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Abstract

We analyze here fferent types of fractional ffierential equations, under the assumption that
their fractional ordew € (0, 1] is random with probability densitg(v). We start by considering
the fractional extension of the recursive equation goveyrthe homogeneous Poisson process
N(t),t > 0. We prove that, for a particular (discrete) choicengf), it leads to a process with
random time, defined &$(7-, ,,(t)),t > 0. The distribution of the random time argument ,.,(t)
can be expressed, for any fixédin terms of convolutions of stable-laws. The new process
N(‘7~' nv,) IS itself a renewal and can be shown to be a Cox process. Merawe prove that
the survival probability oN(‘7~'V1>V2), as well as its probability generating function, are doluto
the so-called fractional relaxation equation of distrésliorder (se€[16]).

In view of the previous results it is natural to consideffuBion-type fractional equations of
distributed order. We present here an approach to theitisotuin terms of composition of the
Brownian motionB(t),t > 0 with the random tim¢&,, ,,. We thus provide an alternative to the
constructions presented in Mainardi and Pagnini [19] an@hechkin et al. [[6], at least in the
double-order case.

Key words: Fractional diferential equations of distributed order; Stable laws; Gaired
Mittag-Leffler functions; Processes with random time; Renewal pro€assprocess.

1 Introduction

In the last decade an increasing attention has been drawadtiohal extensions of the Poisson
process: see, among the others] [25]! [10]) [13]} [28], [{B1], [18], [5]. In particular, the analysis

carried out by Beghin and Orsinghgr [2] starts from the galigation of the equation governing the
Poisson process, where the time-derivative is substitoyetie fractional derivative (in the Caputo
sense) of order € (0, 1]:

dV
D = —A(pe- Per) K20, (1.1)
with initial conditions .
1 =0

andp_1(t) = 0. The solution to this equation has been expressed as tiséydehthe random-time
process called Fractional Poisson process (FPP) and defined

ND) = N(T2 (1), t>0. (1.3)

Here N denotes the standard homogeneous Poisson process witharametert > 0, while
T2,(t),t > 0 is a random process (independent frbinwith density given by the folded solution
to the fractional difusion equation

PV 0%

e 6_y2 t>0,yeR. (1.4)
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Later, in [3], the distribution of the FPR, has been expressed as
Put) = A)EML, ((-At),  k>0,t>0, (1.5)
in terms of the so-called Generalized Mittagfiier (GML) function, which is defined as

B > ) z
E 4(2) = ; oty ®A7 €O Ree).Rap). Rep) >0 (1.6)

where(y); = y(y +1)..(y+j-1) (for j = 1,2,..., andy # 0) is the Pochammer symbol afg, = 1
(seel[11], p.45). Moreover a higher-order generalizaticth® previous results has been obtained in
[3] by introducing “higher-order fractional derivativeis' (1.1) and analyzing the following equation

P, (M, & b 0 \pa @B
dt (1) qe o (n P g = AP ). k20, (1.7)
wherey € (0, 1), subject to the initial conditions
p(0) = {é ti(l) , for0O<v<1 (1.8)
¢ ) =0 =1,.n-1 k>0 for1'< <1
dtipk o - =4 ) =0, - %

andp_;(t) = 0. The solution to[(1]7) was given by the following finite sufrfGML functions:

n

n — | v
a0 = (1) eyt By -20), (1.9)
i1

The corresponding process was proved to be a renewal, littkdd(t),t > 0, by the following
relationship

B(®) = Pr(®) + Phia(®) + oo + Phienoa (D), t>0.

Thus it can be interpreted as a FPP which “records” onlykttie order events and disregards the
other ones (for an application to the theory of random matatrfinite velocity, see [4]).

We will introduce here the assumption that the fractiondkeor of the derivative appearing in
equation[(T.1) is itself random, with distributiofw), v € (0, 1]: i.e.

1 v
f ddterk n(v)dv = -A(px - Pc-1), k=0, ve(0,1]. (1.10)
0

More precisely, we will concentrate on the case of a doubdieiodiscrete distribution of;, i.e.
n(v) = N6(v — vy) + Nd(v — v2), O<vi<w<l, (1.12)

for ng, n; > 0 and such that; + n, = 1. The assumptior (1.11) has been already considered in the
context of fractional relaxation (s€e [16]), as well as f@actional kinetic equations and, in the last
case, it leads to the so-calledfdsion with retardation (seg [19]). As we will see in the nedt®n
this assumption on produces a form of the solution which is much more compli¢#tean [1.5) and
(T:9), since it involves infinite sums of GML functions. Netreeless the renewal property is still
valid and a subordinating relationship similar fo {1.3)dsofor the corresponding process, which
can be defined as _

N(T>.0,(1), t>0. (1.12)

In this case the random tim%wZ is represented by a process whose transition density car-be e
pressed either as an infinite sum of Wright functions or byoartions of stable laws.



In section 3 we will investigate the relationship betwees pinevious results and thefidision
equation of fractional distributed order

1 qv 2
fo g—t\vln(v)dv - 37‘2’, x€R,t> 0, v(x,0) = 6(x), (1.13)
for 0 < v < 1. Equations like[{1.13) have been already studied in [6] a®] ifL connection with
the kinetic description of anomalouditlisions. It has been proved by Chechkin et al. [6] that the
solutionv(x, t), x € R,t > 0, is a probability density function and that the correspogdgirocess is
subordinated to the Brownian motion via the following riglaship

+00 X2 /4nu
V(X t =f G(u, t)du. 1.14
(x.1) A (u.t) (1.14)
In (T.13) the functiorG is defined by its Laplace transform

1
n(v)n'd 1
L{G(u,t);n} = Meﬂfo non'dv

(1.15)
In the special case of double-order fractional derivativfL13) these authors focus on the behavior
of the second moment afx, t), which suggests that the process can be interpreted adfasidn
with retardation”, in this case. Moreover, under assumnmp{Il), equatioi(1.13) can be seen as
a particular case (foy = 2) of the equation (2.35) below, which is analyzed[in| [a6]this paper
only the Fourier transform of the solution is given in explform, in terms of infinite sums of
generalized Mittag-L&ler (GML) functions. Finally the solution td (1.113) has beeralgtically
expressed in terms of generalized Wright functiong by [19].

We prove here that the solution to equation (1L.13) with tlseiaption [1.111), i.e.

oV oV G

nlW + nzm =0 xeR,t>0, v(x,0)=6(X), ny,np >0, (1.16)

for 0 < v; < v, < 1, coincides with the density of the random-time process
B(T,.,(1). t>0, (1.17)

whereB is the standard Brownian motion and the time argurﬁé}@,t2 is the same as in_(1.112),
thus writing in explicit form the densit$ in (I.14) as an infinite sum of Wright functions or by
convolutions of stable laws. _

Finally we note that the density of the random tiffig,, appearing in the processés (1.12) and
(I 17) coincides with the solution to the equatibn (1.13)ewa diferent hypothesis on the density
n(v) is assumed, i.e.

n(v) = N26(v — 2v1) + N36(v — 2v2) + 2nMS(v — (v1 +v2)),  O0<vi<va <1, (1.18)

for ny, np > 0 and such that; + n, = 1. Therefore the equation governing the procfé:,sis,z(t),t >0
turns out to be

N v n 82v\? A

Yot T Fare) T o

for 0 < v; < v, < 1, with the usual initial conditions ang(x, 0) = 0, in addition.

