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Abstract

Forecasting mortality rates and life expectancy is an issue of critical importance made
arguably more difficult by the effects of current Covid-19 pandemic. In this paper we
compare the performances of a simple random walk model (benchmark), three variants
of the standard Lee-Carter model (Lee-Carter, Lee-Miller, Booth-Maindonald-Smith),
the Hyndman-Ullah functional data analysys model, and a general factor model. We use
both symmetric and asymmetric loss functions, as the latter are arguably more suitable
to capture preferences of forecast users such as insurance companies and pension and
health system planners. In a counterfactual study, designed exploiting the particular
features of Italian data, we reproduce the likely impact of Covid-19 on forecasts using
2020 as a jump-off year. To put the results in perspective, we also carry out out a
general assessment on 1950-2016 data for three countries with very diverse demographic
profiles, France, Italy and USA. While the results with these latter datasets suggest that
in normal conditions the Lee-Miller and Hyndman-Ullah models are somehow superior,
from the counterfactual study the best option appears to be the Booth-Maindonald-
Smith model.



1 Introduction

The last century witnessed an extraordinary decline in mortality rates at all ages, and
consequent increase in life expectancy. At birth, for both sexes combined, the latter
grew on a world wide basis from less than 50 years in 1955-60 to over 72 years in
2015-2020, and in high-income countries from less than 65 to more than 80 years1.
Planning of adequate health and pension systems for ageing populations has thus become
a critical policy issue in developed countries, spurring interest in models for mortality
rates forecasting. A keystone of this literature was provided about thirty years ago by
Lee and Carter (1992), who proposed a model with a single latent factor which rapidly
became standard2. In the last few decades various variants of this model been proposed,
as well as radically different models such as that based on a functional data approach by
Hyndman and Ullah (2007). However, the issue is far from settled, as no model has yet
proved to be consistently superior. For instance, the conclusion of the extensive review
by Booth, Hyndman, Tickle and de Jong (2006) is that performances seem to depend
on period, variable of interest (mortality rates or life expectancy) and country.

This uncertainty raises the further question of the impact the current Covid-19 emer-
gency can be expected to have on the comparative performences of various popular mod-
els (introduced in section 2) for next vintage of forecasts. To answer this question we
designed a counterfactual exercise, described in detail in section 4.2. To put these results
in perspective, the findings of the counterfactual exercise are preceded, in section 4.1, by
a wide-ranging comparison of forecasts obtained from these models for three countries
with quite different demographic profiles and recent history, France, Italy and USA. A
distinctive feature of our evaluation is the use, along with traditional symmetric loss
functions, of asymmetric functions. The latter are likely to be particularly relevant for
insurance companies and health and pension system planners. The set-up of the forecast
comparison (data, loss functions and computational details) is described in section 3.

2 Forecasting mortality rates

To fix ideas, consider Fig. 1 which reports the time series 1950-2016 of total mortality
rates for selected ages in the range 0-80 in France, Italy and USA. Although the time
paths of the various rates do differ across ages as well as across the three countries, visual
inspection of these plots suggests two main stylised facts. First, all mortality rates seem
to be non-stationary with a negative drift; this is confirmed by formal tests, reported in
Table 2 in Section 3.1. Second, some stochastic trends common to different age groups
seem to be present. More precisely, in all countries one of these trends clearly drives the
rapid decline of the rates for ages 0 and 10, and different one(s) the slowest fall of the
rates of the adult and old ages.

1Source: UN World Population Prospects 2019, https://population.un.org/wpp/.
2Its standing is well described by the two following quotations: “The most well-known method of

mortality forecasting” (Booth, 2006, p. 555); “[...] the most widely cited and used method in mortality
prediction and applications” (Tsai and Yang, 2015, p. 1).
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Figure 1: Total mortality rates for selected ages, 1950-2016 (1950=1)
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Defining mx the log of the central death rate for age x, the first point suggests as the
simplest possible forecasting model a random walk with drift (briefly, RW). Assuming t
is the last year of the estimation period (often called in the literature “jump-off year”),
this model yields the h-periods ahead forecast

m̂xt+h = hθ̂x +mxt (1)

where θ̂x is the estimated drift. Note that the rate for the jump-off year is set at the
observed value.
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The problem with this model is that allowing for a different drift for each age x may
easily lead to overfitting, which typically affect adversely the forecasting performance.
Some robustness may be obtained following the suggestion of the second stylised fact,
that all rates may depend upon some latent common trend. In this vein, in a path-
breaking contribution Lee and Carter (1992), henceforth LC, studied US rates using a
model based on the assumption that a single latent common factor, kt, may represent
the improvement in living conditions causing the general decline in death rates at all
ages. Defining bx the coefficient (“loading”) projecting this latent trend k onto the death
rate for age x,

mxt = ax + bxkt + εt

where ax is the average mortality rate for age x. Estimates of latent trend and loadings
may obtained by Singular Value Decompostion of the matrix of the centred death rates,
with constraints imposed to obtain a unique solution3. The estimate of k is then further
iteratively adjusted to match estimated and observed total number of deaths for each
year. Finally, forecasts of the death rates are obtained from ARIMA forecasts of the
common factor. In practice (see e.g. Booth, Hyndman, Tickle and de Jong, 2006) these
are typically obtained from a random walk model, so that

k̂t+h = hδ̂ + k̂t.

