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This paper discusses the concept of cointegrating space for systems
integrated of order higher than 1. It is first observed that the notions of
(polynomial) cointegrating vectors and of root functions coincide. Sec-
ond, the cointegrating space is defined as a subspace of the space of
rational vectors. Third, it is shown that canonical sets of root functions
can be used to generate a basis of the cointegrating space. Fourth, re-
sults on how to reduce bases of rational vector spaces to polynomial
bases with minimal order – i.e. minimal bases – are shown to imply
the separation of polynomial cointegrating vectors that potentially do
not involve differences of the process from the ones that require them.
Finally, it is argued that minimality of polynomial bases and economic
identification of cointegrating vectors can be properly combined.
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1. INTRODUCTION

In their seminar paper, Engle and Granger (1987) introduced the notion of cointegration
and of cointegrating rank for processes integrated of order 1, or I(1). They did this in the
following way:1

Definition: The components of the vector xt, are said to be co-integrated of order d, b, denoted
xt ∼ CI(d, b), if (i) all components of xt, are I(d); (ii) there exists a vector β(6= 0) so that zt =
β′xt ∼ I(d− b), b > 0. The vector β is called the co-integrating vector.

[...]
If xt has p components, then there may be more than one co-integrating vector β. It is clearly
possible for several equilibrium relations to govern the joint behavior of the variables. In what
follows, it will be assumed that there are exactly r linearly independent co-integrating vectors, with
r ≤ p− 1, which are gathered together into the p× r array β. By construction the rank of β will be
r which will be called the ”co-integrating rank” of xt.

Engle and Granger (1987) did not define explicitly the notion of cointegrating space,
but just the cointegrating rank, which corresponds to its dimension; the explicit mention
of the cointegrating space was first made in Johansen (1988).

The Granger representation theorem in Engle and Granger (1987) showed that the
cointegration matrix β needs to be orthogonal to the Moving Average (MA) impact matrix
of ∆xt. More precisely, for ∆xt = C(L)εt, the MA impact matrix C(1) has rank equal to
p− r and representation C(1) = β⊥a

′, where β⊥ is a basis of the orthogonal complement
of the space spanned by β and a is full column rank.
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Johansen (1991, 1992) stated the appropriate conditions under which the Granger
representation theorem holds for I(1) and I(2) vector AutoRegressive processes (VAR)
A(L)xt = εt, where the AR impact matrix A(1) has rank equal to r < p and representa-
tion A(1) = −αβ′, with α and β of full column rank. He defined the cointegrating space
as B = span(β′), i.e. as the vector space generated by the row vectors β′j in β′ over the
field of reals R.2

Johansen (1991) noted that B is uniquely defined by the rank factorization A(1) = −αβ′,
but the choice of basis β′ is arbitrary, i.e. β′ is not identified. Hypotheses that do not
constraint B are hence untestable. He proposed likelihood ratio tests on B and described
asymptotic properties of a just-identified version of β′. Later Johansen (1995) discussed
the choice of basis β′ as an econometric identification problem of a system of cointegrating
relations describing the long-run, along the lines of the classical identification problem of
system of equation studied in econometrics since the early days of the Cowles Commission.

The observation in Johansen (1988) that the cointegrating vectors formed a vector space
B of 1× p real vectors (the rows in β′) over the field of reals R, a subspace of Rp, was an
important breakthrough. For instance, it provided the answer to the question: ‘how many
cointegrating vectors should one estimate in a given system of dimension p?’. A proper
answer is in fact: ‘a set of r linearly independent vectors, spanning the cointegrating space
B, i.e. a basis of B’.

Similarly, when assuming that a set of p interest rates followed an I(1) process, the
notion of cointegrating space B enables to answer questions like ‘How should one test
that all interest rates differentials are stationary?’. In fact, if all

(
p
2

)
= p(p− 1)/2 interest

rates differentials were stationary, then one should have cointegrating rank r = p−1, which
gives a first testable hypothesis on the cointegrating rank; moreover one does not need to
test all possible interest rates differentials to be stationary, but, if the cointegrating rank
has been found to be p−1, one needs to test that the cointegrating space is spanned by any
set of linearly independent r contrasts between pairs of interest rates. If the cointegrating
rank is found to be 0 < r < p− 1, one may still want to test the latter implication, since
this remains a restriction on the cointegrating space B. These questions, and many more,
found clear answers thanks to the introduction of the notion of cointegrating space.

The notion of cointegrating space, together with the complementary notion of attractor
space, has been recently discussed in the context of functional time series for infinite di-
mensional Hilbert space valued AR processes with unit roots, see Beare and Seo (2019);
Franchi and Paruolo (2019a), and for infinite dimensional Banach space valued AR pro-
cesses with unit roots, see Seo (2019).

For systems with variables integrated of order d, I(d), Granger and Lee (1989) and
Engle and Yoo (1991) introduced the related notions of multicointegration and polynomial
cointegration; see also Engsted and Johansen (2000). However, no proper discussion of
cointegrating spaces has been proposed in the literature for higher order systems.

The present paper closes this gap, making use of classical concepts in local spectral
theory, see Gohberg et al. (1993). A central role is played by canonical system of root
functions, which have already been exploited in Franchi and Paruolo (2011, 2016) to
characterize the inversion of a matrix function, and used in Franchi and Paruolo (2019b)
to derive the generalization of the Granger-Johansen representation theorem for I(d) pro-
cesses. These tools are employed here for the first time to discuss the definition of coin-

2Here, for any set of vectors a1, . . . , an, span(a1, . . . , an) is defined as the set {v : v =
∑n

j=1 aiui, ui ∈
F}, where F is the relevant field.
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tegrating space for I(d) processes, and to reduce bases to polynomial order to minimal
degree – i.e. minimal bases – along the lines of Forney (1975). Finally the paper dis-
cusses how minimality in the basis can be combined with economic restrictions to obtain
identification of the basis, using the results in Mosconi and Paruolo (2017).

The rest of the paper is organised as follows. Section 2 reports definitions of integration
and cointegration in I(d) systems. Section 3 defines root functions, whose properties are
discussed in Section 4. Section 5 defines the cointegration space as a subspace of the
space of rational vectors. Section 6 shows how canonical system of root functions provide
a polynomial basis for the cointegrating space. Section 7 discusses minimal bases and
Section 8 shows how to obtain minimal bases in the I(2) case. Section 9 discusses ways to
combine minimality with economic identification in the I(2) case. Section 10 concludes;
the Appendix reports some additional proofs.

2. SETUP AND DEFINITIONS

This section introduces notation and basic definitions of integrated and cointegrated
processes. Consider a white noise sequence εt with positive-definite covariance matrix Ω;
special cases are when εt is a martingale difference sequence with second moments, or
when εt is i.i.d. For simplicity, it is assumed here that {εt, t ∈ Z} is a p× 1 i.i.d. sequence
with E(εt) = 0 and E(εtε

′
s) = 0, s 6= t.

Consider next the linear process ut = E(ut) + C(L)εt, where C(z) be a p × n matrix
function with coefficient matrices with elements in R or C, analytic on D(0, ρ), ρ > 1,
with all minors not identically equal to 0, where D(zω, ρ) denotes the open disc {z ∈ C :
|z − zω| < ρ} with center zω ∈ C and radius ρ > 0.

The matrix function C(z) can be expanded around any interior point zω ∈ D(0, ρ)
because of analyticity of C(z) on it. In particular consider the point zω = eiω on the unit
circle at frequency ω, which lies inside D(0, ρ) because ρ > 1.

The following definition, which parallels Johansen (1996) Chapter 3, specifies the Iω(0)
class of processes as a subset of all linear processes built from the white noise sequence
εt, and introduces the notion of Iω(d) processes using the difference operator at frequency
ω, ∆ω := 1− e−iωL = 1− z−1ω L.

Definition 2.1 (Integrated processes at frequency ω) Let C(z) be analytic on D(0, ρ),
ρ > 1, and let εt be a white noise process. If {ut, t ∈ Z}, satisfies ut = E(ut) + C(L)εt,
then ut is called a linear process ; if, in addition,

(2.1) C(zω) 6= 0,

then ut is said to be integrated of order zero at frequency ω, indicated ut ∼ Iω(0).
Let d1, d2 be finite non-negative integers; if ∆d1

ω (xt − E(xt)) = ∆d2
ω (ut − E(ut)) where

ut ∼ Iω(0), then xt is said to be integrated of order d := d1− d2 at frequency ω, indicated
xt ∼ Iω(d); in this case xt has representation

(2.2) ∆d1
ω (xt − E(xt)) = ∆d2

ω C(L)εt,

where C(zω) 6= 0.