Equations[(1.16) and {1.1L9) are proved to govern deeplgréint processes: while the former
is linked, for any value ofy, v, to a difusion with retardation (see aldd [6] and [7]), the same is
not true for the second equation, which, depending on theevaf the random indexes, produces a
subdftusion or a superéiusion.

XxeR,t>0, n;,ny >0, (1.19)



2 The recursive equation of distributed order

2.1 The double-order fractional case

We begin by considering the following fractional recursiliferential equation

1 dvpk
Wn(")dv = —A(Px — Pk-1), k=0, (2.1)
0
where, by assumption,
1
n(v) > 0, f n(dv=1 ve(0,1] (2.2)
0
subject to the initial conditions
1 k=0

PO=909 k=1 (2.3)

with p_1(t) = 0. We apply in[(2.11) the definition of fractional derivativethe sense of Caputo, that
is, forme N,

v 1 t 1 dm
d—u(t) _{ fo Ty agu(9)ds form—1<v<m , (2.4)
dr Fmu(t), forv=m

(see, for example[ [11], p.92). As a special case,nfed = (v — v), and a particular value of
v € (0,1), equation[(2.1) reduces tb (1.1), which governs the soa¢&RPN,(t),t > 0 (see, for
details, [15],[17] and [18]).

In order to get an analytic expression for the solution[idl2we adopt here the following
particular form for the density of the fractional order

n() = mé(v — v1) + md(v — va), O<vi<w<l, (2.5)

for n;,n; > 0 and such that; + n, = 1 (conditions[(ZR) are trivially fulfilled). The density.&)
has been already used by [19] ahd [6], in the analysis of thealled double-order time-fractional
diffusion equation, and corresponds to the case of a fubidin with retardation (see next section
for details). Moreover, it was applied in [16] in the contexfractional relaxation with distributed
order.
Under assumptioii (2.5), equatién {2.1) becomes
dpc d?pg

M + Mg = =4k = Pe), k=0, (2.6)

By taking the Laplace transform ¢f (2.6) we get the followfirgt result.

Theorem 2.1 The Laplace transform of the solution to equatibn(2.6),emecbnditions[(2.8), is
given by
- /lknlr]vl—l +/1kn2nvz—l
L{pun) =

= 2.7
(A + Nyt + noppr2)k+1” 2.7)

for any k> 0.
Proof Formula [2.¥) can be easily obtained by applying[fal(2.6)ekeression for the Laplace
transform of the Caputo derivative, i.e.

d’u
{ain)

00 dv
-t =
fo e utadt (2.8)

-1 r
v—r-1 d

RTOLTED Wi T 8

=



wherem = |v] + 1, which yields, fok > 1,

" L (B + non2 L{B ) = -4 [ L {Ben} - L{Be v )] (2.9)
By recursively using(2]9) we get
1 k
L{pan) = (m) L{pyn). k= 1. (2.10)
Fork = 0, we get, instead: ) )
£fpyn) = P (2.11)
which, together with[{2.10), giveE (2.7). O

We can not use a direct method in order to invert analytichliyl_ aplace transforri (4.7). Indeed
an explicit inversion formula is available only fer= 0, while for k > 0 the presence of the power
k + 1 makes the analytic inversion too complicated. ko 0, we can apply the well-known
expression of the Laplace transform of the GML function dediim [1.6) (se€[11], p.47), i.e.

L

LB () n) = T (2.12)
(where Reg) > 0, Refy) > 0, Re@) > 0 ands > |a)|%@)) and the resulting formulae (26) and (27) of
[26]'i'herefore we get
Po(t) (2.13)
00 va—v1 \T v oo va—vy \+1 v
- Z (— nltnz 1) E;;%szyl)ml (_%) - Z (— nltn: 1) E;z%vz—vl)(r+l)+l (—%) ,

r=0 r=0

under conditionnyn"t/(nen*2 + )| < 1 (which is fulfilled, forv, > v1, 4 > 0).

Fork > 0, we adopt an approach similar to those usedin [1], [2]} [222]] [23] and [24] (for
different types of fractional ffierential equations), which leads to an expression of thatisal in
terms of convolutions of known distributions. In partiaulee will resort to the class of completely
asymmetric stable laws (of index less than one). More peggitet us denote bp,(; 2, for j = 1, 2,
the density of a stable random variablg of indexa € (0, 1) and parameters equalfo= 1, u = 0

ando = (|zl cos%)l/a (seel[27] for the definitions and the properties of this ctdsgable laws). As
well-known, X, is endowed by the following Laplace transform

LB,y =& =an, (2.14)

which will be particularly useful in inverting (2.7). We n@enoreover the following result proved in
[21]: the solution to the following fractional flusion equation

gj;’::&g—;g, t>0,yeR,ceR
v(y, 0) = 6(y), forO<a<1 . (2.15)
vi(y,0) = 0, forl/2<a<1

can be expressed as

1 PSSV 1
20 (1-a) Jo (t-9° ds= 2 1"{P.G:YIO,  t>0 yeR, (2.16)

wherel® {-} denotes the Riemann-Liouville fractional integral of ardeBy vy, (y, t) we will denote
the folded solution td (2.15), i.e.

- 224 (Y 1), >0
my={ S0 Y20 2.17)

Voo (Y, t) =



Theorem 2.2 The solution to equatioh (2.6), under conditions2.3),iiseg, for any k> 0, and
t> 0, by

BU(t) = fo P hons (v, By (2.18)

1 +00 ~ t_ _ t_ _
= & [ e [t sy 9dss [0 syma.9aq dy

where p, k > 0, represents the distribution of the standard homogeneoissen process (t),t > 0
(with intensityl) and b, (;2) denotes the density of the stable random variableoXindexv; e

(0,1), for j = 1,2, with parameters equgl = 1, u = 0 ando = (Llyl cos%)mi.

Proof We observe that(2.7) can be rewritten as follows

n n n n
L{Bn) = (" + fn”z’l)L{pk; S 7277”} (2.19)
Moy, M2y +oo (e 22y
(771 + 2 ) . Pr(y)e 4 dy,

since, for the distribution dfl, the Laplace transform reads

o 1
Lipsm = et k>0.

The exponential in(2.19) coincides with the Laplace tramsfof the following convolution of the
stable laws,, andp,,:

O, (WY) = fo P, (W= XxY)p,, (X y)dx (2.20)

Therefore, by considering that

1 1 e t
e ——— e ™~dt
N fo .

we obtain

Pi(t)

L ' _ -v1 p-1 f+oo _(”Tlnv1+n72n‘,2)y
AT(L - ) j;(t W)L { . Pe(y)e dy; wp dw+
L ' _ -vy p-1 f+°° 7(%']‘/1*’%7]‘/2))/
TAra-) fo(t w72 L { . PYe dy; wb dw

nl ' -1 e .
(=) j; (t-w) ( ; pk(y)gvl,VZ(w,y)dy)dw+ (2.21)

+ﬁ j:(t — W) (fom Pk (Y) Gy, (W; y)dy) dw.
By inserting [2.2D) into[{2.21) and changing the integmaiti@rder, we get
Ny oo t t e
mfo P (fo P..(y)dx fx (t-w)™P,W-x y)dw) dy

ny +oo t . t . o
+mﬁ pk(Y)(j; pyl(x,y)de;(t w) pvz(W X,Y)dW)dy

= 2 [ o) [ Patenr® (pun] € 0x)ay

Pi(®)

2 fom Pu() (fot P, 051" (B, ()} (- X)dx)dy'
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By considering[(2.16) an@{Z.117), for= A/n;, for j = 1, 2, formula [2.18) immediately follows.o

Remark 2.1 The previous result shows that the solutior{f0](2.6) can peessed as the probability
distribution of a standard Poisson procégs), t > 0, composed with a random time argument with
transition density,, ,,(y, t), that will be denoted &8, ,, (independent fronN): thus we can write

B = Pr{N(7,,.,®) =k}.  k>0,t>0. (2.22)

It is proved in [2] that the solution to the fractional eqoati{I.1) is the density of the composition
of N(t), t > 0 with a random time argumefft, (t), whose density is given by, (y, t). The properties
of this process have been extensively analyzed|in [3]: itdwut to be a Cox process, with directing
measure equal ta ((0,t]) = 7,(t). We will prove below that an analogous result is valid for the
processN,, ,,(t) = N(7,,,,(t)) introduced here. Moreover we will check that it is also aewal
process.