where δ̂ is the estimated drift. Then,

m̂xt+h = âx + b̂xk̂t+h

= âx + b̂x

(
hδ̂ + b̂xk̂t

)
. (2)

Lee and Miller (2001), henceforth LM, proposed some marginal adjustments to the
LC model. The most important are the introduction of constant adjustment to ensure
a perfect fit in the last observation and the adjustment of k to match in each year
estimated and observed life expectancy at birth, e(0). This amended version of the LC
model is now widely used in place of the original version (Booth, 2006). A second LC
variant is due to Booth, Maindonald and Smith (2002), henceforth BMS, who adjust k
to fit the age distribution of deaths rather than their total number.

A more radical departure from the LC framework was proposed by Hyndman and
Hullah (2007), henceforth HU. The central idea of HU is to consider the matrix of the
death rates as a surface in the three-dimensional space (age, time, rates), where age is
continuous, and model it using Functional Data Analysis, writing

mxt = a (x) +
∑

J
j=1kjtbj (x) + εt (x) (3)

where a (x) is a smooth function of age, the b (x)’s are smooth basis functions, and
the k′s are latent components evolving over time. The a (x) are estimated taking the
average over time of splines fitted separately to the data of each year, while the k′s and
the b (x)′ s by principal components. The number of components J is unconstrained,
and it can be chosen for instance minimising the forecast error on a subsample not used
for estimation. In practice, HU in their empirical examples use 3 or 4. Finally, the
forecasts of the rates are based upon forecasts of the latent k′s obtained from a state
space formulation of damped exponential smoothing.

The HU model differs from the LC model in two respects. First, the restrictive and
unwarranted assumption of a single factor is abandoned. Second, there is a massive use of
non-parametric techniques. The first point can be also pursued applying a general factor

3More precisely,
∑Ω

x=1 bx = 1 and
∑T

t=1 kt = 0, so that ax = T−1 ∑T
t=1 mxt.
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model (henceforth GFM) with an empirically determined number J of non-stationary
factors

mxt = ax +
∑

J
j=1kjtbxj + εt. (4)

A GFM for mortality rates with optimal, empirically determined number of factors is
easy to estimate using the consistent information criteria derived by Bai (2004) for non-
stationary settings. This models, which allows for different latent trends driving the
decline in death rates of different age groups, is at the same time more general and
flexible than LC’s, simpler than HU’s, and easy to estimate by Principal Components.
Since the idea is to assess the explanatory and forecasting power of a general model
with unrestricted number of factors, we will deliberately avoid to apply to the estimated
factors a calibration procedure such as those embedded in all the LC variants. In this
respect this model is similar to HU’s.

Forecsts of mortality rates are obtained from forecasts of the factors as

m̂xt+h = âx +
∑

J
j=1k̂jt+hb̂xj .

where k̂jt+h is the optimal ARIMA forecast for factor j, easily computed for instance
using automatic ARIMA modelling.

The idea of using a model with more than one factor is not new. French and O’Hare
(2013) proposed to apply a Dynamic Factor Model for stationary variables to the dif-
ferenced mortality rates, and then cumulate the forecasts to obtain the mortality rates.
Clearly, using a factor model especially designed for non-stationary data is more sat-
isfactory. Haldrup and Rosenskjold (2019) proposed instead a factor model with the
number of factors J constrained a priori to four, assumed to respectively capture a gen-
eral trend and those specifically associated to early ages, mid-20’s-early 30’s and adult
ages in general. This identification is ensured by parametric estimation of the loadings
(for instance, those of the second factor converge to zero after about age 10). While this
approach is consistent with the demographic tradition of parametric forecasting models,
it appears unecessarily rigid, it is computationally demanding and difficult to automate.
We thus did not include it in our comparison. A summary of the different competing
models we did consider is in Box 1.

Finally, once a set of forecasts of mortality rates is available we may compute by
means of standard formulas (see, e.g., Arias, 2012) forecasts of life expectancy, either
at birth or at a different age of special interest, such as retirement age. Since life
expectancy is a non-linear function of the mortality rates, the quality of these forecasts
will be assessed on its own. We will examine two different measures: life expectancy
at birth, a measure of general interest, and at 65 years, a typical retirement age. This
latter measure is of special interest for health and pension system planning.

