · ·+ Pwujw,t + v0) + . . . ,

which shows that xt is I(jw), 〈v, xt〉 ∼ I(jw) if and only if v ∈ ImPw and hence ImP0 ⊕ ImP1 ⊕
· · · ⊕ ImPw−1 is the cointegrating space of xt. Finally, let nh = jw − jh and expand G(z) around 1

as G(z) =
∑nh−1

n=0 Gn(1− z)n + (1− z)nhG?nh
(z), where G0 = I and G?nh

(z) is absolutely convergent

on D(0, ρ), ρ > 1. Then

xt +G1∆xt + · · ·+Gnh−1∆nh−1xt = P0uj0,t + P1uj1,t + · · ·+ Pwujw,t + xjh,t + v0,

where xjh,t = −G?nh
(L)∆nhxt = −Gnh

∆nhxt + · · · = −Gnh
∆nhPwujw,t + · · · = −Gnh

Pwujh,t + . . .

is at most integrated of order jw − nh = jh, so that

Ph
(
xt +G1∆xt + · · ·+Gnh−1∆nh−1xt

)
= Ph (ujh,t + xjh,t) + Phv0.

Because ujh,t+xjh,t = (I−Gnh
Pw)ujh,t+ . . . , one has that 〈v, (ujh,t+xjh,t)x〉 6= 0 for any v ∈ ImPh

and any x ∈ ImP0 ⊕ · · · ⊕ ImPw−1. This shows that 〈v, xt〉 +
∑nh−1

n=1 〈v,Gn∆nxt〉 is I(jh) for all

v ∈ ImPh and completes the proof. �

Proof of Theorem 4.1. Replacing T with A and U with C in system (A.2), for d = 1 one has

A0C0 = 0 = C0A0

A0C1 +A1C0 = I = C0A1 + C1A0

A0C2 +A1C1 +A2C0 = 0 = C0A2 + C1A1 + C2A0

...



20

Because Pζ⊥0
A0 = 0 and C0 = Pτ⊥0

C0, see Lemma A.2, the left version of equation 1 implies

that (Pζ⊥0
A1Pτ⊥0

)C0 = Pζ⊥0
. This shows that if x ∈ ImPζ⊥0

then x ∈ ImPζ⊥0
A1Pτ⊥0

, i.e. ImPζ⊥0
⊆

ImPζ⊥0
A1Pτ⊥0

; because the reverse inclusion is clearly satisfied, one has that ImPζ⊥0
A1Pτ⊥0

= ImPζ⊥0
,

i.e. ζ1 = ζ⊥0 . Similarly, because A0Pτ⊥0
= 0 and C0 = C0Pζ⊥0

, see Lemma A.2, the right version

of equation 1 implies that C0(Pζ⊥0
A1Pτ⊥0

) = Pτ⊥0
. Hence if x ∈ KerPζ⊥0

A1Pτ⊥0
then x ∈ KerPτ⊥0

,

i.e. KerPζ⊥0
A1Pτ⊥0

⊆ KerPτ⊥0
; because the reverse inclusion is clearly satisfied, one has that

KerPζ⊥0
A1Pτ⊥0

= KerPτ⊥0
, so that (KerPζ⊥0

A1Pτ⊥0
)⊥ = (KerPτ⊥0

)⊥, i.e. τ1 = τ⊥0 . This shows that

if d = 1 then ζ1 = ζ⊥0 , τ1 = τ⊥0 , C0 = Pτ1C0Pζ1 , ImC0 = τ1 and KerC0 = ζ0. Finally note that

if d > 1, because the identity is in equation d, the same analysis leads to (Pζ⊥0
A1Pτ⊥0

)C0 = 0 and

C0(Pζ⊥0
A1Pτ⊥0

) = 0. In this case there exist a nonzero x ∈ ImC0 such that x ∈ KerPζ⊥0
A1Pτ⊥0

and

a nonzero y ∈ ImPζ⊥0
A1Pτ⊥0

such that y ∈ KerC0. i.e. τ1 ⊂ τ⊥0 and ζ1 ⊂ ζ⊥0 . This shows that

τ1 = τ⊥0 (or any of ζ1 = ζ⊥0 , ImC0 = τ1 and KerC0 = ζ0) is a necessary and sufficient condition for

d = 1.

