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Abstract

In this article we consider the sample size determination problem in the context of
robust Bayesian parameter estimation of the Bernoulli model. Following a robust
approach, we consider classes of conjugate Beta prior distributions for the unknown
parameter. We assume that inference is robust if posterior quantities of interest
(such as point estimates and limits of credible intervals) do not change too much as
the prior varies in the selected classes of priors. For the sample size problem, we
consider criteria based on predictive distributions of lower bound, upper bound and
range of the posterior quantity of interest. The sample size is selected so that, before
observing the data, one is con�dent to observe a small value for the posterior range
and, depending on design goals, a large (small) value of the lower (upper) bound
of the quantity of interest. We also discuss relationships with and comparison to
standard classical and Bayesian methods.

Keywords: Bayesian robustness; clinical trials; conjugate analysis; posterior range;
sample size determination.

1 Introduction

Let {f (·; θ) , θ ∈ Θ ⊆ R} be a standard parametric model for a random variableX. We are inter-
ested in choosing the sample size n so that inference on the unknown parameter θ is accurate. We
consider a Bayesian framework that allows one to take into account pre-experimental information
and uncertainty on θ by introducing a prior distribution de�ned over the parameter space Θ.
Formally, let xn = (x1, x2, ..., xn) be a realization of the random sample Xn = (X1, X2, ..., Xn)
and fn (xn; θ) be the likelihood function of θ. Given a prior distribution for θ, π(·) (that we
assume to be continuous), the corresponding posterior density is

π (θ | xn) =
fn (xn; θ)π (θ)
m (xn;π)

,

where m (xn;π) =
∫

Θ fn (xn; θ)π (θ) dθ is the marginal or prior predictive density of the data.
We assume that, for inference on θ, we are interested on a speci�c functional of the posterior,
ρ(xn;π). Typical examples of posterior quantities of interest include the posterior mean, the
posterior variance, the posterior probability of a set, the inferior (superior) limit of a posterior
interval estimate for θ.

It is well known that critical aspects of Bayesian inference are the choice of the prior distri-
bution and the sensitivity of posterior inference on speci�c prior choices. The robust Bayesian
approach to statistical inference, discussed in [2] and [3], replaces a single prior distribution with
a class Γ of possible priors and studies variations of the posterior quantity of interest, ρ(xn;π),
as the prior varies in Γ. More speci�cally, for a given sample, let

Ln (xn) = inf
π∈Γ

ρ (xn;π) and Un (xn) = sup
π∈Γ

ρ (xn;π) (1)

be the observed lower and upper bounds of ρ (xn;π). In general, inference is accurate if, as the
prior varies over Γ, the posterior range of ρ(xn;π), de�ned as

Rn (xn) = Un (xn)− Ln (xn) (2)
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is su�ciently small. In addition to this, depending on the inferential problem, the evidence from
an experiment is conclusive only if the lower (respectively upper) bound of ρ(xn;π) is su�ciently
large (respectively small).

Two factors are the main determinants for the values of lower bound, upper bound and range
of ρ(xn;π): the strength of sample information (essentially the size of the experiment) and the
width of the class of priors. At least in standard problems, in order to reduce, for instance,
the posterior range, one has either to increase the sample size or to restrict the class of prior
distributions, by imposing some constraints on it. Similar considerations hold for obtaining
conclusive evidence in terms of su�ciently large (small) values of lower (upper) bounds. Hence,
the most typical recommendations for dealing with lack of posterior robustness and/or lack of
conclusive evidence are either to collect more data or to re�ne prior elicitation. However, both
these approaches are post-experimental and may present di�culties in their implementation (see
[8]).

DasGupta and Mukhopadhyay in [7] and, more recently, De Santis in [8] propose to control
the risk of lack of posterior robustness by addressing the problem as a pre-experimental design
issue. These authors propose methods for selecting a sample size so that the chances that data
yield robust evidence are su�ciently high. In fact, in the design stage the data, the posterior dis-
tribution and any of its functionals are random objects. Hence, upper bounds, lower bounds and
range of posterior quantities of interest are random as well. The idea is then to select the minimal
sample size that guarantees a probabilistic control on the performance of these quantities, as π
varies in the class of prior distributions. This entails computations with the predictive distribu-
tion of the data and formulation of criteria based on summaries of the predictive distributions
of Ln, Un and Rn.

Several articles are speci�cally dedicated to the sample size determination (SSD) problem
from a Bayesian perspective, including those by [10] and [12]. A general review of Frequentist
and Bayesian techniques is given in [1]. Problems of SSD for robust Bayesian analysis have
been previously considered by [7], [8], [4] and [5], who formalized a methodology for SSD and
developed methods for robust estimation of the normal mean with conjugate priors. In this
article we follow the same approach, but we consider the Bernoulli conjugate model instead of
the normal framework.

This article is structured as follows. Section 2 shows how to carry out a robust Bayesian
analysis using the posterior mean. It also introduces a distinction between priors used to obtain
the posterior distribution of the parameter and priors used to de�ne the marginal distribution of
the data. Section 3 formalizes robust Bayesian SSD criteria for the estimation problem sketched
in Section 2. Section 4 develops the proposed methods under the assumption that θ is a Bernoulli
parameter and that conjugate priors are used. Numerical results and comparisons with non-
robust and non-informative Bayesian approaches are discussed in Section 5. Section 6 gives an
example in the context of designing a clinical trial. Section 7 contains concluding remarks.

