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Abstract

This paper deals with a new class of random flights X ,(¢), ¢ > 0, defined in the real space
R?,d > 2, characterized by non-uniform probability distributions on the multidimensional
sphere. These random motions differ from similar models appeared in literature which take
directions according to the uniform law. The family of angular probability distributions
introduced in this paper depends on a parameter v > 0 which gives the level of drift of the
motion. Furthermore, we assume that the number of changes of direction performed by the
random flight is fixed. The time lengths between two consecutive changes of orientation
have joint probability distribution given by a Dirichlet density function.

The analysis of X,(¢),t > 0, is not an easy task, because it involves the calculation of
integrals which are not always solvable. Therefore, we analyze the random flight sz (#),t >
0, obtained as projection onto the lower spaces R™ m < d, of the original random motion
in R, Then we get the probability distribution of X< (¢),t > 0.

Although, in its general framework, the analysis of X, (¢),¢ > 0, is very complicated, for
some values of v, we can provide some results on the process. Indeed, for v = 1, we obtain
the characteristic function of the random flight moving in R?. Furthermore, by inverting
the characteristic function, we are able to give the analytic form (up to some constants) of
the probability distribution of X, (¢),¢ > 0.

Keywords: Bessel functions, Dirichlet distributions, hyperspherical coordinates, isotropic
random motions, non-uniform distributions on the sphere.

1 Introduction

The random flights have been introduced for describing the real motions with finite speed. The
original formulation of the random flight problem is due to Pearson, which considers a random
walk with fixed and constant steps. Indeed, the Pearson’s model deals with a random walker
moving in the plane in straight lines with fixed length and turning through any angle whatever.
The main object of interest is the position reached by the random walker after a fixed number
of the steps.

Over the years many researchers have proposed generalizations of the previous Pearson’s walk
randomizing the spatial displacements. In particular, the random flights have been analyzed in-
dependently by several authors starting from the same two main assumptions. The first one



concerns the directions which are supposed uniformly distributed on the sphere. Furthermore,
the length of the intervals between two consecutive changes of direction is an exponential ran-
dom variable. Therefore, there exists an underlying homogeneous Poisson process governing the
changes of direction. The reader can consult, for instance, Stadje (1987), Masoliver et al. (1993),
Franceschetti (2007), Orsingher and De Gregorio (2007), Garcia-Pelayo (2008). A planar random
flight with random time has also been studied in Beghin and Orsingher (2009).

Exponential times are not the best choice for many important applications in physics, biol-
ogy, and engineering, since they assign high probability mass to short intervals. For this reason,
recently, the random flight problem has been tackled modifying the assumption on the exponen-
tial intertimes. For example, Beghin and Orsingher (2010) introduced a random motion which
changes direction at even-valued Poisson events. In other words this model assumes that the
time between successive deviations is a Gamma random variable. It can also be interpreted
as the motion of particles that can hazardously collide with obstacles of different size, some
of which are capable of deviating the motion. Very recently, multidimensional random walks
with Gamma intertimes have been also taken into account by Le Caér (2011) and Pogorui and
Rodriguez-Dagnino (2011). Le Caér (2010) and De Gregorio and Orsingher (2011), considered
the joint distribution of the time displacements as Dirichlet random variables with parameters
depending on the space in which the walker performs its motion. By means of the Dirichlet law
we are able to assign higher probability to time displacement with intermediate length. The
Dirichlet density function in somehow generalizes the uniform law and permits to explicit for
each space the exact distribution of the position reached by the motion at time .

In the cited papers, it is assumed that the directions are uniformly distributed on the sphere.
This last assumption is not completely appropriate. Indeed, the real motions are persistent
and tend to move along the same direction. Therefore, it seems not exactly realistic to have
the same probability to move along each direction of the space when the motion chooses a new
orientation. The aim of this paper is to analyze a spherically asymmetric random motion in
R?, that is with non-uniformly distributed directions. Essentially, the literature is devoted to
analyze random walks with uniform distribution, while on the random flights with non-uniform
distributed angles few references exist: see for instance Grosjean (1953) and Barber (1993). For
this reason we believe that this topic is interesting and merits further investigation.

For the sake of completeness, we point out that other multidimensional random models with
finite velocity, different from the random flights, have been proposed in literature: see, for
example, Orsingher (2000), Samoilenko (2001), Di Crescenzo (2002), Lachal (2006) and Lachal
et al. (2006).

We describe the random flight model analyzed in this paper. Let us consider a particle which
starts from the origin of R% d > 2, and performs its motion with a constant velocity ¢ > 0.
Hereafter, we assume that in the time interval [0,¢], a number n, with n > 1, of changes of
direction of the motion is recorded. We suppose that the instants at which the random walker
changes direction are 0 < t; <ty < --- <t, <t, with ¢y = 0, t,41 = ¢, and denote the length
of time separating these instants by 7, =t; —¢;_1, 1 <j <n+1 where0 < 7; <t — i;é Tk,
1<j<n,and 141 =t — Z?Zl Tj.

The directions of the particle are represented by the points on the surface of the d-dimensional
hypersphere with radius one. We assume that the random vector § = (64, ...,04_2, ¢), represent-
ing the orientation of the particle, has density function given by

I'(v+d/2)
21T (v +1/2)

9a,(01,02,...,0q_2,¢9) = sin?*T9=2 9, sin?"T93 0, .. .sin? 1 0;_o sin? ¢ (1.1)

with 6; € [0,7],7 =1,2,...,d—2, ¢ € [0,27] and v > 0. Hence, the particle chooses the direction
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Figure 1: The picture on the left represents the behavior of density function go1(z) = %sin2 x

with z € [0,2n]. On the right it is depicted the density gs1(z,y) = 2= sin® 2 sin? y with € [0, 7]
and y € [0, 27].

not uniformly on the sphere, but following an asymmetric density law. Furthermore, the particle
chooses a new direction independently from the previous one. In Figure 1 we have depicted the
behavior of (1.1) for » = 1 and d = 2,3. From the picture on the left we can observe that the
function (1.1) is bimodal and assigns high probability mass near the points 3 and 37. Similar
considerations hold for the picture related to d = 3. Clearly when v increases the function g
tends to concentrate around the points 7 and %w. For v = 0 we obtain the uniform distribution

over the d-dimensional hypersphere, that is

I'(d/2)

gd’o(el, 92, ceey 9d727 (b) = sin 9(1172 sin 9373 .- - 8in 9d72~

212
Another important assumption is the following: the vector 7 = (71,72, ..., 7,) has distribution
given by

I((n+1)(2v+d—1)) Z:i rRvtd=2

fd,V(Tlv '-'7T7L) = (F(QV +d— 1))n+1 t(n+1)(2v+d-1)-1" (12)

which represents a rescaled Dirichlet random variable, with parameters (2v +d —1,...,2v +d —
1),d>2.

Let us denote with X,(t),¢ > 0, the process representing the position reached, at time ¢,
by the particle following the random rules above described. In the rest of the paper we are
going to analyze the random flights defined by X,(¢),t > 0, and their probabilistic character-
istics represent the main object of our analysis. Recalling that the motion develops at con-
stant velocity ¢, and exploiting the hyperspherical coordinates, the d-dimensional random flight



Figure 2: A sample path of the three-dimensional random flight with its projection onto the
plane.