Remark 2.2 (Entries in C(z)) When ω differs from 0 or π, the point zω = eiω has a
nonzero complex part, and hence the matrix C(zω) in (2.1) has complex entries, even
when the matrix coefficients in the expansion of C(zω) around z = 0 are real. In the
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following, coefficient matrices are therefore understood to be complex unless otherwise
noted. In this context, the notation A′ indicates the conjugate transpose of A.

Following Gregoir (1999), the summation operator at frequency ω, is defined as

(2.3) Sωut := 1t>0

t∑
j=1

uje
−iω(t−j) − 1t<0

t+1∑
j=0

uje
−iω(t−j).

Basic properties of the operator are proved in Gregoir (1999); these include

(2.4) ∆ωSωut = ut, Sω∆ωut = ut − u0e−iωt.

Remark 2.3 (Cancellations of ∆ω) Take d1 = d2 = 1 in (2.2), which in this case reads
∆ωxt = ∆ωut with ut ∼ Iω(0). Applying the Sω operator on both sides one obtains
xt − x0e−iωt = ut − v0e−iωt.3 If one assigns the initial value of x0 equal to v0, one obtains
xt = ut, which corresponds to the cancellation of ∆ω from both sides of (2.2). The same
reasoning applies for generic d1, d2 > 0 to the cancellation of ∆min(d1,d2) from both sides
of (2.2).

Remark 2.4 (Initial values) Remark 2.3 shows that one can simplify powers of ∆ω

from both sides of (2.2) by properly assigning initial values; this cancellation is implicitly
assumed in the following, and deterministic terms arising from initial values are not made
explicit. The cancellation of powers of ∆ω is implicitly incorporated in the Definition 2.1
of Iω(d) processes.

Remark 2.5 (Negative orders) Note that d2 > 0 allows to define also negative orders
of integration. In the following, expression of the type xt ∼ Iω(−h) for positive h are
understood to mean xt = ∆h

ωut for ut ∼ Iω(0). Definition 3.3 in Johansen (1996) of an
I(d) process is found by setting ω = d2 = 0.

Cointegration is the property of (possibly polynomial) linear combinations of xt to have
a lower order of integration with respect to the original order of integration of xt.

Definition 2.6 (Cointegrating vectors at frequency ω) Let xt ∼ Iω(d) be as in Defi-
nition 2.1 and let b(z)′ =

∑∞
j=0 b

′
j(z − zω)j be a 1 × p row vector function, analytic on

D(zω, η) for some η > 0 with b(zω)′ 6= 0′; then b(L)′ is called a cointegrating vector at
frequency ω if b(L)′xt ∼ Iω(d− s), for some s > 0, i.e.

(2.5) b(L)′∆d
ω(xt − E(xt)) = ∆s

ωg(L)′εt, g(zω)′ 6= 0′.

The integer s is called the order of the cointegrating vector.

Remark 2.7 (Entries in cointegrating vectors) Similarly to Remark 2.2, the coefficient
vectors b′j in the expansion of b(z)′ around zω are in general complex.

Remark 2.8 (Relation to definitions in the literature) When s = 1 and ω = 0, Definition
2.6 reduces to the one in Engle and Granger (1987), Johansen (1988). When s > 1
and ω = 0, Definition 2.6 covers the definitions of multicointegration and polynomial
cointegration and in Granger and Lee (1989), Engle and Yoo (1991), Johansen (1996).
The present definitions are the ones used also in Franchi and Paruolo (2019b).

3This result is usually stated as xt = ut−a0 where a0 := x0− v0 is a generic constant, see e.g. Hannan
and Deistler (1988) eq. (1.2.15).
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Example 2.9 (I(1)) Following Johansen (1988), consider A(L)xt = εt with A(z) =
I +

∑k
j=1Aj(z − 1)j analytic on C. Assume also that detA(z) = 0 has only solutions

outside D(0, ρ), ρ > 1, or at z = 1. Johansen (1988) showed that for xt to be I(1) at
frequency ω = 0, a set of necessary and sufficient conditions are:

i) A(1) = −α0β
′
0 with α0, β0 full column rank matrices of dimension p× r0, r0 < p,

ii) Pα0⊥A1Pβ0⊥ = −α1β
′
1 of maximal rank r1 = p− r0.

In this case xt satisfies (2.2) for d1 = 1, d2 = 0.

Example 2.10 (I(2)) Following Johansen (1992), consider the same VAR process as in
Example 2.9. Johansen (1992) showed that for xt to be I(2) at frequency ω = 0, a set of
necessary and sufficient conditions are:

i) A(1) = −α0β
′
0 with α0, β0 full column rank matrices of dimension p× r0, r0 < p,

ii) Pα0⊥A1Pβ0⊥ = −α1β
′
1 with α1, β1 full column rank matrices of dimension p × r1,

r1 < p− r0,
iii) P(α0,α1)⊥(A2 + A1β̄0ᾱ

′
0A1)P(β0,β1)⊥ = −α2β

′
2 of maximal rank r2 = p− r0 − r1.

In this case xt satisfies (2.2) for d1 = 2, d2 = 0.

3. CANONICAL SYSTEM OF ROOT FUNCTIONS

Assume that xt ∼ Iω(d) with d > 0, i.e.

(3.1) ∆d
ω(xt − E(xt)) = C(L)εt, C(zω) 6= 0.

This section discusses the connection between cointegrating vectors, as defined in Defini-
tion 2.6, and (left) root functions, as defined below following the definition in Gohberg
et al. (1993).

Definition 3.1 (Root function) Let G(z) be a q×p matrix function, q ≤ p, analytic on
D(zω, η), η > 0, and of full rank except at the point z = zω. A 1× q row vector function
φ(z)′ analytic on D(zω, η) is called a root function of G(z) at zω if φ(zω)′ 6= 0′ and

φ(z)′G(z) = (z − zω)sφ̃(z)′, s > 0, φ̃(zω)′ 6= 0′.

The positive integer s is called the order of the root function φ(z)′ at zω.

It is immediate to see that a cointegrating vector is a root function of C(z) and vice
versa, i.e. that the two notions coincide, as stated in the following proposition.

Proposition 3.2 (Cointegrating vectors and root functions) b(L)′ is a cointegrating
vector at frequency ω if and only if b(z)′ is a root function of C(z) at zω = eiω.

Proof: Pre-multiplying (3.1) by b(L)′ one finds

(3.2) b(L)′∆d
ω(xt − E(xt)) = b(L)′C(L)εt,

One can have cancellation of some power of ∆ω from both sides of this equation, and
hence have cointegration, if and only if one can factor ∆s

ω from the r.h.s. of (3.2) for some
s > 0, i.e. if and only if

(3.3) b(z)′C(z) = (z − zω)sb̃(z)′ with s > 0 and b̃(zω)′ 6= 0′,

where (−zω)sb̃(z)′ = g(z)′ in (2.5). Note that (3.2) together with (3.3) is equivalent to
b(L)′xt ∼ Iω(d− s). Q.E.D.
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An extension of the results in Gohberg et al. (1993) shows that the order of a root
functions is finite, because it is bounded by the order of zω as a zero of all minors of G(z)
of order m ≤ p. This is reported in the next proposition.

Proposition 3.3 (Bound on the order of a root function) The order of a root function
of G(z) at zω is at most equal to the minimum among the orders of zω as a zero of all
possible minors of G(z) of order m ≤ p.

Proof: In case of a square matrix G(z), i.e. p = m, Gohberg et al. (1993) prove that
the order of root functions is less or equal to zω as a zero of detG(z); observe that the
statement in the proposition reduces to the same statement in the square case. Assume
now m < p. The root functions need to factorize (z−zω)s from all selections of m columns
from G(z). Applying the argument for the square matrix case to all these selections, one
obtains the statement. Q.E.D.

Next, canonical system of root functions for the matrix function C(z) in (3.1) at zω are
introduced, see Gohberg et al. (1993). Let G indicate the set of root functions. Choose
from G a root function φ1(z)′ of the highest order s1. Since the orders of the root functions
are bounded by Proposition 3.3, such a function exists. Next proceed by induction over
j = 2, . . . , choosing φj(z)′ ∈ G to be of the highest order sj such that φj(zω)′ is linearly
independent from φ1(zω)′, . . . , φj−1(zω)′. Because q := dim(ImC(zω))⊥ <∞, this process
ends with q root functions φ1(z)′, . . . , φq(z)′.

