HIGHER-ORDER LAPLACE EQUATIONS
AND HYPER-CAUCHY DISTRIBUTIONS

ENZO ORSINGHER AND MIRKO D’OVIDIO

ABSTRACT. In this paper we introduce new distributions which are solutions
of higher-order Laplace equations. It is proved that their densities can be
obtained by folding and symmetrizing Cauchy distributions. Another class of
probability laws related to higher-order Laplace equations is obtained by com-
posing pseudo-processes with positively-skewed Cauchy distributions which
produce asymmetric Cauchy densities in the odd-order case. A special at-
tention is devoted to the third-order Laplace equation where the connection
between the Cauchy distribution and the Airy functions is obtained and ana-
lyzed.

1. INTRODUCTION

The Cauchy density

1 t
t) = ——5——> 1.1
p(.’E, ) T (.132 +t2) ( )
solves the Laplace equation (see Nane [8])
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CULTY g, zeR, t>0. 1.2
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The n-dimensional counterpart of (1.1)
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p(x,t) = (3) , xeR"™1 >0 (1.3)
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with characteristic function
/ el X p(x, t)dx = exp (—t|a) (1.4)
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solves the n-dimensional Laplace equation
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The inspiring idea of this paper is to investigate the class of distributions which
satisfy the higher-order Laplace equations of the form

o"u  O"u
—+—=0 R, t>0 1.6
G T g =0 TER > (1.6)
In a previous paper of ours we have shown that the law
t 2?4+ t?
pa(z,t) = (1.7)

2zt + t4
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solves the fourth-order Laplace equation

0*u L 0*u

ot Ozt

In Section 2 we analyze distributions related to equations of the form

82’77411/ + 62’7lu

otzr  ox?"

which can be expressed in many alternative forms. The decoupling of the 2"-th
order differential operator in (1.9)

8271 8271, B on—1l_q 62 Z%kl 82
et | G VR

=0, xz€R,t>0. (1.8)

=0 (1.9)

suggests to represent distributions related to (1.9) as

on—l_1

1 te'2"
pon(@,t) = —— Z ————, n>2 (1.10)
T2 () 22 + (te'7)2

k odd
that is the superposition of Cauchy densities at imaginary times. Alternatively, we
give a real-valued expression for (1.10) as

gn—1_1 gn-1_

t(x? 4 t%) 4, 44 2,2 Jm
pon(2,t) = (a2 1 1) g I | x° + 1% 4+ 227t" cos 5T ) - (1.11)
j=1,7 odd
Koda Jok

The density (1.11) can also be represented as

n—1
t(z? +t%) R cos &%
pan(2,1) oan=27 ; x? + t* + 22242 cos folrl = ( )
k odd

Each component of the distribution (1.12) is produced by folding and symmetrizing
the density of the r.v.

V(t)=C (tcosg:) —tsing—:, t>0 1<k<2"!—1 kodd
where C(¢), t > 0 is the Cauchy symmetric process. The distributions (1.12) differ
from the Cauchy laws since they have a bimodal structure for all n > 2 as figures
below show. For n = 2, the distribution (1.11) reduces to (1.7) if we assume that
the inner product appearing in formula (1.11) is equal to one. Of course, the density
(1.12) coincides with (1.7) for n = 2. For n = 3 we get from (1.11) and (1.12) that

(372 +t2) 4 4 2,2 m 4 4 2,2y . T
x,t 7[a: +t* — V222t cos — + (2 +t* + V222t smf]
paet) =gt | Jeos T+ )sin 5
t t* in § 5
_ (2% + %) [ sin g N cos § (1.13)
2m a4 — V2222t th 4 /22212

In Orsingher and D’Ovidio [11] we have shown that the density (1.7) is the proba-
bility distribution of
Qt)=F(Ty), t>0
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where F' is the Fresnel pseudo-process described in [11] and T}, ¢ > 0 is the first
passage time of a Brownian motion independent from F'. We note that

Qt) = F(IB(®)]), t>0

has density coinciding with the fundamental solution of the fourth-order heat equa-
tion
ou  d'u
ot Ozt
We prove also that, for k € N, there are non-centered Cauchy distributions which
solve the equations
92k+1,,  §2k+ly,
Of2k+1 T Gp2k+1

