
HIGHER-ORDER LAPLACE EQUATIONS
AND HYPER-CAUCHY DISTRIBUTIONS
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Abstract. In this paper we introduce new distributions which are solutions

of higher-order Laplace equations. It is proved that their densities can be
obtained by folding and symmetrizing Cauchy distributions. Another class of

probability laws related to higher-order Laplace equations is obtained by com-

posing pseudo-processes with positively-skewed Cauchy distributions which
produce asymmetric Cauchy densities in the odd-order case. A special at-

tention is devoted to the third-order Laplace equation where the connection

between the Cauchy distribution and the Airy functions is obtained and ana-
lyzed.

1. Introduction

The Cauchy density

p(x, t) =
1
π

t

(x2 + t2)
(1.1)

solves the Laplace equation (see Nane [8])

∂2u

∂t2
+
∂2u

∂x2
= 0, x ∈ R, t > 0. (1.2)

The n-dimensional counterpart of (1.1)

p(x, t) =
Γ
(
n
2

)
π
n
2

t

(t2 + |x|2)
n
2
, x ∈ Rn−1, t > 0 (1.3)

with characteristic function∫
Rn−1

ei〈α,x〉p(x, t)dx = exp (−t|α|) (1.4)

solves the n-dimensional Laplace equation

∂2p

∂t2
+
n−1∑
j=1

∂2p

∂x2
j

= 0. (1.5)

The inspiring idea of this paper is to investigate the class of distributions which
satisfy the higher-order Laplace equations of the form

∂nu

∂tn
+
∂nu

∂xn
= 0, x ∈ R, t > 0 (1.6)

In a previous paper of ours we have shown that the law

p4(x, t) =
t

π
√

2
x2 + t2

x4 + t4
(1.7)

1
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solves the fourth-order Laplace equation

∂4u

∂t4
+
∂4u

∂x4
= 0, x ∈ R, t > 0. (1.8)

In Section 2 we analyze distributions related to equations of the form

∂2nu

∂t2n
+
∂2nu

∂x2n
= 0 (1.9)

which can be expressed in many alternative forms. The decoupling of the 2n-th
order differential operator in (1.9)

∂2n

∂t2n
+

∂2n

∂x2n
=

2n−1−1∏
k=−(2n−1−1)

k odd

(
∂2

∂t2
+ ei

πk

2n−1
∂2

∂x2

)

suggests to represent distributions related to (1.9) as

p2n(x, t) =
1

π2n−1

2n−1−1∑
k=−(2n−1−1)

k odd

t ei
πk
2n

x2 + (tei
πk
2n )2

, n ≥ 2. (1.10)

that is the superposition of Cauchy densities at imaginary times. Alternatively, we
give a real-valued expression for (1.10) as

p2n(x, t) =
t(x2 + t2)

2n−2π(x2n + t2n)

2n−1−1∑
k=1
k odd

2n−1−1∏
j=1, j odd

j 6=k

(
x4 + t4 + 2x2t2 cos

jπ

2n−1

)
. (1.11)

The density (1.11) can also be represented as

p2n(x, t) =
t(x2 + t2)

2n−2π

2n−1−1∑
k=1
k odd

cos kπ2n
x4 + t4 + 2x2t2 cos kπ

2n−1

, n ≥ 2. (1.12)

Each component of the distribution (1.12) is produced by folding and symmetrizing
the density of the r.v.

V (t) = C

(
t cos

kπ

2n

)
− t sin

kπ

2n
, t > 0, 1 ≤ k ≤ 2n−1 − 1, k odd

where C(t), t > 0 is the Cauchy symmetric process. The distributions (1.12) differ
from the Cauchy laws since they have a bimodal structure for all n ≥ 2 as figures
below show. For n = 2, the distribution (1.11) reduces to (1.7) if we assume that
the inner product appearing in formula (1.11) is equal to one. Of course, the density
(1.12) coincides with (1.7) for n = 2. For n = 3 we get from (1.11) and (1.12) that

p23(x, t) =
t(x2 + t2)√
2π(x8 + t8)

[
(x4 + t4 −

√
2x2t2) cos

π

8
+ (x4 + t4 +

√
2x2t2) sin

π

8

]
=
t(x2 + t2)

2π

[
sin π

8

x4 + t4 −
√

2x2t2
+

cos π8
x4 + t4 +

√
2x2t2

]
. (1.13)

In Orsingher and D’Ovidio [11] we have shown that the density (1.7) is the proba-
bility distribution of

Q(t) = F (Tt), t > 0
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where F is the Fresnel pseudo-process described in [11] and Tt, t > 0 is the first
passage time of a Brownian motion independent from F . We note that

Q(t) = F (|B(t)|), t > 0

has density coinciding with the fundamental solution of the fourth-order heat equa-
tion

∂u

∂t
= −∂

4u

∂x4
.