X, () = (X1(¢), ..., Xa(t)),t > 0, has components equal to

n+1
Xq(t)=c Z T sin 6y sinfy g - - - sinfy_o j sin ¢y,
k=1
n+1
Xa—1(t) =¢ Z T 8in 60 g sinbs i - - - sinOg_o 1 cos Py,
k=1
(1.3)
n+1
Xo(t)=c Z Tk, Sin 01 i, cos O i,
k=1
n+1
Xi1(t)=c Z ), cos 01 .
k=1

The probability distribution of random flight X;(¢),t > 0, is concentrated inside the d-
dimensional hypersphere with radius ct, which we will indicate by H%, = {x, : ||x,4]| < ct},
where x; = (21,22, ...,x4) and || - || represents the Euclidean norm. The density law (1.1) leads
to a drift effect in the random motion. Indeed, since the directions are not chosen with the same
probability, the particle tends to move in some portions of the space R? with higher probability.
Clearly the parameter v defines the degree of drift of the motion. Therefore, if the value of v
increases, the particle will tend to move along the same part of the space. This behavior of the
random motion seems to be consistent with the persistence of the real motions.

The sample paths described by the moving particle having random position (1.3) appear as
straight lines with sharp turns and each steps are randomly oriented and with random length
(see Figure 2).

The drawbacks emerging in the study of the random flights defined in this paper are discussed



in Section 2. Therefore instead of studying directly X,(t),¢ > 0, we analyze its projections onto
the lower space R™, m < d. This approach leads to another random motions for which we obtain
the probability distributions.

For v = 1, we provide the characteristic function for X,(¢),t > 0 (Section 3). Furthermore,
we infer a closed-form expression for the density function of the random flight with » = 1. For
n = 1,2, it is possible to explicit completely the above density function.

The Appendix contains results on the integrals involving Bessel functions, which assume a
crucial role in this paper.

2 DMotions related to the random flights

In order to study the process X,(t),t > 0, introduced in the previous Section, we take into
account the same approach developed in Orsingher and De Gregorio (2007) and De Gregorio
and Orsingher (2011). The first step consists in the calculation of the characteristic function of
X, (t),t > 0, which plays a key role in our analysis. Let us indicate by < -, - > the scalar product,
then we have that

Fl(ay) =F {ei<gd,§d(t)>}

t t—71 t=>"0C) T
= / d7'1/ drg -+ / Aty fau (T, s To) Ly (T4, ooy Ty Q) s (2.1)
0 0 0

where a; = (a1, g, ...,aq) and

Ly (T1y ooy Ty Og) (2.2)
s m s ™ 27 27
= / dby - / doy it / dfq_2,1 - / d0q—2n+1 / dey - - / dppi1
0 0 0 0 0 0
n+1
H { exp{icTi(ogsinby i sin by g - - - sinfg_o j sin ¢p, + g1 8in by sin by g, - - - sinby_o j, cos Py
k=1

) I'v+d/2 . _ . .
+ -+ agsindy g cos O i, + a1 cos by )} — (1 /2) sin 6775472 - sin 0375 smqﬁi”}.

2 T T (v + 1/2)

The integrals with respect to the n + 1 angles ¢ are of the form
27
/ eiz(a cos ¢+3sin ¢) Sin21/ d)dd)
0

which seems to have an explicit solution only for particular values of v (see Appendix). Thus the
choice of the non-uniform family of distributions (1.1) for the directions of the random motion,
makes the analysis of the process, at least in its general setting, very complicated. Clearly for
v = 0 we get the uniform case studied in the paper mentioned in the Introduction.

For this reason, instead of studying directly X ;(¢), we deal with the random process de (t) =
(X1(t), ..., X (t)), t > 0, namely the projection of X ;(¢) onto the lower space R™, with 1 < m <
d, having components equal to

n+1
Xn(t)=c E T sin @y i, sin by g, - - - sin O, —1 1 €S Oy i
k=1



n+1
Xm-1(t) =c¢ Z T sin @y sin Oy g - - - sin Oy, o 1 €08 Or—1 i
k=1
(2.3)
n+1
Xo(t)=c Z Ty, 8in 01 i, cos Oz
k=1
n+1

t)y=c Z Tk €08 01 .
k=1

The vector (61,62, ...,0,,) (with 851 = ¢) appearing in (2.3), has distribution given by the
marginal density of gq4, (01,62, ...,04—2, ¢), that is

gd,y(el, 92, ...,Hm)

T T 27
/ By - / s | dbga, (61,00, ...00_2,)
0 0 0

gd,l/(013027---79d—27¢)7 m=d-1

= (2.4)
Dvtd/2) G g2v+d=2  gp p2vtd—m—1_ 0 g
w2 D(v+95m) ! m ’

Therefore, X (t) can be interpreted as the shadow of (1.3) in the lower spaces (see for instance
Figure 2). In other words, if we observe in R™ the particle moving in R¢ according to the random
rules of X,(t), we perceive a random flight with components (2.3) having vector velocity

csinfysinfsy - - -sinf,,_1 cosb,,
csin@ysinfy - - - sinb,,_2 cos,,_1

<y
Il

csin 6y cos 6y
ccos 6,

with random intensity |&]. Then, in what follows we analyze the random motion X% (t),¢ > 0,
with orientations distributed according to (2.4). Our first result concerns the characteristic
function of (2.3).

Theorem 1. The characteristic function of an (t),t > 0, is equal to

v (ay,) =E {ei<9mvlfn(t)>}

n+1 1
272 Gvrd=D=sp(2ll (2 +d — 1) + 3)
(ct||a ||)" ?QV_‘_d n_2 2 Jn+1(2u+d 1)— (CtHO‘m”) (2.5)

( )Qk—w ;€ R, is the Bessel function.

where J,(x) = > pep k'F lc+u+1)

Proof. The characteristic function of X% (¢),¢ > 0, becomes

Fr (e, =E {ei<2m7§fn(t)>}

t t—7y =570 T
= / dﬁ/ d7'2~-/ d7n fau(Trs o Tn) Ly a(T1s oy Ty Q)
0 0 0



with

Iz,d(Tlv "'7Tnvgm) (2.6)
/ b ; - / by i1 - / db,, 1 - / i
0 0 0 0
n+1
H { exp{icTy (o sin by ksinbs g, - - - 8in Gy, —1  COS Oy + -+ - + o 8in Oy cos s i + a1 cos b1 1)}
k=1
2
(v + d{l,) ing2rHd=2 gy g2rrd-m-1{
72 (v + ) ' ’
Since
Ju(z) = (g)y/ﬂ e ?sin® ¢dg, Re (u+ 1) >0 (2.7)
L(v+3)T(3) Jo ’ 2)

we observe that, after the integrations with respect to 6., 1,k =1,...,n + 1, (2.6) becomes
Iy a1, T

/d911 /dalnﬂ /dem - /demmﬂ

n+1

H { exp{icTy(Qm—18n6071  cos Oz - - - 8N Oyy_o k COS Opy_1 ks + - - - + o sin by i cos b i, + a1 cosby i)}
k=1

. 2u+d—2 . 2v+d—m
sm@Lk <--sin@ " Lk }

n+1
d/2 T
H {(V +d/2) ) / exp{icTy(Qum sin by g cos by, - - - sin by, 1 1 co8 Oy, 1) } sin 02”+d_m_1}
0

T3 F(l/ + d—m m m,k
/ doy,; - / db1,n41 - / AOm—1,1- / .
n+1
H exp{icTy(m—18in601  cos sk - - - SN Opy_o k€O Opy—1 ) + - - - + o sin by x cos b i, + a1 cos by i)}
k=1
I'(v+d/2) .  std—2—d=m=1 . vtd—m—d=m=1
X 7( mq/ ) sinf; > ---sinf . 2
IS , ,
2 V+d77;.71
X J,yd=m (cThoum sinby psinbay - - - sinbp,_1 1) ¢
TR, 2