Note that the columns in a := (φ1(zω), . . . , φq(zω)) span the finite dimensional space
(ImC(zω))⊥, so that one can choose vectors (φq+1, . . . , φp) = a⊥ that span its orthogonal
complement. This construction leads to the following definition.

Definition 3.4 ((Extended) canonical system of root functions) Let φ1(z)′, . . . , φq(z)′

and φ′q+1, . . . , φ
′
p be constructed as above; then

 φ1(z)′

...
φq(z)′

 and



φ1(z)′

...
φq(z)′

φ′q+1
...
φ′p


are called a canonical system of root functions (respectively an extended canonical system
of root functions) of C(z) at zω of orders (s1, s2, . . . , sq) (respectively (s1, s2, . . . , sq, sq+1, . . . , sp))
with ∞ > s1 ≥ s2 ≥ · · · ≥ sq > 0 = sq+1 = · · · = sp.

Such a canonical system of root functions is not unique; in fact one could replace φ1(z)
with φ?1(z)′ := φ1(z)′ + zs1−s2φ2(z)′ obtaining, see (3.3),

φ?1(z)′C(z) = zs1φ̃′1(z) + zs1−s2+s2φ̃′2(z) = zs1φ̃?′(z)

where φ̃′?(z) := φ̃′?1 (z) + φ̃′?2 (z) with φ̃′?(zω) 6= 0′, because φ̃′?(zω) = 0 would contradict
the fact that s1 is maximal. This shows that φ′?1 (z) can replace φ′1(z).4

4Note that this case is covered by Proposition 4.5 below.
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While a canonical system of root functions (and also a canonical system of root func-
tions) is not unique, the orders s1 ≥ s2 ≥ · · · ≥ sq > 0 = sq+1 = · · · = sp are uniquely
determined by C(z), see Lemma 1.1 in Gohberg et al. (1993); they are called partial
multiplicities.

Finally, consider the local Smith factorization of A(z) at z = zω, see Gohberg et al.
(1993), i.e. the factorization

(3.4) A(z) = E(z)M(z)H(z),

where M(z) = diag((z − zω)κh)h=1,...,p is uniquely defined and contains the partial multi-
plicities κ1 ≤ · · · ≤ κp of A(z) at z = zω, where κh = sp+1−h, and the matrices E(z), H(z)
are analytic and invertible in a neighbourhood of z = zω and are non-unique. M(z) and
E(z), H(z) are respectively called the local Smith form and the canonical system of root
functions of A(z) at z = zω.5

Remark 3.5 (Extended canonical system of root functions in the I(1) case) In the I(1)
case, see Example 2.9, the orders of an extended canonical system of root functions of C(z)
at 1 are (s1, . . . , sr0 , sr0+1, . . . , sp) = (1, . . . , 1, 0, . . . , 0) and a possible choice of canonical
system of root functions corresponding to these unique orders is given by the p rows in
(β0, β1)

′.

Remark 3.6 (Extended canonical system of root functions in the I(2) case) In the I(2)
case, see Example 2.10, the orders of a canonical system of root functions of C(z) at 0 are
(s1, . . . , sr0 , sr0+1, . . . , sr0+r1 , sr0+r1+1, . . . , sp) = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) and a possible
choice of canonical system of root functions corresponding to these unique orders is given
by the p rows in (β0 + ∆β2δ

′, β1, β2)
′, where δ = ᾱ′0A1.

4. PROPERTIES OF ROOT FUNCTIONS

This section discusses properties of root function; in particular it shows that cointegrat-
ing vectors can be truncated to a polynomial without loss of generality. Consider the set
A of 1 × p row vectors b(z)′ = (f1(z), . . . , fp(z)) with elements fj(z) j = 1, . . . , p that
are scalar analytic functions of z for z ∈ D(zω, η), η > 0, fj(z) =

∑∞
h=0 fjh(z − zω)h and

fjh ∈ F , where F = R or C. Next denote by U the set of 1× p cointegrating vectors, i.e.
root functions, and observe that U ⊂ A.

Proposition 4.1 (Linear combinations with polynomial coefficients) Let b(z)′ ∈ U be
a cointegrating vector of order s and let c(z)′ ∈ A be any analytic vector function; then,
for m ≥ 1, the 1× p row vector a(z)′ with

a(z)′ = b(z)′ + (z − zω)mc(z)′

is still a cointegrating vector in U of order at least n = min(m, s). In particular, when
m = s, this implies that the truncation of b(z)′ to the polynomial b(s−1)(z)′ consisting of
the terms up to order s− 1 is still a root function of order at least s.

Proof: By definition, see (3.3), one has b(z)′C(z) = (z − zω)sb̃(z)′ with b̃(zω)′ 6= 0′.
Hence

a(z)′C(z) = b(z)′C(z) + (z − zω)mc(z)′C(z) = (z − zω)nã(z)′.

5Theorem 6.3 provides two constructions of the local Smith factorization.
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where ã(z)′ = (z − zω)s−nb̃(z)′ + (z − zω)m−nc(z)′C(z).
If ã(zω)′ 6= 0′, then a(z)′ is a root function of order n. If, instead, ã(zω)′ = 0′, then a(z)′

is a root function of order greater than n. This shows that a(z) is a root function of order
at least equal to n.

Next consider the special case m = s; expand b(z)′ around zω as b(z)′ =
∑∞

j=0 b
′
j(z−zω)j

and select c(z)′ = −
∑∞

j=s+1 b
′
j(z− zω)j−s. This shows that a(z)′ = b(z)′+ (z− zω)sc(z)′ =∑s−1

j=0 b
′
j(z − zω)j, the polynomial b(s−1)(z)′ of order s − 1 obtained by truncation of the

tail of b(z)′. Q.E.D.

The properties discussed in the previous proposition include several types of effects,
illustrated in the following examples.

Example 4.2 (Adding the tail) Take b(z)′ =
∑2

j=0 b
′
j(z−zω)j,m = 3, c(z)′ =

∑∞
j=3 c

′
j(z−

zω)j−3. One can see that b(z)′ + (z − zω)mc(z)′ =
∑∞

j=0 b
′
j(z − zω)j with b′j := c′j for

j = 3, . . . ,∞; in this case the operation b(z)′ + (z − zω)mc(z)′ is ’adding a tail’ to the
cointegrating vector b(z)′, where the ’tail’ is identified as the highest powers in z of the
polynomial. This operation preserves the fact that b(z)′ + (z − zω)mc(z)′ is still a cointe-
grating vector, possibly of higher order.

Example 4.3 (Mixing the tail) Take b(z)′ =
∑2

j=0 b
′
j(z−zω)j,m = 1, c(z)′ =

∑1
j=0 c

′
j(z−

zω)j; one obtains b(z)′+(z−zω)mc(z)′ = b′0 +(b′1 +c′0)z+(b′2 +c′1)z
2, where the coefficients

to the powers 1 and 2 of the resulting polynomial are mixed. This operation preserves the
fact that b(z)′ + (z − zω)mc(z)′ is still a cointegrating vector, possibly of lower order.

Example 4.4 (Cutting the tail) Use Example 4.3 above, choosing c′0 = −b′1 and c′1 =
−b′2; one obtains b(z)′ + (z − zω)mc(z)′ = b′0, so as to eliminate the powers 1 and 2
of the resulting polynomial. This operation preserves the fact that b(z)′ = b′0 is still a
cointegrating vector, with no polynomial part.

As the examples above illustrate, there is a close relation between a root function
b(z)′ :=

∑∞
j=0 b

′
j(z − zω)j and its truncation to a polynomial of degree s− 1, b(s−1)(z)′ :=∑s−1

j=0 b
′
j(z − zω)j, as described in the following proposition.

Proposition 4.5 (Truncation) One has the following properties:
(i) b(z)′ is a root function of C(z) at zω of order at least s if and only if b(s−1)(z)′ is a root
function of C(z) at zω of order at least s;
(ii) b(z)′ is a root function of C(z) at zω of order s if and only if b(s)(z)′ is a root function
of C(z) at zω of order s.

Proof: (i) Let C(z) :=
∑∞

j=0Cj(z − zω)j. By (3.3), one has

(4.1) b(z)′C(z) =
∞∑
h=0

b′h(z − zω)h
∞∑
j=0

Cj(z − zω)j =
∞∑
j=0

Wj(z − zω)j

where

(4.2) Wn =
n∑
j=0

b′hCn−h, n = 0, 1, . . .
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One can hence factor at least (z−zω)s from the r.h.s. if and only if W0 = · · · = Ws−1 = 0.
The statement follows from the fact that Wh for h = 0, . . . , s− 1 in (4.2) depend only on
b0, . . . , bs−1 that are common to b(z) and b(s−1)(z).