We prove also that, for k ∈ N, there are non-centered Cauchy distributions which
solve the equations

∂2k+1u

∂t2k+1
+
∂2k+1u

∂x2k+1
= 0. (1.14)

If X2k+1(t), t > 0 is the pseudo-process whose density measure

µ2k+1(dx, t) = µ{X2k+1(t) ∈ dx}
solves the heat-type equations

∂u

∂t
= −∂

2k+1u

∂x2k+1
, k ∈ N (1.15)

and S 1
2k+1

(t), t > 0 is a positively skewed stable process of order 1
2k+1 we have that

Pr{X2k+1(S 1
2k+1

(t)) ∈ dx}/dx =
t cos π

2(2k+1)

π

[(
x+ (−1)k+1t sin π

2(2k+1)

)2

+ t2 cos2 π
2(2k+1)

] .
(1.16)

We show below that the densities (1.16) solve also the following second-order p.d.e.

∂2u

∂t2
+
∂2u

∂x2
= 2 sin

π

2(2k + 1)
∂2u

∂t ∂x
.

We have investigated in detail the case of third-order Laplace equation

∂3u

∂t3
+
∂3u

∂x3
= 0 (1.17)

and have shown that

Pr{X3(S 1
3
(t)) ∈ dx} =dx

∫ ∞
0

1
3
√

3s
Ai

(
x

3
√

3s

)
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds (1.18)

=dx
√

3
2
t
x− t
x3 − t3

= dx

√
3

2
t

x2 + xt+ t2

=dx
t cos π6

(x+ t sin π
6 )2 + t2 cos2 π

6

.

The pictures of the Cauchy distributions (1.16) show that the location parame-
ter t sin π

2(2k+1) tends to zero as k → ∞ while the scale parameter tends to one,
t cos π

2(2k+1) → t. This means that the asymmetry of the Cauchy densities decreases
as k increases and is maximal for k = 1. The decrease of parameters of (1.16) (with
k increasing) is due to the growing symmetrization of the fundamental solutions of
equations (1.15).

By suitably combining the distribution (1.16) for k = 1, we arrive at the density

p6(x, t) =
√

3
22π

t
(x2 + t2) cos π6 + xt

(x2 + t2 + xt cos π6 )2 + 2x2t2 cos π3
(1.19)
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which solves the equation
∂6u

∂t6
+
∂6u

∂x6
= 0. (1.20)

The probability density (1.19) displays the unimodal structure of the Cauchy dis-
tribution.

2. Hyper Cauchy distributions

In this section we analyze the distribution related to Laplace-type equations of
the form (

∂2n

∂t2n
+

∂2n

∂x2n

)
u = 0, n > 1. (2.1)

For n ≥ 2 we obtain a new class of distributions having the form

p2n(x, t) =
t(x2 + t2)

2n−2π(x2n + t2n)
g(x, t), x ∈ R, t > 0 (2.2)

where g(x, t) is a polynomial of order 2n − 22. For n = 2, formula (2.2) yields the
distribution

p4(x, t) =
t(x2 + t2)√
2π(x4 + t4)

, x ∈ R, t > 0 (2.3)

emerging in the analysis of Fresnel pseudo-processes (see Orsingher and D’Ovidio
[11]).

The main result of this section is given in the next theorem.

Theorem 2.1. The hyper Cauchy density

p2n(x, t) =
1

π2n−1

2n−1−1∑
k=−(2n−1−1)

k odd

tei
πk
2n

x2 + (tei
πk
2n )2

(2.4)

solves the equation(
∂2n

∂t2n
+

∂2n

∂x2n

)
u = 0, x ∈ R, t > 0, n > 1. (2.5)

A real-valued expression of (2.4) reads

p2n(x, t) =
t(x2 + t2)

π2n−2(x2n + t2n)

2n−1−1∑
k=1
k odd

cos
kπ

2n

2n−1−1∏
k 6=j=1
j odd

(
x4 + t4 + 2x2t2 cos

jπ

2n−1

)
(2.6)

or equivalently

p2n(x, t) =
t(x2 + t2)

2n−2π

2n−1−1∑
k=1
k odd

cos kπ2n
x4 + t4 + 2x2t2 cos kπ

2n−1

, for n > 1. (2.7)

Proof. In order to check that (2.4) satisfies equation (2.5) we resort to Fourier
transforms

U(β, t) =
∫ +∞

−∞
eiβxu(x, t)dx.
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Equation (2.5) becomes

∂2nU

∂t2n
+ (−iβ)2

n

U =
∂2nU

∂t2n
+ β2nU = 0. (2.8)

The solutions of the algebraic equation associated to (2.8) have the form

rj = |β| eiπ
2j+1
2n , 0 ≤ j ≤ 2n − 1. (2.9)

In order to construct bounded solutions to (2.8) we restrict ourselves to

U(β, t) =
1

2n−1

2n−1−1∑
k=−(2n−1−1)

k odd

e−t|β|e
i kπ2n (2.10)

where the normalizing constant in (2.10) is chosen equal to 1/2n−1 so that U(β, 0) =
1. The inverse of (2.10) is (2.4). We check directly that each term of (2.4) has
Fourier transform solving equation (2.8). For all odd values of k, we have that∫ +∞

