Carpal tunnel syndrome automatic classification: electronyography vs.
ultrasound imaging

Maurizio Maravallé, Federica Ricca Bruno Simeon€ Vincenzo Spinelft

lUniversita de L’Aquila, maurizio.maravalle@cc.univiiq.
2Sapienza, Universita di Roma, federica.ricca@uniroihal.
S|stat - Istituto Nazionale di Statistica vispinel@istat.i

Abstract

We investigate automatic classification procedures fordiagnosis of the Carpal Tunnel Syn-
drome, a disease frequently observed in occupational imedidNe apply different classification
techniques to a medical data set of patients reporting thiealysymptoms of this syndrome and
exploit the predictive power of such data to classify sulsjies “sick” or “healthy”, according to
the information obtained from the electromyography andul@sound imaging tests. Particular
attention is paid to the “Box-Clustering” methodology wini@mong the tested techniques, is the
most recent one. We show that all the automatic classificatiethods have a comparable diagnostic
performance but, in some cases, Box-Clustering perforrtisittban the others. Even if for the di-
agnosis of Carpal Tunnel Syndrome electromyography camobmpletely replaced by ultrasound
imaging, our results show that ultrasound scan can be ahlalsareening tool to detect the pathol-

0gy.

Keywords Automatic classification Box-Clustering Carpal Tunneh8some Ultrasound imaging
Electromyography.

1 Introduction

In recent years, the widespread use of computers and thienfaisivement of technologies allowed the
creation and the analysis of large data sets for problemsviariaty of application areas, such as in
industry, business, and many other real-life decisionexdst In particular, in medical applications, the
increasing importance of data analysis is leading to theotistatistical and mathematical methods for
the automatic diagnosis of a given syndrome. In the medieklt,fthe main interest is in the study of
the cause-effect relationships between a set of symptosenax on a group of patients and a specific
syndrome. The classical methods used for data analysi® fiom decision trees, neural networks
to the more recent techniqgue known as Logical Analysis olaaAD) which showed a very good
performance when adopted for medical diagnosis applieatjt, 2, 6, 9, 22]). Following the general
principles of LAD - that was originally developed for the ea¥ binary data - a new methodology called
Box-Clustering (BC) was introduced in [15] based on the arotf “homogeneous boxes”. In spite of
its recent appearance, the experimental results obtaiitedB& have shown that it is a very competitive
classification method (see, e.g., [29, 30]).

In this paper, we study the Carpal Tunnel Syndrome (CTS)which the diagnosis is particularly
important in occupational medicine [17, 20], since it is gatly due to the overuse of the arms (es-
pecially the right one) and it affects muscles, tendons aslas [10, 21, 23, 27]. CTS produces an
external compression of the median nerve at the wrist léhielconsequence being a reduction of the



nerve conduction capability. The clinical picture of theigat is usually taken as the “gold standard”
for the diagnosis in the medical contegtifical diagnosi3 [5, 31]. However, some relevant tests can be
carried out to help the medical doctor in providing a corgtagnosis, such as electromyography which
measures the nerve conduction directly, and ultrasound aictne wrist which visualizes the modified
configuration of the median nerve [10]. Traditionally, iretimedical literature, the possibility of an au-
tomatic diagnosis for CTS always falls back upon the usdreleyography, while the diagnostic power
of the ultrasound test is not universally accepted. Howenehe last decade, a renewed interest for the
ultrasound scan arose in studies published both in rad@@bgnd neuromuscular journals, providing
a revaluation of the utility of such test in the CTS diagndéis a detailed critical review, see [5]). In
spite of the abundance of papers on this topic, the chaistaterof the corresponding study designs -
which may be related to the composition of the group of p#tiethe execution of the diagnostic tests,
the adopted gold standard, the criteria to consider a testiyi® etc. - are so different that a comparison
of the results is quite difficult. Actually, in [5] it is poiad out that in the majority of such papers the
study design is affected by serious methodological shoriegs and, thus, the authors propose a clear
description of a firm methodology for the study of the diadgimosapability of ultrasound scan for CTS.