If Xok41(t), t > 0 is the pseudo-process whose density measure
p2k+1(dz,t) = p{Xok11(t) € dx}

solves the heat-type equations

=0. (1.14)

ou O¥tly
and S_1_ (), t > 0 is a positively skewed stable process of order 5L we have that

tCOS 557~
Pr{Xop1(S_s_(t) € do}/dz = Al

2k+1 . 2
s [(x + (=1)k+1tsin 72(2,’CT+1)) + 12 cos? 2(2;r+1)
(1.16)
We show below that the densities (1.16) solve also the following second-order p.d.e.
T R
otz 9x2 2(2k + 1) 0t Oz~
We have investigated in detail the case of third-order Laplace equation
Bu  Bu
— +-—==0 1.17
ER T (1.17)

and have shown that

Pr{Xs(8, (1)) € da) :dx/ooo e/lszAi <\/%) E%Ai (\/I;’s) ds  (118)

V3 x—t V3 t
=dr——t =dr—
2 x3—1¢3 2 x2 + xt + 2

s
t cos 3

- x(x—i—tsin%)Q—l—thos?%'

The pictures of the Cauchy distributions (1.16) show that the location parame-
s

ter tsinm tends to zero as k — oo while the scale parameter tends to one,
s

t cos ohF) t. This means that the asymmetry of the Cauchy densities decreases

as k increases and is maximal for k¥ = 1. The decrease of parameters of (1.16) (with
k increasing) is due to the growing symmetrization of the fundamental solutions of
equations (1.15).
By suitably combining the distribution (1.16) for k = 1, we arrive at the density
V3 (2* 4+ 1%) cos & + at

=2y 1.19
Po(, 1) 227 (22 + 12 4 wtcos §)? + 222t cos § (1.19)
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which solves the equation
O%u 0%
— 4+ —=0. 1.20
ot + 0z (1.20)

The probability density (1.19) displays the unimodal structure of the Cauchy dis-
tribution.

2. HYPER CAUCHY DISTRIBUTIONS

In this section we analyze the distribution related to Laplace-type equations of

the form
82"74 62’!1
(at?1 +&E2n>u:0, n > 1. (2.1)
For n > 2 we obtain a new class of distributions having the form

t(x? +12)
=2 (22" 4 12")

pon(z,t) = glx,t), z€R, t>0 (2.2)
where g(x,t) is a polynomial of order 2" — 22. For n = 2, formula (2.2) yields the
distribution
t(x? +12)
r,t)=—=——"—, z€R, t>0 2.3
Pl = o (23)
emerging in the analysis of Fresnel pseudo-processes (see Orsingher and D’Ovidio
[11]).

The main result of this section is given in the next theorem.

Theorem 2.1. The hyper Cauchy density

pon(z,t) =—— Z SN ELIY) (2.4)
T2
k=—(2""1—1)
k odd

solves the equation

82" 82”
(W‘FW)U:O, zeR, t>0, n>1. (25)
A real-valued expression of (2.4) reads
n—1 n—1
t(x? +t2) Y k! 4 4 9.9 Jm
paon (x,t) :7r2”—2(x2" Ty €08 o H x® 4+ t* 4 22°t” cos =1
k=1 k#j=1
k odd j odd
(2.6)
or equivalently
2" i1 km
t(x? +12) cos 5%
n(x,t) = ————— , Jor n>1. 2.7
pon(@:1) 072 gttt 4 2012 cos 5ty 4 @1)
k odd

Proof. In order to check that (2.4) satisfies equation (2.5) we resort to Fourier
transforms

+oo
U(B,t) = / ez, t)dz.

