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ABSTRACT 

The use of auxiliary information considerably improves the estimates and allows 

their production for unplanned domains, as well. 

Different kinds of auxiliary information can be used to improve estimates. 

Demographic information from administrative sources is frequently used, but 

sampling information can also be used. 

In this context we present an extension of calibrated estimator (���) of a total, 

originally proposed by Deville and Särndal in 1992. Our proposal of ��� estimator is 

able to take into account both demographic and sampling information. It also agrees 

with the needs of the Italian Labour Force Survey. 

The joint use of these kinds of auxiliary information in ��� estimators raises 

some questions. How their sampling error can affect the efficiency of estimates and 

whether introducing exogenous elements of sampling error is justified by the 

increased efficiency or at least improvement in estimates? 

The aim of this article is: (i) to derive the expression for the estimate of variance 

of the ��� estimator with sampling information, (ii) to present a new tool, based on 

sampling error, quick and able to support the introduction of additional auxiliary 

variables in the constraints system of the ��� estimator. 
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Some interesting results are achieved both analytically and by applying the 

proposal methodology to the monthly estimates of the Italian Labour Force Survey. 

KEY WORDS: calibrated estimator; composite estimator; sample constraints; 

exogenous variance; constraints effect; constraints selection. 

1. INTRODUCTION 

The use of demographic variables from administrative sources, with no sampling 

errors, is already consolidated both for the strategy of sampling units and for the 

determination of estimators. 

Moreover, several National Institutes of Statistics use information from previous 

periods to improve estimates and make them less volatile. 

Besides the efficiency gain, they also have the need to build a coherent system of 

surveys and the possibility to produce also estimates for unplanned domains. 

The Italian Labour Force Survey (��-���), following the experience of Canadian 

Labour Force Survey, uses longitudinal information to increase the efficiency of 

estimates. However, the use of regression composite estimator by Singh, Kennedy 

and Wu (2001) and Fuller and Rao (2001) can have some trouble when applied to the 

��-���. The impact of imputation for a high fraction of previous period missing 

values for the present month’s respondent can be serious (Singh, Kennedy and Wu, 

2001, p. 34). Moreover looking at the transition among working status, for the Italian 

labour market, the probability to stay in the same status of a previous periods is 

considered quite close to one, both for employed and inactive workers. Therefore, we 

can consider them as straight constraints for our estimates. 
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Our proposal of Calibrated estimator ����	 allows to exploit auxiliary 

information from previous periods to improve efficiency of estimates (Wolter, 1979, 

p. 604). Moreover, in the perspective of National Institute of Statistics, it allows to 

provide estimates consisting with those of simultaneous surveys for building a 

coherent system of estimates. 

The ��� estimator, developed by Deville and Särndal (1992), uses the total of 

auxiliary variables as constraints to produce unbiased, efficient and consistent 

estimates. 

In general in ��� estimator the totals of auxiliary variables are exactly-known 

from administrative sources (administrative constraints), without sampling error. 

They are structural variables, such as sex, age and location. 

However, constraints in ��� estimator do not necessarily have to be totals 

exactly-known. They can be also derived from different sample surveys, with 

sampling error (Deville 1999, p. 207). 

The introduction of this kind of constraints ensures that our estimates are 

consistent with total providing from simultaneous surveys or with the same survey of 

previous periods. 

Therefore, in variance estimate, in addition to the sampling error, we must 

considered the error related to sampling estimates we put as constraints. 

Our paper suggests an analytical expression of variance estimate of ��� estimator 

of total with sampling constraints. Furthermore, we also propose a prior evaluation of 

efficiency increase that we can expect adding further constraints in ��� estimator 

(similarly to “variable selection” we can call this “constraints selection”). 

After introducing notation and methodological bases (section 2), in section 3 we 

derive the amount of error imported from the survey from which the total estimate, 
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used as constraint, is taken. We call it exogenous variance. A tool for deciding the 

constraints addition, based on evaluation of estimator efficiency, is introduced in 

section 4. In section 5 the whole methodology illustrated in the previous sections is 

applied to monthly estimates of the Italian Labour Force Survey. Finally, in section 6, 

there are conclusions and remarks. 

2. NOTATION AND METHODOLOGICAL BASES 

In sample surveys, for each sample unit, the values of several auxiliary variables, 

be noted by the vector 
 � ���, … , �� , … , ���′, are observed in addition to the 

variable of interest �. Hence, for each sample unit we have a vector ��� , 
�	 with 

� � 1 elements, being � the number of auxiliary variables. 

We assume complete responses for variable �, so the value �� is observed on each 

� units of sample �. 

The vector of auxiliary variables, as well as the vector of their known totals 

� � ∑ 
���� � �∑ 
����� , … , ∑ 
����� , … , ∑ 
����� �, can be used to improve the 

estimate of � (Bethlehem, Keller, 1987, p. 143 and Wright, 1983, p. 879). 

The ��� estimator of a total, �!"#$ � ∑ ��%���& , estimates the total amount of 

interest variable using a system of weights that “perform well for the auxiliary 

variable” (Deville & Särndal, 1992, p. 367). Weights %� are computed by solving the 

constrained optimization problem: 

'()
(*+,- . / 0�%� , 1�	� � & 2

/ %��� � �� � &
3, (2.1) 
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where 0 is a quadratic distance function (Deville & Särndal, 1992, pp. 377-379; 

Singh & Mohl, 1996, pp. 108-114). 

For the sake of simplicity, we use the notation %� and 1� instead %�4 and 1�4 

even if these depends on both the unit � and the sample �. 