Following the indication given in [5], the objective of theggent paper is two-fold. First of all, we
want to investigate the effectiveness of the diagnosis d 6ased on the ultrasound scan versus the one
performed via the electromyography [19]. The advantage &to replace an invasive diagnostic tool
with an easy, non-invasive and low cost one [24]. This poiilithve evaluated by applying different data
analysis techniques, but special attention will be paid@ B fact, our second aim is to show that BC -
which is employed here for the first time in an actual mediggliaation - is a particularly valuable tool
for medical diagnosis, since, besides its classificatigraliity, it is also able to produce information
about typical profiles characterizing patients affectethieysyndrome, thus providing additional support
for the medical doctors in their decisions. In fact, we wikdribe how the outcome of a BC procedure
can be easily red and interpreted by a medical doctor, sircednfiguration of the “boxes” - which are
the actual output of the procedure - has a natural inteffizatas the intersection of intervals of values
related to the symptoms variables. In this sense, BC meaggedtter the advantages of a sophisticated
combinatorial technigue and the ease of interpretatiohefasults required by the non-technical experts.

The rest of the paper is organized as follows. In Section 2 n@sgnt the medical data set on which
our experiments are performed. In Section 3 some detailgrauided about the BC methodology, while
in Section 4 we illustrate the BC classification techniquseokon a given “system of boxes”. In Section
5 we introduce our experimental plan and in Section 6 we appglection of classical classification
techniques to predict the presence or absence of CTS in bof sabjects; the same data set is then
processed by BC and its performance is compared with thequeexperimental results. Besides this
comparison, in our experiments we focus the attention orattadysis of the variables related to the
ultrasound imaging and study the possibility of obtaininge#icient method for the correct classification
of CTS patients relying only on the ultrasound variablesally, in Section 7, some conclusions are
drawn and an emphasis is given to the particular advantagesirqy BC methodology in a medical
context.

2 Input data

The study is based on a set of data collected in the periodngufigpm December 2003 to September
2004 on a sample of 102 subjects who were examined at thairwigst, performing in the same day
both electromyography and ultrasound imaging. The arafgsiuses on the right wrist injury which is
the most frequently observed one. Thus, we consider thesioleeelassification variable called “Right
Carpal Tunnel Syndrome” (and denoted by RCTS) for which aesalqual to 0 corresponds to the ab-



sence of the injury at the right wrist, while it is equal to 1emhithe syndrome is present at such wrist.
The data set has 64 records with no (right) injury and 38 dcwiith (right) injury.

Electromyography was performed twice on each patiergasuring two different variables, namely, the
Distal Latency of the Motor nervior Distal Motor Latency DML) and theNerve Conduction Velocity
(NCV). For these variables, a value is considered “at rifk"is greater than or equal ta4imsec (time
delay measured in milliseconds) for the former, and less titeequal to 45 msec for the latter. The
electromyography variables (EMG) were labeled by NCVR aMLRB, respectively, where the “R” de-
notes that they refer to the right wrist.
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Figure 1: Oval shaped nerve sections at the four differemise

The ultrasound graphic imaging was carried on, indepehdefthe other examinatioss through a lon-
gitudinal scanning of the wrist (that locates the the traicthe median nerve) it was possible to take the
graphical imaging of the nerve at four specific axial levéls.shown in Figure 1, levels 4, 3 and 2 well
represent the head, the neck and the body of the typical tems” configuration of a nerve affected
by CTS. However, the hourglass configuration alone is noegdly considered a certificate of CTS,
since, according to the medical literature, this configarainay be observed on a subject either if he/she
suffers from CTS or if he/she does not [23, 25]. Hence, aalifiti information was obtained related to
the size of the hourglass nerve. Through a scanning ortladgothe nerve axis it is possible to measure
the sections of the median nerve. In particular, we comptitecarea of an oval shaped section at the
four axial levels obtaining the values, denoted by R1, R2aR® R4, of the ultrasound scan variables
(US) reported in Table 1 (see Figure 1).