2 Robust estimation

Assume that we are interested in estimating θ using the posterior expectation E (θ | xn;π). For
a given sample xn, we determine the posterior range as in (2), where the posterior bounds are
obtained by setting ρ (xn;π) = E (θ | xn;π) in (1). In the following sections we introduce criteria
for posterior robustness, based on the control of the probability distribution of Rn, and criteria
for robust evidence, based on the control of the probability distribution of Ln and/or Un.

The posterior range measures the variation caused by the uncertainty in the prior and the
hope is that Rn is small enough that the indeterminacy in the prior is deemed to be essentially
irrelevant, allowing a claim of robustness with respect to variations of π in Γ. We make no
attempt here to de�ne what is a `small' or `large' posterior range, that is to de�ne when one does
or does not have posterior robustness. This is a problem-speci�c judgement. The idea, however,
is straightforward. If the value of Rn is small enough to consider the di�erences between the
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various priors in the class essentially irrelevant, then robustness is asserted and experimental
results allow conclusive inferential evidence, provided Γ is large enough to re�ect the possible
uncertainty in the prior. Conversely, if the posterior range is not small enough, then robustness
is lacking and posterior inference on θ is not conclusive.

In general, we need to select the probability distribution to be used for pre-posterior compu-
tations and sample size choice. Frequentist methods typically consider an initial guess θ̃ on the
unknown parameter and use the sampling distribution fn(·; θ̃) of Xn for pre-posterior compu-
tations. This approach does not account for uncertainty on θ and yields designs that are only
locally optimal (see [6] for discussion). In the Bayesian framework, one accounts for uncertainty
on the guessed value of θ by using a prior distribution πD, that we call design prior, and by
replacing fn(·; θ̃) with the marginal distribution of the data m(xn;πD) for pre-posterior analysis.
In Section 2.1 we illustrate the reasons why the design prior πD does not necessarily have to
be the same prior distribution used for posterior inference (note that later on this will be called
analysis prior and denoted by πA). Therefore we are interested in the pre-experimental problem
of selecting an appropriate sample size for controlling the robustness of E (θ | xn;π) with respect
to Γ. The idea is to choose the minimum number of observations so that a summary of the
predictive distribution of the range (either its expectation or the probability of observing a large
value of Rn) is su�ciently small. This approach leads to the SSD criteria proposed in Section
3.1. However, posterior range quanti�es only inferential accuracy and even a very small value of
Rn does not necessarily imply posterior robustness. In fact, there are situations in which to claim
that data represent conclusive evidence as the prior varies over Γ, it is necessary to have either
a su�ciently large lower bound Ln or a su�ciently small upper bound Un. A typical example is
given by clinical trials where θ represents an e�ect parameter and the objective of the study is
superiority or inferiority respectively. In these cases a pre-experimental analysis of the posterior
range should be accompanied by a predictive analysis of posterior lower and upper bounds. This
leads to further criteria based on summaries of the predictive distributions of Ln and Un (see
Section 3.2).

Robust Bayesian SSD methods based on the posterior mean have already been formalized in
[8] where the robust inference of the normal mean with conjugate priors has been considered.
The Author determined explicit formulae for SSD criteria, studied analytically their monotonicity
and limiting behavior as n increases and evaluated the role of all the prior inputs (prior means,
prior sample sizes, threshold values) on optimal sample sizes. The proposed methods were also
used for choosing the size of a clinical trial. Here we develop an analogous methodology for the
Bernoulli model with conjugate prior distributions.

2.1 Distinction between analysis and design priors

Before formally de�ning SSD criteria, it is important to describe a central aspect of the method-
ology. This approach has been proposed in previous articles, including those by [12], [8], [4],
[9].

In Bayesian design problems the prior distribution is used both to obtain π(·; xn) for posterior
analysis and also to induce m(·;π) for pre-posterior computations. The double role of π in the
SSD-inference process leads to a distinction between these two distributions. Let πA denote the
analysis prior used to obtain the posterior distribution of the parameter, and let πD be the
design prior, used to de�ne the marginal distribution of the data.

The idea is that, in general, πA embodies prior opinions while πD formalizes design expecta-
tions. More speci�cally, the analysis prior expresses prior knowledge on θ that we want to take
into account in the posterior. The design prior describes a scenario and it serves to account for
uncertainty on possible guessed values for θ in the design stage. Following [12], we may say that
πD arises in a what if spirit: if we assume that θ is most likely to be in a speci�c subset of Θ,
then what sample size is appropriate for reaching conclusive inferential results, i.e., what are the
consequences, in terms of predictive probability of a posterior quantity of interest?

The distinction between these two prior distributions o�ers the researcher the chance of
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checking the e�ects of combinations of more or less optimistic analysis priors (prior inputs) with
more or less optimistic design priors (design expectations). Of course, the choice of πA and πD
may be crucial in the resulting sample size.

Furthermore, in this article we suppose that uncertainty on the analysis prior πA is modeled
through a class Γ, while we consider a robust Bayesian approach to SSD for a single �xed design
prior πD.

3 Robust Bayesian SSD criteria

In this section we formally introduce robust Bayesian SSD criteria for the estimation problem
discussed in the previous section, making a distinction between criteria based on the posterior
range and criteria based on the lower bound and on the upper bound.