−∞
eiβx

(
∂2n

∂t2n
+

∂2n

∂x2n

)(
tei

kπ
2n

x2 + (tei
kπ
2n )2

)
dx

=
∂2n

∂t2n
e−t|β|e

i kπ2n + (−iβ)2
n

e−t|β|e
i kπ2n

=
(
β2neikπ + i2

n

β2n
)
e−t|β|e

i kπ2n

=
(

(−1)kβ2n + β2n
)
e−t|β|e

i kπ2n = 0

because k is odd. In order to obtain (2.6) we observe that, in view of (2.4) we can
write

p2n(x, t) =
1
π

2n−1−1∑
k=−(2n−1−1)

k odd

ck t
|2k−1|x2n−|2k−1|−1∏2n−1−1

k=−(2n−1−1)
k odd

(x2 + (tei
kπ
2n )2)

where
2n−1−1∏

k=−(2n−1−1)
k odd

(x2 + (tei
kπ
2n )2) = x2n + t2

n

(2.11)

and ck are constants evaluated below. Result (2.11) can be obtained directly by
solving the equation x2n + t2

n

= 0 or by successively regrouping the terms of the
right-hand side of (2.11). We have at first that

2n−1−1∏
k=−(2n−1−1)

k odd

(x2 + (tei
kπ
2n )2) =

2n−1−1∏
k=1, k odd

(
x4 + t4 + 2x2t2 cos

kπ

2n−1

)

=
2n−2−1∏
k=1, k odd

(
x8 + t8 + 2x4t4 cos

kπ

2n−2

)
= · · ·

=
(
x2n + t2

n

+ 2x2t2 cos
π

2

)
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=x2n + t2
n

.

In view of (2.11) we can rewrite (2.4) as

p2n(x, t) =
t

π2n−1(x2n + t2n)

2n−1−1∑
k=−(2n−1−1)

k odd

2n−1−1∏
j=−(2n−1−1)
j odd, j 6=k

(x2 + (tei
2πj
2n ))ei

πk
2n

where
2n−1−1∑

k=−(2n−1−1)
k odd

2n−1−1∏
j=−(2n−1−1)
j odd, j 6=k

(x2 + (tei
2πj
2n ))ei

πk
2n

=
2n−1−1∑

k=−(2n−1−1)
k odd

2n−1−1∏
j=1

j odd, j 6=k

(x4 + t4 + 2x2t2 cos
πj

2n−1
)(x2 + (te−i

2πk
2n ))ei

πk
2n

=
2n−1−1∑
k=1
k odd

2n−1−1∏
j=1

j odd, j 6=k

(x4 + t4 + 2x2t2 cos
πj

2n−1
)(x2ei

kπ
2n + t2e−i

kπ
2n + x2e−i

kπ
2n + t2ei

kπ
2n )

=2(x2 + t2)
2n−1−1∑
k=1
k odd

cos
kπ

2n

2n−1−1∏
j=1

j odd, j 6=k

(x4 + t4 + 2x2t2 cos
πj

2n−1
)

and thus

p2n(x, t) =
t(x2 + t2)

π2n−2(x2n + t2n)

2n−1−1∑
k=1
k odd

cos
kπ

2n

2n−1−1∏
j=1

j odd, j 6=k

(x4 + t4 + 2x2t2 cos
πj

2n−1
).

Furthermore, from the fact that

x2n + t2
n

=
2n−2−1∏
k=1, k odd

(
x8 + t8 + 2x4t4 cos

kπ

2n−2

)
we obtain that

p2n(x, t) =
t(x2 + t2)

2n−2π

2n−1−1∑
k=1
k odd

cos kπ2n
x4 + t4 + 2x2t2 cos kπ

2n−1

.

�

Remark 2.2. In order to prove that the density (2.6) integrates to unity we present
the following calculation∫ +∞

−∞

x2 + t2

x4 + t4 + 2x2t2 cos kπ
2n−1

dx =2
∫ +∞

0

x2 + t2

x4 + t4 + 2x2t2 cos kπ
2n−1

dx

=
2
t

∫ +∞

0

y2 + 1
y4 + 1 + 2y cos kπ

2n−1

dy

=
2
t

∫ π
2

0

1
tan4 θ + 1 + 2 tan2 θ cos kπ

2n−1

dθ

cos4 θ
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=
2
t

∫ π
2

0

dθ

sin4 θ + cos4 θ + 2 sin2 θ cos2 θ cos kπ
2n−1

=
2
t

∫ π
2

0

dθ

1− 1−cos kπ

2n−1

2 sin2 2θ

=
2
t

∫ π
2

0

dθ

1− 1
2

(
1− cos kπ

2n−1

) (
1−cos 4θ

2

)
=

1
2t

∫ 2π

0

dφ

1− 1−cos kπ

2n−1

4 + 1
4

(
1− cos kπ

2n−1

)
cosφ

=
2
t

∫ 2π

0

dφ(
3 + cos kπ

2n−1

)
+
(
1− cos kπ

2n−1

)
cosφ

=
2
t

2π√(
3 + cos kπ

2n−1

)2 − (1− cos kπ
2n−1

)2
=
π
√

2
t

1√
1 + cos kπ

2n−1

=
π

t

1
cos kπ2n

. (2.12)

From (2.7), in view of (2.12), we can conclude that∫ +∞

−∞
p2n(x, t) dx = 1

Remark 2.3. From (2.4), for n = 2 we obtain that

p4(x, t) =
1

2π

[
tei

π
4

x2 + (tei
π
4 )2

+
te−i

π
4

x2 + (te−i
π
4 )2

]
with Fourier transform∫ +∞

−∞
eiβxp4(x, t)dx = e

− t√
2
|β| cos

βt√
2
.