On the basis of the values measured at levels 2 andiBdar of compressioftalled CR2R3) was also
computed as the percentage of the median nerve compressimels8 with respect to the largest section

IThe two examinations were performed independently by tferdint doctors working in different sites in Italy, one at
the Department of Neurophysiopathology of tt&ah SalvatoreHospital in the city of L'Aquila, and the other at the INAIL-
Abruzzi Regional Polydiagnostic Center.

2)t was performed by a third medical doctor under the protdat he was neither informed about the diagnosis based on
the other examination, nor about the specific clinics of tiigect under study.



of the median nerve (the one at level 2):

CR2R3 = R2—R3

x 100 (1)

Table 1: Full description of US and EMG variables and theding.

us Labels of the US variables
Level 1 R1
Level 2 R2
Level 3 R3
Level 4 R4
Compression Index CR2R3
EMG Labels of the EMG variables
Nerve Conduction Velocity NCVR
Distal Motor Latency DMLR

This means that we have two different data sets, one relatdwttwo EMG variables, and another one
given by the five US variables reported in Table 1.

3 Box-Clustering

In Logic Mining n observations are given in the formafdimensional vectors. Here we assume that the
vectors are not constrained in type, so that they can berdithary or real, or of both types. In addition,

a binary outcome variable, defining two separated classesssociated to each of these vectors and,
according to its value, the corresponding observationrméepositive(or true, or sick- in the medical
terminology), oregative(or false or healthy [7, 8, 14]. Aboxin RY is a multi-dimensional interval
delimited by twobounding points l= (I1,...,lg),U = (ur,...,uq) in RY:

I(LU)={xeR%Y: i <x <u,i=1,...,d}. 2)

A box is calledpositive (or negativ@ if it includes only positive (respectively, negative) ebgtions.
Positive and negative boxes are also caliechogeneous boxe&or any finite set of point§ € R we
define itsbox-closurel§ as the intersection of all boxes containing the pointS. iRor two sets of points
ST € RY, and their corresponding box-closuis= [§ andBr = [T], thejoin BsV Br is the boxSUT].

The BC problem consists of generating a system of boxed\gatjsa certain set of conditions related
to some desired geometrical properties of the boxes. Theraysan be generated by formulating and
solving a suitable optimization problem in which both thenstpaints and the objective function are
defined on the basis of criteria related to the above prage(for details, see [29]). Let us denote by
% = {By,...,Bn} asystem omboxes inRY. In the following we recall the main geometrical properties
for a system of boxes.

Given a set of observatior3 (for example the set of positive points in the training setystem of
boxes is a&overageof P if every observation oP is included in at least one box & and every box i
includes at least one observationkfin other wordsP C ™", Bi andPNB; # 0 for everyi =1,...,m.

A systemZ is homogeneou§ all the boxes are homogeneous, i.e., all the points ingitbex are
from the same class. It gpanningf every box is exactly the box-closure of the set of pointduded in
it.



An additional criterion for evaluating a box system is to sweaoverlapping that is, possible in-
tersections between boxes in the system. In principle,lameing boxes should be forbidden, but, in
order to favor the other criteria, overlaps are generaliynad, provided that no point of the training set
belongs to two boxes simultaneously. Finally, we define tesy®f boxesZ saturatedf the join of any
two positive (negative) boxes @ contains some negative (positive) point.