3.1 SSD criteria based on the posterior range

When the posterior quantity of interest is the posterior expectation E (θ | Xn;πA) the idea is to
use summaries of the predictive distribution of

Rn (Xn) = Un (Xn)− Ln (Xn) = sup
πA∈Γ

E (θ | Xn;πA)− inf
πA∈Γ

E (θ | Xn;πA)

as measures of lack of robustness. By the analysis of their behaviour as n increases, we de�ne SSD
criteria for pre-experimental control of the posterior range. In the presence of a unique design
prior πD, values of n for controlling robustness of E (θ | Xn;πA) with respect to variations of πA
in Γ are chosen by requiring that a summary of the predictive distribution of Rn is su�ciently
small. Two predictive summaries and the corresponding SSD criteria are now listed.

• Expectation Criterion

For a given k > 0 the optimal sample size is given by

n∗E = min {n ∈ N : en < k}

where en = EπD [Rn (Xn)] is the expected value of the posterior range with respect to the
predictive distribution m(·;πD).

• Tail Probability Criterion

For given r0 > 0 and ε ∈ (0, 1) the optimal sample size is de�ned as

n∗P = min {n ∈ N : pn,r0 < ε}

where pn,r0 = PπD [Rn (Xn) > r0] and PπD is the probability measure corresponding to the
marginal distribution m(·;πD).

As a general remark, the expectation criterion guarantees only an average control on the dis-
tribution of Rn, with no control on its variability. Then, even though the predictive expectation
may be seen as a natural measure of lack of robustness, a value of n such that en is small does not
necessarily protect one from observing large values of the posterior range. Conversely, the use
of the tail probability criterion allows a more restrictive control on the distribution of Rn, but it
may result highly sensitive to the threshold speci�cation. However, since these two criteria are
based on di�erent summaries of the predictive distribution of Rn, in practice it is always possible
to use them in an interactive way.
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3.2 SSD criteria based on posterior lower/upper bound

We have already remarked that the posterior range only provides an indication of inferential
accuracy and it may happen that �rm conclusions can be drawn only when either a su�ciently
large lower bound or a su�ciently small upper bound is observed. This consideration leads to
SSD criteria based on pre-experimental control of posterior bounds given by (1). Formally, for a
�xed design prior πD, let us consider predictive expectations of Ln and Un

eL
n = EπD [Ln (Xn)] , eU

n = EπD [Un (Xn)]

where, as before, the expected values are with respect to the marginal densitym(·;πD). For given
real values rL and rU we also consider the predictive probabilities of observing a su�ciently large
value of Ln and a su�ciently small value of Un

pL
n,rL

= PπD [Ln (Xn) > rL] pU
n,rU

= PπD [Un (Xn) < rU ] .

Depending on the design assumptions, two alternative scenarios are possible.

• Lower bound criteria

In the �rst case we assume that clear conclusions can be drawn only if Ln is su�ciently
large and that eL

n and pL
n,rL

are both increasing functions of n. Then, for rL > 0, kL > 0
and εL ∈ (0, 1), optimal sample sizes are de�ned as

n∗E
L = min

{
n ∈ N : eL

n > kL

}
n∗P

L = min
{
n ∈ N : pL

n,rL
> εL

}
• Upper bound criteria

In the second scenario we suppose that �rm conclusions can be reached only if Un is small
enough and that eU

n is a (bounded) decreasing function of n while pU
n,rU

is an increasing
function. In this case, for rU > 0, kU > 0 and εU ∈ (0, 1), optimal sample sizes are de�ned
as

n∗E
U = min

{
n ∈ N : eU

n < kU

}
n∗P

U = min
{
n ∈ N : pU

n,rU
> εU

}
It is worth noting that if one of the criteria for pre-experimental control of posterior bounds is
used jointly with one of the criteria based on predictive summaries of Rn, the resulting sample
size will be the largest among the two values obtained.

4 Robust estimation of a Bernoulli parameter

We now derive in more detail the application of SSD criteria to robust estimation of a Bernoulli
parameter using conjugate beta priors. The Bernoulli model associated with two mutually exclu-
sive outcomes plays an important role in statistics since it best describes all situations in which
a trial outcome is either a �success� or a �failure�, such as when tossing a coin or when modelling
the positive or negative result of a treatment. For a set of independent Bernoulli trials such that
the probability of response (the response rate) is θ we obtain the Binomial likelihood. Hence,
the Binomial is used as a sampling distribution for empirical counts that occur as proportions
like the results of voter polls, clinical trials and many other sampling procedures.

In this context, since Beta distributions form a �exible and mathematically convenient class
for quantities constrained to lie between 0 and 1, they are suitable to be used as prior densities
for unknown proportions. Moreover, being conjugate to the Binomial family of sampling distri-
butions, Beta densities make the necessary computations straightforward. A further appealing
property of conjugate priors is that of allowing one to begin with a certain functional form for
the prior and to end up with a posterior of the same form, but with parameters updated by the
sample information. This provides a straightforward way of seeing the e�ect of prior and sample
information on posterior inference.
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4.1 Conjugate analysis

Let us assume that each Xi has a Bernoulli distribution with unknown parameter θ

f (xi; θ) = Br (xi; θ) xi ∈ {0, 1} , θ ∈ [0, 1]

where Br (·; θ) denotes the probability mass function of a Bernoulli random variable with un-
known parameter θ, with 0 < θ < 1. Let Beta(·; a, b) denote the density function of a Beta
random variable with parameters a and b. Also, recall that the mean and the variance of a Beta
random variable are respectively a(a+ b)−1 and ab(a+ b)−2(a+ b+ 1)−1.