Box 1 Summary of the forecasting models considered

1. Random Walk (RW): m̂xt+h = hθ̂x +mxt.

2. Lee-Carter (1992; LC), Lee-Miller (2001; LM), Booth, et al. (2002; BMS):

m̂xt+h = âx + b̂x

(
hδ̂ + b̂xk̂t

)
, where k̂jt+h is the ARIMA(0,1,0) forecast of k̂,

calibrated in slightly different ways in the three models. Other minor computa-
tional differences also present.

3. Hyndman and Hullah (2007; HU): m̂xt+h = â (x)+
∑ J

j=1k̂jt+hb̂j (x), where k̂jt+h

is a forecast of k̂ obtained by damped exponential smoothing.

4. General Factor Model (GFM): m̂xt+h = âx +
∑ J

j=1k̂jt+hb̂xj , where k̂jt+h is the

optimal ARIMA(p,1,q) forecast. No calibration applied to k̂.
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3 Forecast evaluation: set-up

3.1 Data

To assess the forecasting ability of the methods outlined in section 2 in normal conditions
we use data for total mortality rates, at single years of age, for three advanced countries,
France, Italy and USA, for the period 1950-20164. Discarding observations before 1950
we shall exclude the outliers associated with the two world wars and the Spanish influenza
pandemic.

As it can be appreciated from Table 1, over the 1950-2016 period these three countries
followed quite different demographic trends5. Italy clearly underwent the most dramatic
ageing process, with the share of population 0-14 dropping from nearly 25% in the 1960’s
to less than 14% in the 2010’s and that of population over 65 more than doubling, from
about 10% to over 21%. The corresponding share is smaller but still sizeable in France
(about 18%, from a 1960’s initial value of 12%) and much smaller in the USA (about
14% in the 2010’s, starting from less than 10% in the 1960’s). Interestingly, the final
0-14 shares in France and USA are not very different, about 18%-19%. Given the pretty
different initial values (about 26% in France and 30% in the USA), this implies a sharper
decline in the USA. In fact, in this country the 10% decline is approximately as large
as in Italy. Finally, life expectancy at birth, approximately 70 years in the 1960’s in
all the three countries, increased definitely more in Italy and France than in the USA,
reaching respectively about 82 years in the first two countries and less than 79 years in
the latter. Summing up, these three countries definitely provide a good example of three
quite different “situations” (Booth, 2006) in which to test the forecasting ability of the
competing methods.

Table 1: France, Italy and USA: 0-14 and 65+ population shares (×100) and life ex-
pectancy at birth

1960-69 1970-79 1980-89 1990-99 2000-09 2010-16 ∆

0-14 France 25.7 24.0 21.3 19.6 18.6 18.4 -7.4

Italy 24.7 24.0 19.4 15.2 14.2 13.8 -10.9

USA 30.0 25.5 21.9 21.9 21.0 19.5 -10.5

65+ France 12.1 13.5 13.4 15.0 16.4 18.2 6.1

Italy 10.2 12.1 13.5 16.4 19.4 21.5 11.3

USA 9.5 10.7 12.1 12.6 12.4 14.1 4.7

e(0) France 70.7 72.7 75.2 77.7 80.1 82.3 11.5

Italy 70.1 72.7 75.4 78.1 80.8 82.7 12.5

USA 70.2 72.2 74.5 75.8 77.5 78.6 8.5

e(0): life expectancy at birth;

∆: difference between 2010-17 and 1960-69 averages.

Source: elaborations on data from “World Development Indicators”, World Bank.

Our forecasting exercise will be carried out for rates at single year of age up to 94,
and for the aggregate of all ages over 95. As anticipated above, log rates can safely taken
to be I (1). In all countries standard ADF-GLS tests allowing for a deterministic trend

4Source: Human Mortality Database, https://www.mortality.org/.
5The following comparisons are based on data from the “World Development Indicators” database of

the World Bank, which start in 1960. Given that the aim is drawing a broad picture, the lack of data
for the 1950’s, included in the estimation sample, is not a particular issue.
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rejected the null hypothesis in small fractions of cases, always fully compatible with the
significance levels of the test (cf. Table 2).

Table 2: ADF-GLS tests: fraction of rejections ×100

α 1.0 5.0 10.0

France 2.1 2.1 3.1

Italy 6.7 8.5 9.5

USA 0.0 2.1 4.2

H0 : mx is I (1),

H1 : mx is I (0)+trend.

x = 0, . . . , 95+.