We derive now a series expression for the transition derpity,(y,t) of the random time-
argument’,, ,,(t),t > 0, which is alternative to the integral one given in Theoreg 2

Theorem 2.3 The density g,,,(y, t) of the random time-argumerﬁ,l,vg(t),t > 0 can be expressed
as follows

Oz (Y 1) (2.23)

om oo 1 myY my) , Mo o 1 [ nlyl\ gyl
T oa ;ﬁ(_ vz ) Wt | =300 | 30 ;r_' “aon | Woredonron (=567 |

where . )
X
. =y — -1, , R
Wap(X) kz:(:)k!l“(a/k+,8) a> peC, xe
is the Wright function.
Proof We recall that the solution to theftlision equatior (2.15) can be expressed as
1 v
Voo (Y, t) = sop W-et-e| | >0 yeER (2.24)
(seel[14], for details). Then we get fr0.18) that
Ui (¥ 1) (2.25)
nmo( o L mlyl n o L nalyl
7]0‘ pvz(t -S |y|)§(W*V1,1*V1 (_ st ds+ 7 o pvl(t -S M)E(W*Vz,lﬂ’z _E ds

We now consider the series representation of the stableflavdera € (0, 1) given in [8] (formula
(6.10), p.583) and already used (with some correctionghdriractional context, in[22]:

P06y D)= = i(—l)rwx’“(”l)’l sin[g(y ra)r+ 1)] . (2.26)
r=0 '

In (2.28) the canonical Feller representation for the stédols (with null position parametg) has
been used, i.e.

oo i in 0
P.(X%7.0) = % f e ™exp{-giore ?hlde, @ #1;

hence we must convert the parameters appearing there ode tlsed here, as follows:

a = Vj
2 TV
Y = ; arctar(tan7) = Vj =a
. nVj
¢ = oV _ n-|y| cos—* _ mlyl
cos™ AcosTl a7



By taking into account the self-similarity property, thalsie densities appearing [n(2125) become

— n; A Al
Py, (% V;q’lyl) = T pyi[ T :v;,l] (2.27)
(nity1) (niy1)
—yjr-1
S Teoir+1) x|
= —— Z( )r 1 Jr| [ T Sln(ﬂer)
(n 1)) (Y
LTr+2)( niyl \"
_ = _qy-1 J J .
= = ;( 1) o (ﬁl/VjXVj) sin(rvjr),
so that[(2.2b) reads
Oz (Y 1) (2.28)

n r r+1 n N
_ M Z( 1)~ 1 (Vz )( 2|y|) sm(ner)f Wwwﬂ V1( ,113|3:|)ds

n I'(vir +1) (n noly|
2 Z( 1)r 1 ( 1 )( 1|y|) Sln(ﬂ'Vlr)f W(W*VZJ*VZ (—%)ds

_ omx, e l0er +1) mp ) : (=nlyl/2)' ! 1

_ M;( S Ry sm(nvzr);”r(_le 2 | ogeemtst
N v, ya D0ar +1) g S (—nalyl/ ) ! 1
T Z( b rl (a'y') Sm(ﬂVlr);|!r(—V2|+l—V2) , (ZgrigDis

r=0
=S |
1 L0ar + 1) [y 1 [(=var) _nalyl
T Z( b rl av- ) Sineman Z T —val v, —vir) \ av2
_ SETEEY 1 Nyl
Toam Zr ( tvz) Z“F(l V1|—V1—V2r)( tV1) *

Ml 1 nolyl\'
/ltv Z ( At ) ; |'F(1 —vol — vy — Vlr) Az |’

where, in the last step, we have used the reflection formulaeoamma function. O

_ M 2L Oar +1) (nalyl)’ 1 T(-var) _nayt)
T At Z( e rl At Sm(ﬂvzr);|!F(1—V1|—V1—V2r) s )t

Remark 2.2 Consider the special casg = 0, n, = 1: the distribution of the random order
reduces, in this case, to

nv =6(v-v2), 0<r2<l, (2.29)
so that equatior (21.6) becomes the fractional equafion),(tvith v = v,. The Laplace transform
(Z22) simplifies to

Aknvz—l
(/1 + UVZ)k+l’

L{Bn) =

thus giving the well-known distribution

(2.30)

(D) = AC2EST . (-at?),

V2, Vzk+ 1

for anyk > 0 (seel[3] for details). The result of Theorem 2.2 can be sieed as follows, for
ng=0,n =1:

—+00 1 —+00 o
RO= [ P00 =g [ Yem.m0d (2:31)
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In (2.31) we have taken into account that the density of tablstrandom variabl&’,, with u = 0

ando = (%ycos”—;1 . degenerates to the Dirac’s delta function (i, (W — X;y) = 5(Xx — w)),
so that the density ;2:20) becomgs(w;y) = P,,(w;y) and [2.2]1) easily yield$ (2.B1). The latter
coincides with the result proved inl[2] and already recaiteBemark 2.1.

As far as Theorem 2.3 is concerned, by puttmg= 0, n, = 1, the density of the random
time-argument can be expressed as follows:

) = s Wornto (o) = o000, (2:32)
since in[2.2B) only the term= 0 of the sum survives. To sum up, the FPP analyz€d in [2] isléqua
distribution to the random time proce¥$§7,(t)), whose density can be expressed as a simple Wright
function; on the other hand, in the distributed order case situation is more complicated. The
density of the process(75,.,,(t)) is written in terms of infinite sums of Wright functions. Maver,
in the single-order case the denswy,(y,t) coincides with the folded solution to the fractional
diffusion equation[{2.15); in the double-order case the reiship between the density, ,,(y,t)
and the fractional diusion equation of distributed order is more complicatedyaswill prove in
the next section.

Let us now focus on the probability generating function of mocessﬁvl,VZ, which can be
expressed in terms of GML functioris (IL.6), as the followiegult shows.

Theorem 2.4 The probability generating functi()ﬁVl,VZ(u, t) of the process&?/vl,y2 is equal to

G, 8) = D UBL) (2.33)
k=0

N (_ Nyt )r Er+l (_ A1 - U)tvz_) +
r=0 i

va,(v2—vi)r+1 N,

— i _ nytrz=" r+l Er+l _M
r=0 17 va,(v2=va)(r+1)+1 n )

Proof The Laplace transform cﬁfvm can be written, by taking into account formula(2.7), as

> k 7k vi—1 °° k 1k vo—1
~ u“Anipt uA*non”?
LiG u,-); +
(G i) ; (A + nup + nppp2)ke ; (A + nup + ngp2)ke

n vi—1 n vo—1
- 2L + 2 (2.34)
AL —u) +mpr + a2 AL —u) + mpt + nap2
nl 77\/1*1 T]VZ*].

