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Abstract

In this paper we introduce the space-fractional Poisson process whose state probabilities pαk (t),
t > 0, α ∈ (0,1], are governed by the equations (d/dt)pk(t) = −λα(1− B)pαk (t), where (1− B)α

is the fractional difference operator found in the study of time series analysis. We explicitly obtain
the distributions pαk (t), the probability generating functions Gα(u, t), which are also expressed as
distributions of the minimum of i.i.d. uniform random variables. The comparison with the time-
fractional Poisson process is investigated and finally, we arrive at the more general space-time
fractional Poisson process of which we give the explicit distribution.

Keywords: Space-fractional Poisson process; Backward shift operator; Discrete stable distributions;
Stable subordinator; Space-time fractional Poisson process.
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1 Introduction

Fractional Poisson processes studied so far have been obtained either by considering renewal processes
with intertimes between events represented by Mittag–Leffler distributions [Mainardi et al., 2004,
Beghin and Orsingher, 2009] or by replacing the time derivative in the equations governing the state
probabilities with the fractional derivative in the sense of Caputo.
In this paper we introduce a space-fractional Poisson process by means of the fractional difference
operator

∆α = (1− B)α, α ∈ (0,1], (1.1)

which often appears in the study of long memory time series [Tsay, 2005].
The operator (1.1) implies a dependence of the state probabilities pαk (t) from all probabilities pαj (t),
j < k. For α= 1 we recover the classical homogeneous Poisson process and the state probabilities pk(t)
depend only on pk−1(t).
For the space-fractional Poisson process we obtain the following distribution:

pαk (t) = Pr{Nα(t) = k}=
(−1)k

k!

∞
∑

r=0

(−λα t)r

r!

Γ(αr + 1)
Γ(αr + 1− k)

, k ≥ 0. (1.2)
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The distribution of the space-fractional Poisson process can be compared with that of the time-fractional
Poisson process Nν(t), t > 0, ν ∈ (0, 1]:

Pr{Nν(t) = k}=
(λtν)k

k!

∞
∑

r=0

(r + k)!
r!

(−λtν)r

Γ(ν(k+ r) + 1)
, k ≥ 0. (1.3)

For α = ν = 1, from (1.2) and (1.3), we immediately arrive at the classical distribution of the
homogeneous Poisson process.
The space-fractional Poisson process has probability generating function

Gα(u, t) = EuNα(t) = e−λ
α(1−u)α t , |u| ≤ 1, (1.4)

and can be compared with its time-fractional counterpart

νG(u, t) = EuNν (t) = Eν (−λ(1− u)tν) , |u| ≤ 1, (1.5)

where

Eν(x) =
∞
∑

r=0

x r

Γ(ν r + 1)
, ν > 0, (1.6)

is the one-parameter Mittag–Leffler function.
We show below that the probability generating function of the space-time fractional Poisson process
reads

νGα(u, t) = Eν (−λα(1− u)α tν) , |u| ≤ 1, (1.7)

and its distribution has the form

pα,ν
k (t) =

(−1)k

k!

∞
∑

r=0

(−λα tν)r

Γ(ν r + 1)
Γ(αr + 1)
Γ(αr + 1− k)

, k ≥ 0, α ∈ (0, 1], ν ∈ (0,1]. (1.8)

We also show that the space-fractional Poisson process Nα(t) can be regarded as a homogeneous Poisson
process N(t), subordinated to a positively skewed stable process Sα(t) with Laplace transform

Ee−zSα(t) = e−tzα , z > 0, t > 0. (1.9)

In other words, we have the following equality in distribution

Nα(t)
d
= N (Sα(t)) . (1.10)

The representation (1.10) is similar to the following representation of the time-fractional Poisson
process:

Nν(t)
d
= N

�

T2ν(t)
�

, (1.11)

where T2ν(t), t > 0, is a process whose one-dimensional distribution is obtained by folding the solution
to the time-fractional diffusion equation [Beghin and Orsingher, 2009].
Finally we can note that the probability generating function (1.7), for all u ∈ (0, 1), can be represented
as

νGα(u, t) = Pr
�

min
0≤k≤Nν (t)

X 1/α
k ≥ 1− u

�

, (1.12)

where the Xks are i.i.d. uniformly distributed random variables.
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2 Construction of the space-fractional Poisson process

In this section we describe the construction of an alternative fractional generalisation of the classical
homogeneous Poisson process. First, let us recall some basic properties. Let us call

Pk(t) = Pr{N(t) = k}= e−λt (λt)k

k!
, t > 0, λ > 0, k ≥ 0, (2.1)

the state probabilities of the classical homogeneous Poisson process N(t), t > 0, of parameter λ > 0. It
is well-known that the probabilities pk(t), k ≥ 0, solve the Cauchy problems







d
dt

pk(t) =−λpk(t) +λpk−1(t),

pk(0) =

¨

0, k > 0,

1, k = 0.