From a learning point of view, given, for example the Beif positive points in the training set, we
want to find the minimum number of homogeneous (positiveesaovering all points iR. Since this is
a hard problem [15], one falls back upon searching fspanning and saturated system of homogeneous
boxes covering the points in the training .sEwen if it is not guaranteed that the number of boxes in the
generated system is minimum, one can be sure that everintyginint is inside a box of its class. In [15]
the above problem was solved by a simple agglomerative apprevhich generates boxes sequentially
without any special rule for the best choice of the pair ofdsto be joined at each iteration. Here we
adopt a clustering method based on a new class of graphsl ¢allompatibility Graphs” (see, [28]).
Given a supervised classification problé®N), whereP andN are two finite and disjoint sets of positive
and negative points iRY, respectively, we can define a graBtwith vertex seV (G) = P and such that
two verticesu,v € P are connected by an edge fifiu, v} NN # 0. G is called thdncompatibility Graph
(IG) of (P,N) and it is denoted bpy. Important relations exist between systems of positiveebdrr
(P,N) and stable sets in the corresponding®sy. As known, for any given grap@, astable seis a
subsets of pairwise non-adjacent verticesSofin RY the points of a homogeneous box correspond to a
stable set in the related IG, but the reverse is not necbssare. In fact, a stable set of the giv€py
may not correspond to a homogeneous box when?2 (see, [28]). Given a set of homogeneous boxes,
one can extend the definition of IG to the more general casdichihe vertices of the graph correspond
to boxes and an edge exists between two b&sndBr iff [SUT]NN # 0. In this case, the IG related
to the set of boxes? is denoted byG» n. Notice that,Gy n coincides withGpy in the particular case
of boxes corresponding to single positive points (singisjoln Figure 2 we report the main steps of our
clustering algorithm (ALGORITHM: Clustering) which, sterg from a given set of boxe%, tries to
find a new one (with a smaller number of boxes) by merging tagrdioxes corresponding to the vertices
of a stable set 064 n. At step 4 the algorithm searches for a large cardinalitplstaet of the current
Gy denoted by,@ Then, steps 7-12 try to join as many boxes as p053|b1@ irDuring this loop,
joined boxes are deleted from the systesh which is then updated by adding the new obtained box
B. In principle, one would search for a maximum cardinalitgde set, but, due to the computational
complexity for solving this problem, at step 4 a simple gsebduristic procedure can be applied, such
as, for example, the so called GMIN algorithm which considtselecting a vertex of minimum degree,
removing it and its neighbors from the graph, and iterathgprocess until no vertices remain (see, for
example, [26]). this is a fast and simple method to get a malx{ibbut not necessarily maximum) stable
set which usually delivers quite close to the maximum.

If the input box set# is saturated, the clustering algorithm returns the samiesysf boxes%,
otherwise it always provides a new updated system with alsmmalmber of boxes. The test is performed
by checking if the current grapB n is complete, since, in this case, no further join is posdibitehe
boxes in#.

In Figure 3 we report the high level algorithm for the genierabf the system of boxes based on
incompatibility graphs (ALGORITHM: BC). The algorithm sta from the set of positive points, so
that the first system of boxes is given by the singletonB.irfThe system of boxes is then updated by
repeatedly calling (at step 5) the subroutine Clustering tive current box system is saturated.

The maximum number of iterations for the search loop is ne&tgr than the number of points in the
training set, and the last system generated by the aboveguoeis a saturated system of homogeneous
(positive) boxes. The complete description of the algamithiould require details about the rule adopted
for the selection of the two boxes to join at each iteratiomisTdepends on the generation procedure



of the possible joins and from the criterion for ranking thand choose one. For details about this
implementation, the reader is referred to [15, 29, 30].

ALGORITHM: Clustering (4,P,N)
1 begin

2 ConstruciGy \ related to the current set of box&s
3 if Gz N is not a complete graph
4 heuristically find a maximum stable set®f; n
5 let % = {B;} be such stable set
6 B:.= Bl
7 fori=(2,...,|4|
8 if (BVBNN=0)
9 B:=BVB
10 B =R —B
11 endif
12 endfor
13 B=AUB
14 endif
15 returr{ %)
16 end

Figure 2: Clustering algorithm based Gz .

ALGORITHM: BC (P,N)

1 begin

2 %$1:=P

3 do

4 BT = %1

5 %, = Clusterind 2" ,P N)
6  while(%1# %)

7 returf %)

8 end

Figure 3: Box Clustering algorithm.

It must be pointed out that for the same classification pralfle N), the above algorithms can be adopted
also to obtain a saturated system of negative boxes. Agtiralihis case, the same analysis applies but
the clustering procedure must rely on the incompatibilitn G 5 p instead of orG4 .

4 Box-Clustering Classifier

The algorithm described in Section 3 provides solutionsiéogeometrical problem of clustering posi-
tive (or negative) points into a saturated system of homeges boxes, corresponding to a system
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of positive boxes and a system ™ of negative ones. In this section we define our approach fr th
classification problem based on such system of boxes.