From (2.6) and (2.7) we have that

p4(x, t) =
t√
2π

x2 + t2

x4 + t4
. (2.13)

The law (2.13) has two maxima as Figure 1 shows.

Remark 2.4. For n = 3, from (2.6), we have that

p8(x, t) =
t(x2 + t2)

2π(x8 + t8)

[(
x4 + t4 + 2x2t2 cos

π

4

)
cos

3π
8

+
(
x4 + t4 + 2x2t2 cos

3π
4

)
cos

π

8

]
.

From the fact that

cos
3π
4

= − cos
π

4
and cos

3π
8

= sin
π

8
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Figure 1. The profile of the functions p4 (dotted line), formula
(2.13) and p8, formula (2.14).

0

we write

p8(x, t) =
t(x2 + t2)

2π(x8 + t8)

[ (
x4 + t4 +

√
2x2t2

)
sin

π

8
+
(
x4 + t4 −

√
2x2t2

)
cos

π

8

]
.

From (2.7) we have also that

p8(x, t) =
t

2π

[
x2 + t2

x4 + t4 −
√

2x2t2
sin

π

8
+

x2 + t2

x4 + t4 +
√

2x2t2
cos

π

8

]
. (2.14)

From (2.4) we obtain the characteristic function∫
R
eiβxp8(x, t)dx =

1
22

[
e−t|β| cos

π
8 cos

(
tβ sin

π

8

)
+ e−t|β| sin

π
8 cos

(
tβ cos

π

8

)]
.

The density p8(x, t) is a bimodal curve as well as p4(x, t). The maxima of p8(x, t) are
heigher than those of p4(x, t) as Figure 1 shows. Also p2n(x, t) displays a bimodal
structure with the height peaks increasing as n increases. The form of p2n(x, t)
reminds the structure of densities of fractional diffusions governed by equations

∂νu

∂tν
= λ2 ∂

2u

∂x2

for 1 < ν < 2 (see [10]).
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Figure 2. The profile of the function gk for n = 3 and k = 1
(dotted line), k = 3.

0

Remark 2.5. The result (2.7) can conveniently be rewritten as

p2n(x, t) =
t

π(x2 + t2)

 1
2n−1

2n−1−1∑
k=1
k odd

x4 + t4 + 2x2t2

x4 + t4 + 2x2t2 cos kπ
2n−1

cos
kπ

2n

 . (2.15)

The factor in square parenthesis measures, in some sense, the disturbance of p2n

on the classical Cauchy. For n = 2, we have in particular that

p22(x, t) =
t

π(x2 + t2)
1√
2

[
1 +

2x2t2

x4 + t4

]
=

t√
2π

x2 + t2

x4 + t4
. (2.16)

The density (2.16) has two symmetric maxima at x = ±t
√√

2− 1 and a minimum
at x = 0 (see Fig. 6 of Orsingher and D’Ovidio [11]). The terms

gk(x, t) =
x4 + t4 + 2x2t2

x4 + t4 + 2x2t2 cos kπ
2n−1

(2.17)

display two maxima at x = ±t with height depending on k and whose profile is
depicted in Figure 2.

Remark 2.6. The density p2n(x, t) can be written as

p2n(x, t) =
t(x2 + t2)

2n−2π(x2n + t2n)
Q(x, t) (2.18)

where Q(x, t) is a polynomial of order 2n − 22. For n = 2 the function Q(x, t)
reduces to cos π4 . For n = 3,

Q(x, t) =(x4 + t4 +
√

2x2t2) sin
π

8
+ (x4 + t4 −

√
2x2t2) cos

π

8
.



10 ENZO ORSINGHER AND MIRKO D’OVIDIO

Figure 3. The profile of the functions p2n , formula (2.7), for n = 5, 10, 15, 20.

0 0

0 0

The expression (2.18) shows that the probability law p2n(x, t), x ∈ R, t > 0 shares
with the classical Cauchy density the property of non-existence of the mean value.

Remark 2.7. The density of the hyper Cauchy can also be presented in an alter-
native form by regrouping the terms in the right-hand side of (2.7) as

2n−2−1∑
k=1

k odd

[
sin kπ

2n

x4 + t4 − 2x2t2 cos kπ
2n−1

+
cos kπ2n

x4 + t4 + 2x2t2 cos kπ
2n−1

]
(2.19)

=
2n−2−1∑
k=1

k odd

(
x4 + t4 + 2x2t2 cos kπ

2n−1

)
sin kπ

2n +
(
x4 + t4 − 2x2t2 cos kπ

2n−1

)
cos kπ2n

x8 + t8 − 2x4t4 cos kπ
2n−2

.

For n = 3, from (2.19), we get again that

p8(x, t) =
t(x2 + t2)

2π(x8 + t8)

[(
x4 + t4 +

√
2x2t2

)
sin

kπ

8
+
(
x4 + t4 −

√
2x2t2

)
cos

kπ

8

]
.

Remark 2.8. The r.v.