As a class of analysis priors a standard choice is the class of restricted-conjugate Beta densi-
ties, ΓB, which, for a given value µA in (0, 1), is de�ned as

ΓB =
{
Beta (θ;αA, βA) : E (θ;αA, βA) = µA,V (θ;αA, βA) ∈

[
vLA, v

U
A

]}
,

where 0 < vLA < vUA < 1 are given. By elementary algebra we have

ΓB =
{

Beta (θ;αA, βA) : αA =
µA

1− µA
βA, βA ∈

[
βLA, β

U
A

]}
,

where

βLA = (1− µA)
[
µA (1− µA)

vUA
− 1
]

and βUA = (1− µA)
[
µA (1− µA)

vLA
− 1
]

with µA ∈ (0, 1), 0 < vLA < vUA < µA (1− µA) < 1 are given.
In the following, since Beta priors are used to formalize pre-experimental beliefs on a response

probability, it may be natural for real experiments to require unimodality. For a Beta(·; a, b) there
is a unique mode in (a− 1)(a+ b− 2)−1 only if a > 1 and b > 1. Imposing unimodality leads to
the following restrictions on βLA and, consequently, on vUA

βLA > max
{

1,
1− µA
µA

}
=
{ 1−µA

µA
if µA < 1/2

1 if µA ≥ 1/2

vUA < min
{

(1− µA)2µA
2− µA

,
(1− µA)µA2

1 + µA

}
=

{
(1−µA)µA

2

1+µA
if µA < 1/2

(1−µA)2µA

2−µA
if µA ≥ 1/2

Finally let us suppose that we set as design prior

πD (θ) = Beta (θ;αD, βD)

where αD and βD are known and �xed and αD+βD denotes the prior sample size associated to πD.
In this case the marginal distribution of the su�cient statistic Yn =

∑n
i=1Xi is a Betabinomial

distribution with parameters (n, αD, βD) denoted by Bb (yn;n, αD, βD).
Results for robust estimation of the Bernoulli parameter with conjugate priors are provided

in the following subsections.

4.2 Results for a �xed conjugate design prior

From standard conjugate analysis, we know that, under the above assumptions, the posterior
expectation of θ is

E (θ | xn;πA) =
αA +

∑n
i=1 xi

αA + βA + n
=

(αA + βA)µA + nx̄n
αA + βA + n

where αA + βA has the interpretation of prior sample size associated to πA.
Since we are concerned with the predictive analysis described in Section 3, in the following

results we provide explicit expressions for Rn, en and pn,r0 .
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Result 1. Assume that Xi has probability mass function Br (xi; θ), i = 1, 2, ..., n and that
πA ∈ ΓB. Then, the range of the posterior mean E (θ | xn;πA) is given by

Rn = bn | Yn − nµA |= cn | X̄n − µA |

where

bn =
(1− µA)

(
βUA − βLA

)[
βLA + n (1− µA)

] [
βUA + n (1− µA)

] and cn = n bn

Proof. The expression of Rn follows from monotonicity of the posterior mean E (θ | xn;πA) as a
function of βA.

Result 2. Under the assumptions of Result 1, using πD (θ) = Beta (θ;αD, βD), Rn has the
following properties.

• Predictive expectation:

en = EπD (Rn (Xn)) = nbn [2ζ (µA, n)− (µA − µD)]

where ζ (µA, n) =
∑nµA

yn=0

(
µA − yn

n

)
pBb,n,αD,βD

(yn) and µD = αD
αD+βD

= E (θ;αD, βD).

• Predictive tail probability:
given r0 > 0:

pn,r0 = PπD [Rn (Xn) > r0] = 1− FDn
(
nµA +

r0

bn

)
+ FDn

(
nµA −

r0

bn

)
− pDn

(
nµA −

r0

bn

)
where FDn and pDn denote the cumulative distribution function and the probability mass
function of a Betabinomial random variable with parameters n, αD and βD.

Proof. The expressions of en and pn,r0 follow from standard probability calculations, using
the explicit form of Rn derived in Result 1.

The behaviour of en and pn,r0 as n goes to in�nity is described in the following corollary.

Corollary 1. Under the assumptions of Result 1 and Result 2, as n goes to∞, the following
results hold

(a) The sequence (en;n ∈ N ) converges to 0 at the rate of n−1;

(b) The sequence of random variables (Rn;n ∈ N ) converges in law to 0.

Proof. Part (a) is obtained noting that as n diverges n [2ζ (µA, n)− (µA − µD)] = O (n) and
bn = O

(
n−2

)
.

For part (b) note that as n goes to ∞ nµA + r0
bn

= O
(
n2
)
and nµA − r0

bn
= O

(
−n2

)
.

The result follows from

pn,r0 = 1− FDn
(
O
(
n2
))

+ FDn
(
O
(
−n2

))
− pDn

(
O
(
−n2

))
→ 0
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Remarks

1. It is straightforward to check that, for any �nite and positive value of βLA and βUA ,

0 < cn
(
βLA, β

U
A

)
< 1

where we have explicitly stressed the dependence of the quantity cn on βLA and βUA .

Now, letting βLA → 0 βUA → +∞ in the de�nition of ΓB we retrieve the class of Beta
distributions with no restrictions on the variance, i.e.