We are able to perform all the (m —1)(n+ 1) integrations with respect to the angles 6; ,1 <
it <m-—1,k=1,..,n+ 1, by applying successively the formula (4.11) in the Appendix. The



integration with respect to 6,1 %, k=1,...,n+ 1 yields

n+1 d— m+1

icTRo sin 0 -sin 6 cos 6 v+
/d9m11 /dgm 1n+1H€ kQtm—1 1k m—2,k mlkSlnem 1k

1

v+ d—gl—l

JVer—rzn.—l (cThoum sinby g sinba g - - - sinbp,_1 1)

m

ntl . d—m+1
zc‘rkozm,l sin @y k---sin 0y, —2 k cOS Opy—1 1 Sin @ v+ —F—
- m—1,k

1 . . .
X Wju_i_d—r;—l (cThOuy sin by fsinbs g - - - sin By k) d0m—1k
Qm
n+1

/2
= H {2/ cos(CTpm—1 8060y f - - - sinbp,_o 1 cO8 Opy—_1,1)
0
k=1

d— m+1 1
y4d=mtl . . .
sin@” s ey s d=m=1 (cThOu, sin by g sinbs g - - - sin Gm_Lk)d@m_Lk}
: 2

m

nf[l \/* V+d m (cm sinfy g - sinb,_o gy /a2, + a2, _ 1)

d

v+ 45T
. 1 bl
(cTpsiny - - -sinp,_o k)2 (, [a2 + a2, 1)

In the last step we applied formula (4.11) for @ = cTgQy, Sin 61 g---SIN Oy _2 g, b = CTR Oy —1 SN0 -
-sin 6,2 1 and also considered that

/ sin( cos ) (sinx)* T 1.J, (asin x)da = 0.
0

The integration with respect to the variables 8,,,_5 1, ..., 8,—2 n1 follows similarly by applying
again (4.11) and yields

™ T n+l yop dmmeas
/ d0m72,1 . / db,, o il H eiCThm —2 5in 01,k Sin 0,31 COS O —2 1 sin em N k
0 0 k=1

) I Ju+d—2m, (c7’;€ Sinfy - sinby_o /a2, + a2, _ 1)

2 . . 1 vt
(cTisiny g - - -sinfp,_oy)2 (, [a2, + a2, 1)
nli[l (2\/?>2 a1 (CTk sinfq - -sin b3k \/aEn +a2, |+ a72n72>

— 2 V+d—7n+1 °
k=1 in@s . --sinf 2 ’
CTE SN0y g - -sinby, 3k (07 +04m 1 +0‘m 2

Continuing in the same way we obtain that

ANV g (emellan,[)
I’Z,d(Tlv "'7T7L7Qm) = {2V+gll‘* <V + 2)} H : (28)

i (emlla, )75

Then we can write that

v+2 1 d n+1
v )_F((n+1)(2y+d_1)){2 2 p(y+§)}
n,d\&m) = T@2v+d-1))t! D) @d—D 1




t t—7 =30 T ntl a_qJ,pa_q(cmilla,,
/dﬁ/ d/ BT | BT aas endiend) (2.9)
0 0 0

d_
k=1 (clla, D *+=-

In order to work out this n-fold integral, the result (4.8) assumes a crucial role. Indeed, we

apply recursively the formula (4.8) to calculate each integral with respect to the variables 7;.
Therefore, in the first step we have that

=301 T dr, 1/4»471 . -
T S (el Vg et — S )l
/0 (Clla, [D# 2" pet S P

t=>"0" T dr n
:/o W(Wn”am|by+g_l( t_ZTk e, |[)"* 51

k=1
n

Torgorlerllani) g 1ot =D mllanll) = (erallan|| =)
k=1
1 (t=30 21 ) el ., n—1 )
= A 4r+2d—3 dyy’ Tz (et — _ovtda
(CIIocm|)4V+2dl—3/(J vy (e( i)l |l — v)

k=1
n—1
Tyt )y (elt = S ) llagl| — 9)
k=1
! OO TN = S5 a4 4 o s et~ S i),
2 —
(clly,, | )2 +2d=3 ﬁ27rI‘(2y+df1 kZITk [0 2v+d—3\C 2 T )| @,
The second integral is given by
o L
(clla,, 1) +34=5 \/2xT(2v + d — 1) "

d_ _3
(ern1lla )2 et = D Tl D772, sy (erumillag ) Jaura—g (et = D )l

= (emallan|l = v)
1 (T (v + 451))°  pelt=Siz mllal
= d
(clla, )5 +34=4 /27T (20 + d — 1) / Y
n-2 n—2
v44— td—3
y Rt = D ol = 9)* R, e () arams (et = D )|l — y)
k=1 k=1
_ 3
(T (v+95)) (c(t = psy )l )+ 34— 2J Z e ).
(V2m)2T(3v + 2(d — 1)) (c|la,, |[)Bv+3d—1 3u+2d— 2( m

k=1

Then, the last integral becomes

(2.10)

rr+5H))" 1 /td

.

(V2m)n =10 (n + 2(d — 1)) (¢l |, ||) (D Grd=1)=2 '
174 17 nv

(emtllaml )27 (et = m)llan )™ E 4720, (e llanm ) s s a1y —2 (e(t = 1)l )

= (enllanll = y)

mll)

)



B T (v+42))" 1 ctlla,|
(Vam)n T (nw + 5 (d - 1)) (Cllaml)<““)(2”+d1)1/o W

yrEs (ctlloémll—y)"”+ R ST 1) F AT (2] o )
n pldoby 1
(0 (v+454)"" e

e RPN [}
(Vamy T ((n-+ 1)+ G5 (ella, TR s 55

2

Therefore, plugging the result (2.10) into the expression (2.9), and by observing that

. (V+ ;l) _ g T+ d- 1)

Tv+ 43

and
yP(n+1)2v +d—1))

r(e 2@ +d-1)

r <(n Doy ra-1+ i) = /r2! T

some manipulations lead to (2.5).
O

Let us denote by x,, = (21,22,...,2;) and dx,,, = (dz1,dzs,...,dz,,). Now, by means of
(2.5), we derive the explicit probability distribution of the random motion an(t),t > 0, which
is concentrated in the hypersphere H[}.

Theorem 2. The probability law of X% (t),t > 0, is equal to

P{X},(t) € dx,,}

v t) =
pn,d(§m7 ) HZ1 d!)ﬁi
__PCRE@ad-D+g) (@0 |k, ) Tee 0
o F(n%rl(g,/ +d—1) -2+ %) am/2(ct)(n+1)(2v+d—1)—1 ’ .

with ||X,,|| < ¢t and d > 2.