(ii) In (4.1) one can factor (z − zω)sb̃(z)′ with b̃(zω)′ 6= 0′ from the r.h.s. if and only if
W0 = · · · = Ws−1 = 0 and Ws 6= 0. Q.E.D.

Remark 4.6 (Irrelevance of higher order terms) Proposition 4.5 shows that the root
function b(z) of order s and its truncated version b(s)(z) are exangeable; all coefficients in
b(z) past order s are irrelevant.

Proposition 4.7 (Degree of root functions in canonical system of root functions) Let
b(z)′ :=

∑s
j=0 b

′
jz
j ∈ G be a root function in a canonical system of root functions of C(z)

at zω of order s; then its truncation b(s−1)(z)′ :=
∑s−1

j=0 b
′
jz
j to a polynomial of degree s−1

is still a root function of C(z) at 0 of the same order s.

Proof: The only addition to the proof of Proposition 4.5 is that the orders of b(z)′

and b(s−1)(z)′ are the same, which follows from the fact that s is maximal, and hence no
further cancellations are possible for b(s−1)(z)′. Q.E.D.

Note that b(z)′ and b(s−1)(z)′ share the same coefficients Wh for h = 0, . . . , s − 1 in
representation (4.1)-(4.2) and no further cancellations are possible in this direction. This
shows that b(s−1)(z)′ contains the relevant part of the same cointegrating relation.

Remark 4.8 (Equivalence classes - Part 1) Proposition 4.5 states that b(s)(z)′ can be
taken to represent all root function b(z)′ with the same coefficients up to order s and a
different tail. This set is an equivalence class, with representative element b(s)(z)′. This
observation suggests that, despite cointegrating vectors and root functions are analytic
functions, attention can be restricted to the polynomials b(s)(z)′ to represent all equivalent
analytic cointegrating vectors with different tails.

5. THE COINTEGRATING SPACE

This section defines the cointegrating space as a subspace of the space of rational vectors
in z over the field of rational scalars in z, where linear (sub-) spaces require the set of
scalar to be a field.

Denote by F the field of reals R or complex numbers C. Let F [z] indicate the polynomial
ring formed as the set of polynomials in z with coefficients in F . As it is well known, F [z]
is a ring but not a field, see e.g. Hungerford (1980) because polynomials, unlike rational
functions, lack the multiplication inverse.

Let F (z) denote the field of fractions of the polynomial ring F [z], i.e. the smallest
field containing all elements c(z) = a(z)/d(z), with d(z) 6= 0, where c(z) and d(z) are
polynomials in F [z].6

Remark 5.1 (Equivalence classes - Part 2) Observe that the element a(z)/d(z) ∈ F (z)
with d(z) 6= 0 represent an equivalence class of all ratios of polynomials f(z)/g(z) ∈ F (z)
such that a(z)g(z) = d(z)f(z). Because of this, the representative element a(z)/d(z) of

6Note that F (z) contains the multiplicative inverse; in fact every non-zero c(z) ∈ F (z) with repre-
sentation a(z)/d(z), with d(z) 6= 0 has multiplicative inverse d(z)/a(z), with a(z) 6= 0 (because c(z) is
non-zero).
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this equivalence class can be chosen with a(z) and d(z) relatively prime and d(z) monic;
this is assumed in the following.

Recall that a vector space involves a pair of sets (V , F ), where V is the set of vectors and
F is the field of scalars, equipped with the operations of vector addition and multiplication
by a scalar. In the present context, the field of scalars F is chosen equal to F (z), the field
of fractions of the polynomial ring F [z],7 and the set of vectors is selected as the set of
1 × p row vectors with elements in F (z), i.e. Q = F (z)p = F (z) × F (z) × · · · × F (z) (p
times).

The pair (Q, F (z)) is a vector space with the usual vector addition and multiplication
operations and it is the ambient space for the cointegrating space defined below; the
Appendix reports a verification of the closure of (Q, F (z)) with respect to these operations.

Remark 5.2 (Rational vectors with a common denominator) Note that the denomina-
tors in the elements of a(z)′ ∈ Q, a(z)′ = (f1(z), . . . , fp(z)), with fj(z) = cj(z)/dj(z), can
be grouped together considering the least common multiple d(z) of d1(z), . . . , dp(z), for
which d(z) = dj(z)hj(z), with hj(z) is a polynomial in F [z], so that

(5.1) a(z)′ =
1

d(z)
b(z)′ b(z)′ = (f1(z)h1(z), . . . , fp(z)hp(z)).

Note that d(z) and b(z)′ in (5.1) are relatively prime in the sense that no common factor
can be simplified between d(z) and all the elements in b(z)′.

One next needs to discuss cointegrating properties for rational row vectors a(z)′ =
b(z)′/d(z), see Definition 2.6. Consider some vector polynomial b(L)′ ∈ F [z]p satisfying
(3.1) in Definition 2.6 of cointegrating vector, i.e.

(5.2) b(L)′∆d
ω(xt − E(xt)) = (−zω∆ω)sb̃(L)′εt,

with b̃(zω)′ 6= 0′ and s > 0.
Next consider some scalar polynomial d(z) ∈ F [z] as denominator in a(z)′ = b(z)′/d(z).

In case d(zω) = 0, one can express d(z) as d(z) = (z − zω)nd̃(z) where d̃(zω) 6= 0; note
that this expression includes the case of d(zω) 6= 0 when setting n = 0. Multiplying both
sides of (5.2) by 1/d(L) for d(z) ∈ F [z], one finds that a(L)′∆d

ω(xt − E(xt)) equals

(5.3)
b(L)′

d(L)
∆d
ω(xt−E(xt)) =

b(L)′

d̃(L)
∆d−n
ω (xt−E(xt)) = (−zω)s∆s−n

ω

b̃(L)′

d̃(L)
εt,

b̃(zω)′

d̃(zω)
6= 0′.

Note that the difference between the orders of integration on the two sides of equation
(5.3) is still (d − n) − (s − n) = d − s, so that a(L)′ satisfies the requirements of a
cointegrating vector in Definition 2.6, and a(z)′xt ∼ I(d− s).

Remark 5.3 (Attention can be restricted to numerators) From the above, one hence
concludes that (5.3) holds iff (5.2) holds, i.e. the cointegration property for a rational row
vector a(z)′ is associated with the cointegration property for its row vector numerator
b(z)′.

7See Hungerford (1980) page 233.
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Remark 5.4 (Equivalence classes - Part 3) Another consequence of (5.2)-(5.3) is that all
rational vectors that have the same row vector numerator b(z)′ have the same cointegrating
properties; these form an equivalence class. Any vector with b(z)′ as numerator can be
taken to represent this equivalence class.

Because of (5.2)-(5.3), Q contains all rational 1×p row vectors a(z)′ = b(z)′/d(z) where
b(z)′ is a root function of C(z). Next define G as the set of root function of C(z) in (3.1)
and denote by B the smallest subset of Q containing G. One can prove the following
proposition.

Proposition 5.5 ((B, F (z)) is a subspace of (Q, F (z))) The pair (B, F (z)) forms a
linear subspace of the vector space (Q, F (z)).

Proof: Let a(z)′ = b(z)′/d(z) and g(z)′ = k(z)′/h(z) be vectors in B and let c(z) =
n(z)/m(z) be a scalar in F (z). Because a(z)′, g(z)′ ∈ B, one has that b(z)′ and k(z)′ are
root functions for C(z), respectively of order sb and sk. Because (Q, F (z)) is the ambient
vector space, one has that a(z)′ + g(z)′ ∈ Q; more precisely one finds

a(z)′ + g(z)′ =
b(z)′

d(z)
+
k(z)′

h(z)
=
h(z)b(z)′ + d(z)k(z)′

d(z)h(z)
=:

f(z)′

`(z)
, say

where f(z)′ := h(z)b(z)′+d(z)k(z)′ and `(z) := d(z)h(z) 6= 0 because both d(z), h(z) 6= 0.
Thanks to (5.2)-(5.3), in order to prove that a(z)′ + g(z)′ ∈ B it remains to show that
f(z)′ is a root function. One finds, letting s := min(sb, sk)

f(z)′C(z) = (z − zω)sbh(z)̃b(z)′ + (z − zω)skd(z)k̃(z)′ = (z − zω)sf̃(z)′,

where f̃(z)′ = (z−zω)sb−sh(z)̃b(z)′+(z−zω)sk−sd(z)k̃(z)′. This shows that f(z)′ is a root
function at least of order s := min(sb, sk), and hence a(z)′+ g(z)′ ∈ B. This shows that B
is a vector space, and a proper subspace of Q because B ⊂ Q; this completes the proof.
Q.E.D.