ΓUB = {Beta (θ;αA, βA) : E (θ;αA, βA) = µA}

where the subscript stands for unrestricted Beta.

In this case we have
lim

βL
A→0 βU

A→+∞
cn
(
βLA, β

U
A

)
= 1

and, consequently, we obtain Rn →| X̄n − µA | and en → 2ζ (µA, n)− (µA − µD). This
suggests an interpretation of cn as a measure of the shrinkage of Rn and en due to the
restriction of the class of priors from to ΓB to ΓUB.

2. Corollary 1 establishes the convergence to 0 of both en and pn,r0 as n diverges. However,
these quantities are not monotonically decreasing functions of n for any arbitrary choice of
prior inputs. For instance, it may be noted that en, as a function of the sample size, can
have a maximum at a value strictly larger than 1. First of all let us notice that Rn, as a
function of n has a maximum at

n∗A =

√
βLAβ

U
A

1− µA
=

β̄A
1− µA

= αA
(
β̄A
)

+ β̄A

where αA (βA) = µA
1−µA

βA. This means that as long as n < n∗A, Rn increases with n;
as n > n∗A, Rn decreases with n. This behaviour can be interpreted recalling that the
posterior mean is a weighted average of µA and x̄n with weights αA + βA and n. When
n is small, the prior information is dominant and the weight of the prior mean µA in is
larger than the weight of the sample mean x̄n. As the sample size increases the weight of
x̄n also increases, but as long as n < n∗A the posterior range is increasing with n. When
experimental information becomes dominant, n > n∗A, and E (θ | xn;βA) is closer to x̄n
than to µA, Rn starts to decrease monotonically with n.

4.3 Lower and upper bounds

We here derive results for the lower and upper bounds that parallel those obtained for the
posterior range. We shall use the explicit expressions of their predictive expectations and tail
probabilities in Sections 5 and 6, where numerical results are provided.

Result 3. Under the same assumptions of Result 1 and Result 2, expectations and tail
probabilities of Ln and Un are as follows:

• Predictive expectations

eL
n = EπD (Ln(Xn)) = αUn − cnζ (µA, n)

eU
n = EπD (Un(Xn)) = αLn + cnζ (µA, n)

where

αUn =
βUAµA + nµD (1− µA)
βUA + n (1− µA)

αLn =
βLAµA + nµD (1− µA)
βLA + n (1− µA)
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• Predictive tail probabilities: for given rL, rU ∈ (0, 1)

pL
n,rL

= PπD (Ln(Xn) > rL) = 1− FDn

(
min

{
rL
(
βLA + n (1− µA)

)
− βLAµA

1− µA
, nµA

})

−

[
FDn

(
rL
(
βUA + n (1− µA)

)
− βUAµA

1− µA

)
− FDn (nµA)

]
I(0,rL) (µA)

pU
n,rU

= PπD (Un(Xn) ≤ rU )

= FDn

(
min

{
rU
(
βUA + n (1− µA)

)
− βUAµA

1− µA
, nµA

})

+

[
FDn

(
rU
(
βLA + n (1− µA)

)
− βLAµA

1− µA

)
− FDn (nµA)

]
I0,rU (µA)

where I(0,rL) (.) and I0,rU (.) are the indicator functions of the sets (0, rL) and (0, rU ).

Proof. Parts a and b follow from standard probability calculations noting that

Ln =
{

E
(
θ | Xn;βLA

)
se Yn ≤ nµA

E
(
θ | Xn;βUA

)
se Yn > nµA

Un =
{

E
(
θ | Xn;βUA

)
se Yn ≤ nµA

E
(
θ | Xn;βLA

)
se Yn > nµA

.

Remarks

1. It is straightforward to check that, as expected, en = eU
n − eL

n .

2. Note that αjn (j = L,U) may be rewritten as follows

αjn =
βjAµA + nµD (1− µA)

βjA + n (1− µA)
=
βjAµA + (1− µA)nµD
βjA + (1− µA)n

=
βj

AµA

1−µA
+ nµD

βj
A

1−µA
+ n

=

(
αjA + βjA

)
µA + nµD

αjA + βjA + n

where
αjA = αjA(βjA) =

µA
1− µA

βjA, j = L,U

Hence, eL
n and eU

n are both weighted averages of µA and µD decreased and increased of
the quantity cnζ (µA, n); if µA = µD, then

eL
n = µD − cnζ (µD, n) eU

n = µD + cnζ (µA, n)

3. As n goes to in�nity, both eL
n and eU

n converge to µD at the rate of n−1, given that
limn→+∞ α

j
n = µD, for j = L,U , and that, recallingCorollary 1 of Section 4.2, cnζ (µA, n) =

O
(
n−1

)
. Of course, these limiting values have to be taken into account when �xing thresh-

old values (here, kL and/or kU ) so that the sample size problem (eL
n > kL and/or eU

n < kU )
is actually solvable.
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5 Numerical examples

We are now interested in studying the in�uence of prior parameters on the optimal robust sample
sizes, n∗E and n∗P . Speci�cally, we want to establish how and to what extent these quantities are
in�uenced by the amplitude of ΓB and by the analysis prior mean µA. The following numerical
examples show optimal sample sizes n∗E and n∗P computed for several choices of [βLA, β

U
A ] and for

several values of µA under the assumption that πD (θ) = Beta (θ; 2, 2).