77L||

Proof. By inverting the characteristic function (2.5), we are able to show that the density law of
the process X, (t),t > 0, is given by (2.11). Indeed, by passing to the hyperspherical coordinates,
we have that

1 .
Ph (X, t) = (277)’”/ e*l<&m-,§m>E{ i<a,,, X ,,L(t)>} day - - day,

1 00 s ™ 27

= — / P dp / db; - - / dfy_o dpsin™ 26, ---sinb,,_o
(2m)™ Jo 0 0 0

exp{—ip(zm sinby ---sin b, _osind + - - + 9 sin by cos 5 + x71 cos bq)

2% Grd-1) =3 (ntl (9 4 g — 1) 4 1)

(ctp)™3* (v+d=1)=3 Tt -4 (0,
B 2%(21}-#11—1)—%1_‘ n+1 5 p . 1 o) 1 Jm 1(p‘|xm||) Jn+1(2u+d 1)— (Ctp)
= o \m/2 5 2v+d— )+§ P CESYCRw 1)77
(2m) 0 (P|\§m||) Y o(etp) 2

9"z (Qud--3 (2 2u—|—d—1)+%)
|

(271)7”/2 (ct)n 2l (op4d—1)— HX |7—

10



X mt1 nt1 td—
/0 p 2 3 (2rtd 1)J7”* (p|‘5m||)‘]"+1(2u+d 1)— (Ctp)dp

B 1 M 2v+d-1)+3)
/2 (ct) (D@D p(ndL (9 g — 1) — 2 4 1)

In the first step above we have performed calculations similar to those leading to (2.8) and then

™ ™ 27
/ ey - - - / Ao dpsin™ 20, ---sinb,, o (2.12)
0 0 0
exp {—ip(Zpm sinfy - --sin b, _osing + - - - + x9sin by cos Oy + x1 cosbr)}
Jm_ X
_ (onys 2101l
(P||§m|\)
while in the last step we have used formula (4.10) for v = 2 (v +d—1)-3, p=2 -1, a=ct
and b = ||x,,]]- O

Remark 2.1. By taking into account (2.11), we observe that an(t),t > 0, represents an
isotropic random walk; that is its probability distribution depends on the distance, from the ori-
gin, of the position of the random walker. Furthermore, by setting v = 0 in (2.11), we reobtain
the result (2.26) in De Gregorio and Orsingher (2011).

Remark 2.2. The cumulative distribution function for the process an(t),t > 0, is equal to

PIX50 €1 = [ ot [ do
v i=1

(M @rtd-1)+3) / o (P42 = ) F e

TR +d-1) -z +hHrm) ) (ct)n+DE+d—n-1 P

(2.13)

with 0 <r <ct. If 222 (2v+d—1) — 2 = g € N, we can write down P{X% (t) € H™} in an

alternative form involving a finite sum. Then one has that

my _ 2F(q 5+ 1) mo1 (17 = p?)f
g+ 5 +1
r

) (r/ct)? m_y .
- m/ vt
)

r 1 7\ 2k+m
:r;]il);( )Z( b* (Z) (E) N ki’;

k=0

_F

|~

—~

—~

Remark 2.3. By assuming that the number of steps n + 1 is a random value, it is possible to
get the unconditional distribution for X;in(t),t > 0. In other words, we suppose that the number
n of changes of direction are governed by a fractional Poisson process Nj(t),t > 0, introduced
by Orsingher and Beghin (2009). Therefore, we have that

1 ()"

reet@ev+d-1)+3)E

P{NY(t) =n} = n=0,1,2,.. (2.14)

vzt g (M)

where Eq () = Y 1o WIM,%‘ € R,a,8 > 0 is the Mittag-Leffler function. Furthermore
N} (t),t > 0, is supposed independent from T and §. Then, in order to obtain the unconditional
distribution of X% (t),t > 0, we can average (2.11) with the distribution (2.14).

11

(P2 — ||x,,|[?) 7 Grrd—D-=57



Remark 2.4. Let us consider the radial process R% (t) = || X% (8)|| = Vo, Xa(t),t > 0. We
observe that

P{R;,(t) <r} = P{X],(t) € '},

with 0 < r < ct. Therefore, let f* . .(r,t) be the density function of R% (t), the result (2.13)implies

n,m,d
that
P12 — T2)%(2u+d71)7%

rm,d(Tt) = i ) m (D (@otd—1)—1
3)T(%) (ct)tm v

n,m,d

(2.15)

Lt @2v+d-1)-%

with p > 1.

3 Random flights with v =1

As observed in the previous Section for a general value of v, we are not able to work out the
integral (2.1). Nevertheless, it is possible to derive a closed-form expression for the characteristic
function of X,;(¢),t > 0, for some values of v. The next Theorem provides the explicit char-
acteristic function for the random flight with » = 1. It is worth to mention that this result is
remarkable since in this context it is hard to obtain explicit results.

Theorem 3. For v =1, the process X,(t),t > 0, admits the following characteristic function

o (d+n)\" T
Pl = VIL(n+1)(d +1) asy i (nt (iugjnz*g T - i (ctf]agl])
n(Qd) = 2(d+1)(;+1)—1 Z(_ ) j P((n+1)2(d+3) — ) (CtHQdH)(n+1)(d_21)+2j_1

§=0
(3.1)
withn >1 and d > 2.

Proof. In order to prove the result (3.1), we will use the same approach and tools exploited in
the proof of Theorem 1. Nevertheless the proof of (3.1) is not a simple adjustment of the proof
of Theorem 1 and it requires a particular care as we will show in the next steps.

We start by taking into account the expression (2.1) for v = 1. Thus, we have to handle the
following integral

Irly,(Tla"‘anvgd) (32)
L(1+d/2)\"" [~ i m w 2 2
= (M) / dy - / 061 i - / . / T / dgy - / b
T2 0 0 0 0 0 0
n+1
H { exp{icti(gsinby psinfs - - - sinfg_o f Sin ¢ + ag—1 sin by psin by ; - - - sin b2, cos Py,
k=1

+ -+ agsinby ycosbs k + g cosby i)} sin 0‘1{,C ... sin® Oa—2. sin? ¢k}.
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For the n + 1 integrals with respect to ¢, we get that

2 27 n+1
/ dey - - - / d¢n+1 H eicTk sin 01,1 sin 0 ---sin Og—o i (g sin pr+aq—1 cos ¢r,) sin ¢%d¢k
0 0 k=1

n+1

2m
— H {/ eim'k, sin 01k sin 0o g ++-sin 0g_o (g sin pr+ag—1 cos dy) sin ¢zd¢k}
k=1 70

ntl (Ji(cTpsindy psinay - - sinfy_o gy /o2 + a3 ;)
_ (27T)n+1
- . . . 2 2

k=1 cTpsingy g sinby g - - -sinfq_o y/ag + a5

2
a ) . .
— ﬁJQ(CTk sinfy g sinby g - - -sinfg_o pr/a2 +a2 )¢,
agtag

where in the last step we have used the result (4.3). Therefore the integral (3.2) becomes

I}L(ﬁ,...,Tn,gd)

(1 2 n+1 T T T T
_ <(+dd/)> (27r)"+1/ d91,1~'~/ d91,n+1-~-/ d9d—2,1"'/ A0g—2 i1
w2 0 0 0 0

n+1

H eic’rk(ad_rz sin @1 g sin @y g ---cosOg_o g+ -+ sin 0y i cos bz .+ cos b1 k) sin gil Bt SiIlS 6d—2,k

k=1

Ji(eTsiny gsinbyy - - -sinfg_o /a2 + a3 )
cTsinfy g sinfy g, - - - sinfg_o j; 4 /04?1 + (1371

2
a ) . .
— ﬁJg(Cﬂg siny g sinbs - - -sin@qg_o py /a2 +a? ;)
agt+ag

The integrals with respect to 642 ;, are equal to

T T n+1
/ d9d72,1 . / d9d72,n+1 H ezcrk(ad,z sin 01, sin O ---cos Og_2 ) sin3 9d72,k
0 0 paie}
Ji(cTsindy psinba - - - sinfy_o y /a2 +a? )
CTpsinby g sinbs g - - -sinfg_o py /a2 + a2,
o2
— %Jg(cm sinfy psinby - - - sinbg_o ky /o3 + a3 ,)
a;+a

d—1

n+1 m/2
= H 2 / d0d_27k COS(CTkad_Q sin Gl,k sin 02,k <+ COS ad_g,k) sin3 9d_27k
0
k=1