W (t) =
∣∣∣∣C (t cos

πk

2n

)
− t sin

πk

2n

∣∣∣∣ (2.20)
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(where C(t), t > 0 is the Cauchy process) has probability density

fk(w, t) =
2t(w2 + t2) cos kπ2n

π(w4 + t4 + 2w2t2 cos kπ
2n−1 )

, w > 0. (2.21)

Indeed, we have that

Pr {W (t) < w} =
∫ +w+t sin kπ

2n

−w+t sin kπ
2n

dy
t cos kπ2n

π(y2 + t2 cos2 kπ
2n )

(2.22)

and

fk(w, t) =
d

dw
Pr

{∣∣∣∣C (t cos
πk

2n

)
− t sin

πk

2n

∣∣∣∣ < w

}
=

t cos kπ2n

π

(
(w + t sin kπ

2n )2 + t2 cos2 kπ
2n

) +
t cos kπ2n

π

(
(−w + t sin kπ

2n )2 + t2 cos2 kπ
2n

)
=

t cos kπ2n

π

(
w2 + 2wt sin kπ

2n + t2
) +

t cos kπ2n

π

(
w2 − 2wt sin kπ

2n + t2
)

=
2t(w2 + t2) cos kπ2n

π(w2 + t2 + 2wt sin kπ
2n )(w2 + t2 − 2wt sin kπ

2n )

=
2t(w2 + t2) cos kπ2n

π(w4 + t4 + 2w2t2 cos kπ
2n−1 )

because

2 sin2 kπ

2n
= 1− cos

kπ

2n−1
.

By symmetrizing (2.20) as follows

Z(t) =
W1(t)−W2(t)

2
where W1(t),W2(t) are independent copies of W (t) we obtain a distribution of the
form

hk(w, t) =
t(w2 + t2) cos kπ2n

π(w4 + t4 + 2w2t2 cos kπ
2n−1 )

, w ∈ R (2.23)

which coincides with each term of (2.15). This construction explains the reason for

which each term in (2.15) has two symmetric maxima at w = ±t
√

2 sin kπ
2n − 1 for

k : sin πk
2n >

1
2 .

3. Higher-order Laplace-type equation

Let us consider the pseudo-processes related to higher-order heat-type equations

∂u

∂t
= cn

∂nu

∂xn
, x ∈ R, t > 0, n > 2. (3.1)

where cn = (−1)
n
2 +1 for n even and cn = ±1 for n odd.

Pseudo-processes constructed by exploiting the sign-varying measures obtained
as fundamental solutions to (3.1) have been examined in many papers since the
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Figure 4. The figure shows how the distribution (2.23) can be
constructed from the Cauchy density by folding and symmetrizing,
in the cases n = 3, k = 1 (top figures) and k = 3 (bottom figures).
The dotted line gives the density of the folded distribution (3.13).

0 0

0 0

beginning of the Sixties. A description of the procedure of construction of pseudo-
processes can be found, for example in Krylov [4], Ladokhin [6], Hochberg [3],
Orsingher [9], Lachal [5]. In the case where n = 2k+1, c2k+1 = −1, the fundamental
solution to (3.1) reads

u2k+1(x, t) =
1

2π

∫ +∞

−∞
e−iβx+i(−1)ktβ2k+1

dβ. (3.2)

In particular, for k = 1

u3(x, t) =
1
π

∫ ∞
0

cos
(
βx+ β3t

)
dβ =

1
3
√

3t
Ai

(
x

3
√

3t

)
(3.3)

where

Ai(x) =
√
x

3

[
I− 1

3

(
2
3
x3/2

)
− I 1

3

(
2
3
x3/2

)]
is the Airy function (see for example Lebedev [7]).

In this section we study the composition of pseudo-processes with stable pro-
cesses Sα(t), t > 0, α ∈ (0, 1) whose characteristic function reads

EeiβSα(t) = exp
(
−t|β|αe−i

πγ
2

β
|β|

)
= exp

(
−σ t|β|α

(
1− iθ β

|β|
tan

πα

2

))
(3.4)
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where σ = cosπγ/2 > 0 and

θ = cot
(πα

2

)
tan

(πγ
2

)
.

The parameter γ must be chosen in such a way that θ ∈ [−1, 1] for α ∈ (0, 1). The
skewness parameter θ = 1 (that is γ = α) corresponds to positively skewed stable
distributions. For the density

pα(x, γ, t) =
1

2π

∫ +∞

−∞
e−iβxEeiβSα(t)dβ

we have the scaling property

pα(x, γ, t) =
1
t1/α

pα

( x

t1/α
, γ, 1

)
. (3.5)

For α ∈ (0, 1), we have the series representation of stable density (see [10, page
245])

pα(x; γ, 1) =
α

π

∞∑
r=0

(−1)r
Γ(α(r + 1))

r!
x−α(r+1)−1 sin

(π
2

(γ + α)(r + 1)
)
. (3.6)

Theorem 3.1. The composition of the pseudo-process X2k+1(t), t > 0 with the
stable process S 1

2k+1
(t), t > 0, k ∈ N, has a Cauchy probability distribution which

can be written as

Pr{X2k+1(S 1
2k+1

(t) ∈ dx}/dx =
t cos π

2(2k+1)

π

[(
x+ (−1)k+1t sin π

2(2k+1)

)2

+ t2 cos2 π
2(2k+1)

]
(3.7)

with x ∈ R, t > 0. The density function (3.7) is a solution to the higher-order
Laplace equation

∂2k+1u

∂t2k+1
+
∂2k+1u

∂x2k+1
= 0, x ∈ R, t > 0 (3.8)