M LU+ Bt pr  A(A-u)+ B
2 % 1 n o ) n

By applying formula (26) and (24) of [26] to the first and seddarms of [2.34) respectively and
recalling that, > v1, the Laplace transform can be inverted as follows:

~ N s ngte\ A(L - uyt=
G,,(ut) = —te ) (- Shes e Sl Y
1 z( ) n, ; ( n, ) va,(v2—v1)(r+1)+1 ( Ny
o (gt AL - U2
+ rz:(; (_ n, ) Ev:,(vg—vl)r+l - n, ’
which is equal to[(Z.33). O



Remark 2.3 We observe that the infinite sum of GML functions[in (2.33)mides with the Fourier
transform of the solution of the filusion equation (fractional in time and space), analyze@@}, [

i.e.
n o

X 1) +

otz 0+ n, ot
in the special case whege= 0. In this case, foc? = A(1 — u)/n,, equation[(Z.35) reduces to the
time-fractional equation

o2 n 9" (1 u)

—G(u,t G t
GO + oG =

"
f(xt) = czaa—xy f(xt), XeR,t>0, (2.35)

G(u,t), (2.36)
(with initial condition G(u,0) = 1). Indeed the probability generating functi@}m must solve
equation[(2.36), as the following steps easily show:

VZ Vi

557 O (U0 + MG

- 0" o
_ k
= D e+ g0

= -2 Z UpL(t) + Au Z upr ()

= —/l(l - U)le,vz(u’ t)

n2—— Vi,v2 (U t)

Remark 2.4 By means of the probability generating function, we can khbat the distribution
Py(t), sums up to one, fdr = 0, 1, .... Foru = 1, formula {2.3B) yields

GruraU O]y = D Y (2.37)
k=0
_ ) nltvzfvl r ny trzvi r+1 1 ~
- ; (_ Ny ) F((Vz - Vl)r + 1) Z( 17) ) F((Vz - Vl)(r + 1) + 1) =1

since only the ternj = 0 in the expressiof_(1.6) of the GML function survives.
Moreover, foru = 0, formula [2.33B) gives the probabilif(t) (already obtained i (2.13)):

Gypyo (U)o = (2.38)
- n2 Vz,(Vz*Vl)l'+l Vz (szvl)(l'+l)+l n2

r=0 r=
= Pol).

We note moreover that, in the special cage- 0, n; = 1, the probability generating function reduces
to
G,,(ut) =E,,1(-2(1 - u)t?)

which coincides with the one obtained for the fractionaldBon process in[2], as expected.

__ We make use of Theorem 2.4 also in the evaluation of the exgimhenoments of the process
N,.v, and in its resulting characterization as a Cox process.

Theorem 2.5 The factorial moments of the procegsm, with distributionpy(t) and probability
generating functio,, ,,(u, t) given in [Z.3B), are equal to

E [Nysvo® (Moo (®) = 1) . (Noy s (8) = K+ )] (2.39)
B nl/lktV2k+V2 V1 Y Ek+1 nltvg—vl /lktVZK A Ek+1 nltvg—vl
- nk+1 sy v vokdvo—vi+1 | T n, n2 vo—vi,vok+l | T n, .
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Moreoveva1 v, IS @ Cox process with directing measuxé€(0,t]) = 7, Vz(t) endowed with density

vy (V5 ).
Proof We take thek-th derivatives ofsv1 v, With respect tau:

k

of —
ﬂ le,vz (U, t)

R GGAEES (r + ) (~42) (-1 - i kje
B ZO(‘ n, )H;J!F(Vzh(w—m)wl) (1-K!

) =S ) nyt’2" r+1 l i (r n J)' ( ,1tV2) ( 1)k(1 U)] k
P Ny j'IT(v2j + (v2=v)(r +1)+ 1) (j-K! |
which, foru = 1, becomes
Kk _ oo tVZ*Vl r 1 (r + k)' AtV2
KA D (_ M ) = G) (2.40)
ou u=1 = N2 r! F(ng + (V2 - Vl)r + 1)

Z( ot vl)r+1 1 (r + K1 (222)"

— o 1 T(vok + (v2 — vi)(r + 1) + 1)°

Formula[(2.4D) can be written ds (2.39), by multiplying andding for k!.

In order to prove that,, ,,(t), t > 0 is a Cox process with directing measure equal {(0, t]) =
T, 110, (1), we adopt the characterization of Cox processes by itefiattmoments. Indeed it is proved
in [12] that for a Cox process they must coincide with the wady moments of its directing measure.
Our goal is to show that this equivalence holds A ,, and for the density,, ,,(y, t) of its time
argument, i.e. that

— K +00
BT = [ Y 0u0ay (2.41)
coincides with[(2.39). We start by taking the Laplace transfof (Z.23), which reads

o

R nz|y|/A)r (—nalyl/2)’ T(L—val =vor —vy)
72 Z NT(—v

1| +1—vor— V]_) 771 val=var-vy

'L {qV1-V2 (y’ )! T]}

r=0
AN n1|y|/a (=nalyl/ ) T(L—val = var —v)
Z Z NT(=val + 1= vir —vy) pl-vel-vir-ve

00

_ e A 3 (=nan2Iyl/A)" | npe” ™= i (=nu vt/ )
- 1- | 1- |
At —~ r! Atz r!
—(N17"L+no172)lyl/ A ("2 +mp)lyl/ A
n.e ny€e
= 2L + = , (2.42)
/1771*1/1 /1771*1/2

so that the Laplace transform ¢f (2141) becomes
<l
= 3 1 — f yKe(urenar2ylagy 12 f ke mnyligy
nnlflk vi-1 oAk 1Kd

(Mt + ngp2)<t - (nyps + gy
We now take the Laplace transform bf (2.39), by applyingZp.1

L {E [ﬁvl,vz(')m(ﬁvbvz(') —k+ 1)] : 77}

~ nl/lk n—vlk—l /lk n
- k- k! k k+1°

l‘]+1 N n k+1 n
2 () 2 (e R)

r=0

/lrll—vz

Vz)k+1'

vo—vi—1 k-1

11



It is simply verified that the last expression coincides &RL3). |

Remark 2.5 Fork = 1 we get from[[2:39) the expected valueMsf. . :

]E/T/VN2 (t) (2.44)
_ ny /lt2vz—vl 2 nltVZ_Vl A2 2 nltVz—"l
= n—g Vo—v1,2vo—vi+1 | T N, + Ny va—vi,va+1 | T n,

_ nl/ltzvz‘vl i (_ Ntz )i j +1
n2 =) 17} F(ng - V]_] +2vy —vi+ 1)

LA i( Nyt Vl)' j+1
n2 = F(ng —V]_] +V2+1)
~ /1th nltv2 !
- n2 iz F((Vz - Vl)l + vy + 1)
+/ltV2 > ( nyt'z~ Vl)' j+1
n [((v2-v1)j+v2+1)
RS ( nyt’2 Vl) 1
Ny =) 17 F((Vz - Vl)j +vo+ 1)
At”2 nit2
= n—2 EVg—V1,V2+1 (_ N ) .