5.1 Example 1: Variations of
[
βLA, β

U
A

]
Assume, for instance, that k = 0.1. As expected, the wider the class ΓB (i.e. the di�erence
βUA − βLA ), the larger the corresponding optimal sample size. This fact can be appreciated in
Figure 1, which shows en as a function of n for a �xed value of µA = 0.5 and for several choices of
βLA and βUA . Table 1 exempli�es numerically the decrease in the required sample size implied by
the restriction of the interval

[
βLA, β

U
A

]
. It is also interesting to observe in the graphs the property

mentioned in the second remark of Section 4.2: en is not a monotonic function of the sample
size, but it attains a maximum at a value larger than 1, then it starts decreasing de�nitely. Of
course this behaviour has to be taken into account when applying the SSD criterion.

As shown in Figure 2 similar comments hold for the tail probabilities pn,0.1; the corresponding
optimal sample sizes are recorded in the last column of Table 1.

βLA βUA n∗E n∗P
1 50 84 200
2 50 76 190
1 40 67 159
2 40 58 149
1 30 49 118
2 30 41 108
1 20 32 78
2 20 22 67

Table 1: Example 1. Optimal sample sizes n∗E and n∗P for several values of βL
A and βU

A , given αD =
βD = 2, µA = µD = 0.5, k = 0.1, r0 = 0.1, ε = 0.2.

5.2 Example 2: Variations of µA

Let us now assume that for instance βLA = 2 and βUA = 30. To illustrate the sensitivity of n∗E and
n∗P with respect to the di�erence between the analysis prior mean µA and the design prior mean
µD (here, for instance µD = 0.5) we compute the required optimal sample sizes implied by the
robust approach for several values of µA.

Let us �rst consider the expectation criterion. If µA = µD = 0.5, the optimal sample size is
n∗E = 41. When µA > µD, the values of n

∗
E tend to increase as the di�erence µA− µD increases.

Conversely, when µA < µD, n
∗
E �rst decreases and then starts to increase with the di�erence

µD − µA. This fact is numerically exempli�ed by Table 2. The corresponding plots of en are
shown in Figures 3 and 4. Hence, one can notice that n∗E does not depend only on the di�erence
| µA − µD |; moreover, for any value of | µA − µD |, optimal sample sizes determined when
µA > µD are always larger than those required if µA < µD. This behaviour is essentially due to
two di�erent factors that a�ect the value of the posterior range. To illustrate the �rst factor's
e�ect, it is useful to rewrite the class of analysis priors ΓB as follows

ΓB =
{

Beta (θ;αA, βA) : E (θ;αA, βA) = µA;αA ∈
[

µA
1− µA

βLA,
µA

1− µA
βUA

]
, βA ∈

[
βLA, β

U
A

]}
.
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Figure 1: Example 1. Predictive expectation en with respect to the sample size for increasingly wide
classes of Beta priors, i.e. (βL

A, β
U
A ) = (2, 20), (2, 30), (2, 40), (2, 50), given αD = βD = 2, µA = µD =

0.5, k = 0.1.

It can be easily checked that, for any speci�c choice of βLA and βUA , the length of the interval[
µA

1− µA
βLA,

µA
1− µA

βUA

]
is increasing with µA. This means that as µA decreases, the impact of αA on the form of the
analysis priors becomes smaller and smaller. Hence, for given values of βLA and βUA the restriction
of the set of possible values for αA leads to �similar� distributions in the class ΓB, thus reducing
the value of the posterior range. Conversely, the second factor, whose e�ect depends only on
the size of the di�erence | µA − µD |, is immediately evident if we consider the expression of the
posterior range Rn = cn | X̄n−µA | where EπD

(
X̄n

)
= EπD

(
Yn
n

)
= µD. Example 2 shows that

when µA < µD the impact of the �rst factor tends to be dominant only if µA is su�ciently close
to µD (µA = 0.475 o µA = 0.450). The two e�ects are equal for µA = 0.4: in this case we have
the same sample size obtained when µA = µD = 0.5.

Similar considerations can be extended to the tail probability criterion. Figures 5 and 6 plot
pn,0.1 computed for di�erent values of µA in the context of Example 2. Table 2 also reports the
corresponding values of n∗P .
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Figure 2: Example 1. Predictive probability pn,0.1 with respect to the sample size for increasingly
wide classes of Beta priors, i.e. (βL

A, β
U
A ) = (2, 20), (2, 30), (2, 40), (2, 50), given αD = βD = 2, µA = µD =

0.5, ε = 0.2.

µA n∗E n∗P
µA > µD 0.7 120 279

0.6 60 150
0.55 47 121

µA = µD 0.5 41 108
µA < µD 0.475 40 104

0.45 39 101
0.4 41 99
0.3 53 119
0.2 70 140
0.1 89 157

Table 2: Example 1. Optimal sample sizes n∗E and n∗P for di�erent values of µA given (βL
A, β

U
A ) =

(2, 30), αD = βD = 2, µD = 0.5, k = 0.1.