— 00
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Equation (2.5) becomes
0*"u on o*"'uU n
— + (=1 U= ——+ U =0. 2.8
The solutions of the algebraic equation associated to (2.8) have the form
rp=|Ble™FT, 0<j<2"— 1. (2.9)
In order to construct bounded solutions to (2.8) we restrict ourselves to

on—1l g

1 _i|glei BE
UB,1) = 5y oo et (2.10)
k=—(2""'-1)
k odd

where the normalizing constant in (2.10) is chosen equal to 1/2"~! so that U(3,0) =
1. The inverse of (2.10) is (2.4). We check directly that each term of (2.4) has
Fourier transform solving equation (2.8). For all odd values of k, we have that

[ () ( o ) .
o ot ox?" 22 + (tei5% )2

%"
T o
_ (62"61%77 + Z-2"ﬁ2") e—t\ﬁ|ei]2%r
_ ((_l)kﬂQ" +ﬂ2") o—tlBle

because k is odd. In order to obtain (2.6) we observe that, in view of (2.4) we can
write

—t|Ble 5% -3\2" —t|Ble’ 5
e +(=if) e

1 2" -1 cp t128= 11 2" — 12k =11
n(x,t) =— — -
pan(z,t) P k:_(;l_n Hi:_l(;}kl_l)(xz + (te?5)?)
k odd k odd
where
on—1l_q
[T @+ ™) =2 46" (2.11)
k=—(2""1-1)

k odd

and ¢, are constants evaluated below. Result (2.11) can be obtained directly by
solving the equation 22" + 2" = 0 or by successively regrouping the terms of the
right-hand side of (2.11). We have at first that

on—1_1q on—1_1

ew k
H (z% + (te’%f) = H (x4 + t* + 22212 cos 2n7_r1)
k=—(2""1-1) k=1,k odd
k odd
Ch— km
= H (xs + 8 + 22" cos 2n—2)
k=1,k odd

= <x2n + 12" + 2222 cos g)
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n n
=z2" 442",

In view of (2.11) we can rewrite (2.4) as

y on—1_1 on—1_1 .
p2 (x7 ) 7T2n_1(l'2” +t2n) ('CL. +(€ ))e
k=m(2n )=t
k odd j odd, j#£k
where
2n71_1 2n—1_1

2 [I @+ es)es

k:—(2n71—1) j=—(2n71—1)

k odd j odd, j#k
on—1_1 on—1_ iy
c21k ik
= Z H (z* +t* + 22t cos n—zl)(fr2 + (te™*2m))e2™
k=—(2""1-1) =1 2

k odd 7 odd J#k
gn—1_1 on-—1_ iy
kn - kT kT
E | | (z* + t* 4 22°t% cos 2nz1)( eI 4 207 i0F 4 g2eTinF 4 42einn)

k Odd J odd J;ék

2n—l g 2nl g .
km T
=2(z% + t?) €08 o H (z* 4+ t* + 22212 cos anl )
—1 =1
k odd j odd j#k

and thus

gn—1_1 gn—1_1 )
t(x* 4 t%) km 4, 44 2,2 )
pon (2,1) :7r2”*2(x2" e cos o H (x® +t* + 22°t% cos T ).
k=1 j=1

k odd j odd, j#k

Furthermore, from the fact that

2n=2_1

n n kﬂ'
2 1P = H <x8 + 8 + 2%t cos 2n_2>
k=1, k odd

we obtain that
n—1_
ta? +2)° Z ' cos &z

oan—27 x4 + t4 + 222%t2 cos 2'”,“

n—1

Pan (x, t) ==

k odd
O

Remark 2.2. In order to prove that the density (2.6) integrates to unity we present
the following calculation

“+o0 T + t2 “+o0 T + t2
/ = dx :2/ = dx
0ot 4 th 4 2222 cos 5ty 0 ot 4 t4 + 22212 cos 5y

2/+°° y?+1 J
tJo y4+1+2yc082,’ff1 Y

™

_2/5 1 do
“tJo tan®@+ 1+ 2tan? 0 cos 527 cost 0
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2/’2’ do
t )y sin? 0+ cost O + 2sin? 0 cos2 0 cos EZ

Qn—l
_2/5 df
tJo 1— % sin2 26

/ do
o 1= 3 (1= oom 257) (=)

27 d¢

1— _km
1— 22T 4 L (1 — cos 571 ) cos @

de
(3 + cos Qk—’fl) + (1 — cos 2’“—’[1) cos ¢
2

[NE]

N

S~

S

c\w
3

SN N

P

(3 + cos Qf—’_rl)? - (1 — cos 25—711)2

77‘(\/5 1
t +/ 1+ cos 25—1’1
1
I (2.12)
1 cos 5
From (2.7), in view of (2.12), we can conclude that
+oo
/ Don (.'L'7 t) de =1
—00
Remark 2.3. From (2.4), for n = 2 we obtain that
(2.1) 1 te's N te™'%
x, = — — —
b 2 |22+ (te'5)2 | 22 + (te '5)2
with Fourier transform
+oo
e z,t)der =e V2" cos —.
[ e vz
From (2.6) and (2.7) we have that
t 2?4+ t?
I L 2.13
p4(x ) \/§7T m4 + t4 ( )

The law (2.13) has two maxima as Figure 1 shows.
Remark 2.4. For n = 3, from (2.6), we have that

t(x? +t?)