Now consider again the particular cage= 0, n, = 1; formula [2.39) reduces, in this case, to

A2

B[N (N (0) = 1) (N (0~ K+ )] = -,

which coincides with the factorial moments of the FPP otgdiim [2]. Analogously the expected
value given in[(2.44) reduces (faf = 0,n; = 1) to

At
r (V2 + 1) ’

as expected. We observe that, in the distributed order casgzeed here, both the factorial moments
and the expected value o,, ,, are expressed in terms of Mittag4Her functions; fork = 1 it

is a two-parameter Mittag-Lger function, while, fork > 1, we need a GML function with third
parameter equal to+ 1. This is analogously true, in view of Theorem 2.5, for kalh order moments
of the time argumertt;,, ,,(t).

EN,,(t) = (2.45)

We concentrate now on the rerlewal property%{,VZ: more precisely, we obtain the density
of the waiting-time of thek-th eventf//(t) (or, more exactly, its Laplace transform) and that of the
interarrival timesf)(t). The latter is expressed again by means of infinite sums of @Mctions.
The same is true for the survival probabili#y(t). We remark thaf}! (t) can be expressed as tkih
convolution ofﬂv(t) and this implies that the procegs”2 is a renewal, since the waiting-time of

the k-th eventTy = inf {t > 0 : N,,,,(t) = k} is given by the sum ok independent and identically
distributed interarrival timebj, j = 1, ...k

Theorem 2.6 The Laplace transform of the densﬁ&(t) = Pr{Ty € dt} of the k-th event waiting-time
Tk, is equal to

k
.ol A
l{fk,n}—(“nmmmvz), k> 1 (2.46)

12



The density of the interarrival time jUs equal tof?, for any j=1,2,...and can be written as

— A A ngten) At
fr) = =2t - Er+l - . 2.47
0 N2 ;( n2 ) Vz'm(vz_”)'( nz) ( )
Alternatively
+00 +00
FO= [ (o.(stds= [ e,.(s0ds (2.48)
0 0

where { denotes the interarrival-time density of the Poisson pssde (i.e. {(t) =e)and g,,, is
given in [2.2D). Thew,, ,, is a renewal process with renewal function given by

— e nytz"
m'(t) = n—zEym,vZu (— o ) (2.49)
The survival probability?” (t) = Pr{U; > t} can be expressed as
t
(1) = 1—f f/(s)ds (2.50)
0
(ot A2\ e\t 2
- ; (— o ) B amvre1 (‘n—z) - ; (— o ) Shy I )
which solves the relaxation equation of distributed order
o o 251
nlﬁ‘P(t) + nzﬁ‘l‘(t) = —-AP(t), (2.51)

(with initial condition¥(0) = 1).
Proof Formula[(2.4b) easily follows from the following relatidrip

L{pan} = f e Pr{N,,.,(t) = k} dt
0
= fm e M [Pr{Ty <t} — Pr{Ty,1 < t}] dt
0
1, (= _
= ;[L{fkvi’?}‘ﬁ{fél:n}],

used together witH (2.7). The Laplace transform of the dgmdithe first interarrival timeJ; is

equal to[[2.46) fok = 1:
A

gl ——— 2.52
L{ 1,77} /l+n17]"1+n277"2’ ( )
and thus the density of tHeth event waiting timefhk; is expressed as thefold convolution offf.

This proves thalzﬁ\'/vlyv2 is a renewal process; its renewal function has been alrealdulated in
(2.42). As a check we show that the well-known relationstepureen the Laplace transforms of
m’(t) and )" holds in this case:

Pl
1[Nt + noip2 ]

1 .
A+Mn"1+npn"2 L { fl ! 77}

1|1~ wtr | (1= L{Tn)]
The Laplace transforni (2.62) can be inverted by applyingnfda (27) of [26], fora = v,
a=ny/ny, B = vy andb = A/ny, thus giving [Z.47). We can rewrite moreovier (2.52) as folow
5o _ %
Lt = p T (2.53)
n n
L{fl; 7177V1 + 7277“},

L{m';n}

13



wherefy(t),t > 0, is again the density of the interarrival times for the Paisgmcess; hence
— oo L IR L IR
L{ff; ;7} = f fy(t)e G, (2.54)
0

By inverting the Laplace transforrn (2]54), taking into aceb{Z.21) and[{Z.20), we gét(2148).
We take the derivative of (2.50) and we show thﬁkPV(t) = f7(t) given in [Z.47): indeed

d 714
- ST

A2
_ _ (vo—vi)r-1pr+1 _
= —(v2—-vy) E ( ) e Ev:(vz—vl)r+l( n )+

a nitvz—"1 (r + J)' (——) ]VgthI 1
DS e

Ny 4 JIT(v2] + (v2 = va)r + 1)

n r+1 A2
+(v2 —v1) Z(r +1) (_n_z) tza)(r+1)- 1EV2 (- vl)(r+l)+l( M ) +
=0

+

i( Nyt n)”l 1 ) (-2) et

IT(v2j+ (v2—v)(r+1)+1)

r=0 ]OJ

o

Lon( mter\' az\ 1 nt2 i\ a2
= _YZ(_ - ) SO +3 210 - N act) el B
r=0

r=0

The latter expression can be shown to coincide vith (2.47). _
By noting that[[2.5D) is equal t6 (2133) for= 0, it is immediately proved th&” solves equation
(2.38) foru = 0, i.e. equation[(2.51). Alternatively, it is easy to checkttihe Laplace transform of

(2.50) is given by

nl’]V17l + n277V271
A+ Nt 4+ non*2 ’
which coincides with the solution to the Laplace transfofraquation[[2.511).

L{¥n) =

O

Remark 2.6 In the special case; = 0,n; = 1, from [2.47) we retrieve the density of the interarrival
times of the fractional Poisson process (see [2]):

f(t) = A2E,,,, (-1t2). (2.55)
Likewise the survival probability (2.50) reduces to

P'(t) = E,, 1 (—At"?).

It is interesting to analyze the asymptotic behavior of ttagtiwg time densities and of the re-
newal function and to compare these expressions with thegponding formulas obtained for the
fractional Poisson process. To this purpose we need to pihevfollowing integral representation
for the GML function:

Ek —ct) = —
v,,B( ) 27

1-B +00 B (yv imvyk in,B v imv\k
t f B € + cem)k — (r" +cé )dr. (2.56)
0

[r?” + 2r'ccospn) + c2]¢
We start by checking that, fdc = 1, formula [2.56) coincides with the form given f&;, s(—t”) in
2], 1.e.
ti-# f* " ﬁe‘”r sin@n) + csin((8 — v)n)
0

2ni r2 + 2rvccosfm) + c2

E,s(—ct’) = dr. (2.57)
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In order to prove formuld(2.56) we multiply and divide theth term in the series expression of
E'j, (—ct) for sin((8 + vm)zr)/n and apply again the reflection formula of the Gamma functan,
follows

Ex 5(—ct) (2.58)

1 & (Mm+k=1D)(=ct)"sin(@ + vm)r)
(k—1)! mZ:O miT (vm + B)

I'(l-vm-pB)Ir{ym+p)

a(k —1)! miT (vm+ )

~ t1-8 00 n 00 ype © (m+ K — 1)!(—cyV)m einvm+inﬁ _e—invm—inﬁ
= n(k—l)!fo © drfo ey’ mzo M (m+A) 2 dy

15 & _1)i(—g)™ o =
-t Z (m+k=DH=0) sin((@ + vm)r) f e "tr™Adr f eVy™A-1dy
m=0 0 0

_ tlf,g fOO dyfoo efr(y*'t)ygil [e'”ﬁEk (_Cy/e"rv) _ e—lﬂlBEk (_Cy/e*"rv):l dr
2rik-0' o o v e

= [by 212)
tl—lB 00 » ein,B rvk—IB Cing rvk—ﬁ d
T o2d j; © [ mrcemk © (m+ ce"”)k} "

This coincides with[(2.36). The asymptotic behaviorE%(—ctV) can be obtained froni (2.56) and
reads, fott — oo:

E';ﬁ(—ctV)

—vk 00 inB(Z —imn\K _ -inB(Z im\k

t . f eZZVkﬁ[é (F -I-ZVCeI )V e (£ + cé™) }dz
2ri Jo (& + 2cZ cosny + C2)K

_ HA=prk) sin@r(8 — vK)) + o(t™¥) (2.59)

mCkprk

1 —vk

- ™), t .

sorrg v o) -

Fork = 1, formula [2.5B) reduces to the one holding for the MittagHer function, which can be
deduced by{((Z.57), i.e.