5.3 Comparisons

It is interesting to compare sample sizes obtained using the robust methods of the previous
section with more traditional approaches based on the use of either a conjugate beta prior or
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Figure 3: Example 2. Predictive expectation en with respect to the sample size for decreasing values
of µA, given (βL

A, β
U
A ) = (2, 30), αD = βD = 2, µD = 0.5, k = 0.1.
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Figure 4: Example 2. Predictive expectation en with respect to the sample size for decreasing values
of µA, given (βL

A, β
U
A ) = (2, 30), αD = βD = 2, µD = 0.5, k = 0.1).
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Figure 5: Example 2. Predictive probability pn,0.1 with respect to the sample size for decreasing values
of µA, given (βL

A, β
U
A ) = (2, 30), αD = βD = 2, µD = 0.5, ε = 0.2.
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Figure 6: Example 2. Predictive probability pn,0.1 with respect to the sample size for increasing values
of µA, given (βL

A, β
U
A ) = (2, 30), αD = βD = 2, µD = 0.5, ε = 0.2.
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of a noninformative prior. In fact, even thought there are not standard versions of SSD criteria
based on summaries of the posterior range, we may compare the methods based on upper and
lower bounds with the corresponding non-robust approaches based on a single analysis prior and
study the e�ect of using a class of priors rather than a single distribution.

Single prior distribution. Let us consider a speci�c prior π0 for θ and let en (π0) denote
the predictive expectation of the posterior mean determined using π0. For any generic class of
analysis prior distributions which includes π0, eL

n ≤ en (π0) ≤ eU
n . Hence, sample sizes needed

to have eL
n > kL (or eU

n < kU ) are typically larger than those needed to have en (π0) > kL (or
en (π0) < kU ) and it may be useful to quantify the increase in the required sample size implied
by the robust approach. In the speci�c context of this section, when π0 = Beta (θ;α0, β0) ∈ ΓB,
we obtain

en (π0) = EπD (E (θ | Xn;π0)) =
β0µA + (1− µA)nµD
β0 + n (1− µA)

,

so that

en (π0) > kL if and only if n >
kL − µA
µD − kL

β0

1− µA
=
kL − µA
µD − kL

n0

and

en (π0) < kU if and only if n <
kU − µA
µD − kU

β0

1− µA
=
kU − µA
µD − kU

n0.

Consequently, we have the following relationships between the robust and non robust optimal
sample sizes

n∗E (π0) ≤ n∗E
L (ΓB) and n∗E (π0) ≤ n∗E

U (ΓB) ,

where we have stressed in the notation the dependence on the single prior or on the class of
priors.

Let us �rst analyse the expectation criterion for the lower bound of the posterior mean
assuming that µA ≤ µD, µD > kL, which is consistent with the �rst scenario depicted in Section
3.2. We want to determine the smallest value of n such that eL

n > kL. Table 3 (columns a, b, c)
reports optimal robust sample sizes obtained assuming πD(θ) = Beta (θ; 8, 2) (i.e., µD = 0.80,
nD = 10), and kL = 0.75 for several values of prior inputs. As expected, one can notice what
follows:

• for any value of µA, the larger the di�erence β
U
A − βLA, the larger the corresponding value

n∗E
L;

• for any speci�c choice of
[
βLA, β

U
A

]
, the larger µA, the smaller n∗E

L.

Table 3 (columns d, e, f) also shows the minimal sample sizes selected by requiring en (π0) >
kL = 0.75 and allows us to quantify the number of extra observations implied by the robust
approach with respect to the use of a single prior. As expected, for any value of µA and for any
choice of

[
βLA, β

U
A

]
, n∗E (π0) ≤ n∗E

L (ΓB). Moreover, for any speci�c choice of β0, as the value of
µA approaches kL, n

∗
E (π0) tends to decrease. Note that n∗E (π0) < 0 if µA > kL. On the other

hand, for any value of µA, n
∗
E (π0) is increasing with β0.

Non informative prior distribution. Let us now consider the uniform density πU = Beta (θ; 1, 1)
that corresponds to assigning a weight nU = αU + βU = 2 to the analysis prior mean µA = 0.5.
It can be checked that

en (πU ) =
1 + nµD

2 + n
> kL if and only if n >

2kL − 1
µD − kL

Note that the optimal sample size n∗E (πU ) is a decreasing function of the di�erence µD−kL and
diverges as µD − kL becomes smaller and smaller.
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(a) (b) (c) (d) (e) (f) (g)
µA βLA = 5 βLA = 4 βLA = 3 β0 = 5 β0 = 6 β0 = 7 αU = 1

βUA = 7 βUA = 8 βUA = 9 βU = 1
0.20 97 111 124 69 83 97 -
0.25 94 107 121 67 80 94 -
0.30 91 103 116 65 78 90 -
0.35 87 99 111 62 74 87 -
0.40 82 94 106 59 70 82 -
0.45 77 88 99 55 66 77 -
0.50 71 81 91 50 60 70 10
0.55 63 72 81 45 54 63 -
0.60 54 62 70 38 45 53 -
0.65 42 49 56 29 35 40 -
0.70 26 32 38 17 20 24 -
0.75 2 5 12 1 1 1 -

Table 3: Optimal sample sizes, given µD = 0.8, nD = 10, kL = 0.75, comparing the criterion based
on the predictive expectation of the lower bound, the corresponding single-prior criterion, both with an
informative and a non informative prior density.