Ji(eTsiny sina g - - -sinfg_o /a2 + a3 )
T siny psinbay - - - sinfg_o /a2 + a3,

2
(&7 . . .
— ﬁh(cm sinfy g sinbs - - - sinfqg_oky /a2 + a2 )
agtag
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-1l

a3 J5 2 (cTi sin by sin Oy, - - - sinfg_3 \/ag +ai [ +ai ) ] }

(cTk sin @y sinfy j, - - - sin 9d73’k)1/2(\/0é(2i +ai | +ai )52

n+1 { \/7 [JS/Q(CTIC sinfy sinfy - - - siny_3 \/afl +ai [ +ai )

(cTi sin 6y sinfsy - - - sinfg_s \/afl +a? [ +ak )37

where in the last step we have used formula (4.11) for

a=crsinby psinbyy - -sinfg_3 /02 + a2,

b= crpag_osinby psinbsy - - - sinfy_3

and v = 1,2 and also considered that
/ (sinz)” Tt sin(bcos x)J, (asinz)dr = 0
0

By means of the same arguments, we can calculate the further integrals with respect to
01k s0d—ak,,04—3 1 and then we obtain that

o Cp(enllagl) | abysnendla)
TNt 94/21(1 4 d/2 /2 7Th\Zd))  Zdvd/2t —d 3.3
e e D V S ey o [ ey B

The characteristic function for ¥ = 1 becomes

ntl ft t—71 =572 T
Flla,) = {2d/2F(1 + d/2)} / dry / dro - - / Aty fa1(T1s .y Tn)
0 0 0

ﬁ{Jd/Q(CTk|ad||) agdasz1 (cTellagll) } (3.4)

i U CemellaglD®? (eme) /2= |y ||472+

By developing the product appearing in (3.4), the characteristic function F. (o) reduces to
a sum, over to 2"*! elements, with generic terms given by

J;zl',ng,...,ns (Qd) (3.5)

b,

Cf2r /2" N+ D+ 1) [ o \TT
- T(d+1) tn+Dd+h-1 llag|[?

t t—T1 t Z:11 t— Zk 1 k 1 Hnl ( —
> Jd/2 C k||ad‘|)
d / dd 5 7 _]d7 — —7
/ 1 / T2 OT: / n " 1/0 mem (C kHadH) /

k=1

ny+1

t=3 0L, Tny 1 =321 T
74 d 4 d e
Tni1+14Tn 41 0 Tn14+20Tn,+2

=302 T =R d 1 Jaz(enllagll)
T e 11 et
0 k=ni1+1 kll&a

[}

s—1t1

t— Zkbll"'k t— Zk 1 Tk p
1+1d7—n5 1+1 T, 5,1+2d7-n571+2 T
0

(=)
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ns—2 ne—1

t Zk 1 Tk t*Zk Tk ne J el
/ | i, [ Zuetenlad)
0 0

k=ns_1+1 (CT]‘?HQdH)d/2

t—zzil Th J b Zn5+1 .
/ Tns+1d7—ns+1 / ns+2d’rns+2 P
0 0

t=2 ko1 Th t=3"011 T i jass Jasa1(cTillagl])
/ T;f_ldﬂH/ Tt — ka)ddm H /2+ ay
0 0 k=1

(i llag 42~

k=ns+1

<ng1<ng<n+l,j=ni+nzg—no+..+ns—ns_1and 0 < j <n+1.
Therefore, we focus our attention on the calculation of (3.5)

We deal with the following (n — n,)-fold integral

t—Y 0, Tk — Zn5+1
Ns _ d d
’C (Qd) _/ Tns+1d7'ns+1 / s+2d7-7l5+2 .
0 0

=301 Tk t—z:;llTk n n+1 J erlla
[ e [ S, T esenll)
k=1

(eillag| )2

). Indeed, the integral with respect to 7, is given by

n—1 n .
| o =3 ytJagzca(ernllall) Jappen (et = Eieo mo)llaall)
0

with 0 < mj <no < ..

k=ns+1
by applying formula (4.8

k= (eTnllagl)?= (c(t — >0y )| lag| )42t dry,
_ /tzﬁl T (crn|04d||)d/2+1(€§|; %gd_l ) [ag )2 Tajzar (eTallaall) Jaas (c(t — zn:Tk)HQdH)dTn
0 a k=1
= (cmn|lay|| = w)
R ¢ n—1
A wd”“(c(t_<c||ka§|7>’3)d[?d”_“’)M“ Tazia @)z (elt = 2 mllagll ~ whdo

1 I'%((d + 3) /2 - . -
= ) VarT(d+3) Z Magl)/2 s alclt = 3 7

)eall)
k=1

where in the last step we have used formula (4.8). The integral with respect to 7,1 becomes
1 I'2((d+3)/2)
(cllagll)>*™t V27T (d + 3)

=3 T n—1 i
/ (emnallagl N> (e Z’Tk [lag| )4 /2Jd/2+1(07n gl Tats /2 (c( ZTk eyl drn—1
0 k=1 1
= (emn-1llag|| = w)
_ 1 I%((d+3)/2)
(cllaql))*™? V27T (d + 3)
c(t=3 027 mr)agll n—2 I
/ wd/2+1(c<t - i )llaall — w)d+5/2=]d/2+1( )Jays/2(c( Z ) l|ag|| — w)dw
0 k=1 Pt
1 3((d+3)/2) n2 _
B 7)llaal )24y 7)),
(cllagl[)>*+2 (\/%)QF(g(dJrs)) ; d 3a+4(c Z y
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where in the last step we have used the formula (4.8) again. We can continue at the same way
and then we have that

) 1 D= ((d + 3)/2)
&) =g @D m=—n+1)-2 (vV2m)n—na— 10 (250 (d + 3))
E=3005 0 Tk natl (n—ng)(d+3) _ 1
/0 A1 (T llag )72 et = 3 7 lagll) 240
k=1
ns+1
Jas2e1(eTn 1ll@al)J g en 1 (e(t — kz )| lagll)
=1
= (cTn.+1]layl] = w)
_ 1 rm="s((d+3)/2)
(cllag|) (@ m=nAD=1 (\/oryn—ns—1T(250 (d 4 3))
e(t=37, llagll n e
/ dwwd/2+1(c(t—27k)||gd||—w)%—%
0 k=1
Jd/2+1(w)=](n—ns2)(d+3) 1 (c(t — ; Ti)l|lagl| — w)

(n41-ng)(d+3) _
2

_ D ((d 4 3)/2) (et — 3oz i)l lewll) 1
(cllag| (@D m=nat =1 (2m)n=naT (252 (d + 3)) : h=1

1
2
J(n+1—n2.g)<d+3>, (C(t—g )| lagl])-

Now, we perform the calculations concerning the (ns — ns_1)-fold integral

K=t (ay)

s— s—1+1
t—E:zllrk J t—z:zll Tk J
= / Tns_1+1d7—ns—1+1 / Tns_l—i-QdTns—lJr? T
0 0
n

t—Z?iPrk t—z:izlﬂc s Jd Q(CTkHO[ H)
/ =10, / rldn K" () ] T
’ 0 L el

By means of the same approach adopted above, we can write down that

rti=ns((d + 3)/2)
)(d+l)(n—ns+l)—1+d(\/%)n—nsr‘(77«+12—ns (d + 3))

(¢l ]

ng—1

t*E:k:1 Tk Ns it mats
/ nS(c naHfadH)d/Q(C(t— Tk)” dH)% 1
0 E Q

k=1

N
Jaj2(cTa, |lagl) eerono s 4 (e(t — > mllaall)
k=1

| = w)
rrti=ns((d +3)/2)
(cllaa| [ D032y D (22 (d + 3))

= (cTy,

ng—1 ns—1

e(t=r2 1" 7o)l (it (d3)
/ w2 (e(t = 37 7)llagl| - w)
0 k=1
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ns—1