3.2 Loss functions

An often overlooked point of forecast assessment is the choice of the loss function, usually
confined to symmetric functions, such as the average of quadratic or absolute errors.
However, these functions may not reflect accurately the risk function of forecasts users.
Given the variables of interest, mortality rates and life expectancy, we can consider a
stylised picture with forecast users divided in two groups.

The first group includes agents offering only term life insurance contracts covering the
risk of death. In a stylised set-up this group may be denominated “insurance companies”.
These forecast users need to plan the flow of future payments to beneficiaries of term
life insurance contracts, which are a positive function of future mortality.

The second group includes agents providing healthcare services and paying old age
pensions, thus essentially covering the opposite risk of survival, or longevity risk6. These
agents, whom will be denominated “healthcare systems and pension funds”, need to
forecast a demand increasing with life expectancy.

Under- and over-estimation of future mortality rates (implying errors of opposite
direction in the estimation of life expectancy) will clearly have different implications for
the two groups of forecast users. For insurance companies an underestimation of future
mortality rates will cause an underestimation of future payment flows, with possible,
serious, liquidity problems. On the other hand, an overestimation will imply an over-
accumulation of reserves, a suboptimal but not particularly critical condition. Defining
the estimation error for mortality rate at age x and time t as εxt+h = mxt+h − m̂xt+h,
the loss function of insurance companies will thus arguably attach a greater weight to
positive forecast errors of mortality rates than to negative ones.

The same holds for healthcare systems and pension funds with respect to forecasts
of life expectancy. Overestimation of future life expectancy (defining the estimation

error for age x as εe(x)t+h=e (x)t+h − ê (x)t+h, εe(x)t+h < 0 ) will cause overestimation
of health and pension expenditure, also a suboptimal but not critical condition. On

the other hand, underestimation (e (x)t+h > ê (x)t+h, so that εe(x)t+h > 0) will lead to
plan an inadequate flow of health services, pension payments and required revenues, an

6Health and long term care insurance policies will fall in this category as well. For the sake of
simplicity, and with no much loss of generality, they are ignored in the following discussion. To take
them into account we would simply need to enlarge the second group to include specialised insurance
companies offering those products only.
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increasingly serious problem for the advanced economies (see, e.g., the lecture by the
chairman of the Bank of Italy, Visco, 2015).

Our evaluation exercise should thus be extended to include some asymmetric loss
functions as well as standard symmetric loss functions. For simplicity, in the main eval-
uation exercise we shall consider only the case of asymmetric functions attaching greater
weight to positive errors than negative ones (that is, penalising underestimation more
than overestimation; in short, positive asymmetry). In the light of what argued above
for mortality rates this may be interpreted as capturing the loss function of insurance
companies offering term life insurance contracts, while in the case of life expectancy
those of healthcare systems and pension funds7.

The specific form of the functions can be derived following Elliott, Komunjer and
Timmerman (2005), who define a general loss function governed by two shape parame-
ters: p, the power of the error, and α ∈ (0, 1), the asymmetry coefficient. For a generic
forecast error εt+h and a vector θ of parameters of the model used to produce the forecast,

L (p, α, θ) ≡ [α+ (1− 2α) · 1 (εt+h < 0)] |εt+h|p (5)

Setting α = 0.5 we have symmetric loss, respectively quadratic for p = 2 and in absolute
value for p = 1. Choosing any α 6= 0.5 generates right (α > 0.5) and left (α < 0.5)
asymmetry. Since we need a rather strong right asymmetry, without much loss of gen-
erality we set α= 0.85, which generates the “Quad-quad” (p = 2) and “Lin-lin” (p = 1)
functions plotted in Fig. 2.

Summing up, we consider four different loss functions:

1. Quadratic: L (p = 2, α = 0.5, θ) ≡ ε2t+h

2. Absolute: L (p = 1, α = 0.5, θ) ≡ |εt+h|

3. Quad-quad : L (p = 2, α = 0.85, θ) =[0.85− 0.70 · 1 (εt+h < 0)] ε2t+h

4. Lin-lin: L (p = 1, α = 0.85, θ) =[0.85− 0.70 · 1 (εt+h < 0)] |εt+h|

Figure 2: Quadratic and linear loss functions with positive asymmetry (α= 0.85)
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7Conversely, loss functions with negative asymmetry (greater weight to negative errors, penalising
overestimation more than underestimation) may be interpreted as representing those of healthcare sys-
tems and pension funds for forecasts of mortality rates, and those of insurance companies offering term
life contracts for forecasts of life expectancy.
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3.3 Computational details

For LC, LM, BMS and HU we used the R package “demography” by Hyndman (2006).
This implementation is standard in the literature (it is for instance recommended in the
review by BMS). The general factor model has been estimated with number of factors
selected on the basis of the information criterion IPC2 by Bai (2004), and automatic
ARIMA forecasting of the factors with model selection based on the BIC criterion. For
both tasks we used own code written in Hansl, the programming language of the free
econometric program Gretl. For the HU model following Hyndman and Hullah (2007)
we set J = 4. Some robustness check showed the model to be quite robust to the choice
of this parameter.