)= L TE)
ps(@:t) = o

3 3
<x4 +t* + 22%t% cos %) cos g+ (az4 + t* + 2222 cos I) cos g] .

From the fact that
3

T T .o
cos— = —cos— and cos— = sin —
4 4 8 8
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FIGURE 1. The profile of the functions ps (dotted line), formula

(2.13) and pg, formula (2.14).

we write

t(x? + 12)
Pt e 1)

From (2.7) we have also that

t { 22 4 12 oo x2 + 2

t) =—
p8(x7 ) o

From (2.4) we obtain the characteristic function

. 1 x -
/ P pg(x, t)dr = » [e‘tlﬂlcos? cos (tﬁ sin %) 4 e tBlsing g (tﬁ coS z)} .
R

sin — + C
o4+ 4 — /22282 8 gzt 4t 4 /22242

(334 +tt 4+ \/§m2t2) sing + (334 +t4 = \/53:21?2) cos g] .

08 g} L (2.14)

8

The density ps(z, t) is a bimodal curve as well as py(x,t). The maxima of pg(z,t) are
heigher than those of py(z,t) as Figure 1 shows. Also pan(z,t) displays a bimodal
structure with the height peaks increasing as n increases. The form of pon(x,t)
reminds the structure of densities of fractional diffusions governed by equations

Ou_

otr 7 9x2

for 1 < v < 2 (see [10]).
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FIGURE 2. The profile of the function g; for n = 3 and k = 1
(dotted line), k = 3.

Remark 2.5. The result (2.7) can conveniently be rewritten as
2" -1 4 4 44 2,2

n (T, =
b2 m(x? +t2) | 271 = at+tt + 22212 cos kn

on—1

cos —: . (2.15)

k odd
The factor in square parenthesis measures, in some sense, the disturbance of pan
on the classical Cauchy. For n = 2, we have in particular that

¢ 1 2z2t? t a2
p22($7t):ﬁ7 44 4| 4 44
m(x? +12) /2 at 4t Vorat+t
The density (2.16) has two symmetric maxima at = = +¢1/1/2 — 1 and a minimum
at x = 0 (see Fig. 6 of Orsingher and D’Ovidio [11]). The terms
ot 4+ 1 + 22242
x4 + t4 + 222t2 cos fo’fl

(2.16)

(2.17)

gr(z,t) =

display two maxima at x = 4t with height depending on k& and whose profile is
depicted in Figure 2.

Remark 2.6. The density pon (z,t) can be written as
t(x? +12)
2n =2 (22" +¢2")

where Q(x,t) is a polynomial of order 2" — 22. For n = 2 the function Q(z,t)
reduces to cos %. For n = 3,

Q(x,t) =(z* + t* + V22%?) sin% + (z* + t* — V22%?) cos g

pan(x,t) = Q(z,t) (2.18)
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F1GURE 3. The profile of the functions pon, formula (2.7), for n = 5,10, 15, 20.

N

The expression (2.18) shows that the probability law pon(x,t), € R, ¢ > 0 shares
with the classical Cauchy density the property of non-existence of the mean value.

Remark 2.7. The density of the hyper Cauchy can also be presented in an alter-
native form by regrouping the terms in the right-hand side of (2.7) as

221 .
sin 7 cos kT
> T TP (2.19)
Pt ot 411 — 222t cos 5ty at + 11 4 2222 cos 5ty
k odd
2n—2_1

Z (2% + t* + 227 cos 5577 ) sin AT + (2f + 1 — 227 cos 5571 ) cos 5T

8 + 18 — 224t cos 21?’12

k=1
k odd

For n = 3, from (2.19), we get again that

t(z? + k k
ps(x,t) = M [(av4 +tt 4 \/53:2152) sin g + (x4 +tt - \/§x2t2) cos Sﬂ-} .
Remark 2.8. The r.v.