Proof. For θ = 1, α = γ = 1/2k + 1, in view of (3.4) we have that

U(β, t) =
∫ +∞

−∞
eiβxPr{X2k+1(S 1

2k+1
(t)) ∈ dx}

=
∫ ∞

0

Pr{S 1
2k+1

(t) ∈ ds}
∫ +∞

−∞
eiβxu2k+1(x, s) dx

=
∫ ∞

0

eis(−1)kβ2k+1
Pr{S 1

2k+1
(t) ∈ ds}

= exp
(
−t
∣∣∣(−1)kβ2k+1

∣∣∣ 1
2k+1

cos
π

2(2k + 1)

(
1− i sgn

(
(−1)kβ2k+1

)
tan

π

2(2k + 1)

))
= exp

(
−t|β|

(
cos

π

2(2k + 1)
− i(−1)k

β

|β|
sin

π

2(2k + 1)

))
= exp

(
−t|β| cos

π

2(2k + 1)
− i(−1)ktβ sin

π

2(2k + 1)

)
. (3.9)

This is the characteristic function of a Cauchy distribution with scale parameter
t cos π

2(2k+1) and location parameter t(−1)k+1 sin π
2(2k+1) . Formula (3.9) can also
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be rewritten as

U(β, t) = exp
(
−t|β|

(
cos

π

2(2k + 1)
− i(−1)k

β

|β|
sin

π

2(2k + 1)

))
= exp

(
−t|β|

(
cos
(

π

2(2k + 1)
(−1)k

β

|β|

)
− i sin

(
π

2(2k + 1)
(−1)k

β

|β|

)))
= exp

(
−t|β|e−i

π
2(2k+1) (−1)k β

|β|

)
. (3.10)

The Fourier transform of equation (3.8) becomes

∂2k+1U

∂t2k+1
+ (−iβ)2k+1U = 0. (3.11)

The derivative of order 2k + 1 of (3.10) is

∂2k+1U

∂t2k+1
(β, t) = (−|β|)2k+1

(
e−i

π
2(2k+1) (−1)k β

|β|

)2k+1

U(β, t) (3.12)

and this shows that the Cauchy distribution (3.7) solves the higher-order Laplace
equation (3.8). �

Remark 3.2. We notice that∫ ∞
0

Pr{X2k+1(S 1
2k+1

(t)) ∈ dx} =
1
π

∫ ∞
(−1)k+1 tan π

2(2k+1)

dy

1 + y2

=
1
2

(
1 +

(−1)k

2k + 1

)
(3.13)

which is somehow in accord with Lachal [5]. The results (3.7) and (3.13) show that
the mode of the Cauchy law (3.7) approaches the origin as k increases.

Let us consider the process of the form X3(S 1
3
(t)), t > 0 where X3 is a pseudo-

process whose measure density is governed by the third-order heat equation

∂u

∂t
= −∂

3u

∂x3
, x ∈ R, t > 0 (3.14)

and S 1
3

is the stable process of order 1/3. The distribution of X3(S 1
3
(t)), t > 0

reads

Pr{X3(S 1
3
(t)) ∈ dx} = dx

∫ ∞
0

1
3
√

3s
Ai

(
x

3
√

3s

)
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds (3.15)

where

Pr{S 1
3
(t) ∈ ds} = ds

t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
, s ≥ 0, t > 0 (3.16)

for which ∫ ∞
0

Pr{S 1
3
(t) ∈ ds} =

∫ ∞
0

ds
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
=(w = t/

3
√

3s) = 3
∫ ∞

0

Ai(w) dw = 1.

Corollary 3.3. The law (3.15) solves the higher-order Laplace equation

∂3u

∂t3
+
∂3u

∂x3
= 0, x ∈ R, t > 0 (3.17)
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and can be written as

Pr{X3(S 1
3
(t)) ∈ dx} =

dx

π

√
3

2 t(
x+ t

2

)2 + 3t2

4

(3.18)

=
dx

π

31/2

2
t

x2 + xt+ t2

=dx
31/2 t

2π
x− t
x3 − t3

.

Proof. The Fourier transform of (3.15) becomes∫ ∞
−∞

eiβxPr{X3(S 1
3
(t)) ∈ dx} =

∫ ∞
0

e−iβ
3sPr{S 1

3
(t) ∈ ds}. (3.19)

We show that (3.16) is a stable law of order 1/3. In view of the representation of
the the Airy function (4.10) of Orsingher and Beghin [10]

Ai(w) =
3−2/3

π

∞∑
k=0

(31/3w)k

k!
sin
(

2π
3

(k + 1)
)

Γ
(
k + 1

3

)
(3.20)

we can write that

t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
=

t

3πs 3
√
s

∞∑
k=0

(
t
3
√
s

)k 1
k!

sin
(

2π
3

(k + 1)
)

Γ
(
k + 1

3

)
We consider the series expansion (3.6) of the stable density (with t = 1) for which
(3.4) holds true. For α = γ = 1/3 (that is θ = +1), x = s/t3 in (3.6) we get that

p 1
3

(
s

t3
;

1
3
, 1
)

=
1

3π

∞∑
k=0

(−1)k

k!