Jaj2(w)J wtrmnoraen g (e(t = > m)llagl| —w)
k=1

rmti=ns((d+3)/2)['((d +1)/2)
(c]|arg||) @+ (r=ne+1)+d( /27T)n+1—nsl“((”+1*(”s2*1))(d+3) —1)

ns—1 ns—1
(ntl—-(ns=1))(d+3) 3
(et = > m)llagl) ™2 -t s (e(t = - 7)),
k=1 k=1

Then, carrying on the same calculations for the integrals with respect to the variables
Tna—1s-Tn._1+2, We get that

e (a)

D7 H=ne ((d + 3)/2)07= o171 ((d + 1) /2)
(cllay||) @D n=ne—n)=1+d(\/2r)n=n.ma=1D(2=2e21) (§ 4 3) — (ny — ng_g — 1))

=30 T . ns—1+1 ) (g (b
drn, 1 (cTn, rllagD®? (et = Y m)llagl) ™2 T
0 k=1
ns—1+1
Tapan a0 o g o (el = llagl)

k=1
= (T, +1llagll = w)
[ H=ne ((d 4 3)/2)0™e "1 ((d + 1) /2)
(cllag|) (D m=raca+D=1(y/2r)n=nea—1D(20em1) (4 4 3) — (ng — ny_y — 1))
/c<t—22i11 )|l ns-1

(n—ng_q) 1
dww (et — 3 7)ol — w) E G
0

k=1
Ns—1
Tapp() T nas) (et = Y0 el - w)
k=1

((d 4+ 1)/2 = E o (d g 1)2)

(clag|l) +1=me-1)(d+ D=1 (y/2ryn—naa [ (OHZRe D)y )

S
S

-1
(nt1-ng_1)(d+3) °
> —_

s—1
(et =" 7o)l ) M i@ (€= 2 )l

k=1 2 k=1

where in the last step we have also exploited the formula I'(1 + z) = 2T'(2).
Now, bearing in mind the same steps used to work out K™ (a,), we are able to explicit,
omitting the calculations, the following integral

Icns—27ns—17ns (ad)

ng_o+1

=327 T 4 =322 Tk J
:/o Tns,2+1d7n572+1/0 Tns,2+2d7—71572+2"'

DT DT el
d d Ns—_1,Ms d/2+1 CTngdH)
_1d _ d JCrs—1ms (g H
A Tnsfl 1T, 11} Tn5—1 Tne 1 (—d) (C,rk”ad“)d/g,l

k=ns_2+1
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(d+1)/2) 1 -netnan—neaP et onea (d 4-1)/2)

(cllag| )01 mem2) D=1 (/2o (=Rl () — )
Nez2 (ntlome o)) (g g iy
(et = Y milllal) =IO D S il S 7))
k=1 k=1
Analogously to K™==1"=(a,), we get that
Icn573;nsf2;nsflxns (Qd)
T S ; T S A ;
= / Tn5,3+1d7-n573+1 / Tn573+2d7'n573+2 T
0 0
T =X T Jaal
d o2 Me1,s a/2(cTill2qll)
/ T7c11572_1d7_n372_1 / Tnsfszns,gKn‘ 2,Ms—1,MN¢ (Qd) H W
0 0 k=ne i1 kllQq

(d+ 1)/2)™H1ometnens —nema P nes (4 4 1) /)

(cllag|) (1 =mems) (@D =1 (y/ar)n—ne s D (HZRe @D (0 — 1) + (ng_s — n_3)])
Ns—3
(et = 3" m)llagl) ™ e
k=1
Ns—3
X J(7L+177L3273)(d+3)—[(ns—n571)+(n372—n373)+1/2] (C(t - 2 Tk)”QdH)

Finally, by applying recursively the same arguments exploited so far, we get that

\7:,}’”2’.“’”5 (Qd)

_ {2”” T +d/2>}"“ I((n+1)(d + 1)) ( o3 )"“‘f

T(d+1) t(n+1)(d+1)—1 B IEHIE
t t—m1 =L =50k o Jaso(eril|a
/ 7.1dal7.1/ ddry - / Tgl—ldTm—l/ 7'7f1d7'n1 H MHjj/'l)
0 0 0 0 el (eTnlleall)

nq+1

t=3"02 ) Tag 41 J =321 T J
Tn1+1dTn1+1 Tn1+2d7—n1+2 e
0 0

=302 . =302 T J o1 Jaser(emillagl))
Tn2_1d7'n2—1 Tngdﬂm H d/2—1
0 : AL Cendlaah

((d + 1)/2)n+1—[(ns—n371)+(nsfz—nsf3)+..-+(n3—nz)]rn+1—n2((d + 1)/2)
(cllag| )+t =n) @ D=1 (y/2myn-—ra (D) (0 — g 1) + (ng—p = g—3) + . + (g — 12)])

T2

(elt = Y mllagl) =5 F ) o s 1

k=1
no

Tt 0900, )4 ez (ranay 1721 (O D T leal])
k=1

C2r 2" M+ DA+ D) [ o N\
- I(d+1) ¢nt1)(d+1)-1 llagll?
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((d+1)/2)" =T ((d + 1) /2) (D@En 1
(D)1 — s Ctllaal) 2 Jmenass oy (ctllagl])
(cllag| ) (nFDEFD=L(V/2m)n D (=g == — )

nt1—j
 VAl((n+1)(d+1)) ( T ((d + 1)/2))

= — — — J(n+1)(d+3)7(2j+1) (CtHQdH)
@d+1)(n+1)—1 d . (n+1)(d—1)+2j—1 i
PR ) (etllagl) T :

The integrals J,%"? " (a,) have different configurations involving the Bessel functions
Ja (cTi]leyll) and Jd _1(etkllagll), according to the values nq,ng,...,ns. Nevertheless, from the
prev10u5 calculatlons we observed that the value of J'%"* """ (q,) is the same if the j does
not change for different combinations of ny,no,...,n In other words, in order to calculate the
values of the different terms of the sum appearing in (3.4), we have to consider the number of

Bessel functions with index 4 (or 4 — 1) appearing in (3.5). Then, we can conclude that

Flag) = Z( . )Jn,;f e (g, (3.6)

=0~/
and the proof is completed. O

Remark 3.1. The analytic form of the characteristic function F}(ay) is more complicated than
its counterpart in the uniform case (v = 0) (see formula (2.1) in De Gregorio and Orsingher,
2011) which is only given by a Bessel function (with a suitable constant). This is because the
random motions considered in this paper have drift. Indeed, the choice of directions non-uniformly
distributed, for each step performed by the motion, implies the loss of spherical symmetry.

Remark 3.2. By means of (4.4) and (4.5), the characteristic function of X,(t),t > 0, could
be calculated for v = 2,3. Clearly, in these cases the necessary calculations for completing the
proof follow the same steps of the proof of Theorem 3 are very long and cumbersome. Indeed,
the expression (3.4) involves the product of linear combinations of Bessel functions.

Theorem 3 allows to show our next result. We are able to provide the density law of X, (¢),t >
0, (up to some positive constants).

Theorem 4. The density function of X,(t),t > 0, for v =1 assumes the following form

F((n + 1)(d+ 1)) Til bl (n + 1> (%>n+1fj
I (1)
I'(

1
Pn(Xg t) = :
n\&d d— j (n+1)2(d+3) _ ])

T 2 (2Ct)("+1)(d+1)

R (—D*arni1—j22" 5, o\ )
> L (2 — il |?) ™% (3.7
=0 F( k+1>

where ||x4]| < ¢t and ag nt1-;5 are positive constants defined as in (4.7).