E, 5(—ct) = +ot™),  t— oo (2.60)

1
ctT(B—v)

Fort — 0, we get instead that

) 1o €¥(2 + ce ™) — e1®(2 4 cd™ i)k
lim EX (-ct’) = lim — 2pkp d
il wp=ct) 0 27 j; €z [ (2% + 2c2't” cosny + C2t2)k z
_ 1 oupsingg) o T(1-8) . 1
= = L‘ e7 = dz= - sin(rpB) = ) (2.61)

The asymptotic behavior for smaltan be deduced directly by the series expressi(ﬁ‘;g(—ctv):
indeed we get, for @ t << 1,

1 ct’k
re) rE+v)’

which reduces, fok = 1, to the well-known expression (see [20], formula (3.13)).
The interarrival-time density {2.47) can be rewritten, pplging (2.58), as

Eﬁﬁ(—cﬂ) ~

15



ﬁV(t) (2.62)

0

/uvz—l nltvz—vl r tl—vz—(vz—vl)r
B Ny ; (_ ny ) 2ni '

00
. f e*ZtZVZ(I'+l)*V2*(V2*V1)I'
0

I CC eZdz Agimve e e7ldz

T2 Jo mErzt 4z + 8 27 )y meinzozn 4 npze + e
z

W= -

=]

([ g
= — e Vdw : . +
2ni Jo N e7vz=vwtl-vi 4 nowvatl-vz 4 J@mvat
e—invg
- nle—iﬂ(vg—vl)wvltl—vl + nZsztl—Vg + /le—irrvgt]
Asin@vo)t2 (1 -vp)  are?t
my T ()

ei7rv2+iﬂ(vz—v1)r e—invz—in(vz—vl)r :|

(ng + nizeimfz)rJrl (sz + nize—invz)rJrl

t—0

which shows that, fot — 0, the asymptotic behavior cﬁf depends only on the larger fractional
indexv,. The same conclusion can be drawn by looking at the seriesnsiqn ofﬂv(t) given in

(2.41).

Fort — oo, from the sixth line of[(2.62), we have instead that

ﬁV(t) (2.63)

at e o
= e » d .
o ﬁ e w

nlelt—vl(eim/l _ e—invl) + nZWVZt—vz(eim/z _ e—invz)
.(nleiﬂ(vsz)Wvltfvl + oWtz + /lei"VZ) (nle—in(vz*vl)wwtfvl + oWzt + /lgim/z)
nlvlt‘l‘V1 sin(rv1)I'(v1) _ nlvlt‘l‘V1
An CAr(l-vy)’

t—>

bl

which depends only on the smaller fractional inetgXBoth asymptotic expressions (2162) and (2.63)
are exactly the same as for a fractional Poisson processgiésirder equal te, andv; respectively
(seel[2], formulae (2.38) and (2.36)).

Analogously we can analyze the asymptotics of the survikabgbility, which turns out to be,
fort — oo,

() (2.64)
npt™r2g® [ e w2~ 1dw

2ri o NErtzvIwWtv1 4 nawzt—z 4+ g2 +

npt™"2ein [ e w2~ 1dw
_ ) ‘ .

2ri j; nle—lﬂ(Vz—Vl)Wvlt—Vl + nzwvzt—vz + Qe

nlt—vleiﬂ+iﬂ(Vz—V1) 00 eWwi-ldw

+ - - _ +
2 j(; N 702wt 4+ nowr2t—vz + 1env2

nlt—Vle—iﬂ—iﬂ(Vz—Vl) 00 eMwi-ldw
N 2ni L nle—i”(Vz—Vl)Wvlt—Vl + nowr2t=2 + /le—iﬂvz
nit™* sin(r(1 — v1))I'(v1) oot

Ar - Ar(d-vy)’

t — oo.

Fort — 0, by writing down the first terms of the series expansiod in@p @&t least forj = 0,1, 2
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andr = 0,1, 2) and doing some manipulations, we finally get

V2

O LT D

+0(t?), O0<t<<1l (2.65)

As far as the renewal function is concerned, its asymptai@bior can be represented as follows:

— Pl
m(t) ~ MToiT 1) t— oo (2.66)
and
m'(t) = _ A t—>0 (2.67)
B nzr(Vz + 1), ’ '

From [2.60) it is evident that the mean waiting time, whicicaes withlim;_,..t/f (t), is infinite,
sincevy < 1.

Remark 2.7 We remark that, in Theorem 2.6, the survival probabﬁ{y expressed in[{2.50) is
proved to be a solution of the relaxation equation of distel order[(2.51) under the double-order
hypothesis[(2]5). This result can be compared to the amsaly$Lé], where only the Laplace trans-
form of the solution is presented, together with its asyripteehavior. Formulaé (2.64) and (2165)
coincide with the result (4.13) obtained therein, but heegprovide an explicit formula of the solu-
tion, in terms of infinite sums of GML functions.

2.2 Interpolation between fractional and integer-order egation
We analyze now the following equation:

d”px dpc

nl dtv + nZF - _/l(pk - pk—l), k > O, Ve (O, 1) (268)
which is obtained fronl(216), as a special case/for 1, under the usual initial conditions
1 k=0
pk(0)={ 0 k>1° (2.69)

andp_1(t) = 0. Equation[(Z.68) represents an interpolation betweesttiredard and the fractional
equation governing the Poisson process. Hence the saolutltioh will be denoted in this case by
TJT(, must coincide, fon; = 0, np = 1 with the distribution of the homogeneous Poisson prodess,
Px, kK > 0. On the other hand, far, = 1, n, = 0 we must retrieve the distribution of the fractional
Poisson process, i.@;, k > 0, given in [L5).

The Laplace transform of the solution to equatibn_(R.68) loarobtained directly by putting
v1 = v andv, = 1 in the result of Theorem 2.1, so that we get

_ /lknlnvl’l + ﬂkng
a (/1 +mnt + n27’])k+l,

L{pn) k> 0. (2.70)

for anyk > 0. In order to invert this expression we adapt the result of Tée2.2 as follows.