We now compare these sample sizes, based on πU , to those determined using π0 ∈ ΓB, which
assigns weight n0 > 2 to µA. Recall that in this paper we only considered unimodal densities
and that the assumption of unimodality implies that prior sample sizes, which express the degree
of uncertainty assigned to prior means, are strictly larger than 2. In general, it depends on the
value of µA whether n∗E (π0) < n∗E (πU ) or n∗E (π0) > n∗E (πU ) Intuitively, since we are assuming
that µA ≤ µD, µD > kL, we expect that for large values of µA, it is convenient to assign as much
weight as possible to µA, i.e. we expect n∗E (π0) < n∗E (πU ). Conversely, for small values of µA
we expect that n∗E (πU ) < n∗E (π0). As expected, it can be easily checked that

n∗E (π0) < n∗E (πU ) if µA >
(2kL − 1)− β0kL
(2kL − 1)− β0

Summarizing we have that, for su�ciently small values of µA

n∗E (πU ) ≤ n∗E (π0) ≤ n∗E (ΓB) ,

whereas for su�ciently large values of µA

n∗E (π0) ≤ n∗E (ΓB) ≤ n∗E (πU ) .

The above considerations are numerically exempli�ed in Table 3.

From the opposite point of view, one can consider the expectation criterion for the upper
bound of the posterior mean, assuming a scenario in which µA ≥ µD, µD < kU . Results in terms
of optimal sample sizes are reported in Table 4. It is straightforward to see that the sample size
increases with the value of the analysis prior mean and, for each given value of µA, decreases
when the class of priors is smaller and smaller, until it collapses in a single prior distribution.
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(a) (b) (c) (d) (e) (f) (g)
µA βLA = 5 βLA = 4 βLA = 3 β0 = 5 β0 = 6 β0 = 7 αU = 1

βUA = 7 βUA = 8 βUA = 9 βU = 1
0.25 2 4 6 1 1 1 -
0.30 12 14 17 7 8 10 -
0.35 23 27 31 15 18 21 -
0.40 36 41 47 25 30 35 -
0.45 52 59 67 36 43 50 -
0.50 71 81 91 50 60 70 70
0.55 94 107 121 66 80 93 -
0.60 123 141 158 87 105 122 -
0.65 161 183 206 114 137 160 -
0.70 211 241 271 150 180 210 -
0.75 281 321 361 200 240 280 -
0.80 386 441 496 275 330 385 -

Table 4: Optimal sample sizes, given µD = 0.2, nD = 10, kU = 0.25, comparing the criterion based
on the predictive expectation of the upper bound, the corresponding single-prior criterion, both with an
informative and a non informative prior density.

6 Application to a clinical trial

Example: Drug. In the present section we consider the set up of an example described in
[11]. Let us suppose a drug has an unknown true response rate θand that previous experience
with similar compounds has suggested that response rates between 0.2 and 0.6 could be feasible,
with an expectation around 0.4. Through a sort of `method of moments', this pre-experimental
information is translated into a Beta prior of parameters (9.2, 13.8) (see [11] for details). It is
convenient to think of this prior distribution as that which would have arisen had we started with
a uniform prior Beta(θ; 1, 1) and then observed 8.2 successes out of 21 (= (9.2− 1) + (13.8− 1))
patients. As shown in Figure 7 the Beta(θ; 9.2, 13.8) density (continuous line) well represents
the prior assumptions: here we take this density as a single analysis prior. Moreover we consider
a class of restricted conjugate Beta priors with the same prior mean µA = 0.4 and with (βLA =
5, βUA = 20). The densities corresponding to the lower and upper bound in this class ΓB, are
superimposed in Figure 7 (dotted line and dashed-dotted line respectively), together with the
uniform prior (dashed line in the plot) that, as mentioned before, we take as a non-informative
prior (see again [11] for discussion on this point).

Let us focus on the sample size determination problem taking into account the di�erent crite-
ria we introduced in this paper. For illustrative purposes we consider a design prior distribution
πD (θ) = Beta (θ; 2, 2), which is centred on the prior mean µD = 0.5. Under this scenario we
have µD > µA, which refers again to the �rst scenario of Section 3.2 and actually excludes the
criteria involving the upper bound. The study, indeed, aims at showing evidence in favour of a
large value of the treatment response rate θ; therefore it is reasonable to focus on the criteria
in which a su�ciently large value of the (expected) lower bound is required in the condition for
selecting the optimal sample size.

Figure 8 represents the four quantities en, pn,r, e
L
n and pLn,rL as a function of n. In order

to make the comparison easier, we have �starting from the end� in the application of the SSD
criteria: we have chosen the di�erent parameters involved in the four criteria in such a way
that the optimal sample size turns out to be comparable in the four cases. In particular we
obtain n∗E = 58, n∗P = 57, n∗,LE = 57, n∗,LP = 53, setting respectively k = 0.05 for the predictive
expectation, r0 = 0.1 and ε = 0.1 for the predictive probability, kL = rL = 0.45 and εL = 0.52.
This means that an optimal sample size of 58 allows one to obtain an expected value of the
posterior range smaller than 0.05, and simultaneously, to keep as small as 0.1 the predictive
probability that this range is larger than 0.1. Similarly the expected lower bound exceeds a
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Figure 7: Example: Drug. Analysis prior distributions.

threshold 0.45 for a sample size equal to 57. To obtain a comparable value of the sample size
using the predictive probability distribution of the lower bound we need to �x the probability
cuto� at a level εL = 0.52. Moreover, using the lower bound criterion with a single prior
Beta(9.2, 13.8), we obtain an optimal sample size equal to 24, which is, as expected, smaller
than the one corresponding to the class ΓB with (βLA = 5, βUA = 20).
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Figure 8: Example: Drug. en, pn,r, e
L
n and pL

n,rL
with respect to the sample size.
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