A BC-based classifier requires the following three inpusd:a(set of positive boxe®*; (b) a set of
negative boxes#~; (c) the pointp to classify. A functionw(B, p) measuring thattraction intensityof
the boxB with respect to the poinp must be also defined. The output of the classifier is the estina
class for the poinp. For a given pointp, the classifier computes all the weight$ = w(B;, p) and
wj+ = w(Bj, p) w.r.t. to all the positive boxeB; € " and negative boxeB; € %, respectively, and
assignsp to the class of the box corresponding to the minimum of sudiivs.

Figure 4 reports the steps of the classification procedusecban%* and 4~ (ALGORITHM:
BC-classifier). If one of the tests performed at step 4 andsbiésessful, the poin can be univocally
classified, but, if the minimum weight gf w.r.t. a positive box is equal to the one w.r.t a negative box
(that is,w™ = w~ = w), an additional test is required and the classifier compii@sumber of positive
and negative boxes with minimum weight w.rd.(denoted byn™ andn—, respectively). A tie for this
check definitively means thgtcannot be classified.

ALGORITHM: BC-classifier (#*,%,p)
1 begin
2 letw" =min{w(B,p)|Bec %"}
3 letw =min{w(B,p)|Be B~}
4 if(wh < w™) return: pis positive
5 if(w" >w") return: pis negative
6 ifwh=w =w)
7 letn* = |{B € Z"|w(B, p) = w}|
8 letn™ = [{B € #~|w(B, p) = w}|

9 if(n™ > n~) return: pis positive
10 if(n™ < n™) return: pis negative
11 endif
12 return: p cannot be classifiectkassification failurg
13 end

Figure 4. A BC-based classifier related to box systesisand % .

Different measures can be adopted to compute the weigBitp) for a boxB and a pointp. If the box
systems#* and %~ provide a coverage of the whole observation space (bothitigaand testing sets),
one can naturally defin@(B, p) as the following characteristic function:

| 0 peB
W(B’p)_{ 1 otherwise’

If, on the contrary, there are some points in the observaiate that are not covered by any boxar
orin 4, adistancemeasure is required to define the attraction intensity batveenon-covered point
and a boxB (see, e.g., [22]). In our BC-classifier we considered a bax esntinuous set of points and
computed the distance between a lBand a pointp as the Manhattan distance betwgeand the point
in B closest top.

(3)



5 The experimental plan

In order to empirically evaluate the efficiency of BC and iseun data analysis, we applied it to our
CTS data set, and we compared its results with those prowgedwide range of other frequently-used
classification methods. We considered several classes thiod® as defined in Weka software [13]:
decision treesj48), neural networksrultilayer), SVM (smq, bayes classifiersn@ive bayesbayes
netand locally weighted naive bayes, denotedwl), regressionrégressiof), and multinomial logistic
regression logistic). In addition, we implemented BC independently, since ihas still available in
Weka or in other data analysis software packages.

The use of the simple test accuracy for the evaluation oftbdigtive power of a classification method is
not a straight-forward choice. The literature proposesradttive and possibly more meaningful methods
to evaluate the performance of a classifier. An example igriethod based on thROC (Receiver
Operating Characteristicplots which are frequently used in clinical medicine [3&ifiother one is the
AUC (Area Under Curve method, which is widely used to measure the model perfoceam binary
classification problems [11, 16]. In particular, to evaduatmedical test, the concepts of “sensitivity”
and “specificity” are often used; more generally, these eptgare readily usable for the evaluation of
any binary classifier. They depend on the prevalence of theade in the population of interest. To
understand the utility of clinical tests, patients can kmuged into the following four classes, according
to their clinical situation and their predictive value gy the test:

e true positive(A):
the patient has the disease and the test is positive;

o false positivgB):
the patient does not have the disease but the test is pgsitive

o false negativgC):
the patient has the disease but the test is negative;

e true negativgD):
the patient does not have the disease and the test is negative

Thesensitivityof a clinical test refers to the ability of the test to corheadentify those patients with the
disease, while thepecificityrefers to the ability of the test to correctly identify thgestients without the
disease. Leatp, ng, nc, andnp denote the number of patients from the above defined classpgctively.
In order to measure sensitivity, one can compute the indéx (TRue Positive Rafe