The previous proposition hence allows to formulate the following definition of cointe-
grating space.

Definition 5.6 (Cointegrating space at frequency ω) All nonzero row vectors in B
are cointegrating vectors, and the linear subspace (B, F (z)) of (Q, F (z)), is called the
’cointegrating space’.

Remark that in the I(1) case there is no need to consider polynomials, and the ambient
space is (Rp,R) or (Cp,C). In the I(2) case one needs to consider polynomials, and the
ambient space is (Q, F (z)).

6. THE LOCAL RANK FACTORIZATION PROVIDES A BASIS

This section shows that a canonical system of root functions ϕ(z)′ provides a basis for
the cointegrating space B, and it shows how to explicitly obtain a canonical system of
root functions for a generic AR process

(6.1) A(L)Xt = εt, A0 6= 0, |A0| = 0,

with A(z) analytic for all z ∈ D(0, δ), δ > 1, having roots at z = zω and at |z| > 1.
The first theorem states that ϕ(z)′ is a basis of the cointegrating space.
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Theorem 6.1 (A canonical system of root functions gives a basis of B) A canonical
system of root functions ϕ(z)′ gives a basis of the cointegrating space (B, F (z)).

Proof: One needs to prove that any root function can be obtained by taking linear
combinations of the rows in ϕ(z)′ with coefficients in F (z). Consider a root function b(z)′,

and observe that b(z)′C(z) = (z − zω)sb̃(z)′ for some s > 0 with b̃(zω)′ 6= 0′. This implies
that b(zω)′C(zω) = 0, i.e. that b(zω) ∈ (ImC(zω))⊥, where q := dim(ImC(zω))⊥.

Proceed by contradiction, assuming that b(z)′ cannot be obtained by taking linear com-
binations of the rows in ϕ(z)′ with coefficients in F (z), i.e. that v(z)′(ϕ(z), b(z))′ = 0 im-
plies v(z)′ = 0, where v(z)′ ∈ F (z)q+1. Hence v(zω)′(ϕ(zω), b(zω))′ = 0 implies v(zω)′ = 0,
with v(zω)′ ∈ F q+1. This implies that b(zω)′ is linearly independent from ϕ(zω)′, and this
contradicts the fact that q := dim(ImC(zω))⊥. Thus no root function b(z)′ exists that is
linearly independent form the canonical system of root functions ϕ(z)′. This completes
the proof. Q.E.D.

The rest of the section is devoted to the explicit construction of a canonical system of
root functions ϕ(z)′ for the AR process in (6.1). The derivation of the Granger represen-
tation theorem involves the inversion of the matrix function

(6.2) A(z) =
∞∑
n=0

An(z − zω)n, An ∈ Cp×p, A0 6= 0, |A0| = 0,

around the singular point z = zω ∈ D(0, δ). This includes the case of matrix polynomials
A(z), in which the degree of A(z) is finite, k say, with An = 0 for n > k, and A(z) is
analytic for all z ∈ C.

The inversion of A(z) around the singular point z = zω yields an inverse with a pole
of some order d = 1, 2, . . . at z = zω; an explicit condition on the coefficients {An}∞n=0 in
(6.2) for A(z)−1 to have a pole of given order d is described in Theorem 6.2 below; this is
indicated as the pole(d) condition in the following. Under the pole(d) condition, A(z)−1

has Laurent expansion around z = zω given by

(6.3) A(z)−1 =: (z − zω)−dC(z) =
∞∑
n=0

Cn(z − zω)n−d, C0 6= 0, |C0| = 0.

Note that C(zω) = C0 6= 0 and C(z) is expanded around z = zω. In the following, the
coefficients {Cn}∞n=0 are called the Laurent coefficients. The first d of them, {Cn}d−1n=0, make
up the principal part and characterize the singularity of A(z)−1 at z = zω.

The following result is taken from Franchi and Paruolo (2019b).

Theorem 6.2 (pole(d) condition) Let 0 < r0 := rankA0 < p, rmax
0 := p− r0 and define

α0, β0 by the rank factorization A0 = −α0β
′
0. Moreover, for j = 1, 2, . . . define αj, βj by

the rank factorization

(6.4) Paj⊥Aj,1Pbj⊥ = −αjβ′j, aj := (α0, . . . , αj−1), bj := (β0, . . . , βj−1),

where Px denotes the orthogonal projection onto the space spanned by x and

(6.5) Ah+1,n :=

{
An for h = 0

Ah,n+1 + Ah,1
∑h−1

i=0 β̄iᾱ
′
iAi+1,n for h = 1, 2, . . .

, n = 0, 1, . . . .
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Finally, let

(6.6) rj := rank(Paj⊥Aj,1Pbj⊥), rmax
j := p−

j−1∑
i=0

ri.

Then, a necessary and sufficient condition for A(z) to have an inverse with pole of order
d = 1, 2, . . . at z = zω – called pole(d) condition – is that{

rj < rmax
j (reduced rank condition) for j = 1, . . . , d− 1

rd = rmax
d (full rank condition) for j = d

.

Observe that because rankPaj⊥Aj,1Pbj⊥ = rank a′j⊥Aj,1bj⊥, one has rj = rank a′j⊥Aj,1bj⊥;
hence d = 1 if and only if

r1 = rmax
1 , where r1 = rankα′0⊥A1β0⊥ and rmax

1 = p− r0.

This corresponds to the condition in Howlett (1982, Theorem 3) and to the I(1) condition
in Johansen (1991, Theorem 4.1). Similarly, one has d = 2 if and only if r1 < rmax

1 ,

r2 = rmax
2 , where r2 = rank a′2⊥(A2 + A1β̄0ᾱ

′
0A1)b2⊥ and rmax

2 = p− r0 − r1,

which corresponds to the I(2) condition in Johansen (1992, Theorem 3).
Theorem 6.2 is thus a generalization of the Johansen’s I(1) and I(2) conditions and

shows that, in order to have a pole of order d in the inverse, one needs d+1 rank conditions
on A(z): the first j = 0, . . . , d − 1 are reduced rank conditions, rj < rmax

j , that establish
that the order of the pole is greater than j; the last one is a full rank condition, rd = rmax

d ,
that establishes that the order of the pole is exactly equal to d. These requirements make
up the pole(d) condition.

Theorem 6.3 (Local Smith factorization) For j = 0, . . . , d and n = 1, 2, . . . , define the
p× rj matrix functions γj(z) from

(6.7) γ′j,0 := β′j, γ′j,n := −ᾱ′jAj+1,n, γj(z)′ :=
∞∑
n=0

γ′j,n(z − zω)n,

and define the p× p matrix functions Γ(z) and Λ(z) from

(6.8)

Γ(z) :=

 γ0(z)′

...
γd(z)′

 , Λ(z) :=

 (z − zω)0Ir0
. . .

(z − zω)dIrd

 , Φ(z) = A(z)Γ(z)−1Λ(z)−1.

Then Γ(z),Φ(z) are analytic and invertible on D(zω, ρ◦) for some ρ◦ > 0 and one can
choose the factors E(z),M(z), H(z) in (3.4) as

E(z) = Φ(z), M(z) = Λ(z), H(z) = Γ(z).

That is, Λ(z) and Φ(z),Γ(z) are respectively the local Smith form and extended canonical
system of root functions of A(z) at zω.
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Theorem 6.3 shows that the lrf fully characterizes the elements of the local Smith
factorization of A(z) at zω. In fact, the values of j with rj > 0 in the lrf provide the
distinct partial multiplicities of A(z) at 1 and rj gives the number of partial multiplicities
that are equal to a given j; this characterizes the local Smith form Λ(z). Moreover, it also
provides constructions of extended canonical system of root functions.

Remark that the j-th block of rows in Γ(z)C(z) = (z−zω)dΛ(z)−1Φ(z)−1 can be written
as

(6.9) γj(z)′C(z) = (z − zω)d−jξj(z)′, j = 0, . . . , d,

where γj(zω)′ = β′j and ξj(zω)′ have full row rank; here ξj(z)′ denotes the corresponding
block of rows in Φ(z)−1. This shows that γj(z)′ are rj root functions of order d − j of
C(z).

The next result presents the Triangular representation.