In view of the available data we decided to assess forecasts for horizon h up to
10 years. We examined separately the short-, medium- and long-term performances
looking at forecasts one, five and ten years ahead (h = 1, 5, 10), and the overall per-
formance looking at the average over the entire path. We start with a first set of
models estimated on the sample 1950-1999 (T = 50, reasonably large), used to fore-
cast from 2000 (h = 1) up to 2004 (h = 5) and finally 2009 (h = 10). We then roll on
until we reach the estimation sample 1950-2007 (T = 58), yielding forecasts from 2008
(h = 1) up to 2012 (h = 5) and finally 2016 (h = 10). We thus have a set of eight differ-
ent forecasts: set 1, data 1950-1999, forecasts 2000-2009; set 2, data 1950-2000, forecasts
2001-2010; set 3, data 1950-2001, forecasts 2002-2011; etc., until set 8, data 1950-2007,
forecasts 2008-2016. For each loss function we then compare the forecasting performance
of the six different models for mortality rates, life expectancy at birth and life expectancy
at a typical retirement age, 65 years. The comparison is based on a Model Confidence
Set (Hansen, Lunde and Nason, 2011) at the 5% significance level.

4 Forecast evaluation

4.1 Basic assessment

We discuss first the results of an assessment of the performances which can be expected in
normal conditions. This will provide some perspective to the results of the counterfactual
study reported in the next section.

The amount of the results to be discussed here is proportional to the many dimensions
of the exercise: six models, three variables, four loss functions, four forecasting horizons
(h = 1, 5, 10, and the entire path from h = 1 to h = 10). The full details are reported
in Tables A.1 (mortality rates), A.2 (life expectancy at birth) and A.3 (life expectancy
at 65). Here we shall discuss the synthesis across the three countries reported in Table
3, where the performances for each variable are classified by type of Loss function for
the aggregate of all forecasting horizons, and in Table 4, for each variable and forecast
horizon for the aggregate of all Loss functions. In these tables we report two summay
measures: the number of times a model is in the 5% MCS, denoted by #(MCS ), and
the number of times its loss is the smallest of the MCS, #(Min Loss). For each class
of loss function the models delivering the best performance are those with the highest
values of these statistics, marked in bold face.

The first obvious message of Table 3 (aggregate of all forecasting horizons) is that the
MCS is always very wide. This is evident from the inflated #(MCS ) statistics, which are
of very little use for comparison purposes. For instance, taking the first row of Table 3
(symmetric loss functions, forecasting mortality rates) we find for two models #(MCS )
= 20 and 21 and for three more only slightly smaller values, 15 and 16. Only one model
performs cleary worse, with a score of 11. Of course, in view of the small number of
forecasting periods the fact that the performances tend to be approximately equivalent
is not really surprising.

8



To reach some mode definite conclusion we then look at #(Min Loss), the number
of times a model has the smallest loss of the MCS. In other words, we look at the point
estimates of the losses, even if for all models in the MCS the differences among them are
not significant. This produces a complex picture, with findings highly variable across
models and variables. Broadly speaking, the performances of LM and HU appear to
be rather consistently good with both types of loss functions, while on the opposite
those of BMS and LC rather consistently poor. GFM and RW stand in between, with
performances which may be good for one variable/loss type combination but poor for a
different one. Going into some more detail, we can say that LM seems to dominate for
Mortality rates forecasting, while HU for Life expectancy, both at birth and at 65 years.

The superiority of the LM and HU models is essentially confirmed by the breakdown
by forecasting horizon, see Table 4. LM is essentially the best model for Mortality rate
forecasting at all horizons, and HU for Life expectancy at birth; things are less clear for
Life expectancy at 65 years, with LC dominating at 1 year, LM at 5 years, HU at 10
years and for the entire 1-10 years path.