TPR= A (4)
Na—+Nc
Similarly, specificity of a classifier can be measured thiotige index TNR True Negative Raje
TNR= —® 5)
Np +NB

The relationship between sensitivity and specificity, alf agthe performance of the classifier, can be
visualized and studied using the graphical plot of the RO&&8froc), where thex andy axes refer to
FPR = (1 - TNR) and TPR, respectively. By definition, the peintrioc are inside the unit bojo, 1],
and the four corner points have a special meaning:

e Pest= (0,1) is the perfect classifier: it classifies all positive cased aegative cases correctly
(TNR=1, TPR=1).



e (0,0) represents a classifier that predicts all cases to be nedd@iVR=1, TPR=0), whilg1,1)
corresponds to a classifier that predicts every case to litvpd@NR=0, TPR=1).

e Ryorst = (1,0) is the classifier that provides an incorrect prediction fbclassifications (TNR=0,
TPR=0).

Our analysis is based on the assumption that all methodequired to have a 100% performance
and no error is admitted. We point out here that, an altermanalysis could be performed if one
would accept a percentage of errors different from 0. Abudly accepting increments in the per
cent number of errors, for example for the FPR index, for egebn method one could obtain a set of
performance points (corresponding to increasing pergestaf tolerated errors) and plot a curvagpc
approximating the trend of such points; the method’s perfarce could be then evaluated by measuring
the area under this curve.

For every method we consider the corresponding point (FPR)Tand its distance tB,eg, SO that the
“best methods” are those which minimize this distance. é¢othat in our CTS application we do not
have any information about possible different costs foorsrof different type, such as errors of type B
and C listed above. For this reason, we suppose here thabshésgiven by a constant, but it must be
pointed out that the distances in Table 2 and in Table 3 coglconputed with a more general measure
taking into account also a weighting function related todbst.

In the following section, we exploit this graphical anaty$b discuss our experimental results, and to
present a synthetic comparison between the tested classified on the two data sets for CTS provided
by the US and EMG variables.

6 Results

Cross-validation is a widespread strategy to perform medkction, because of its simplicity and its
apparent universality, see [3]. Many results exist on theehselection performance of cross-validation
procedures, see [12]. In our study, for the two sets of vlesabUS and EMG - we performed a 10-fold
cross validation for each method mentioned in Section 5,fanBC as well. Tables 2 and 3 show the
best results obtained for the two sets of variables.

Table 2: Performance of the classification methods basedeoBWMG variables.

classifier | nma ng nc np | FPR TPR | distance tdhest
j48 37 1 1 63 0.0156 09737 0.0306049
multilayer 37 2 1 62 0.0312 Q9737 0.0408544
sSmo 3 1 4 63 0.0156 08947 0.1064170
[wil 37 0 1 64 0.0000 Q9737 0.0263158 *
naive bayes 36 3 2 61 0.0469 09474 0.0704794
bayes net 37 0 1 64 0.0000 Q9737 0.0263158
regression 37 0 1 64 0.0000 Q9737 0.0263158
logistic 36 2 2 62 0.0312 09474 0.0612098
BC 37 0 1 64 0.0000 Q9737 0.0263158 *




The methods that provide the best results are marked by arnsksin the last column of the table.

A general good performance can be observed for all methotiishwih data sets, since basically only
few observations are misclassified. The performance iscpéatly good when the EMG variables are
considered: in this case, the valuesgfandnc are very small and several 0 and 1 are observed. It must
be also noticed, however, that the number of false negate@igions - which is the most serious error
in medical applications - is greater than the number of falsgtive ones. Even if the behavior of the
tested classification methods is similar, a general inereéithe number of this type of errors is observed
when the US variables are adopted instead of the EMG ones.rasiilt confirms for CTS the already
known superior diagnostic power of the nerve conductiodystwer the ultrasound imaging.