Proposition 6.4 (Triangular representation) Let Xt in (6.1) satisfy the pole(d) con-
dition on A(z) and define

(6.10)

Γ◦(L) :=

(
ϕ(L)′

β′d

)
, ϕ(L)′ :=


γ
(d−1)
0 (L)′

γ
(d−2)
1 (L)′

...

γ
(0)
d−1(L)′

 =


β′0 +

∑d−1
k=1(−zω)kγ′0,k∆

k
ω

β′1 +
∑d−2

k=1(−zω)kγ′1,k∆
k
ω

...
β′d−1

 ,

where γ
(d−j−1)
j (z)′ =

∑d−j−1
k=0 γ′j,k(z − zω)k is the truncation of order d− j − 1 of the root

functions γj(z)′ in (6.7). Then Xt is I(d) and it admits the Triangular Representation

Λ(L)Γ◦(L)Xt ∼ I(0)

where no linear combination exists of the l.h.s. that is integrated of lower order.

Observe that ϕ(z)′ is not unique and not of minimal polynomial order, as discussed in
the next section. The following example applies the above concepts in the I(2) case.

Example 6.5 (I(2) example continued) Consider Example 2.10. Applying truncation
to the rows of (β0 + ∆β2δ

′)′, see Proposition 4.5, one finds that the columns in β′0 are
root functions of C(z) at 0 of order at least min(2, 1) = 1. Consider now one row in
(β0 + ∆β2δ

′ + ∆2A)′ for some matrix A; this root function is of order 2 by Proposition
3.6, and its truncation to degree 1, i.e. to the corresponding column of (β0 + ∆β2δ

′)′ is
still of order 2 by Proposition 4.7. Finally consider one row in (β0 + ∆A)′, which gives
a root function of order at least 1; its truncation to a polynomial of degree 0 gives the
corresponding row of β′0, which has order at least 1 by Proposition 4.5. In fact the rows
of β′0 give root functions of order equal to 1 or to 2, when the corresponding entries in δ
in (β0 + ∆β2δ

′)′ are equal to 0.

7. MINIMAL BASES

This section shows that when a rational basis exists for the cointegrating space (see
Theorem 6.1) the results in Forney (1975) can be applied to obtain polynomial bases of
minimal degree.
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Suppose that some r × p basis G(z), r < p, for a given vector space W of rational
vectors is given. In the following, the j-row of G(z) is indicated as gj(z)′, and it is the
j-th element of the basis. Various modifications of the original basis G(0)(z) are indicated
as G(h)(z) for h = 1, 2, 3.

Definition 7.1 (Degree of G(z)) If G(z) is polynomial, the degree of its j-th row
deg gj(z)′, is defined as the maximum degree of its elements, and the degree of G(z) is
defined as degG(z) :=

∑r
j=1 deg gj(z)′, i.e. the sum of the degrees of its rows.

In the following, the expansion of G(z) around any point z◦ is indicated as G(z) =∑n
h=0Gh(z− z◦)h, where Gh are r× p matrices and n := maxj=1,...,r deg gj(z)′. The reduc-

tion algorithm proposed by Forney (1975) page 497-498 consists of the following 3 steps;
indicate the initial basis as G(0)(z).

1. If G(0)(z) is not polynomial, multiply each row by its least common denominator to
obtain a polynomial basis G(1)(z).

2. Reduce the given polynomial basis G(1)(z) to a basis G(2)(z) for the module of 1× p
row vector polynomials that are numerators of vectors in W .

3. Reduce the resulting basis G(2)(z) to a basis G(3)(z) with a full-row-rank high order
coefficient matrix, i.e., a ”row proper” basis.

This procedure gives a final basis G(z) = G(3)(z) which has lowest degree, see Forney
(1975) Section 3. Each of these steps is described in more detail in the following, showing
how each step consists of a change of basis.

7.1. Step 1

If G(0)(z) is polynomial, the algorithm sets G(1)(z) = G(0)(z); otherwise G(0)(z) is ra-
tional, and its j-th row gj(z)′ has representation

(7.1) gj(z)′ =
bj(z)′

qj(z)

where bj(z)′ is a polynomial row vector and qj(z) is a scalar polynomials, and the elements
in bj(z) and qj(z) do not have common factors.8 Representation (7.1) can always be
achieved by choosing qj(z) as the least common denominator of the elements in bj(z), see
Remark 5.2.

The first step consist in computing

(7.2) G(1)(z) :=

 b1 (z)′

...
br (z)′

 =

 q1 (z)
. . .

qr (z)


 g1 (z)′

...
gr (z)′

 =: Q(z)G(0)(z)

which amounts in selection bj(z)′ as the rows of G(1)(z). One sees that G(1)(z) is obtained
by a change of basis from G(0)(z) with the pre-multiplication of the square polynomial
matrix Q(z).

7.2. Step 2

Consider G(1)(z), which is a polynomial basis of W . The second step consists in finding
the points in C for which this basis has reduced rank, and to use a rank factorization to

8qj(z) can be chosen to be monic.
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eliminate common polynomials from the basis. One can start by calculating the greatest
common divisor p(z) of all r × r minors of G(1)(z). If p(z) = 1 this step is complete, and
the algorithm sets G(2)(z) = G(1)(z); otherwise one needs to compute the zeros of p(z),
z1, . . . , zk say.

Consider a generic zero zh, and call S(z) the current basis; in the first instance S(z) =
G(1)(z). Observe that S(zh) has reduced rank, i.e. it has a rank factorization of the type
S(zh) = ahb

′
h, where ah is r×sh and of full column rank with sh < r.9 For simplicity assume

(or reorder) elements in the basis S(z) so as to have deg sj(z)′ ≥ deg sj+1(z)′, where sj(z)′

is the j-th row of S(z); this ensures that the row vector with highest polynomial degree
is listed first, and so forth.

Next, expand S(z) around z = zh; one finds

(7.3) S(z) = ahb
′
h +

n∑
j=1

Sj(z − zh)j.

This implies that

(7.4) a′h⊥S(z) =

 (z − zh)n1

. . .

(z − zh)nr−sh

 S̃(z) =: Hh(z)S̃(z)

for some n1 ≥ · · · ≥ nr−sh ≥ 1. In fact, because of orthogonality one has a′h⊥ah = 0;
moreover, a′h⊥ may annihilate also other terms Sj in the expansion (7.3), but this is not
indicated explicitly here for simplicity.

The resulting basis is constructed as follows

(7.5) R(z) = Qh

(
Hh(z)−1a′h⊥

ā′h

)
︸ ︷︷ ︸

Kh(z)

S(z) = Qh

(
S̃(z)
ā′hS(z)

)

where Qh is a permutation matrix that ensures that the rows of the basis R(z) with higher

degree come first. Note that S̃(z) has lower degree than a′h⊥S(z), see (7.4), and ā′hS(z)
does not imply any changes in the degree; this implies that degR(z) < degS(z).

This process is repeated setting S(z) equal to the current new basis R(z) and selecting
a new zero zh, until R(z) has full row rank for all z ∈ C. The final basis has representation

(7.6) G(2)(z) = K(z)G(1)(z), K(z) :=

q∏
h=1

Kh(z),

where h = 1, . . . , k enumerate all steps of type (7.5). One sees that G(2)(z) is obtained by
a change of basis from G(1)(z) with the pre-multiplication of the square rational matrix
K(z), i.e. that also this step produces a change of basis, which eliminates all common
polynomials with zeros in the complex plane C.

9Forney (1975) replaces one row vector of the basis at a time. Here these steps are aggregated into the
substitution of several row vectors at a time.
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7.3. Step 3

The last step eliminates common polynomials with zeros at infinity. Consider the polyno-
mial basis G(2)(z) =

∑n
j=0G

(2)
j zj where n := maxj=1,...,r deg gj(z)′, where gj(z)′ is the j-th

row of G(2)(z). Consider G
(2)
n ; if this matrix is of reduced rank, s < r say, then one can re-

duce the degree of G(2)(z) further, otherwise the algorithm stops setting G(3)(z) = G(2)(z).

Let G
(2)
n = ab′ be the rank factorization of the coefficient of degree n; one can compute

the minimal basis G(3)(z) as G(3)(z) = UG(2)(z) =
∑n

j=0G
(3)
j zj where

(7.7) U :=

(
ā′

a′⊥

)
and G(3)

n = UG(2)
n =

(
b′

0

)
.

The degree of G(3)(z) is lower than the one of G(2)(z) by r − s, and because b′ has full
rank, the degree of the basis cannot be reduced further.