W(t) = ‘C’ <tcos gfj) - tsing—f (2.20)
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(where C(t), t > 0 is the Cauchy process) has probability density
2t(w? + t2) cos £Z

w,t) = , w> 0. 2.21
fulw,?) m(wt + t4 + 2w2t2 cos 21 ) (2.21)
Indeed, we have that
+w-+t sin —l{ tcos kx i
Pri{W(t) <w} = / dy 5 I (2.22)
wttsin kx  w(y? + 1% cos? 37)

and

d k k

fr(w,t) :%Pr {‘C’ (tcos ;) — tsin ;rn’ < w}
_ t cos ]2” . t cos S
ﬂ((w + tsin £7)2 + #2 cos? ’53{) ﬂ((w + tsin A7)2 + 2 cos? ’;Z{)
t cos £z t cos &z
2 4 2
(w2 + 2wt sin AT + t2> <w2 — 2wtsin &7 + t2)
2t(w? + %) cos &X
m(w? + 12 4+ 2wt sin —)(w2 + t2 — 2wt sin A7)
2t(w? + t2) cos &x
- m(wt + t4 + 2w2t2 cos 4R )
because
k k
2 sin’ 2—: =1 —cos%—irl.

By symmetrizing (2.20) as follows
Wi (t) — Wa(t)
2

where W (t), Wa(t) are independent copies of W (t) we obtain a distribution of the
form

Z(t) =

t(w? +t?) cos &X
m(w* + t4 + 2w2t2 cos )’
which coincides with each term of (2.15). This construction explains the reason for

which each term in (2.15) has two symmetric maxima at w = £t4/2sin g” — 1 for

k:smﬁ>f

hi(w,t) = weR (2.23)

3. HIGHER-ORDER LAPLACE-TYPE EQUATION

Let us consider the pseudo-processes related to higher-order heat-type equations
ou o"u
ot~ M oan

where ¢,, = (—1)2*! for n even and ¢,, = £1 for n odd.

Pseudo-processes constructed by exploiting the sign-varying measures obtained
as fundamental solutions to (3.1) have been examined in many papers since the

zeR, t>0, n>2 (3.1)
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FIGURE 4. The figure shows how the distribution (2.23) can be
constructed from the Cauchy density by folding and symmetrizing,
in the cases n = 3, k = 1 (top figures) and k = 3 (bottom figures).
The dotted line gives the density of the folded distribution (3.13).

0 0
"
"
H
HEl
B
e
)
Do
, '
\
0 0

beginning of the Sixties. A description of the procedure of construction of pseudo-
processes can be found, for example in Krylov [4], Ladokhin [6], Hochberg [3],
Orsingher [9], Lachal [5]. In the case where n = 2k+1, cop4+1 = —1, the fundamental
solution to (3.1) reads

1 [t )
ugpt1(7,t) = %/ R (3.2)

In particular, for £ =1

uz(x,t) = 1 /OO cos (Bz + B%t) dB = ’ ) (3.3)
T™Jo

1
—Ai | ——
/3t <S3t

= £l () 1 (3]

is the Airy function (see for example Lebedev [7]).
In this section we study the composition of pseudo-processes with stable pro-
cesses S, (t), t >0, a € (0,1) whose characteristic function reads

Ee#5e(t) = exp (—t|ﬁ|°‘e_i%%) = exp (—O’t|ﬁa (1 - i9g| tan 772&)) (3.4)

where
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where o = cosmy/2 > 0 and

0 = cot (%) tan (%) .