(2.2)

Starting from (2.2), some time-fractional generalisations of the homogeneous Poisson process have
been introduced in the literature (see e.g. Laskin [2003], Mainardi et al. [2004], Beghin and Orsingher
[2009]). These works are based on the substitution of the integer-order derivative operator appearing
in (2.2) with a fractional-order derivative operator, such as the Riemann–Liouville fractional derivative
(as in Laskin [2003]) or the Caputo fractional derivative (as in Beghin and Orsingher [2009]). In this
paper instead, we generalise the integer-order space-difference operator as follows. First, we rewrite
equation (2.2) as







d
dt

pk(t) =−λ(1− B)pk(t),

pk(0) =

¨

0, k > 0,

1, k = 0,

(2.3)

where B is the so-called backward shift operator and is such that B(pk(t)) = pk−1(t) and Br(pk(t)) =
Br−1(B(pk(t))) = pk−r(t). The fractional difference operator ∆α = (1− B)α has been widely used
in time series analysis for constructing processes displaying long memory, such as the autoregressive
fractionally integrated moving average process (ARFIMA). For more information on long memory
processes and fractional differentiation, the reader can consult Tsay [2005], page 89.
Formula (2.3) can now be easily generalised by writing







d
dt

pαk (t) =−λ
α(1− B)αpαk (t), α ∈ (0,1],

pαk (0) =

¨

0, k > 0,

1, k = 0,

(2.4)

where pαk (t), k ≥ 0, t > 0, represents the state probabilities of a space-fractional homogeneous Poisson
process Nα(t), t > 0, i.e.

pαk (t) = Pr{Nα(t) = k}, k ≥ 0. (2.5)

In turn, we have that (2.4) can also be written as






d
dt

pαk (t) =−λ
α
∑k

r=0
Γ(α+1)

r!Γ(α+1−r)
(−1)r pαk−r(t), α ∈ (0,1],

pαk (0) =

¨

0, k > 0,

1, k = 0.

(2.6)

Note that, in (2.6) we considered that pαj (t) = 0, j ∈ Z−. Equation (2.6) can also be written as






d
dt

pαk (t) =−λ
αpαk (t) +αλ

αpαk−1(t)−
α(α−1)

2!
pαk−2(t) + · · ·+ (−1)k+1 α(α−1)...(α−k+1)

k!
pα0 (t),

pαk (0) =

¨

0, k > 0,

1, k = 0.

(2.7)
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By applying the reflection property of the gamma function Γ(z)Γ(1− z) = π/ sin(πz) for z = r −α, we
have also that







d
dt

pαk (t) =−λ
αpαk (t) +αλ

αpαk−1(t) +
λα sin(πα)

π

∑k
r=2 B(α+ 1, r −α)pαk−r(t),

pαk (0) =

¨

0, k > 0,

1, k = 0,

(2.8)

where the sum is considered equal to zero when k < 2 and B(x , y) is the beta function. From (2.7) and
(2.8) we see that for α= 1 we retrieve equation (2.6) of the homogeneous Poisson process.
An example of process whose state probabilities p̃k(t), depend on all p̃ j(t), j < k, is the iterated Poisson
process Ñ(t) = N1(N2(t)), where N1(t) and N2(t) are independent homogeneous Poisson processes.
The process Ñ(t) is analysed in Orsingher and Polito [2011].

Theorem 2.1. Let Nα(t), t > 0, be a space-fractional homogeneous Poisson process of parameter λ > 0
and let Gα(u, t) = EuNα(t), |u| ≤ 1, α ∈ (0, 1], be its probability generating function. The Cauchy problem
satisfied by Gα(u, t) is

(

∂

∂ t
Gα(u, t) =−λαGα(u, t)(1− u)α, |u| ≤ 1,

Gα(u, 0) = 1,
(2.9)

with solution

Gα(u, t) = e−λ
α t(1−u)α , |u| ≤ 1, (2.10)

that is, the probability generating function of a discrete stable distribution (see Devroye [1993], page 349).