One sees that G(3)(z) is obtained by a change of basis from G(2)(z) with the pre-
multiplication of the square matrix U . Overall, the procedure in Forney (1975) calculates

G(3)(z) = UK(z)Q(z)︸ ︷︷ ︸
M(z)

G(0)(z)

where M(z) = UH(z)Q(z) is a square matrix of rational functions that performs a change
of basis from the initial basis G(0)(z) to a minimal one G(3)(z), where K(z) is defined in
Step 2 see (7.6) and Q(z) is defined in Step 1 see (7.2).

8. FROM CANONICAL SYSTEM OF ROOT FUNCTIONS TO MINIMAL BASES IN THE I(2)
CASE

One can note that ϕ(z)′ in the triangular representation in Proposition 6.4 is not neces-
sarily of minimal order. The algorithm of Forney in Section 7 can be applied to each block
of rows in ϕ(z)′ in (6.10) to reduce the basis to minimal order. This section illustrates this
procedure in the I(2) example, and shows that this delivers the separation of the cases of

1. non-polynomial cointegrating relations reducing the order of integration from 2 to
0;

2. polynomial cointegrating relations reducing the order of integration from 2 to 0.
Remark that the process of obtaining minimal bases does not lead to a unique basis,

which leaves open the possibility to further restrict the basis using economic rationale,
as discussed in Johansen (1995) for I(1) and in Mosconi and Paruolo (2017) for I(d)
processes, d > 1. Sometimes, obtaining a minimal basis may be at variance with economic
interpretation; in this case one can choose how to best combine requirements of minimality
with economic interpretability.

8.1. Step 1 in I(2)

Consider the triangular representation of an I(2) system, see (6.10):

(8.1) Γ◦(z) :=

(
ϕ(z)′

β′2

)
, ϕ(z)′ :=

(
γ
(1)
0 (z)′

γ
(0)
1 (z)′

)
=

(
β′0 + γ′0,1(z − zω)

β′1

)
,

to which the procedure of Forney (1975) can be applied only to γ
(1)
0 (z)′ because γ

(0)
1 (z)′ =

β′1 is already of minimal degree, equal to 0.
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Set G(0)(z) = γ
(1)
0 (z)′ = β′0 + γ′0,1(z − zω), where γ′0,1 = −ᾱ′0A1, see (6.5) and (6.7),

and note that G(0)(z) is already polynomial. Hence, Step 1 does not apply, and G(1)(z) =
G(0)(z).

8.2. Step 2 in I(2)

Next consider Step 2, and equation (7.3). One wishes to find some zero zh and some
corresponding a′h⊥ so as to satisfy (7.3). Denoting v′ = a′h⊥ and u = zh − zω, a generic
zero zh of S(z) = G(1)(z) satisfies v′S(zh) = 0, i.e.

(8.2) v′(β′0 − ᾱ′0A1u) = 0,

where u is a scalar. Note that u = 0 is not a possible zero of S(z), because S(zω) = β′0 is
of full row rank, so that u 6= 0.

Post-multiplying (8.2) by the square non-singular matrix (β̄0, β̄1, β̄2) one finds

v′ᾱ′0A1β̄0 = λv′, λ := u−1 6= 0,(8.3)

v′ᾱ′0A1β̄1 = 0,(8.4)

v′ᾱ′0A1β̄2 = 0,(8.5)

where λ = u−1 6= 0 in (8.3) because u ∈ C; note also that u 6= 0 has been simplified in
(8.4) and (8.5). This proves the following proposition.

Proposition 8.1 (Step 2 condition in I(2)) A necessary and sufficient condition for
Step 2 to be non-empty is that (8.3), (8.4) and (8.5) hold simultaneously, i.e. that (λ, v′j)
is a non-zero eigenvalue - left eigenvector pair10 of ᾱ′0A1β̄0, where v′j is the j-th row in v′,
and that the left eigenvectors v′ are orthogonal to ᾱ′0A1(β̄1, β̄2).

Observe that from (8.2), with u = zh − zω, one finds
v′S(z) = v′β′0 − v′ᾱ′0A1(z − zω) = v′β′0 − v′ᾱ′0A1(z − zh + u),

= v′ (β′0 − ᾱ′0A1u)− v′ᾱ′0A1 (z − zh) = −v′ᾱ′0A1 (z − zh)(8.6)

so that S̃(z) = −v′ᾱ′0A1 and Hh(z) = z − zh in (7.4).
Eq. (7.5) asks to replace r0− sh rows in S(z), which all have degree equal to 1, with the

r0 − sh rows in S̃(z) = −v′ᾱ′0A1, which all have degree equal to 0. Note that from (8.3)
one finds that v′ᾱ′0A1Pβ0 = λv′β′0, i.e. v′ᾱ′0A1 = λv′β′0 because Pβ0 = I − Pβ1 − Pβ2 and
because of (8.4) and (8.5). Hence these cointegrating relations are in the span of β′0, and
one finds

(8.7)

R(z) =

(
0 Ish

Ir0−sh 0

)(
−v′ᾱ′0A1

v′⊥β
′
0 − v′⊥ᾱ′0A1(z − zω)

)
=

(
v′⊥β

′
0 − v′⊥ᾱ′0A1(z − zω)
−λv′β′0

)
.

One can hence replace γ
(1)
0 (z)′ with any multiple of R(z), γ̃

(1)
0 (z)′ say. This implies that

the extended canonical system of root functions Γ◦(z) in the triangular representation can
be replaced by

(8.8) Γ̃(z) :=

(
ϕ̃(z)′

β′2

)
, ϕ̃(z)′ =

(
γ̃
(1)
0 (z)′

γ
(0)
1 (z)′

)
=

 v′⊥β
′
0 − v′⊥ᾱ′0A1(z − zω)

v′β′0
β′1

 ,

where the factor −λ 6= 0 has been eliminated from the second block.

10Note that all left eigenvectors v′j are associated with the same eigenvalue λ.
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Remark 8.2 (Separation between CI(2,2) and polynomial cointegration - part 1) Note

that the degree of γ̃
(1)
0 (z)′ is lower than the one of γ

(1)
0 (z)′, while maintaining the property

that γ̃
(1)
0 (L)′xt ∼ I(0). This implies that the cointegrating relations v′β′0 are CI(2, 2) in

the sense of the definition of Engle and Granger (1987) quoted in the Introduction (Sec-
tion 1), while the remaining cointegrating vectors v′⊥β

′
0 − v′⊥ᾱ′0A1(z − zω) are polynomial

cointegrating vectors, which also reduce the processes to I(0).

Remark 8.3 (Complex vectors at frequency 0) Consider the leading case of zω real, as
for ω = 0 with zω = 1. All matrices in the expansions (6.2) and (6.5) are real, and so are

the coefficient matrices in γ
(1)
0 (z)′. Observe that the non-zero eigenvalue - left eigenvector

pair (λ, v′j) of ᾱ′0A1β̄0, may be complex, because the real matrix ᾱ′0A1β̄0 need not be
symmetric. This would imply that the cointegrating relations v′β′0 may have complex
coefficients, which would be difficult to interpret from an economic point of view; this may
make Step 2 unattractive in practice and/or at odds with alternative ways to restrict the
basis of the cointegrating space.

8.3. Step 3 in I(2)

In Step 3, one considers ϕ̃(z)′ in (8.8), which contains γ̃
(1)
0 (z)′ and γ

(0)
1 (z)′ = β′1. The

highest polynomial degree is 1 and it is present only in the component v′⊥β
′
0−v′⊥ᾱ′0A1(z−

zω) in γ̃
(1)
0 (z)′, because its other component v′β′0 has degree 0.

The non-zero entry v′⊥ᾱ
′
0A1 in the first block of sh rows of the coefficient of degree 1,

has rank decomposition v′⊥ᾱ
′
0A1 = cb′, with c and b of full column rank s. In case s < sh,

then c′⊥ is non-zero and of dimension sh − s and one can replace v′⊥β
′
0 − v′⊥ᾱ′0A1(z − zω)

in γ̃
(1)
0 (z)′ with

(8.9)

(
c′⊥v

′
⊥β
′
0

c̄′v′⊥β
′
0 − b′(z − zω)

)
.

Eq. (8.9) corresponds to (7.7) in Step 3 with a = (c′, 0)′. Eq. (8.9) leads to replace γ̃
(1)
0 (z)′

with γ
†(1)
0 (z)′ chosen proportional to (8.9), and the extended canonical system of root

functions Γ̃(z) in the triangular representation (8.1) can be replaced by the minimal basis

(8.10) Γ†(z) :=

(
ϕ†(z)′

β′2

)
, ϕ†(z)′ =

(
γ
†(1)
0 (z)′

γ
(0)
1 (z)′

)
=


c̄′v′⊥β

′
0 − b′(z − zω)
c′⊥v

′
⊥β
′
0

v′β′0
β′1

 ,

where γ
†(1)
0 (z)′ has minimal degree.