Table 3:; Performance of the classification methods basedeod$ variables.

classifier | nma ng nc np | FPR TPR | distance tdhes
j48 34 5 4 59 0.0781 08947 0.1310870
multilayer 3 4 4 60 0.0625 08947 0.1224200
smo 35 4 3 60 0.0625 09211 0.1006920
[wl 37 10 1 54 0.1562 Q9737 0.1584510
naive bayes 35 5 3 59 0.0781 09211 0.1110680
bayes net 29 5 9 59 0.0781 07632 0.2493950
regression 3 4 4 60 0.0625 08947 0.1224200
logistic 35 3 3 61 0.0469 09211 0.0918148
BC 38 1 0 63 0.0156 10000 0.0156000 *

Nevertheless, it must be pointed out that in our experimimgtdehavior of BC seems to be not affected
by which set of variables is used. By looking at the simple berang andnc - which for BC are very
small in both tables - one may check that BC turns out to be ad ge the other methods with the EMG
variables and clearly better with the US ones. Thus, smcandnc are monotone decreasing w.r.t. the
increasing performance of a classification method, no matiech evaluation measure one uses, for our
CTS data set BC would always turn out to be the one which woekieib

According to these promising results, BC seems to be the léginning method for the CTS auto-
matic diagnosis, since it showed to be able to exploit wellitiormation lying in the EMG variables, as
well as the one in the US variables. From our results, one meary guess that the US variables carry as
much information as EMG ones, thus suggesting a compleii§reht and new approach in the specific
medical context of automatic diagnosis of CTS.

All the analyzed classification methods are comparable atgter a computational viewpoint: all of
them showed to be really fast for the real-life data set ustiaty and they all delivered the final output
almost instantly. In fact, the running times are within fesesnds for all the methods provided by Weka
(Java-based), while BC takes just a fraction of a second&oin eun.

To have a synthetic picture of the performance of all theetestethods, in Figure 5 and Figure 6 we show
the points of coordinates FPR and TPR corresponding to eattaeh drawn inizoc. The pictures show
the location of each classifier-point in the plane and itsadise to the reference poiRies, emphasizing
the “good positiofi of BC w.r.t. the other methods. In Figure 5 many methodsl{iding BC) provide the
same best result, i.e., they correspond to the g@ir@.9737) and, therefore, all of them are represented
together by a single grey point. The metHad provided very poor results with the US variables, and,
thus, we did not plot it in Figure 6.
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Figure 5: Representation imroc of the classification methods’ performances: EMG resultse meth-
odslwl, bayes netregression and BC have the same performance and, thus, they are abeeyed by
a common grey point.

100@ ™ BC
logistic ~~ smo  naive bayes
multilayer,regressionj48
0.88
0.76 bayes net
0 0.039 0.078

Figure 6: Representation imkoc of the classification methods’ performances: US resulte gédrfor-
mance ofwl was too bad w.r.t. FPR to be plotted.
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In Table 4 we can visualize the box system that we used for [Hssification problem with the EMG
approach:BEME is the negative box (healthy patients) a@Bkl'® is the positive one (sick patients). For
the US analysis we adopted the box set shown in Table 5, viEtés a negative box, whil&yS and
BYS are the positive ones.

Table 4: Box system based on the EMG variabB"€ is a negative boxB5M€ is positive.

BEMG BEMG
NCVR 3950 6800 | 39.60 5430
DMLR 230 420| 440 680

Table 5: Box system based on the US variabB& is a negative box, whil&y'S andBYS are positive.

B}'S BY'S BYS

R1 1.03 250 | 150 278 | 203 251

R2 235 1410| 406 1670| 593 1099

R3 276 1519 | 243 987 | 4.52 939

R4 1.93 708 | 3.62 1532 | 577 974

CR2R3 —1980 3180 | 3200 5680 | 1450 2380
DMLR
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Figure 7: Box system for EMG variables: negative points eported in black, positive ones in grey.