The parameter v must be chosen in such a way that 8 € [—1,1] for « € (0,1). The
skewness parameter § = 1 (that is v = «) corresponds to positively skewed stable
distributions. For the density

1 e —ifx %,
pa(xv%t)=§/ e WrEe 5 dp

we have the scaling property

1 T
pa(x,’)/,t) = mpa (mf% ]-) . (35)

For o € (0,1), we have the series representation of stable density (see [10, page
245])

oo

palrin 1) = 23y PO D pmoten—tin (T p a)r +1)) . (36)
r=0 '

Theorem 3.1. The composition of the pseudo-process Xop+1(t), t > 0 with the
stable process Sﬁ (t), t > 0, k € N, has a Cauchy probability distribution which
can be written as

s
t cos Perzm)

2
T [(m + (—1)*+1¢ sin 72(2,§+1)) + t2 cos? 2(2,’;“)]
(3.7)
with © € R, t > 0. The density function (3.7) is a solution to the higher-order
Laplace equation

2k

Pr{Xok+1(S - (t) € de}/dx =

a2k+1 U a2k+1 U
8t2k+1 + aka—i—l

Proof. For 6 =1, a =~y =1/2k + 1, in view of (3.4) we have that

=0, z€R, t>0 (3.8)

“+o0
U(B,1) = / 0 Pr{ X1 (S (1)) € da}

2k
— 00

(') —+o0
= / Pr{S%l+1 (t) € ds}/ P ugp i1 (z, 8) da
0 —00

_ [T s
7/ e Pr{STLl(t)Gds}

0
T T : k a2k+1 il
o2k 1 1) (1 C el ((_1) g )tan 2(2k + 1)))

= exp (181 (00 gy ~ 0 )

T T
= —t (=1 Bsin ——m ) .
exp( | 8] cos 20E T 1) i(—1)"tGsin 2(2k—|—1)>
This is the characteristic function of a Cauchy distribution with scale parameter

t cos and location parameter ¢(—1)**1sin s@rgT)- Formula (3.9) can also

= exp (_t’(_n’w%“

(3.9)

s
2(2k+1)
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be rewritten as
U(B,t) = exp <—tlﬂ| (cos sy i<—1>k|§| o 2(2/:+1))>
exp (—tlﬁl (cos (W“”Wi) “ren (2<2kﬂ+1)(_1)klgl)>>

= exp (—tw\e_i?(?’:“) (_1)kl%) . (3.10)
The Fourier transform of equation (3.8) becomes
a2k+1U )
W + (—2/6)2k+1U = 0 (311)
The derivative of order 2k + 1 of (3.10) is
o2k+1r i = kBN 2k+1
W(@t) = (—|B))2+ 1 (e s (71 wl) U(B,t) (3.12)
and this shows that the Cauchy distribution (3.7) solves the higher-order Laplace
equation (3.8). O
Remark 3.2. We notice that
/oop{x (51 (1)) € du} l/m dy
T iX2k+1 (0 _1_ T =—
0 + 2kF1 T (—=1)"+1 tan 2(2;:+1> 1+ y2
1 (=D*
=— 1 .].
2 ( Tt 1> (3.13)

which is somehow in accord with Lachal [5]. The results (3.7) and (3.13) show that
the mode of the Cauchy law (3.7) approaches the origin as k increases.

Let us consider the process of the form X3(S51(t)), ¢ > 0 where X3 is a pseudo-
process whose measure density is governed by the third-order heat equation

ou &3u

— =—= R, t 14

T 93 reR, t>0 (3.14)
and S1 is the stable process of order 1 /3. The distribution of X3(S
reads

t),t>0

1
3

* 1 T t 1 t
Pr{X3(S1(t)) ed :d/ Al - Al d 3.15
sy et =i [ i () L () - @09
where
t 1 t
Pr{S.(t) € ds} = dst——Ai [ ——), $>0,¢>0 3.16
sy eas) —dst i () sz (3.16)
for which

t

/OOO Pr{S, (1) € ds) :/Ooo dsé\g/%Ai (\@)
=(w=1t/V3s) = 3/000 Ai(w) dw = 1.