Because ∆xt = C(L)εt ∼ I(0) and ImC0 = τ1, τ1 is the attractor space of the I(1) trends,

i.e. 〈v, xt〉 ∼ I(1) for all v ∈ τ1, and τ⊥1 = τ0 is the cointegrating space of xt. In order to

prove that 〈v, xt〉 ∼ I(0) for all v ∈ τ0, write Pτ0∆xt = Pτ0C0εt + Pτ0C1∆εt + C?(L)∆2εt, where

here and in the following C?(z), C??(z), C???(z) represent remaining terms. Because Pτ0C0 = 0,

Pτ0xt = Pτ0C1εt + C?(L)∆εt is a linear process. Next consider the generalized inverse of A0,

Q0 = A+
0 , and note that Q0A0 = Pτ0 , see Lemma C.1 below. From the left version of equation 1

one has Q0A0C1 +Q0A1C0 = Q0 and thus Pτ0C1 = Q0(I−A1C0); this implies that 〈v, Pτ0C1x〉 6= 0

for any v ∈ τ0 and any x ∈ ζ0, i.e. 〈v, xt〉 ∼ I(0) for all v ∈ τ0. �

Proof of Theorem 4.4. Replacing T with A and U with C in system (A.2), for d = 2 one has

A0C0 = 0 = C0A0

A0C1 +A1C0 = 0 = C0A1 + C1A0

A0C2 +A1C1 +A2C0 = I = C0A2 + C1A1 + C2A0

A0C3 +A1C2 +A2C1 +A3C1 = 0 = C0A3 + C1A2 + C2A1 + C3A0

...

From the proof of Theorem 4.1 one has that if d > 1 the left versions of equations 0 and 1 lead to

A0C0 = 0 and (Pζ⊥0
A1Pτ⊥0

)C0 = 0 and the right versions to C0A0 = 0 and C0(Pζ⊥0
A1Pτ⊥0

) =

0. Hence ImC0 ⊆ (KerA0 ⊕ KerPζ⊥0
A1Pτ⊥0

) = (τ0 ⊕ τ1)⊥ = T ⊥2 and KerC0 ⊇ (ImA0 ⊕
ImPζ⊥0

A1Pτ⊥0
) = (ζ0 ⊕ ζ1) = Z2. Hence C0 = PT ⊥2

C0 = C0PZ ⊥2
= PT ⊥2

C0PZ ⊥2
. Because Pζ⊥0

A0 =

0, the left version of equation 2 implies that Pζ⊥0
A1C1 +Pζ⊥0

A2C0 = Pζ⊥0
. Inserting I = Pτ0 +Pτ⊥0

in

the first term one has Pζ⊥0
A1C1 = Pζ⊥0

A1Pτ0C1+Pζ⊥0
A1Pτ⊥0

C1 and hence PZ ⊥2
A1C1 = PZ ⊥2

A1Pτ0C1,

because ImPζ⊥0
A1Pτ⊥0

= ζ1. Because Q0A0 = Pτ0 , see Lemma C.1 below, the left version of equa-

tion 1 implies Pτ0C1 = −Q0A1C0; hence one has Pζ⊥0
A1C1 = −Pζ⊥0 A1Q0A1C0 + Pζ⊥0

A1Pτ⊥0
C1 and
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thus Pζ⊥0
A1C1 + Pζ⊥0

A2C0 = Pζ⊥0
leads to

Pζ⊥0
A1Pτ⊥0

C1 + Pζ⊥0
A2,1C0 = Pζ⊥0

, A2,1 = A2 −A1Q0A1. (C.3)

Because Z2 = ζ0 ⊕ ζ1 and ImPζ⊥0
A1Pτ⊥0

= ζ1, one has PZ ⊥2
Pζ⊥0

A1Pτ⊥0
= 0. Hence substitut-

ing PZ ⊥2
Pζ⊥0

= PZ ⊥2
and C0 = PT ⊥2

C0 in (C.3), one finds (PZ ⊥2
A2,1PT ⊥2

)C0 = PZ ⊥2
. This

shows that ImPZ ⊥2
⊆ ImPZ ⊥2

A2,1PT ⊥2
; because the reverse inclusion is clearly satisfied, one

has that ImPZ ⊥2
A2,1PT ⊥2

= ImPZ ⊥2
, i.e. ζ2 = Z ⊥

2 . Similarly, the right version of equation

2 implies that C0(PZ ⊥2
A2,1PT ⊥2

) = PT ⊥2
, which shows that KerPZ ⊥2

A2,1PT ⊥2
⊆ KerPT ⊥2

; be-

cause the reverse inclusion is clearly satisfied, one has that KerPZ ⊥2
A2,1PT ⊥2