Remark 8.4 (Separation between CI(2,2) and polynomial cointegration - part 2) Note

that the degree of γ
†(1)
0 (z)′ is lower than the one of γ̃

(1)
0 (z)′, while maintaining the property

that γ
†(1)
0 (L)′xt ∼ I(0). This implies that the cointegrating relations c′⊥v

′
⊥β
′
0 are also

CI(2, 2). This provides the complete separation between CI(2,2) cointegrating relations
and polynomial cointegrating relations.
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9. MINIMALITY AND ECONOMIC IDENTIFICATION IN THE I(2) CASE

This section discusses parametric identification of cointegrating vectors in the I(2) case,
and its relations with the choice of minimal bases described in the previous section.
Cointegration parameters are here grouped in the matrices β′, γ′ and φ′, respectively of
dimensions r0 × p, r1 × p and r0 × r2. Here β′ is a matrix of parameters with the same
dimensions of β′0, γ

′ has the same dimensions of β′ and φ′ is such that β′1φ is square and
full rank and the rows of φ′ belong to span(β0, β1)

′.11

Let Xt be I(2) with MA representation ∆2Xt = F (L)εt where F (L)εt is I(0). The
triangular representation of Stock and Watson (1993) can be written as, see Mosconi and
Paruolo (2017) eq. (3.8) (3.9),12 β′ + γ′∆

φ′∆
b′2∆

2

Xt = H(L)εt

where H(L)εt is I(0) with H(1) of full rank, i.e. non-cointegrating, b2 is any set of vectors
such that b′2β2 is square and invertible, and φ′ is a linear combination of β′ and β′1 such
that that φ′β1 is square and invertible. Finally γ′ is any matrix such that γ′β2 = ᾱ′A1β2.

Theorem 1 in Mosconi and Paruolo (2017) shows that such an Xt also satisfies the
equivalent triangular representation

(9.1)

 β◦′ + γ◦′∆
φ◦′∆
b′2∆

2

Xt = H◦(L)εt

where H◦(L)εt is I(0) with H◦(1) of full rank, i.e. non-cointegrating,

(9.2) β◦′ := Q00β
′, φ◦′ := Qφφφ

′ +Qφββ
′, γ◦′ = Q00γ

′ +Q0φφ
′ +Q0ββ

′

where Q00 and Qφφ are square and invertible and Qij are blocks, i, j = 0, φ, β of the matrix

(9.3) Q :=


Q00
r0×r0

Q0γ Q0β

0 Qγγ
r1×r1

Qγβ

0 0 Q00


They show that (9.2) describes the set of observationally equivalent parameter points; this
corresponds to the I(2) identification problem of the long-run relations that also appears
in the Error Correction form.

Theorem 2 in Mosconi and Paruolo (2017) considers linear restrictions on the parameters
in β′, γ′, φ′, and provides rank and order identification conditions for these restrictions
to identify β′, γ′, φ′, i.e. to reduce the set of transformation matrices Q to the identity I.
These conditions are referred to in the following as economic linear restrictions.

These conditions can be used to calculate how many restrictions need to be imposed in
addition to the ones already present in the minimal basis (8.10) to obtain identification.
Note that (8.10) has form

(9.4) γ
†(1)
0 (z)′ = β′ +

 b′

0
0

 (1− z)

11For details and motivation of these choices, see Mosconi and Paruolo (2017).
12Mosconi and Paruolo (2017) address the identification problem for any I(d) system, d = 2, 3, . . . .
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where β′ = aβ′0 has no restrictions and γ′, the coefficient to ∆ has zero-restrictions in
the second and third blocks. One could achieve minimality of the basis with additional
restrictions which make economic sense.

If the minimal basis in (8.10) or in (9.4) was not interpretable, economic linear re-
strictions may provide an alternative way to achieve identification imposing restrictions
directly on γ0(z)′. In this way economic linear restrictions and minimality restrictions can
be used as complements for the identification of bases of cointegrating spaces.

10. CONCLUSIONS

This paper discusses the notion of cointegrating space for general I(d) processes. It
makes a number of observations and contributions to the literature. Specifically, it ob-
serves that the notion of cointegrating space was formally introduced in the literature
by Johansen (1991) for the case of I(1) VAR system. The definition of the cointegrating
space is simplest in the I(1) case, because there is no need to consider vector polynomials
in the lag operator.

Engle and Yoo (1991) introduced the notion of polynomial cointegrating vectors in par-
allel with the related one of multicointegration in Granger and Lee (1989). It appears
however, that the literature did not attempt to define the notion of cointegrating space
in the general polynomial case yet. This paper fills this gap. In this context, this paper
recognises that cointegrating vectors are in general root functions, which have been anal-
ysed at length in the mathematical and engineering literature, see e.g. Gohberg et al.
(1993). This allows to characterise a number of properties of cointegrating vectors.

Observing that root functions can be truncated to polynomials, the notion of rational
cointegrating space is argued to be the proper notion of cointegrating space in the I(d)
case d > 1. It is then observed that a basis of this rational cointegrating space can be
chosen to be polynomial.

It is next shown that the extended local rank factorization of Franchi and Paruolo (2016)
can be used to deliver a canonical system of root functions, and hence to produce a basis
for the rational cointegrating space. This result is constructive, as it gives an explicit way
to derive such as basis from the VAR polynomial. This basis is not necessarily of minimal
polynomial degree, however.

The 3-step procedure of Forney (1975) to reduce this basis to minimality is first re-stated
in terms of rank factorizations. Next it is applied to the basis for the rational cointegrating
space obtained by extended local rank factorization to obtain a minimal basis. It is shown
how this minimal basis separates the multi-cointegrating and the CI(2,2) cointegrating
vectors within the basis in the I(2) case.

The minimal basis is still not unique. Similarly to the identification results for the
long run relations in the I(1) case discussed in Johansen (1995), this paper links to the
results on identification in I(d) systems of cointegrating vectors in Mosconi and Paruolo
(2017). It is shown how these results can be applied to restrict the minimal basis to obtain
economically interpretable coefficients.
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APPENDIX A: (Q, F (Z)) IS CLOSED UNDER ADDITION AND MULTIPLICATION BY A
SCALAR

It is simple to verify that (Q, F (z)) is closed under vector addition and under multiplication by a scalar.
In fact, consider two vectors a(z)′ and b(z)′ in Q, a(z)′ = (f1(z), . . . , fp(z)) and b(z)′ = (g1(z), . . . , gp(z)),
with fj(z) = cj(z)/dj(z) and gj(z) = hj(z)/kj(z), and dj(z), kj(z) 6= 0. Then the j-th entry in the 1× p
row vector a(z)′ + c(z)′ is given by

fj(z) + gj(z) =
cj(z)

dj(z)
+
hj(z)

kj(z)
=
cj(z)kj(z) + dj(z)hj(z)

dj(z)kj(z)
=
mj(z)

nj (z)
, say.

Note that mj(z) and nj (z) are still polynomials in F [z], and that nj (z) = dj(z)kj(z) 6= 0 because both
dj(z), kj(z) 6= 0. Hence a(z)′ + c(z)′ ∈ Q, i.e. Q is closed under vector addition.

Moreover, for v(z) ∈ F (z) with representation v(z) = h(z)/k(z), with k(z) 6= 0 and polynomials
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h(z), k(z) ∈ F [z], the scalar multiplication v(z)a(z)′ gives a 1× p row vector with j-th entry equal to

v(z)fj(z) =
cj(z)h(z)

dj(z)k(z)
=
uj(z)

wj(z)
, say.

where again uj(z) and wj(z) are polynomials in F [z], and wj(z) = dj(z)k(z) 6= 0 because both dj(z), k(z) 6=
0. This shows that v(z)a(z)′ ∈ Q, i.e. that Q is closed under multiplication by a scalar in F (z).


	Introduction
	Setup and definitions
	Canonical system of root functions
	Properties of root functions
	The cointegrating space
	The local rank factorization provides a basis
	Minimal bases
	Step 1
	Step 2
	Step 3

	From canonical system of root functions to minimal bases in the I(2) case
	Step 1 in I(2)
	Step 2 in I(2)
	Step 3 in I(2)

	Minimality and economic identification in the I(2) case
	Conclusions
	 (Q,F(z)) is closed under addition and multiplication by a scalar