Corollary 3.3. The law (3.15) solves the higher-order Laplace equation
Pu  u

@4’@10, zeR, t>0 (317)
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and can be written as

dz

o =S
@31/2 t

T 2 a2 4 at+t2
x31/2t T —t
2 a3 —t37

Pr{X,(S (3.18)

3y
+3)

Proof. The Fourier transform of (3.15) becomes
/ ¢ Pr{X, (8, (1)) € da} = / e Pr(S, (1) € ds}. (3.19)
o 0

We show that (3.16) is a stable law of order 1/3. In view of the representation of
the the Airy function (4.10) of Orsingher and Beghin [10]

1(w) = 3 (31/3w)k sin n m
Aiw) = ~— k; o <3(k+1)>F( 3 ) (3.20)

we can write that

i (75) e () e (Fer)r (557)

We consider the series expansion (3.6) of the stable density (with ¢ = 1) for which
(3.4) holds true. For a =~ = 1/3 (that is § = +1), z = s/t3 in (3.6) we get that
s 1 1 (-DF /s
NEEREES JJoE)
Ps (t3 3 ) 3w§) K\

sin (g(k + 1)) r (k—gl)
=(by 4.5 of [10])

LIS b (een) ()
()]

and thus, from (3.5), we have that

1 s 1 1 1t t 1 Ai t £>0
a1 =50 =pL|S 5 = -5 == ) S, .
3P\ 1373 Ps\73 5 V/3s V/3s

We now evaluate the integral (3.19). We have that
oo
/ e~ i’ "Pr{Si(t) € ds}
=exp ( cosft| 53|3 (1 —isgn (—3%) tan z))

6
V3 , 1
=exp <—t|ﬁ| 1 + 1 sgn (5)\/§)>

=exp (—\/gt|ﬁ| —i= ﬁ) (3.21)

[e%S) k41
&l




16 ENZO ORSINGHER AND MIRKO D’OVIDIO

since sgn (—3%) =sgn (—3) = —sgn (B) = —l%. From (3.21) we infer that

de [t _, 3 t
Pr{Xs(S.(t)) € dz} :—m/ e exp —£t|ﬁ| —i=03] dp (3.22)
5 or | 2 2
e Cdz3?
T(z+i)? 43w 2 aPtattt?
312tz —t
27 a3 — 3
U
Remark 3.4. We observe that the r.v. X3 (S% (t)) possesses Cauchy distribution

with scale parameter \ﬁt/ 2 and location parameter —t/2. Furthermore, it solves
the third-order Laplace-type equation

Pu ot
ot3  Ox3
Remark 3.5. From the fact that

1 (= 1 Jjz 2 /2

we can write, for z > 0,

2 232\ ¢t 1 2 t3/2
Prixasy0) e debids = [ L\ [Tas (2557 L s (55557 )
(3.25)
/a3 [ 21:3/2 2t3/2
=5 ; sKy3 <33/2 5> K3 (33/2 s> ds.

In view of (see [2, formula 6.521])

=0. (3.23)

(3.26)

2v 2V)

/000 sK,(ys) K,(28)ds = mly) "y = 2

2sinmy (y2 — 22)

Ry +2} >0, |R{r} <1

we get that

31/2 T—1

which coincides with (3.18).

The Cauchy densities pertaining to the composition X%(S# (), t > 0,

k+1 2k+1
solve also a second-order p.d.e. as we show in the next theorem.

Theorem 3.6. The Cauchy densities

Pl tim) = teos 77 . .
x,t;m _ﬂ(x+tsin%) +t2c0s2ﬁ’ m .

satisfy the following second-order equation

G e
ot?  Ox2 S om Ozot’

z€R, t>0. (3.29)
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FIGURE 5. The profile of the function (3.18).

Proof. Tt is convenient to write (3.28) as a composed function

1 U
o) = a e
where
T . T
u:tcosﬁ, v:x—i—tsm%.
Since
af w Of .omw Of
a:cos%%—i—sm%%
aZ—f: QLﬁ—l—?coslsinlan 'Qlﬁ
ot? 2m Qu? 2m 2m Oudv 2m Ov?
of _of >’f_f
dr v ar?
and
>r L
ou? = ov?
we have that
0% f  0%*f , ™ O%f O°f .7 T O0°f , ™ O*f
2 v a2 = amowr T o2 T2 2m “Camouoe T 2mon?
2 2
:% [1 — cos? % + sin? %} +2sin%cos%aigv
:2sinl2 [sinwaf—i—cosﬂaf]
2m Ov 2m v 2m Ou
:2snlgg
2m Ox Ot

Remark 3.7. The characteristic function of (3.28) is

“+o0
/ elﬁxf(x,t,m)da: _ eft\ﬂ\cos 5o —ift sin 57—

— 00

17
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and can be obtained by considering the bounded solution to the Fourier transform

of (3.29)
d2F m dF
4+ 2ifBsin—— — B2°F =0.
7z + 2ifsin o 15 0

For the even-order Laplace equations we have the following result.