Proof. We invert the characteristic function (3.1) as follows

P (X4, 1)

d
1 —1 X
N (2m)d /]Rd R ) H dav;

i=1

_ Val((n+1)(d+ 1)) Til( 1)n+1- J<”+ ) (%)n-&-l—j

(2m)d G = j (ct)%{‘(%;d“’)

- J)
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/ €—i<gd,§d> ( O‘i >n+1 J J(n+1)(d+3) (2j+1) Ct| |Oéd|| H o
n i
- TEE ||Qd”M

nt! d+1\nt+1-j
_ VAL((n+1)(d +1)) S (1 n—|—1 <T)

e} ™ s 27
/ pd—ldp/ d91 L / d9d72 / d¢e—ip(md sin 01 -+ sin p+x4_1 sin 01 -+ cos p+...4+x2 sin 61 cos O2+x1 cos 01)
0 0 0 0

i J iy -2+ (ctp)
2

—J)

2(n+1- . pd— .
(n+ sin@{ 2. - sinfy_o.

(sinfy - - - sinfy_o sin @) CESyTCEy ey
2

By taking into account the formula (4.7), the integral with respect to ¢ becomes

27
/ efip(zd sin @+ sin@gq_o sin p+x4_1 sin Oy -+~ sin O4_ 5 cos ¢) sin ¢2(n+17j)d¢
0

—j k 2% . .
i (=) *ag py1—ja2F Jnp1—jpr(psindy - - -sing_oy /22 + 2% )
=27 g '
k=0 2k(psinfy - - - sinOg_o)nH1—d=k(, [a2 4 22 Jn+l-itk

Then

P (X4, 1)

— ﬁr((n—Fl)(d—Fl)) nt! 1 nt1—j n+1 (%>n+1—j
()

(2)d- 19 DG j DU (e )(d45) )

el k 2k oo J 52 (ct
(=) apny1_ a2 1 (=) eners iy (¢tp) ;
k p (nt1)(d—1)+25—1 P
2 A [EES e

k=0

s s . . .
/ dal . / dad_2671p(zd,2 sin@y-+-sin@g_3 cos 0g_o+...+x1 cosby) sin 9?—2 ...sin 9d—2

0 0

. . 1—j+k
(sinfy - --sinfg_o)" 7T

: Jnt1—jr(psinby ---sinfy_oy /22 + 2%_,)
(s e V

By means of the same approach used to get (2.8), the (d — 2)-fold integral with respect to
the angles becomes

™ s
/ d91 . / d9d72e—1p(wd,2 sin@;---sin@g_3cosOq_o+...4+x1 cosby) sin 9?*2 ...sin 9d72
0 0

(sinfy - - - sin Od_g)"H_Hk

- Jnt1—jtk(psinby - sinbg_oy /22 + 22_,)
(y/22 + 22| )nti-itk

(2r)e 1
i-1|x H"""l—j-‘rk-‘r%—lJ"+1*j+k+%fl(p||§d”)~

Therefore, the formula (4.10) implies that

P (X4, 1)
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_ ﬁr((n+1)(d+l)) Tf n+1—'<n+1> <%)n+1—j
B (=pr =
(ct)

d_ (d+1)(nt+1)—1 (n+1)(d—1)+2j—1 +1)(d+3 .
(277)22 2 =0 J c 5 F(u;) _])
" ()R ap g 2k o Jarn@ssn-cien (€0) Ty 1 j ikt 41 (plIXall)
= (by (4.10))
+1-j
 VA((n+1)(d+ 1)) ”i(_l)mﬂ- <n+ 1) (4"
- d_ (d+1)(n+1)—1 ; (n+1)(d—1)+2j—1 +1)(d+3 .
(2m)22 T D J (ct) 5 F(MQ() —7)
n+1—j k k
(1) a1 & 12— x| [7) 5

n(d;rl) (n+1)(d+3)—(2j+1) (
2

= 2 P (2 1) (o)

n n+1 n a1 g
dFE( + 1)(d + 1)) Z(_l)n-i-l—] ( ;‘ 1) F(((nfl)()d%) —

n T (2et) (D@1 3 )

(=D ap,nt1-j23" n(d+1)
@t D) e Al 191 S
im0 D (M5 — k1)

O

It is worth to point out again that the result stated in the above Theorem does not provide
the whole analytic form of the density law of the random flight with v = 1. Indeed the constants
appearing in the expression (3.7) are not determined for an arbitrary value of n, but only for
some values of n and n+1—j. For instance ag n+1-; = 2(n+1—37)—-1)(2(n+1—4)—3)---3-1
and ap41—jnt1—j = 2" 7179 (see formula (4.7) in Appendix). Furthermore, in a few cases we can
explicit p! (x,4,t). By taking into account (4.6), for n = 1 and n = 2, after some calculations, we
obtain that

I'2(d+1
Pixet) =~ 2d+1(( ) d—1
3 dt1 d—1 -3
{7 = Il - 2052~ IS + @+ Db — )7 |
(3.8)
and
I'Bd+3)(d+1
Phlxsnt) = S )

77 (2et)3420(d — DDA _ 3)(3d + 7)(3d + 5)

£B2 2

1, 8 _
= 8zg(*t? — |lxall) 7 + S (d+ Dt — [lxall)* 2} (3.9)
Let f) 4(r,t) be the density function of R4(t) = [|X,;(¢)[|,# > 0, with 0 <7 < ct. As done for
obtaining (2.15), from (3.8) and (3.9) we get that

L(2(d+1))2y/7
(2ct)24+1(d + 2)T(d + )T (S0 (2)

fll,d(r7 t) =
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Figure 3: The behavior of the density functions f; = fll)d(r, 1) (on the left) and fo = f217d(7', 1)
(on the right) for d =2,3,4 and ¢ = 1.

and

I(3d + 3)(d + 1)2y/7
(2¢t)34+20(d — DB — 3)1(2)(3d + 7)(3d + 5)

{ 4(d +4) Pl (22 — 2yt 2(6d> + 6d + 8) P (22 _ 2y

f21,d(7n7 t) -

(d+1)d(d—1) (d+1)d?*(d—1)

A
d(d+ 2)

40(d + 1)

d+3 2t27 2\d—1
P =)

rdT5 (22 — r2)d2} (3.11)

Remark 3.3. The expressions (3.8) and (3.9) represent proper density functions. Indeed, it

is possible to verify after some calculations that fH”’ pL(x,,t)dx, = 1,n = 1,2. Furthermore,
ct

pi(xy,t) and pi(xy,t), or equivalently fid(r, t) and f217d(r, t), are non negative functions (see

Figure 3).

Remark 3.4. It is useful to compare the density functions pi(x,4,t) and pi(x,,t) with the prob-
ability distributions obtained in the uniform case (v =0) by Orsingher and De Gregorio (2007).
As emerges from Table 1-2, the uniform random flight and the random motion with drift lead to
quite different distributions.

Remark 3.5. From the results (3.7), (3.8) and (3.9) emerge that the probability distributions of
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v=20 v=1
d=2 | sy | T {%(czf —1%,11%)% — 23/ — [Ix,]I% + W%W}
log(Sptatllxall ]
d=3 ﬂ(gcz)zﬂzﬂ‘ 24772(1“)7 {%(Cth - ||53||2)2 — 2a3(c*t? — ||§3||2) + 41%}
d=4| i it { (@8 — Ix11?)? - 208 — [, + 524 /P — [, [P}
Table 1: Density function p¥(x,,t) for v = 0,1, and d = 2,3, 4.
v=20 v=1
d=2| 52 7&?123.11{(0%2— [l 11%)* + Frad(c*? — [|x,]1*)?
—2x5(c*t? — ||x,|?) + 2x8}
d=14 | =S (e = ||x,|?) (){u —lIxa1?)? + £23(? = |Ix, )
—a(c*t? — ||x, ") + §ad(c®t® — |X4|2)2}

Table 2: Density function p4(x,,t) for v = 0,1, and d = 2,4.

the random flight with v =1 are a linear combination of n 4+ 2 functions

22 (P8 — x|

with k = 0,1,....,n + 1. Furthermore, (3.7) permits to claim that, as expected, the random flight
with drift is not isotropic. It is interesting to point out that the observer in R™, m < d, perceives
the random motion as an isotropic walk (see Remark 2.1), while the original motion is non-
1sotropic.