Table 3: Comparative performances by variable and type of Loss function (aggregate of
all forecasting horizons)

RW GFM LC LM BMS HU

Loss function Mortality rates

Symmetric #(MCS ) 16 15 16 20 11 21

#(Min Loss) 1 6 1 10 0 6

Asymmetric #(MCS ) 17 16 6 20 8 10

#(Min Loss) 6 3 1 9 0 5

Life expectancy at birth

Symmetric #(MCS ) 19 16 21 22 22 24

#(Min Loss) 0 0 1 5 2 16

Asymmetric #(MCS ) 22 23 15 14 12 23

#(Min Loss) 4 7 2 4 0 7

Life expectancy at 65

Symmetric #(MCS ) 8 5 15 18 10 21

#(Min Loss) 0 0 4 11 0 9

Asymmetric #(MCS ) 17 16 16 20 9 24

#(Min Loss) 1 3 9 4 0 7

#(MCS): number of times model is in the 5% MCS for each h;

#(Min Loss): number of times model has the minimum loss in the MCS;

Bold = best .
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Table 4: Comparative performances by variable and forecast horizon (aggregate of all
loss functions)

RW GFM LC LM BMS HU

horizon Mortality rates

1 #(MCS ) 10 4 4 12 8 10

#(Min Loss) 0 0 0 11 0 1

5 #(MCS ) 8 11 8 10 6 10

#(Min Loss) 2 5 0 4 0 1

10 #(MCS ) 8 9 7 9 1 8

#(Min Loss) 3 1 2 1 0 5

1-10 #(MCS ) 7 7 3 9 4 9

#(Min Loss) 2 3 0 3 0 4

Life expectancy at birth

1 #(MCS ) 12 10 11 5 5 11

#(Min Loss) 2 1 0 0 0 9

5 #(MCS ) 9 9 11 11 11 12

#(Min Loss) 0 0 2 4 2 4

10 #(MCS ) 12 10 6 11 10 12

#(Min Loss) 1 3 0 3 0 5

1-10 #(MCS ) 8 10 8 9 8 12

#(Min Loss) 1 3 0 3 0 6

Life expectancy at 65

1 #(MCS ) 10 4 12 8 8 10

#(Min Loss) 0 0 8 1 0 3

5 #(MCS ) 4 6 8 12 5 11

#(Min Loss) 0 1 2 6 0 3

10 #(MCS ) 6 6 4 9 3 12

#(Min Loss) 1 2 1 2 0 6

1-10 #(MCS ) 5 5 7 9 3 12

#(Min Loss) 0 0 2 6 0 4

#(MCS): number of times model is in the 5% MCS for horizon h, all loss functions;

#(Min Loss): number of times model has the minimum loss in the MCS;

Bold = best .

4.2 Counterfactual robustness assessment

Forecasts computed in 2021 will use 2020 as a jump-off year. Therefore, assuming that
the Covid-19 pandemic will be under control by 2021, that vintage of forecasts will be
based on a jump-off year characterised by anomalous mortality. As of early November
2020, this has been essentially concentrated in the older age groups: 98.7% of Covid-19
deaths have been of people over 60, and 95.6% of people over 70 (see Table 6 in Task
force Covid-19, 2020). This implies that some of the conclusions reached above may
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continue to hold for the forecasts for the younger age groups, whose data will show no
anomalies, but they may not for the older ones, which instead will.

For instance, in the LM model the coefficients are constrained to have a perfect fit
for each age in the jump-off year. If the mortality rates for older groups go back to lower
levels from 2021 onwards, its forecasts for these groups will be upward biased. For some
loss functions this may not be a problem, while for others it will. In those cases models
not adjusting the estimates to achieve a perfect fit in the last year of the sample may
perform better than the LM model.

On the other hand, the HU model, estimated using robust techniques, is a priori
unlikely to suffer from the use of an anomalous jump-off year.

Clearly, the picture is so complex that predicting the overall impact of Covid-19 on
the comparative performances of the various models on the basis of the characteristics
of the currenty anomaly and of the models is practically impossible. However, as antici-
pated in the Introduction, we can reach a conclusion carrying out a conceptually simple
counterfactual study. This counterfactual study should answer the following question:
“Given that we have data for 1950-2016, and that we use 1950-2006 for estimation while
keeping those for 2007-2016 to assess forecasting performances at horizons from 1 (2007)
to 10 (2016), which would have been the conclusion of our comparison if the jump-off
year 2006 had been contaminated by extramortality as 2020 ?”.

The natural objection to this proposal is that constructing data mimicking conditions
of the current year appears to be in practice an hardly possible task. Fortunately, one of
the countries of our dataset, Italy, has particular features making it possible. In Italy in
2015 “the action of flu viruses during the wintertime, associated to the lethal effects of
a particularly hot summer” (Blangiardo, 2020, p. 2) caused about 50,000 excess deaths.
This is still significantly more than the about 40,000 deaths registred by the official
Covid-19 Italian integrated surveillance database as of early November 2020 (Task force
Covid-19, 2020)8. Further, the 2015 extra mortality was essentially concentrated in
the older age groups, exactly as it happened so far in 2020. The simple average of the
mortality rates (×1000) over 65 jumped from 99.5 in 2014 to 109.3 in 2015, falling to
99.4 in 2016. On the other hand, the average under 65 was 1.4 in 2014 and 2015, and
declined marginally to 1.3 in 20169.