Theorem 2.7 The solution to equatioh (2.68), under conditidns (2.683,given, for any k> 0, and
t> 0, by

LR RO (2.72)
- o |y [m B0 + B )] ay

Here:pv(-;y) denotes the stable law of the random variableoXindexy € (0, 1) and parameters
equaltog =1, u =myly|/1ando = (%lyl cos”—zv)l/v.
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Proof We observe thal(2.70) can be rewritten as follows

L{Bn) = (nl " 1+—)£{pk,mn”+n7n}

so that we get, by an argument analugous to Theorem 2.2,

RO = e [ ([ oo yay)ans (2.72)
n +00
+7 Pe(Y) gy (t; y)dy
0
The density in[(2.42) can be expressed as follows
gwy) = LHeCreEom

f P x)o(x ~ 22 )ax
0

= Pwy):
hence
+00 t _ _
B0 [ oy [ - w0 By 25 i)y
- [ PO Fr @) + 2w oy
which coincides with[{2.71). O

Remark 2.8 Forn, = 0 andn; = 1, we get thap, (t; y) = B,(t; ). Therefore formuld{Z.71) reduces
to

o= [ ey
[ ety 273)

as for the single-order fractional equation (see (2.31) @f6)-[2.17)). On the other hand, for
n = 0 andn; = 1, itisP,(t;y) = 6(y) andpy(t) = pk(t), since, in this case, equatidn (2.68) reduces
to the equation governing the Poisson distribution.

Remark 2.9 A particular feature in this section is that for the processgegned by[(2.68) the prob-
ability generating functio®,, as well as the probability of zero evefqi$and the interarrival time
densityff(t), can be expressed as infinite sums of the Kummer confluent ggperetric function

1F1 (@, B; X) . The latter is defined as

o (@) 2

itF1(ay;2) = ]Z; HJ—'

where(y), = y(y + 1)...(y +r = 1) (forr = 1,2, ..., andy # 0) and(y), = 1, or, in integral form, as

zaeC, yeC\Z,, (2.74)

1
1Fi(e;y;2) = % 5 o1 -ty tefdt, 0 < R(@) < R(y), (2.75)

(seel[9], p.1085). Indeed it is well-known the followingatbnship between the GML function with
first parameter equal to one agié (@, v; X):

E1,@ = 1F1 (2712

F()
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(seel[11], p.62). _
By specializing resul{{Z.33), the probability generatingctionG, (u, t) is equal to

(~my A(1— Ut
G(Ut)_ZmlFl(r‘i—l,r(l—V)‘i‘l,— N )+
(=)™ AL - u)t
Z M+ 1)(1 m 1)1F1(r +1;r+1)A-v)+1;- ™ )
Analogously, from[(2.47) the interarrival time densitydsain this case,
( Y ) at
f()—nzZmlFl(r+1,r—Vr+l,—n—2). (276)

Remark 2.10The expected value of the renewal procss), t > 0 with distribution [2.711) is given
by

~ At npti
EN,(t) = =Ey,> (— = ) (2.77)
17 17
so that we get this asymptotic behavior
~ At
ENY(t) 2 ————, t .
NO= Tray T

This expression coincides with (2]45), for = 1: the mean value is not influenced by the presence
of the first derivative. On the contrary, for»> 0, we obtain from[(2.47) that
At
EN, t)~—, t-0,
2
i.e. the usual expected value of the Poisson process. Tneték first derivative dominates equation
(2.68) asymptotically, as— O.

3 Diffusion equations of distributed order

We study equatio (1.13) in the double-order hypothésk) (Re.

v v 9%

nlm + nZE = ﬁ’
for 0 < v1 < v» < 1. Equation[(311) can be viewed also as the particular casg & 2) of equation
(2.38) analyzed in[26]in that paper only the Fourier transform of the solution igegiin explicit
form, in terms of infinite sums of GML functions. Our aim is tvgan explicit form of the solution,
by using an approach similar to the previous section andigirgy an expression of the density of
the random time in the subordinating relationship (IL. 14jsTurns out to coincide with the density
of the random tim¢&,,, ,,(t), i.e. withg,, ,, given in [2.I8) or[(Z.23).

XeR,t>0, v(x,0)=6(X), ny,n, >0, (3.1)

Theorem 3.1 The solution to equation (3.1), is given by

(1) = fo (X, Y)Gouos (v, Oy (3.2)

+00 e—x2/4y t t
= B,,(t — S YV, ,sds+f_vlt—s; Vo, (Y, S)ds| dy,
0 m[fopz( e 9+ [ P (t- 59T (0. 9] dy
where f is the transition density of a Brownian motioft)& > 0, V,,, is given in [2.15){2.17) and
by, (;y) denotes the stable law of the random variabjeof indexv; € (0, 1) with parameterg = 1,
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]

p =0ando = (njlylcos? )l/vj ,for j = 1,2. Alternatively the density,g,, in (3:2) can be written
asin [2.23).

Proof We take the Fourier transform ¢f (8.1), so that we get
Mm%y + % = -0V (3.3)
V(6,0)=1

where

+00

Vs (0.1) = F [Vosrn: 6} = f 77, (%, Odx

—00

Taking now the Laplace transform &f(8.3) we get

— ) _ nan17l + nzan*l
.E {VVlsVZ’ 9, T]} = W . (34)

We can invert the Laplace transform, by noting that it calesiwith [2.111) forl = 62, as follows:

Vyis(6:1) 5)
_ i _ ngt’2 " r Ered ~ 0%t"2 ~ i ~ nyt2— r+1 £t . Rre
P! Ny va,(va—vi)r+1 Ny o n, va,(va—vi)(r+1)+1 o s

thus obtaining a first form for the solution fo (B.3). Sincedrting the Fourier transform (3.5) seems
not possible in closed form, we rewrife (B.4) as follows:

~ 1 +oo V- V;
LV 6.0f = (w4 nap= )5 f g E =gy
0

We note that the terra(m7*+™=72)W can be seen again as the convolution of two stable Bwef

indexv; € (0,1) and parameters equal o= 1, u = 0 ando = (3n;iwl cos%)lh" for j = 1,2 (see
(Z.12)). Therefore we get, alternatively [o (3.5)

Vy10,(6,1) (3.6)
ng ! -y erOC 92W|:fz— . = .
= — t—27dz e z—- X;W)P,. (X wydx| dw +
g [z | B2 X WP, (W)

N2 e f“" —sz[fz— B (x ]
+——— | (t-272dz e z— X, W)P,, (X; w)dx| dw
g [ e | Bz xwp,cw

=m fom g W [fot " {Tavl(ﬁw)}(x)_pvz(t— X; W)d x| dw +

+00 t
g [ [ [ a0} (0P, x wix|
0 0
+00 t
= j; e W [fo V2, (X, W) P,,, (t — x; w)d x| dw +
+00 ) t
+ f e(’W[ f V2, (X, W) B, (t = X; W)dX} dw,
0 0

where agairv,,, is the solution to equatiof (Z115) witlf = 1/nj, j = 1,2. Finally, we recognize
in (3.8) the Fourier transform of the Gaussian density, wihance 2|, so that we can write the
subordination relationship (3.2). O

The previous theorem shows that the solution to the douttler@quation{3]1) can be seen as
the density of the random-time process

§V1»V2(t) = B(;i:vl,vz(t))’ t> 0’ (37)
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whereB is a Brownian motion (with infinitesimal variance equal tmﬁ)j‘f‘ym is the random time,
independent fronB, with densityq,, ,, given in [3.2) or, alternatively, ii{Z.23), far= 1. By using
the results obtained in Theorem 2.5, we can evaluate the misro&3,, ,,, as follows:

Theorem 3.2 The k-th order moments of the procégv2 are given by

EB (1)
0 fork=2h+1
t"ZhWZ’Vl h tr2—1 voh h tr2—1
= MT(Zhy Ev:—lvl,vthrvz—vlJrl (_ = n ) t ; (Zh)' Ev;lvl,vthrl (_ = n )
for k = 2h

Proof By the definition[[3.]7) we can write
~ — K +00 K +00
EB,, 0 = B[BTO) = [ [ 1000 0dy0x

The odd order moments ‘ﬁn,w are obviously null, while the moments of orddr, 2or h € N, can
be evaluated as follows:

EBX (t)

V1,V2

f ) [ e W
Sy~
- [ Cann [ (4yw)“e\,—fdwdy

22h

= —F(h+ ) f Y G, (¥, )y

- 2B [ yan oy

nltvzh+vz V1 hel nltvz—V1 tvzh hel nltvz—V1
= nl21+1 (2h)! EV2+—V1,V2h+V2—V1+1 N n, + n_I21 (2h)! Ev:—v1,vzh+1 - Ny ’
where, in the last step, we have applied formila(2.39) aeddtationship
— K —_ —_ —
E[Trr®] = E [N (Nopro® = 1) . (Mo, —k+ 1), keN (3.8)
proved in Theorem 2.5. O

Remark 3.1 We can check the previous result by noting that,Hot 1, we get the second-order
moment obtained ir [6] (see formula (16), foe D = 1):

EB2 (1) (3.9)

V1,V2

2yt (j + 1) (-2 ppen & (j+ 1)) (-meey
k JZ Ta )i +2e-sD " 1 Z M=) +v2+ 1)

0 21 0 i

2 S e MO o i )

Ty LT ((v2— i)l +va+ 1) OF((Vg—vl)j+v2+1)

2t

= n_2 EVz*V1,V2+l (_

I=0 =

nltVZ*Vl
173 ’
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Our attention is now addressed to the equation solved byehsityq,, ,, of the time argument
T.s, (Which is shared by the process¥s ,, and3,, ,, ). In analogy with the single-order fractional
case this equation must be of “second-order” (involvingtthe fractional indexes;, v,), but is not
evidently given by[(311). We prove in the next theorem thatréer time-fractional derivative must
be included in the diusion equatior{3]1) in order to obtaiy ,, as solution.

Theorem 3.3 The density g,,(x, t) coincides with the folded solution

- 2v(x, t), x>0
V(x,t) = { 0 ( )x< 0 (3.10)
of the following equation
v v\ GV
(nlm'Fnzatvz) = ﬁ’ XGR,t>O, n1,n2>o, (311)
for 0 < v; < v, < 1, with initial conditions
V(x,0)=6(X), forO<vi<vp <1
{ 2y(xb)|_ = 0fori<vi<vy<1 (3.12)
Proof Let us take the Fourier transform 6f(2142), which reads
LIQuuitnl = [ d"Liauinldy (3.13)
= (oY) f g nan 2 gy
1 1

-1 v2—1
™" + N — + :
( 7 g ) Nt + Nop*2 — 160 Nt + Non2 + 16

2 (M + npn2)?

n (ninz"l + ngnz"Z + 2NgNpn"at2 + 92)

by taking, for simplicity,2 = 1. We take now the Laplace-Fourier transform of equation {3.4yt
considering formuld(2]8) together with the initial conalits [3.12):

NZ7? L{Quy.r,: 0.1} — Nep? ™+ 0en?2 L{Q,,.,: 6.} — o> 1+
+20n" 2 L{Q,, 0, 6,1} — 2mne e = —2L(Q,,,,: 6.7)

whose solution coincides with {3113), by taking into acad3al0). O

Remark 3.2 Equation[(3.111) can be itself interpreted as a distributelgofractional equation, by
assuming a dierent density for the random fractional indexvhich, in this case, is defined on the
interval(0, 2]: indeed we can formulat&v), as follows:

n(v) = nié‘(v -2n)+ ngo‘(v = 2v2) + 2n1n6(v — (ve + v2)), O<vi<wm<l, (3.14)
for ny,n; > 0 and such tham; + np = 1. The last condition is enough to fulfill the normalization
requirement + n3 + 2n;n, = 1.

By considering[(2.39) together with (3.8) we can obtain tesd-order moment of theftlision
process,, ,, governed by equatiof (3111), i.e.
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2m ¥z g 2\ 2122 g Ntz
[ Vlvz(t)] nz vo—v1,3va—vi+1| T Ny + ng Evz—v1,2v2+l - N, (3-15)

ntdz i (i+2)(j+1) (_ 'z )J' N

ng = r((VZ - Vl)j +3vy—vi+ 1) Ny

Ty =/ R2) (mtw)j

2 = F((Vz - Vl)j + 2vo + 1) N2
= [I=j+1]
P i (I + 1) nltVZ ) L i (+2)(+1) _mgp
- F((Vz - V1)| +2vy + 1) 2 = F((Vg — V1)| + 2vy + 1) ny
2t2V2

mtz"
n% vo—v1,2vo+1 | T N, .

We compare[(3.15) with the second-order moment of tieslon procesgw2 governed by equa-
tion (3.1) (which is given in[(319)), noting that, apart frahe similar structure, the second-order
moment of7, ,, is expressed in terms of a GML function, instead of a standaed Fort — o the
different asymptotic behavior is described below, by appZ§9) and[(2.60):

E [T ® 20 (3.16)
e M2C(L + 2v) '
2t
EBR () ~ —o
Bvl Vz( ) nll"(l + Vl)

Fort — 0, since the behavior of the GML and the standard Mittagteefunction coincides, we
must apply, in both cases, formula(2.61). Hence we get:

— 2 2t22
E|7,.,(t —_ 3.17
[ ol )] na(1+ 2vz) ( )
2t
B2 ~
EBVl v2 (t) B ngl"(l + V2) '

We can conclude froni_(3.16) arid (3.17) that, in the case where < 1/2, the dfect of difusion
with retardation, which is characteristic 8f, ,, (see also[6]), is emphasized for the proc,‘E’gs,z,
since the dierence between/z and 2, is greater than for, andv;.

A different conclusion should be drawn in the case where either bothvy, v, are greater

than /2. Forv, < 1/2 andv, > 1/2, we can observe that the asymptotic behavidg E)}T"VI,VZ(t)]2
drastically changes, at least for> 0: indeed in this case it goes to zero faster th&orvy, v, > 1/2,

in addition to this fect, we note that, also fdr— oo, the rate convergence is greater than in the
standard dtusion case (besides that offdision with retardation). Therefore the process governed
by (3.11), forv1, vo > 1/2, can be interpreted as dldision with acceleration.

4 Concluding remarks
For the reader’s convenience, we sum up in the followingemtiie most important results obtained

in this paper, by highlighting the connections between tiee@sses and the corresponding equations
involved.
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N (TZV)

B(TZV)

dt

Ih — A(Pk— Pr-1)

9%q
ox?

ot

TZV
o9 _ #q
o T ox?

Figure 1: Single order fractional equations

N(T5.v,) B(T..v.)
d"ipy d2p _ 21q 229 _ g
MGe + Mg = —A(Pk — P-1) Niger + Mg = 52

TVLVZ
91q d2q 2 _ 62q
(nlﬁt_vl +N atVZ) =R

Figure 2: Double order fractional equations
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Py, (1)

Y oY _
T + Ny =-A¥Y

My o2

Figure 3: Fractional relaxation equation
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