= KerPT ⊥2
, so that

(KerPZ ⊥2
A2,1PT ⊥2

)⊥ = (KerPT ⊥2
)⊥, i.e. τ2 = T ⊥2 . This shows that if d = 2 then ζ2 = Z ⊥

2 ,

τ2 = T ⊥2 , C0 = Pτ2C0Pζ2 , ImC0 = τ2 and KerC0 = Z2. Finally note that if d > 2, the same

analysis leads to (PZ ⊥2
A2,1PT ⊥2

)C0 = 0 and C0(PZ ⊥2
A2,1PT ⊥2

) = 0, i.e. to τ2 ⊂ T ⊥2 and ζ2 ⊂ Z ⊥
2 .

This shows that τ2 = T ⊥2 (or any of ζ2 = Z ⊥
2 , ImC0 = τ2 and KerC0 = Z2) is a necessary and

sufficient condition for d = 2.

Because ∆2xt = C(L)εt ∼ I(0) and ImC0 = τ2, τ2 is the attractor space of the I(2) trends, i.e.

〈v, xt〉 ∼ I(2) for all v ∈ τ2, and τ⊥2 = τ0⊕τ1 is the cointegrating space of xt. In order to prove that

〈v, xt〉 ∼ I(1) for all v ∈ τ1, write Pτ1∆2xt = Pτ1C0εt + Pτ1C1∆εt + C?(L)∆2εt. Because Pτ1C0 =

0, Pτ1∆xt = Pτ1C1εt + C?(L)∆εt is a linear process. Next consider the generalized inverse of

Pζ⊥0
A1Pτ⊥0

, Q1 = (Pζ⊥0
A1Pτ⊥0

)+, and note that Q1(Pζ⊥0
A1Pτ⊥0

) = Pτ1 and Q1Pζ⊥0
= Q1, see Lemma

C.1 below. From (C.3) one thus has Pτ1C1 = Q1(I −A2,1C0); this implies that 〈v, Pτ1C1x〉 6= 0 for

any v ∈ τ1 and any x ∈ ζ1, i.e. 〈v, xt〉 ∼ I(1) for all v ∈ τ1.

Finally, from Pτ0∆2xt = Pτ0C0εt +Pτ0C1∆εt +Pτ0C2∆2εt +C?(L)∆3εt, Pτ0C0 = 0 and Pτ0C1 =

−Q0A1C0, one has Pτ0∆2xt = −Q0A1C0∆εt + Pτ0C2∆2εt + C?(L)∆3εt. On the other hand,

Q0A1∆xt = Q0A1C0∆εt +Q0A1C1∆2εt + C??(L)∆3εt, and hence

Pτ0xt +Q0A1∆xt = (Pτ0C2 +Q0A1C1)εt + C???(L)∆εt

is a linear process. In order to see that 〈v, xt〉+ 〈v,Q0A1∆xt〉 ∼ I(0) for all v ∈ τ0, observe that the

left version of equation 2 implies Q0A0C2 +Q0A1C1 +Q0A2C0 = Q0 and hence Pτ0C2 +Q0A1C1 =

Q0(I − A2C0). Because 〈v, (Pτ0C2 + Q0A1C1)x〉 6= 0 for any v ∈ τ0 and any x ∈ ζ0 ⊕ ζ1, one has

〈v, xt〉+ 〈v,Q0A1∆xt〉 ∼ I(0) for all v ∈ τ0. �

The proof of Theorem 5.4 is based on Lemma C.2 below, which makes use of the following result.

Lemma C.1. Let Zh, Th, Sh, Qh, and Ah,n be as in Definition 5.1 and futher define PZ ⊥0
= PT ⊥0

=

I, A0,1 = A0 and S0 = PZ ⊥0
A0,1PT ⊥0

. Then QhSh = Pτh and QhPZ ⊥h
= Qh for h = 0, 1, . . . .