Theorem 3.8. The solution to the higher-order Laplace-type equation

a2n 8271
x
subject to the initial conditions
u(z,0) = §(z)
LI (= D)F R w(k4+1) (3'31)
S (2, 1) rgr = RIFFT €08 T 0<k<2n
is the classical Cauchy distribution given by
t

u(z,t) = Pr{Xsn(S 1 (t)) € da}/dx = reR, t>0 (3.32)

m(x? +¢2)’
where Xa,(t), t > 0 is a pseudo-process such that

EeiBXon(t) — —tB™"

Proof. The pseudo-process Xs,(t), t > 0 related to the equation

du_ gy
ot ot2n
has fundamental solution whose Fourier transform reads
+OO - 2n
/ Py, t)yde = e P,
—o00

If S4 (), t > 0 is a stable subordinator with Laplace transform
E exp (—)\S% (t)) = exp (—t/\ﬁ) L A>0,t>0 (3.33)
the characteristic function of Xs,,(S 1 (t)), t > 0 becomes

+o0 o0 2n
| e pria(s, @) cdo) = [ (s, () € ds)
n 0 2n

— 0o

=exp (—t[Ble’™), r=0,1,....2n—1 (3.34)

For r = 0, we have the characteristic function of the Cauchy symmetric law. For
r#0and n <r < 2n — 1 we have a function which is not absolutely integrable
and, for 0 < r < n — 1 is not a characteristic function (but can be regarded as a
Cauchy r.v. at a complex time). The functions

Fo(B,) = T
for all 0 < r < 2n — 1 are solutions to

82”Fr —
e = (<),
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We now check that for 0 < k < 2n — 1 the initial conditions (3.31) are verified by
the Cauchy distribution. Indeed,

0Fu ok (1 [T _.
t - = —ifz —t|Bl g
t=0 Otk <27r /_OO ©c e b

W(x’ )

t=0

1 +oo o . X
=5 e~ Pr(—1)k |k ap
— 00
—1)*k! k+1
:( ) cos mk+1) .
|z |k+1 2
|
Remark 3.9. We notice that for n = 1 the problem above becomes
02 0?
ﬁg = —87;;, x e R, t>0
subject to the initial conditions
u(z,0) = §(x)
% (z,t) = ﬁxl'g cos T
t=0t
which is in accord with
t 1

ot w(x? + t2) ’t:0+ - oma?’
The connection between wave equations and the composition of two independent
Cauchy processes C1(|C%(t)|), t > 0 has been investigated in D’Ovidio and Ors-
ingher [1] and more general results involving the Cauchy process have been pre-
sented in Nane [8].

Remark 3.10. We finally notice that the equation

u %
—+-—==0 3.35
5 " 9ad (3.35)
can be decoupled as
Fo A o
(55 733 (85 ~ i) =0 (3:36)
Form the Corollary 3.3, the solution to (3.36) can be therefore written as
V3% V3io—iZ
1 Xte's Vote—ls
£ =— 2 2
u(,t) =5 - i

iz 2 o T\ 2 .
(l'-i-teTG) +%t2€l§ (x+t626) _’_%th_lg
3
V3,

e's (JL‘Q + ie*ii + xte % 4+ %t%ﬂ'?)
S 227

jus

(x2 + Le7S + ate™6 + %t%_%) (3;‘2 + teis 4 ate's + %th’%)

e % (332 + ﬁei% + xte’s + %th’%)
(22 + Le™'5 +wte '8 + 212718 (22 + Le's 4 wte's 4 3¢2¢5)
V3 (22 +t*) cos & + at
~ 22 (22 4+ te™'5 +ate "5 +) (a2 + te's + wte’s)
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/3
227

3t (z? + 1) cos & + at
™

(3.37)

2 (22 + 12 + at cos %)2 + 22%t2 cos § .

Equation (3.36) is satisfied by the Cauchy density and therefore by the probability
law (3.37) which however is no longer a Cauchy distribution but is unimodal and
asymmetric.
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