Defining the “normal” mortality rate in 2015 for age x, mx2015, as the linear inter-
polation of those for 2014 and 2016,

mx2015 = 0.5 (mx2014 +mx2016)

a simple estimate of the impact of the 2015 extraordinary conditions is given by the
ratio mx2015/mx2015. Using this estimate we can compute counterfactual mortality rates
m∗xt, that is, the mortality rates which would have been registered in year t under
(extraordinary) conditions similar to those of 2015, as

m∗xt =
mx2015

mx2015
mxt. (6)

Using (6) with t = 2006 we can compute counterfactual rates for the jump-off year used
for forecasts running from 2007 (horizon h = 1) up to 2016 (horizon h = 10). Note that

8Given the dramatic impact of Covid-19, the fact that in 2015 extra mortality may have been possibly
even higher may appear surprising. However, it should not be forgotten that in 2015 excess mortality
was spread over the entire nation and most of the year, while as of early November 2020 the effects
of the Covid-19 epidemic have been mostly concentrated in a relatively small area over quite a short
period (respectively, some of the Northern regions and about two months, March and April; see Istat-ISS,
2020a,b). This concentration in time and space caused the dramatic overcrowding of the intensive care
units in the hospitals of the worse hit areas and the decision to lockdown the entire nation in March
2020, which limited overall mortality. The effects of the so-called “second wave” of the epidemic have
been so far quantitatevely smaller.

9Averages computed from rates for 5-years age groups. Data downloaded on November, 12, 2020
from www.istat.it.
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since both the 2015 and 2020 anomalies had an impact essentialy only on the older age
groups, we modify the rates for ages x ≥ 65 only.

As some of the models we are comparing require population data for calibration
purposes, we also need to construct counterfactual population series (Pop∗xt) consistent
with these counterfactual mortality rates. Recalling that population is measured at
Janury, 1st and the mortality rates are annual averages, these series can obtained10 as

Pop∗xt+1 =

{(
1−m∗x−1,t

)
Popx−1,t t = 2006

(1−mx−1,t)Pop
∗
x−1,t t > 2006

for x ≥ 65.
We can now run our forecasting competition with this counterfactual dataset. Com-

paring these results with those obtained with the actual datasets (in which the year 2006
had no anomalies) we can establish if the models performing better in the base compe-
tition are robust to the use of an outlier as a jump-off year, or, on the contrary, if in
these circumstances they are outperformed by other models. Since in the counterfactual
dataset only the mortality rates above 65 years have been modified, the comparison is
carried out only for mortality rates and life expectancy at 65.

An important point which needs to be discussed is the shape of the loss function.
With models using actual jump-off year data, extramortality in that year will introduce a
positive bias in mortality rates forecasts, and a negative bias in those of life expectancy.
Thus, to have a complete picture we need to consider both functions with a positive
asymmetry, which penalise more strongly underestimation, and functions with a negative
asymmetry, which instead penalise more strongly over-estimation. More precisely, we
shall use functions with α= 0.15. From equation (5) this value is easily seen to yield loss
functions with negative asymmetry which are the mirror image of those with a positive
asymmetry (α= 0.85) used in the main assessment exercise.

The detailed results are reported in Tables A.4-A.6 in the Appendix. Here we discuss
a summary measure, the number of times each model delivers the minimum loss over all
four horizons for all loss functions.

First of all, consider in Table 6 the results for the two symmetric loss functions. In
this case this summary measure ranges from zero to 8.

With actual data for mortality rates forecasting the LM model, delivering the mini-
mum loss at all horizons and with all loss functions, is a clear winner. This is consistent
with the results of the previous section, which essentially singled out LM and HU as
the models with the best performances. Confirming the need of assessing separately
the forecasts for the two variables, results for life expectancy are different, and rather
surprising. The best model is the basic LC model, which delivers the minimum loss four
times. We then have the HU and the naive RW model, both with a score of two.

With counterfactual data the outcome is completely different, with BMS essentially
dominating for both variables. Since in this LC variant the coefficient estimates are
not adjusted to have a perfect fit in the jump-off year we must conclude that the gain
of having robust forecasts for the older groups outweights the loss of not having well-
calibrated forecasts for younger groups.

10Since we are constructing an artificial population, ignoring the approximations caused by the use of
central mortality rates is not an issue.
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Table 5: Counterfactual robustness assessment: forecasting with symmetric loss func-
tions, jump-off year 2006. Number of times each model delivers the minimum loss
(aggregate over forecasts at 1, 5 and 10 years and on the entire 1-10 path).