Proof. What follows holds for any h = 0, 1, . . . . Recall that ζh and τh are closed and the

corresponding generalized inverse Qh exists and it is unique, see Remark 5.2. From Theorem 3 in

Chapter 9 in Ben-Israel and Greville (2003), one has that if A ∈ B(H) and ImA is closed, then
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A+A = PImA∗ and KerA+ = KerA∗, so that QhSh = PImS∗h
and KerQh = KerS∗h. Because τh

is closed, one has that τh = (KerSh)⊥ = ImS∗h and hence QhSh = Pτh . Because ζh is closed, one

has that ζh = ImSh = (KerS∗h)⊥. Hence KerQh = KerS∗h = ζ⊥h ⊇ Zh = ζ0 ⊕ · · · ⊕ ζh−1, so that

(KerQh)⊥ ⊆ Z ⊥
h . This shows that QhPZ ⊥h

= Qh and completes the proof. �

Lemma C.2 (Subspace decomposition of system (A.2)). Let ζh, τh, Qh, and Ah,n be as in Defini-

tion 5.1 and replace T with A and U with C in system (A.2). Then equation n+ h ≤ d in system

(A.2) can be written as

PτhCn +Qh

n∑
k=1

Ah+1,kCn−k = δn+h,dQh, h = 0, 1, . . . , d− n, (C.4)

where δhj is the Kronecker delta, PZ ⊥0
= PT ⊥0

= I and A0,1 = A0. Moreover, A(z)−1 has a

pole of order d at z = 1 if and only if either of the following equivalent statements holds: i)

H = ζ0 ⊕ ζ1 ⊕ · · · ⊕ ζd, where ζ0, ζ1, . . . , ζd are closed, dim ζ0 = ∞, 0 ≤ dim ζh < ∞ for any

h 6= 0, d, 0 < dim ζd < ∞; ii) H = τ0 ⊕ τ1 ⊕ · · · ⊕ τd, where τ0, τ1, . . . , τd are closed, dim τ0 = ∞,

0 ≤ dim τh <∞ for any h 6= 0, d, 0 < dim τd <∞. Finally,

〈v, γh(z)A(z)−1〉, γh(z) = Pτh +Qh

d−h−1∑
n=1

Ah+1,n(1− z)n, (C.5)

has a pole of order h for all v ∈ τh, h = 0, 1, . . . , d.

Proof. The statement is divided into three parts: the first consists of (C.4), the second in i) and

ii) being necessary and sufficient conditions for a pole of order d at z = 1 in A(z)−1 and the third

of (C.5). The proof is thus split into three parts. Replace T with A and U with C in system (A.2).

The proof of the first part is by induction and consists in showing that the left version of equation

n ≤ d in system (A.2) can be written as(
PZ ⊥h

Ah,1PT ⊥h

)
Cn−h + PZ ⊥h

n−h∑
k=1

Ah+1,kCn−h−k = δn,dPZ ⊥h
, h = 0, 1, . . . , n, (C.6)

where PZ ⊥0
= PT ⊥0

= I and A0,1 = A0. Replacing n with n+ h in (C.6), one finds(
PZ ⊥h

Ah,1PT ⊥h

)
Cn + PZ ⊥h

n∑
k=1

Ah+1,kCn−k = δn+h,dPZ ⊥h
, h = 0, 1, . . . , d− n, (C.7)

and hence (C.4), which follows from Qh(PZ ⊥h
Ah,1PT ⊥h

) = Pτh and QhPZ ⊥h
= Qh, see Lemma C.1.

In order to show that (C.6) holds for h = 0, observe that the left version of equation n in

system (A.2) reads A0Cn +
∑n

k=1AkCn−k = δn,dI. By definition, PZ ⊥0
= PT ⊥0

= I, A0,1 = A0

and A1,k = Ak and this shows that (C.6) holds for h = 0. Next assume that (C.6) holds for

h = 0, . . . , `− 1 for some 1 < ` ≤ d; one wishes to show that it also holds for h = `. First note that

Qh(PZ ⊥h
Ah,1PT ⊥h

) = Pτh and QhPZ ⊥h
= Qh, see Lemma C.1, and thus the induction assumption

implies

PτhCn−h +Qh

n−h∑
k=1

Ah+1,kCn−h−k = δn,dQh, h = 0, 1, . . . , `− 1. (C.8)
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Next write (C.6) for h = `− 1,(
PZ ⊥`−1