( s
t3

)− k+1
3 −1

sin
(π

3
(k + 1)

)
Γ
(
k + 1

3

)
=(by 4.5 of [10])

=
1

3π
t4

s 3
√
s

∞∑
k=0

(
t
3
√
s

)k 1
k!

sin
(

2π
3

(k + 1)
)

Γ
(
k + 1

3

)
=t3

[
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)]
and thus, from (3.5), we have that

1
t3
p 1

3

(
s

t3
;

1
3
, 1
)

= p 1
3

(
s;

1
3
, t

)
=
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
, s, t > 0.

We now evaluate the integral (3.19). We have that∫ ∞
0

e−iβ
3sPr{S 1

3
(t) ∈ ds}

= exp
(
− cos

π

6
t| − β3| 13

(
1− i sgn (−β3) tan

π

6

))
= exp

(
−
√

3
2
t|β|

(
1 + i sgn (β)

1√
3

))

= exp

(
−
√

3
2
t|β| − i t

2
β

)
(3.21)
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since sgn (−β3) = sgn (−β) = −sgn (β) = − β
|β| . From (3.21) we infer that

Pr{X3(S 1
3
(t)) ∈ dx} =

dx

2π

∫ +∞

−∞
e−iβx exp

(
−
√

3
2
t|β| − i t

2
β

)
dβ (3.22)

=
dx

π

√
3

2 t(
x+ t

2

)2 + 3t2

4

=
dx

π

31/2

2
t

x2 + xt+ t2

=dx
31/2 t

2π
x− t
x3 − t3

�

Remark 3.4. We observe that the r.v. X3(S 1
3
(t)) possesses Cauchy distribution

with scale parameter
√

3t/2 and location parameter −t/2. Furthermore, it solves
the third-order Laplace-type equation

∂3u

∂t3
+
∂3u

∂x3
= 0. (3.23)

Remark 3.5. From the fact that
1

3
√

3t
Ai

(
x

3
√

3t

)
=

1
3π

√
x

t
K1/3

(
2

33/2

x3/2

√
t

)
, x, t > 0 (3.24)

we can write, for x > 0,

Pr{X3(S 1
3
(t)) ∈ dx}/dx =

∫ ∞
0

1
3π

√
x

s
K1/3

(
2

33/2

x3/2

√
s

)
t

s

1
3π

√
t

s
K1/3

(
2

33/2

t3/2√
s

)
ds

(3.25)

=
2
√
xt3

32π2

∫ ∞
0

sK1/3

(
2x3/2

33/2
s

)
K1/3

(
2t3/2

33/2
s

)
ds.

(3.26)

In view of (see [2, formula 6.521])∫ ∞
0

sKν(ys)Kν(zs) ds =
π(yz)−ν(y2ν − z2ν)
2 sinπν (y2 − z2)

, <{y + z} > 0, |<{ν}| < 1

we get that

Pr{X3(S 1
3
(t)) ∈ dx} = dx

31/2 t

2π
x− t
x3 − t3

, x, t > 0 (3.27)

which coincides with (3.18).

The Cauchy densities pertaining to the composition X 1
2k+1

(S 1
2k+1

(t)), t > 0,
solve also a second-order p.d.e. as we show in the next theorem.

Theorem 3.6. The Cauchy densities

f(x, t;m) =
1
π

t cos π
2m

(x+ t sin π
2m )2 + t2 cos2 π

2m

, m ∈ N (3.28)

satisfy the following second-order equation

∂2f

∂t2
+
∂2f

∂x2
= 2 sin

π

2m
∂2f

∂x∂t
, x ∈ R, t > 0. (3.29)
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Figure 5. The profile of the function (3.18).

0

Proof. It is convenient to write (3.28) as a composed function

f(u, v) =
1
π

u

u2 + v2

where
u = t cos

π

2m
, v = x+ t sin

π

2m
.

Since
∂f

∂t
= cos

π

2m
∂f

∂u
+ sin

π

2m
∂f

∂v
∂2f

∂t2
= cos2

π

2m
∂2f

∂u2
+ 2 cos

π

2m
sin

π

2m
∂2f

∂u∂v
+ sin2 π

2m
∂2f

∂v2

∂f

∂x
=
∂f

∂v
and

∂2f

∂x2
=
∂2f

∂v2

and
∂2f

∂u2
+
∂2f

∂v2
= 0

we have that

∂2f

∂t2
+
∂2f

∂x2
= cos2

π

2m
∂2f

∂u2
+
∂2f

∂v2
+ 2 sin

π

2m
cos

π

2m
∂2f

∂u∂v
+ sin2 π

2m
∂2f

∂v2

=
∂2f

∂v2

[
1− cos2

π

2m
+ sin2 π

2m

]
+ 2 sin

π

2m
cos

π

2m
∂2f

∂u∂v

=2 sin
π

2m
∂

∂v

[
sin

π

2m
∂f

∂v
+ cos

π

2m
∂f

∂u

]
=2 sin

π

2m
∂

∂x

∂f

∂t

�

Remark 3.7. The characteristic function of (3.28) is∫ +∞

−∞
eiβxf(x, t;m)dx = e−t|β| cos

π
2m−iβt sin

π
2m
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and can be obtained by considering the bounded solution to the Fourier transform
of (3.29)

d2F

dt2
+ 2iβ sin

π

2m
dF

dt
− β2F = 0.

For the even-order Laplace equations we have the following result.