4 Appendix

In the random flight problem the integrals involving Bessel functions have a crucial role. For
this reason in this Section we summarize some important results which are often used in the
manuscript.

In particular we focus our attention on the following integral

27
/ eiz(a cos 0+ 3sin 0) SiHQV 0do (41)
0

with «, 5 € R and v > 0. We are able to calculate (4.1) in some particular cases. For example,
for v = 0 it is well-known that

2m
/ et#(acos0+Bsin0) 19 QWJO(Z\/m)' (42)
0
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If v =1, we get that

E : Ji(z\/a? + 3?) 52
iz(acos O+Bsinf) ;2 0do = 2 1 _ J 2 2 . 4.3
/0 e sin (A e 5 of § 2 (zv/a? + 32) (4.3)

as proved in De Gregorio (2010). The previous result has been obtained by expanding the
exponential function inside the integral. Hence, one observes that splitting the integral into two
parts, i.e. fo% =y +f:7r, after a change of variable, the sum is not equal to zero if the index
values are even.

Following the same approach developed in De Gregorio (2010) we can write that

2
/ exp{iz(acos@ + Bsin )} sin® Hdf
0

o /2
= Z 3 QkZ( ) 27'ﬁ2(k_")/ cos? 0 sin>*=7+2) g4
0

QZi:(u;?f 3 (e KT

- %g;) ((;]1'); F(Ii - Tz:: (27“)!((22(]2! r))!a2rﬁ2(k—r) F(2r)F§2<£I;F—(£+522;)—2(k+2)
“ é F(@Bl;) G i@ B e =TT

-z i r(@)?)) ()" i o gty 20k =) + 3)(2& - :):S!)@(k — 1) +1)
=3 Srter (3) e MR

-T ki) F(Ugi)’;) @)% zk:O 2 g2t A0 = ri(: i(f)! ")+ 3

I il () S S
Qk:oF(k+3 ri(k 7“—]
where ag 2 = 3,a1,2 = 12,a22 = 4. Therefore, we obtain that

2m
/ exp{iz(acos@ + Bsin )} sin® 0df
0
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—1)k+i 2(k+35) 1
~FEme S iy ()

Z;( amﬂzj(*) Z,MW)(ZW)

+3+7

3 6/6’2 ﬂ4
=am 7<]2 z 0[2 2) — ——— Ja(z QQ 2 7J4 P 0[2 2
2 {(z\/m)Q (z1/02 + 32) Nt 3( \/Tﬁ)+(\/m)4 (W)}

(4.4)

By means of the same arguments we have that

27
/ eiz(a cos 0+ 3sin 6) sin6 0do
0

TN r g2(k—r) 45,3
_22kzork+n+l() Zazﬁzk Zr' '

k—r—j)

2 2 _45—52 2 2 i 2 2
{ a2+ﬁ2 Jg(z\/m) 22(\/m)4J4(Z\/m)+Z(\/m>5J5(zm)

where ag 3 = 15,a13 = 90,a2 3 = 60,a3,3 = 8.
For v = n, with n > 0, one has that

2m
/ iz(a cos 0+(3sin 0) Sin2n 0do
= 2k /2
Z 2k Z ( > 2r/62 (k—r) / cos?" 0 Sin2(k—7‘+n) 0do
k=0 =0 0

2k\ o, A L(r+1/2 —-r+n+1/2
2kz< ) a2r 320k ( /)(k(+n+1) +1/2)

1)k G - (2k)! o2 g2(k=7) L(2r)T(2(k —r + n))22 20+
Qk") I'k+n+1) Z (2r) (Q(k—r)) p I(r)T'(k—r+n)

k
o o2 (e 2(k—r)+2n—1)!
Z Ca )r'(2(k—r))!(k—r+n—1)!

2k

E

2r ga(v—r) Gk —1) + 20— )@k =) +20 = 2) .- 2k —1) +1)
rl(k—r+n-—1)!

(%

= 92n— QZ k+n+1 (%)
= 92n- 22 k+n+1 ( )Qk

T
T

o 9k —r)+2n—-1)2k—-7)+2n-3)--- 2k —7)+1)
2"122 k+n+1 <) E:a g ! rl(k —r)!

Therefore, by taking into account similar manipulations appearing in (4.3), (4.4) and (4.5),
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we can infer that the following equality holds

(Mk—ﬂ+2n—D@%—ﬂ+ﬂn—$~(%k—ﬂ+&)_ﬁi @jn
rl(k —r)! _j: rl(k —r—j)!

where a; s are positive constants. We are not able to explicit a;,, for all values of n and j
because for the above constants seem that a recursive rule does not hold. Nevertheless, it is easy
to see that

aon=02n—-1)2n—-3)---3-1, ap,=2"

Furthermore, the cases tackled above can be sum up in the following scheme
n=0—apo=1
n:1—>a0’1:1, a1?1:2

n = 2 i a072 = 3, a172 = 12, a272 = 4 (46)

n=3— ap,3 = 15, a3z = 90, a2.3 = 60, az.3 = 8

Finally, we get that
2
/ eiz(a cos 043 sin ) Sin2n 0do
0
2r a2(k—r) ajn
T 12 k+n+1 ( ) Za p Zr' k—r—j)!
__T = (71)1C ( ) aj, "ﬂ 27" 2(k—j—r)
_2W42;F%+n+1)2 Z: )! 4 p
S G )2’“ e
= Fk+n+1) 2 (k= )

“ma Lo X mann (3) gV
2"1j03 Fk:+n+1 (k —7)!

( 2+/82)k7J

M:|

ol @

2(k+37) 1

_1)\k+i
_inzﬁnﬁsz((N( ) k'(‘/2+ﬂ2)

T(k+n+j+1)

"7 jz::o(_ o (5)” Z RIT(k o (Gverre)”

(k+n+j+1)

™ - . ) —n+j
B on—1 Z(_l)]aj,nﬂQJ(\/(Z%WJnJrj (Z\/m)

_ 1) a;,3%
S e w

Important results are also the following ones

U(p+ 5)T(v + 3)
V2rD(p+v+1)

/Oa 2 (a— )" Ju(2)J,(a — x)dr = attrta g v (@), (4.8)
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with Rep > —% and Rev > —3 (see Gradshteyn-Ryzhik, 1980, formula 6.581(3)),

[ R, (1, 1) danle) "

a—zx v a
with Re(u) > 0, Re(v) > 0 (see Gradshteyn and Ryzhik, 1980, formula 6.533(2)), and

o (a? — b2)r—Hbr
n—v —
/0 et Sy (aw) J (br)de = w—rgrHT (v —p+1)

with @ > b, Re(v + 1) > Re(u) > 0 (see Gradshteyn and Ryzhik, 1980, formula 6.575(1)),

(4.10)

, (4.11)

\/?a”Jl,+; (Va2 +b?)
T (@
for Re v > —1 (see Gradshteyn-Ryzhik, 1980, pag. 743, formula 6.688.(2)).

/2
/ (sinz)”*! cos(bcosx)J, (asinz)dr =

0
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