A`−1,1PT ⊥`−1

)
Cn−`+1 + PZ ⊥`−1

n−`+1∑
k=1

A`,kCn−`+1−k = δn,dPZ ⊥`−1
,

where ImPZ ⊥`−1
A`−1,1PT ⊥`−1

= ζ`−1; pre-multiplying by PZ ⊥`
, where Z` = ζ0 ⊕ · · · ⊕ ζ`−1, and

rearranging one finds

PZ ⊥`
A`,1Cn−` + PZ ⊥`

n−∑̀
k=1

A`,k+1Cn−`−k = δn,dPZ ⊥`
(C.9)

Next consider T` = τ0 ⊕ · · · ⊕ τ`−1 and use projections, inserting I = PT`
+ PT ⊥`

between A`,1 and

Cn−` in U = PZ ⊥`
A`,1Cn−`; one finds

U =
(
PZ ⊥`

A`,1PT ⊥`

)
Cn−` + PZ ⊥`

A`,1PT`
Cn−` = U1 + U2.

Substituting PT`
= Pτ0 + · · · + Pτ`−1

, one has U2 = PZ ⊥`
A`,1

∑`−1
i=0 PτiCn−` and by the induction

assumption, replacing n with n− `+ h and h with i in (C.8) and rearraging, one finds

PτiCn−` = −Qi
n−∑̀
k=1

Ai+1,kCn−`−k + δn−`+i,dQi, i = 0, 1, . . . , `− 1.

Because n− `+ i ≤ n− 1 < d, δn−`+i,d = 0 for i = 0, 1, . . . , `− 1 and hence substituting in U2, one

finds

U2 = −PZ ⊥`

n−∑̀
k=1

(
A`,1

`−1∑
i=0

QiAi+1,k

)
Cn−`−k.

Substituting U = U1 + U2 one hence rewrites (C.9) as(
PZ ⊥`

A`,1PT ⊥`

)
Cn−` + PZ ⊥`

n−∑̀
k=1

A`+1,kCn−`−k = δn,dPZ ⊥`

where A`+1,k = A`,k+1 − A`,1
∑`−1

i=0 QiAi+1,k by definition. This shows that (C.6) holds for h = `

and completes the proof of the first part of the statement.

The proof of the second part consists in showing that i) and ii) are necessary and sufficient

conditions for a pole of order d at z = 1 in A(z)−1. First consider i). Assume that A(z)−1 has a

pole of order d at z = 1. Setting n = 0 and h = d in (C.7) one has
(
PZ ⊥d

Ad,1PT ⊥d

)
C0 = PZ ⊥d

, so

that ζd = ImPZ ⊥d
Ad,1PT ⊥d

⊇ ImPZ ⊥d
= Z ⊥

d = (ζ0 ⊕ · · · ⊕ ζd−1)⊥; because the reverse inclusion is

clearly satisfied, one has that ImPZ ⊥d
Ad,1PT ⊥d

= ImPZ ⊥d
, i.e. ζd = (ζ0 ⊕ · · · ⊕ ζd−1)⊥, and hence

H = ζ0 ⊕ ζ1 ⊕ · · · ⊕ ζd. Expand A(z) around 1 as A(z) =
∑∞

n=0An(1− z)n, where A0 = A(1) 6= 0

implies dim ζ0 > 0. Because 1 is an eigenvalue of finite type, A0 if Fredholm of index 0, which means

that dim KerA0 and codim ImA0 are finite and equal. Hence codim ImA0 = dim(ζ1 ⊕ · · · ⊕ ζd) is

finite dimensional (and closed) and hence it is complemented. That is, its orthogonal complement

ζ0 is closed (and infinite dimensional). This shows that ζ0, ζ1, . . . , ζd are closed, dim ζ0 = ∞ and

0 ≤ dim ζh < ∞ for any h 6= 0. Because dim ζd = 0 implies H = ζ0 ⊕ ζ1 ⊕ · · · ⊕ ζd−1, one

has dim ζd > 0. Finally observe that H = ζ0 ⊕ ζ1 ⊕ · · · ⊕ ζd, where ζ0, ζ1, . . . , ζd are closed,

dim ζ0 = ∞, 0 ≤ dim ζh < ∞ for any h 6= 0, d, 0 < dim ζd < ∞, implies that the identity is
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in equation d in system (A.2), i.e. that A(z)−1 has a pole of order d at z = 1. This completes

the proof of i). Next consider ii). Observe that (C.7) is based on the left version of system