Theorem 3.8. The solution to the higher-order Laplace-type equation

∂2nu

∂t2n
= −∂

2nu

∂x2n
, x ∈ R, t > 0 (3.30)

subject to the initial conditions{
u(x, 0) = δ(x)
∂ku
∂tk

(x, t)
∣∣∣
t=0+

= (−1)k k!
π|x|k+1 cos π(k+1)

2 , 0 < k < 2n
(3.31)

is the classical Cauchy distribution given by

u(x, t) = Pr{X2n(S 1
2n

(t)) ∈ dx}/dx =
t

π(x2 + t2)
, x ∈ R, t > 0 (3.32)

where X2n(t), t > 0 is a pseudo-process such that

EeiβX2n(t) = e−tβ
2n
.

Proof. The pseudo-process X2n(t), t > 0 related to the equation

∂u

∂t
= (−1)n+1 ∂

2nu

∂t2n

has fundamental solution whose Fourier transform reads∫ +∞

−∞
eiβxu(x, t)dx = e−tβ

2n
.

If S 1
2n

(t), t > 0 is a stable subordinator with Laplace transform

E exp
(
−λS 1

2n
(t)
)

= exp
(
−tλ 1

2n

)
, λ > 0, t > 0 (3.33)

the characteristic function of X2n(S 1
2n

(t)), t > 0 becomes∫ +∞

−∞
eiβxPr{X2n(S 1

2n
(t)) ∈ dx} =

∫ ∞
0

e−sβ
2n
Pr{S 1

2n
(t) ∈ ds}

= exp
(
−t|β|eiπrn

)
, r = 0, 1, . . . , 2n− 1 (3.34)

For r = 0, we have the characteristic function of the Cauchy symmetric law. For
r 6= 0 and n ≤ r ≤ 2n − 1 we have a function which is not absolutely integrable
and, for 0 < r < n − 1 is not a characteristic function (but can be regarded as a
Cauchy r.v. at a complex time). The functions

Fr(β, t) = e−t|β|e
i πr2n

for all 0 ≤ r ≤ 2n− 1 are solutions to

∂2nFr
∂t2n

= (−1)n+1Fr.
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We now check that for 0 ≤ k ≤ 2n − 1 the initial conditions (3.31) are verified by
the Cauchy distribution. Indeed,

∂ku

∂tk
(x, t)

∣∣∣
t=0

=
∂k

∂tk

(
1

2π

∫ +∞

−∞
e−iβxe−t|β|dβ

) ∣∣∣∣∣
t=0

=
1

2π

∫ +∞

−∞
e−iβx(−1)k|β|kdβ

=
(−1)kk!
π|x|k+1

cos
(
π(k + 1)

2

)
.

�

Remark 3.9. We notice that for n = 1 the problem above becomes

∂2u

∂t2
= −∂

2u

∂x2
, x ∈ R, t > 0

subject to the initial conditions
u(x, 0) = δ(x)

∂u
∂t (x, t)

∣∣∣∣∣
t=0+

= −1
π|x|2 cosπ

which is in accord with
∂

∂t

t

π(x2 + t2)

∣∣∣
t=0+

=
1
πx2

.

The connection between wave equations and the composition of two independent
Cauchy processes C1(|C2(t)|), t > 0 has been investigated in D’Ovidio and Ors-
ingher [1] and more general results involving the Cauchy process have been pre-
sented in Nane [8].

Remark 3.10. We finally notice that the equation

∂6u

∂t6
+
∂6u

∂x6
= 0 (3.35)

can be decoupled as (
∂3

∂t3
+ i

∂3

∂x3

)(
∂3

∂t3
− i ∂

3

∂x3

)
u = 0. (3.36)

Form the Corollary 3.3, the solution to (3.36) can be therefore written as

u(x, t) =
1

2π

 √
3

2 te
iπ6(

x+ tei
π
6

2

)2

+ 3
4 t

2ei
π
3

+

√
3

2 te
−iπ6(

x+ te−i
π
6

2

)2

+ 3
4 t

2e−i
π
3


=
√

3
22π

t

[
ei
π
6
(
x2 + t

4e
−iπ3 + xte−i

π
6 + 3

4 t
2e−i

π
3
)(

x2 + t
4e
−iπ3 + xte−i

π
6 + 3

4 t
2e−i

π
3
) (
x2 + t

4e
iπ3 + xtei

π
6 + 3

4 t
2ei

π
3
)

+
e−i

π
6
(
x2 + t

4e
iπ3 + xtei

π
6 + 3

4 t
2ei

π
3
)(

x2 + t
4e
−iπ3 + xte−i

π
6 + 3

4 t
2e−i

π
3
) (
x2 + t

4e
iπ3 + xtei

π
6 + 3

4 t
2ei

π
3
)]

=
√

3
22π

t
(x2 + t2) cos π6 + xt(

x2 + te−i
π
3 + xte−i

π
6 +
) (
x2 + tei

π
3 + xtei

π
6
)
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=
√

3
22π

t
(x2 + t2) cos π6 + xt(

x2 + t2 + xt cos π6
)2 + 2x2t2 cos π3

. (3.37)

Equation (3.36) is satisfied by the Cauchy density and therefore by the probability
law (3.37) which however is no longer a Cauchy distribution but is unimodal and
asymmetric.
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