RW GFM LC LM BMS HU

#(Min Loss) with actual data

mortality rates 0 0 0 8 0 0
life expectancy at 65 2 0 4 0 0 2

#(Min Loss) with counterfactual data

mortality rates 0 0 1 0 7 0
life expectancy at 65 0 0 0 0 8 0

Let us now move to the results with asymmetric loss functions. These have been
introduced in section 3.2 to represent the different requirements of two stylised groups of
users, insurance companies offering term life insurance contracts and healthcare systems
and pension funds. The loss functions can be expected to be as follows

(i) Insurance companies: positive asymmetric loss for mortality rates; negative asym-
metric loss for life expectancy.

(ii) Healthcare systems and pension funds: negative asymmetric loss for mortality
rates; positive asymmetric loss for life expectancy.

In case (i), Table 6, the results are partially different from those under symmetric loss.
First, with actual data LM is the best model for both variables. Of course, the ex-
planation of this different outcome is simple: the loss function of insurance companies
does not penalise heavily a positive bias in forecasts. Although with the countefactual
data this bias is likley to be significant for the older age groups, the LM is still the best
forecasting model for mortality rates, while for life expectancy BMS (with no constant
adjustment, thus robust to the Covid-191 anomaly) performs better.

Table 6: Counterfactual robustness assessment: forecasting for insurance companies
offering term life insurance contracts, jump-off year 2006. Number of times each model
delivers the minimum loss (aggregate over forecasts at 1, 5 and 10 years and on the
entire 1-10 path).

RW GFM LC LM BMS HU

#(Min Loss) with actual data

mortality rates 0 0 0 8 0 0
life expectancy at 65 2 0 2 4 0 0

#(Min Loss) with counterfactual data

mortality rates 2 0 0 4 2 0
life expectancy at 65 0 0 0 0 8 0

mortality rates: positive asymmetric loss functions (α = 0.85);

life expectancy at 65 : negative asymmetric loss functions (α = 0.15).
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Finally,in case (ii), Table 7, we find that with actual data the choice is between LM
(for mortality rates) and, rather surprisingly, the naive RW (for life expectancy). With
counterfactual data BMS is instead by far the best for both variables.

Table 7: Counterfactual robustness assessment: forecasting for healthcare systems and
pension funds, jump-off year 2006. Number of times each model delivers the minimum
loss (aggregate over forecasts at 1, 5 and 10 years and on the entire 1-10 path).

RW GFM LC LM BMS HU

#(Min Loss) with actual data

mortality rates 0 0 0 8 0 0
life expectancy at 65 4 1 2 0 0 1

#(Min Loss) with counterfactual data

mortality rates 0 0 0 1 5 1
life expectancy at 65 0 0 0 1 7 1

mortality rates: negative asymmetric loss functions (α = 0.15);

life expectancy at 65 : positive asymmetric loss functions (α = 0.85).

Summing up, while with actual data considering both symmetric and asymmetric
loss functions over all horizons LM delivers the best forecasts, if we had extramortality
in the jump-off year these would have been generally given by BMS. We should however
remark that in a few cases LM works best in these case as well.

5 Conclusions

Forecasting mortality rates and life expectancy is becoming an increasingly important is-
sue for health and pension systems and the insurance industry at large, and its challenges
are particulary severe in the year of the Covid-19 emergency. In this paper we carried
out a counterfactual exercise based on Italian data, aimed at assessing the forecasting
performances which can be expected in the current anomalous conditions by the classical
single factor model by Lee and Carter (1992), some of its variants, the functional data
model by Hyndman and Ullah (2007), and a general factor model with number of factors
empirically determined. A novel feature of our exercise is the use of both symmetric and
asymmetric loss functions. The latter, although rarely used, may be argued to represent
more realistically than the symmetric ones the cost functions of the users of forecasts
of mortality rates and life expectancy. To put the counterfactual exercise in perspective
we introduced it with an extensive comparison of the performances for France, Italy and
USA with estimation period 1950-2006 and rolling forecasts for 2007-2016 is that no
model can be singled out as clearly superior to the other. Formally, the Model Confi-
dence Sets computed following Hansen, Lunde and Nason (2011) often include several
models. This said, broadly speaking the performances of the Lee-Miller (2001) variant
of the Lee-Carter model and the Hyndman and Ullah (2007) model are often better than
those of the other models. These conclusions are however not robust to the presence of
extra mortality in the older age groups in the final year of the sample (or jump-off year),
of a scale comparable to that of the current Covid-19 pandemic. Our counterfactual
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exercise suggests that in these circumstances the best option is the Booth, Maindonald
and Smith (2002) variant of the Lee-Carter model.
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