(A.2). By performing a similar induction on the right version of system (A.2), one reaches the

right counterpart of (C.7), which implies C0

(
PZ ⊥h

Ah,1PT ⊥h

)
= δh,dPT ⊥h

for h = 0, 1, . . . , d, so

that τ⊥d = KerPT ⊥d
Ad,1PT ⊥d

⊆ KerPT ⊥d
= Td = τ0 ⊕ · · · ⊕ τd−1; because the reverse inclusion is

clearly satisfied, one has that KerPT ⊥d
Ad,1PT ⊥d

= KerPT ⊥d
, i.e. τ⊥d = τ0 ⊕ · · · ⊕ τd−1, and hence

H = τ0 ⊕ τ1 ⊕ · · · ⊕ τd. The statement follows by the same reasoning in the proof of i), replacing

codim ImA0 with dim KerA0 and ζ with τ . This completes the proof of the second part of the

statement.

The proof of the third part proceeds as follows. Write A(z)−1 =
∑∞

n=0Cn(1− z)n−d as

A(z)−1 = C0(1− z)−d +

d−h−1∑
n=1

Cn(1− z)n−d + (1− z)−hR0(z), R0(1) = Cd−h,

and pre-multiply by Pτh to find

PτhA(z)−1 = PτhC0(1− z)−d +
d−h−1∑
n=1

PτhCn(1− z)n−d + (1− z)−hPτhR0(z).

First consider h = 0, . . . , d− 1. Setting n = 0 in (C.4) one has PτhC0 = 0 and hence

PτhA(z)−1 =

d−h−1∑
n=1

PτhCn(1− z)n−d + (1− z)−hPτhR0(z). (C.10)

From (C.4), for n ≤ d− h one has PτhCn = −Qh
∑n

k=1Ah+1,kCn−k + δn+h,dQh and hence

d−h−1∑
n=1

PτhCn(1− z)n−d = −
d−h−1∑
n=1

(
Qh

n∑
k=1

Ah+1,kCn−k

)
(1− z)n−d,

because δn+h,d = 0 for n = 1, . . . , d− h− 1. Rearraging one thus finds

d−h−1∑
n=1

PτhCn(1− z)n−d = −Qh
d−h−1∑
k=1

Ah+1,k

(
d−h−1∑
n=k

Cn−k(1− z)n−d
)
.

Next write

(1− z)kA(z)−1 =

(
d−h−1∑
n=k

Cn−k(1− z)n−d
)

+ (1− z)−hRk(z), Rk(1) = Cd−h−k,

so that

d−h−1∑
n=1

PτhCn(1− z)n−d = −

(
Qh

d−h−1∑
k=1

Ah+1,k(1− z)k
)
A(z)−1 + (1− z)−hQh

d−h−1∑
k=1

Ah+1,kRk(z).

Substituting in (C.10) and rearraging one thus finds γh(z)A(z)−1 = (1− z)−hγ̃h(z), where

γh(z) = Pτh +Qh

d−h−1∑
k=1

Ah+1,k(1− z)k, γ̃h(z) = PτhR0(z) +Qh

d−h−1∑
k=1

Ah+1,kRk(z).
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Note that, because Rk(1) = Cd−h−k, one has

γ̃h(1) = PτhCd−h +Qh

d−h−1∑
k=1

Ah+1,kCd−h−k;

from (C.4) for n = d − h one finds PτhCd−h + Qh
∑d−h

k=1 Ah+1,kCd−h−k = Qh, so that γ̃h(1) =

Qh(I − Ah+1,d−hC0). Because 〈v, γ̃h(1)x〉 6= 0 for any v ∈ τh and any x ∈ ζh, one has that

〈v, γh(z)A(z)−1〉 has a pole of order h for all v ∈ τh, h = 0, . . . , d − 1. Finally consider h = d.

Setting n = 0 in (C.4) one has PτdC0 = Qd and this shows that 〈v,A(z)−1〉 has a pole of order d

for all v ∈ τd. This completes the proof. �

Proof of Theorem 5.4. Direct consequence of Lemma C.2. �
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