Proof. Starting from (2.6), we have that

∂

∂ t
Gα(u, t) =−λαΓ(α+ 1)

∞
∑

r=0

∞
∑

k=r

uk (−1)r

r!Γ(α+ 1− r)
pαk−r(t) (2.11)

=−λαΓ(α+ 1)
∞
∑

r=0

∞
∑

k=0

uk+r(−1)r

r!Γ(α+ 1− r)
pαk (t)

=−λαΓ(α+ 1)Gα(u, t)
∞
∑

r=0

(−1)r

r!Γ(α+ 1− r)

=−λαGα(u, t)(1− u)α,

thus obtaining formula (2.9). It immediately follows that

Gα(u, t) = e−λ
α t(1−u)α , |u| ≤ 1. (2.12)

Remark 2.1. Note that, for α = 1, formula (2.10) reduces to the probability generating function of the
classical homogeneous Poisson process. Furthermore, from (2.10) we have that E[Nα(t)] j =∞, j ∈ N,
α ∈ (0,1).

Remark 2.2. Let Xk, k = 1, . . . , be i.i.d. Uniform[0, 1] random variables, then

Gα(u, t) = e−λ
α t(1−u)α = Pr

�

min
0≤k≤N(t)

X 1/α
k ≥ 1− u

�

, u ∈ (0,1), (2.13)

where N(t), t > 0, is a classical homogeneous Poisson process of rate λα with the assumption that
min(X 1/α

k ) = 1 when N(t) = 0.
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Theorem 2.2. The discrete stable state probabilities of a space-fractional homogeneous Poisson process
Nα(t), t > 0, can be written as

pαk (t) = Pr{Nα(t) = k} (2.14)

=
(−1)k

k!

∞
∑

r=0

(−λα t)r

r!

Γ(αr + 1)
Γ(αr + 1− k)

=
(−1)k

k! 1ψ1

�

(1,α)
(1− k,α)

�

�

�

�

−λα t

�

, t > 0, k ≥ 0,

where hψ j(z) is the generalised Wright function (see Kilbas et al. [2006], page 56, formula (1.11.14)).

Proof. By expanding the probability generating function (2.10) we have that

Gα(u, t) = e−λ
α t(1−u)α (2.15)

=
∞
∑

r=0

[−λα t(1− u)α]r

r!

=
∞
∑

r=0

(−λα t)r

r!

∞
∑

m=0

(−u)mΓ(αr + 1)
m!Γ(αr + 1−m)

=
∞
∑

m=0

um (−1)m

m!

∞
∑

r=0

(−λα t)r

r!

Γ(αr + 1)
Γ(αr + 1−m)

.

From this, formula (2.14) immediately follows.

Remark 2.3. Note that the discrete stable distribution (2.14) (which for α = 1 reduces to the Poisson
distribution) can also be written as

pαk (t) =
(−1)k

k!

∞
∑

r=0

(−λα t)r

r!

Γ(αr + 1)
Γ(αr + 1− k)

(2.16)

=
(−1)k

k!

∫ ∞

0

e−w
∞
∑

r=0

(−λα twα)r

r!Γ(αr + 1− k)
.

Theorem 2.3. Let Sγ(t), t > 0, γ ∈ (0,1), be a γ-stable subordinator, that is a positively skewed stable
process such that

Ee−zSγ(t) = e−tzγ , z > 0, t > 0, (2.17)

and with transition function qγ(s, t). For a space-fractional Poisson process Nα(t), t > 0, α ∈ (0,1], with
rate λ > 0, the following representation holds in distribution:

Nα(Sγ(t))
d
= Nαγ(t). (2.18)

Proof. In order to prove the representation (2.18) it is sufficient to observe that
∫ ∞

0

Gα(u, s)qγ(s, t)ds =

∫ ∞

0

e−λ
αs(1−u)αqγ(s, t)ds = e−λ

αγ t(1−u)αγ . (2.19)

Remark 2.4. Note that, when α= 1, formula (2.18) reduces to

N(Sγ(t))
d
= Nγ(t), (2.20)

and this reveals a second possible way of constructing a space-fractional Poisson process.
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Consider now the first-passage time at k of the space-fractional Poisson process

ταk (t) = inf{t : Nα(t) = k}, k ≥ 0. (2.21)

Since Pr{ταk < t}= Pr{Nα(t)≥ k}, we have that

Pr{ταk < t}=
∞
∑

m=k

(−1)m

m!