Under a methodological viewpoint, our results seem to bg peymising. First of all, it must be pointed
out that all points in our test set were classified, meaniag) dar implementation of the BC-classifier
never returns a failure. Moreover, only one error was ma@adah application of the method (see, tables
2 and 3). In addition, both box systems showed in Table 4 abteTahave a very low number of boxes
(two and three, respectively), thus suggesting that ouristeusolution for the BC geometrical problem
is close to the optimum. In particular, for the analysis base EMG variables we have exactly two
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boxes, one positive and one negative and this is the optiomaber of boxes that one can get. For this
case, since we have only two variables, we can provide ancéxgtometrical representation R? of

the two boxeBEMC andBEMS, together with the positive and negative points of our detals Figure

7 black and grey points correspond to negative and positirgg) respectively, and it is easy to see that
the two boxes of the system are well separated. The pictsoesabws that - as we already pointed out -
when the EMG variables are adopted, a “natural” separafidimecpoints of the data set arises.

The experimental results obtained with BC become moreaatdfone considers the advantages of this
methodology for the readability and interpretation of tesults by a medical doctor. If, on the one hand,
BC is rigidly constrained by the geometrical shape of theslsprn the other hand, the intervals of values
provided by BC for the variables are easily interpretabléhigyclinician in terms of cut-off values. They
offer viable explanations of the syndrome presence or aaseacording to the specific profiles observed
for subjects that are classified in the same box. In this sexas box provides a specific set of useful
indications in the diagnostic process. The number of bowtéch is also provided by the procedure,
gives additional information in the recognition of the paltigy profiles. The EMG system reported in
Figure 7 provides a clear example of the typical geometstrakcture of a “good” system of boxes. The
plot refers to the system described in Table 4 and includgsodalts in the data set. The points in the
training set are obviously included in their own homogersebox; there are some points of the test set
which are inside a box and some others which are not, but ¢hessification is always unambiguous,
since it is clear which box is the closest for each of themnftioe picture one can also see the ease of
interpretation of the boxes. In fact, in this simple case can realize that the DMLR value is crucial for
the diagnosis of CTS, while NCVR alone could be not sufficfenthis task. Actually, the combination
of high values of DMLR with low values of NCVR provides the tyal profile of a sick patient, while
the opposite (low values of DMLR with high values of NCVR) sexto correspond to healthy patients.

We do not go beyond this kind of analysis for our BC resulttheaawe leave the final judgement to
medical doctors who are the only ones who may evaluate w#ibagood technical performance of BC
can be confirmed also under a medical point of view.

7 Conclusions

In the present paper we dealt with the automatic diagnodiST& with the two-fold aim of showing the
high performance of statistical techniques for this spetyibe of diagnosis and assessing that ultrasound
imaging is a useful tool in managing the CTS. Even if for tregdiosis of CTS electromyography cannot
be completely replaced by ultrasound imaging, our reshiésvghat ultrasound scan can be a valuable
screening tool to detect the pathology. All the applied roéthogies showed a good and comparable
prediction power, but BC seems to provide the best perfocmaAs expected, our results confirmed the
high reliability of EMG testing, but they also showed that tkh be very informative, especially if the
BC-based classifier is used. This result is particularlyartgmt for the CTS diagnosis at the early “irri-
tative” stage of the pathology when often even neurophggioll tests are unable to detect the presence
of the syndrome.

Given that US can be a valuable diagnostic tool for CTS, atlema screening stage, one should not
underestimate its many advantages, namely,

- low cost;

- ease of repetition;
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- portability on the workplace;

- pain-free and non-invasive nature (implying easy accedy the patients);

detection of possible underlying anomalies;

- when CTS is excluded, detection of other possible causkaraf pain.

The above aspects become much more relevant if one conthéarrasound imaging as a screening
tool for the diagnosis of CTS in occupational medicine, Wwhi@s the original motivation of our work.
For example, in large firms, it is recommended to repeat thieperiodically on all the employees, in
order to detect the pathology when it is still at an early staghen, on the basis of the result of this test,
the - more expensive and more invasive - electromyograpt@imaation can be performed only on those
who are already suspected of suffering from CTS. The lasféatures are particularly important, since
they provide additional information which can be useful iew of possible later surgical operations for
CTS, and in case of a different diagnosis, respectively.

The promising results obtained in this experimental worklie real-life application related to CTS
suggest that BC could be a valuable tool for the medical disignand encourage the study of this
methodology: further developments of the technique andtiaddl empirical applications to medical
data sets will be crucial for a definitive assessment of tlethwdology in the future.
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