∞
∑

r=0

(−λα t)r

r!

Γ(αr + 1)
Γ(αr + 1−m)

. (2.22)

Hence

Pr{ταk ∈ ds}=
∞
∑

m=k

(−1)m

m!

∞
∑

r=1

(−λα)r t r−1

(r − 1)!
Γ(αr + 1)
Γ(αr + 1−m)

. (2.23)

Note that for α= 1 we obtain the classical Erlang process. First we have

Pr{τ1
k < t}=

∞
∑

m=k

(−1)m

m!

∞
∑

r=m

(−λt)r

(r −m)!
(2.24)

= e−λt
∞
∑

m=k

(λt)m

m!
,

and therefore

Pr{τ1
k ∈ ds}=−λe−λt

∞
∑

m=k

(λt)m

m!
+λe−λt

∞
∑

m=k

(λt)m−1

(m− 1)!
(2.25)

=−λe−λt
∞
∑

m=k

(λt)m

m!
+λe−λt

∞
∑

m=k−1

(λt)m

m!

= λe−λt (λt)k−1

(k− 1)!
.

Remark 2.5. Note that, with a little effort, fractionality can be introduced also in time. In this case, for
example, the fractional differential equation governing the probability generating function is

(

∂ ν

∂ tν ν
Gα(u, t) =−λανGα(u, t)(1− u)α, |u| ≤ 1, ν ∈ (0, 1], α ∈ (0, 1],

νGα(u, 0) = 1,
(2.26)

where ∂ ν/∂ tν is the Caputo fractional derivative operator (see Kilbas et al. [2006]). By means of Laplace
transforms, some simple manipulations lead to

νGα(u, t) = Eν(−λα tν(1− u)α), |u| ≤ 1, (2.27)

where Eν(x) is the Mittag–Leffler function [Kilbas et al., 2006]. In turn, by expanding the above probability
generating function we have that

pα,ν
k (t) =

(−1)k

k!

∞
∑

r=0

(−λα tν)r

Γ(ν r + 1)
Γ(αr + 1)
Γ(αr + 1− k)

, k ≥ 0, α ∈ (0,1], ν ∈ (0,1]. (2.28)

When α = 1 these probabilities easily reduce to those of a fractional Poisson process (see Beghin and
Orsingher [2009]):

p1,ν
k (t) =

(−1)k

k!

∞
∑

r=0

(−λtν)r

Γ(ν r + 1)
Γ(r + 1)
Γ(r − k+ 1)

(2.29)
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=
(−1)k

k!

∞
∑

r=k

(−λtν)r

Γ(ν r + 1)
r!

(r − k)!

=
∞
∑

r=k

(−1)r−k
�

r

k

�

(λtν)r

Γ(ν r + 1)
.

Moreover, let Xk, k = 1, . . . , be i.i.d. Uniform[0, 1] random variables and Nν(t), t > 0, be a homogeneous
time-fractional Poisson process of rate λα with the assumption that min(X 1/α

k ) = 1 when Nν(t) = 0. The
probability generating function νGα(u, t), for u ∈ (0,1), can be written as

νGα(u, t) = Eν(−λα tν(1− u)α) (2.30)

=
∞
∑

r=0

(−1)r
(λα tν)r(1− u)αr

Γ(ν r + 1)

=
∞
∑

r=0

(−1)r
(λα tν)r

Γ(ν r + 1)

r
∑

k=0

(−1)k
�

r

k

�

[1− (1− u)α]k

=
∞
∑

k=0

[1− (1− u)α]k
∞
∑

r=k

(−1)r−k
�

r

k

�

(λα tν)r

Γ(ν r + 1)

=
∞
∑

k=0

h

Pr
�

X 1/α
k ≥ 1− u

�ik
Pr
�

Nν(t) = k
	

= Pr
�

min
0≤k≤Nν (t)

X 1/α
k ≥ 1− u

�

.

Formula (2.30) shows that the contribution of the space-fractionality affects only the uniform random
variables X 1/α

k while the time-fractionality only the driving process Nν(t).
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