The constrained optimization problem assures that all individuals of the same 

family have the same final weights %� (Lemaître & Dufour, 1987, p. 199). The final 

weights are, for a given distance function, on average, as close as possible to 1� and 

respected a constraints system with the vector of totals �. The 1� (equal to the 

inverse of inclusion probabilities, 5�) are previously adjusted for nonresponse 

(Deville, Särndal & Sautory, 1993, p. 1013). 

For large sample size ��� estimator is asymptotically equivalent to the 0670 

estimator, because distance functions, generally used to measure distance between 

weights %� and 1�, are linear in 
 (Deville & Särndal, 1992, pp.377-380 and Singh & 

Mohl, 1996, pp. 108-114). The variance of ��� estimator is asymptotically equal to 

that of 0670 estimator and its unbiased estimate is: 

89:��!"#$� � / /∆�;5�; <=� >̂�5�4@ <=; >̂;5;4@;A���& , (2.2) 

where B�; � 5�; C 5�5;. Moreover >̂· and =· are respectively the residuals estimated 

by the regression model and the corrector of basic design weights (Deville & Särndal, 

1992, pp. 379-380 and Estevao, Hidiroglou & Särndal, 1995, p. 184). 

3. CALIBRATED ESTIMATOR WITH SAMPLE CONSTRAINTS 

The ��� estimator assures consistence with the external source (administrative or 

census) without sampling error, because its estimates are constrain by � vector of 

exactly-known totals. However, the estimates can be also constrained to a vector of 
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sampling-known totals, or to totals estimated by another sample survey. In this case 

the vector of sampling-known totals is �EE (Deville, 1999, p. 207) and the constrained 

optimization problem (2.1) becomes: 

'()
(*+,- . / 0�%� , 1�	� � & 2

/ %�
� � F�, �EEG� � &
3 (3.1) 

where F�, �EEGH � FI�, … , I� , … , I�JKJ�, I!!�JK, … , I!!�G  and the first � elements are 

exactly-known totals, �, while the last : elements are sampling-known totals, �EE, 

which are estimates with sampling error. 

We distinguish between constraints from overlapped samples (L�) and constraints 

from non-overlapped samples (ML�). 

We have L� constraints from a repeated survey with overlapping samples. 

Therefore we use, as constraints, totals derived from previous period of a periodic 

survey with a rotating design. In this case we constrain the estimate of our parameter 

to a total obtained on a fraction of the same units. 

When the overlapping does not occur we are in ML� case. The totals used as 

constraints are taken from a different survey in the same period, with the same 

definitions of variables. 

The use of sampling-known totals, both ML� and L�, does not change the 

expression of the estimator. Indeed the sampling-known totals are considered as 

simple constraints, and the way of determining the system of weights remains 

essentially unchanged. 

However, the presence of sampling constraints modifies the expression of the 

variance of the ��� estimator, because of the use of sampling-known totals. 
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Therefore, we introduce a portion of error from the other sample where the totals are 

derived. 

A first suggestion for variance estimate of ��� estimator with these kinds of 

constraints, for a simple random sampling and for ML� constraints only, is provided 

by Ballin, Falorsi and Russo (2000, p. 49). 

Readjusting sample dependent weights and introducing a discount rate depending 

on the proportion of sample units for which the sampling constraints act, N�, we have 

a variance estimator useful for complex design surveys. 

We define ���O  the ��� estimator with sampling constraints. An asymptotically 

unbiased estimate of variance ���O , if at least a ML� constraint is considered, is: 

89:��!"#$PQRS� �  

� / / B�;5�; T=�& >̂�5�U T=;& >̂;5;U;A���& � / N�
�

�V� WX�Y89: FI!!�G � / X�X�′Z[8 FI!!� , I!!�′G�′A�
\, (3.2) 

In the above expression the first element is the sampling error of � variable for the 

survey in issue and it is equal to the variance (2.2). The second element is the 

additional error we introduce when sampling-known constraints are considered. Later 

we will define it as “exogenous variance”. 

When we use at least an L� constraint, we ought to introduce a component part of 

joint variability that, under the hypothesis of constancy of regression coefficients and 

of unbiased estimates of sampling-known totals used as constraints, is equal to 2�! 

(see Appendix, Proof 1.). Hence, the variance estimate of ��� estimator with L� 

constraints is: 
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89:��!"#$PRS� �  

� / / B�;5�; T=�& >̂�5�U T=;& >̂;5;U;A���& � / N�
�

�V� WX�Y89: FI!!�G � / X�X�^Z[8 FI!!�, I!!�^G�^A� � 2�!\. 
(3.3) 

We can write (3.2) and (3.3) in the form: 

89:��!"#$P� ` 89:��!abca� � dH�e	 d � 2�!1,9f�g	′hijk, (3.4) 

where 1 is a �-dimension vector of one, e � �gl m l n	  is the Hadamard product of 

diagonal matrix g in which the element N� is the proportion of sample units for which 

the j-th sampling constraints acts, and m, n are two symmetric �-matrices defined as: 

n= 

where o� is the regression coefficient of j-th auxiliary variable and n is the sampling 

variance-covariance matrix of auxiliary variables. Note that 1,9f�g	p �
�N�, … , N�JKJ�, N�JK … , N�� and hijk is a column-vector where each element is equal to 

1 if j is the L� constraint and 0 otherwise. 

We stress that actually matrix e possesses the structure: 

  

m � 

 o�Y … o�o� … o�JKJ�o� o�JKo� … o�o� q r q r q q r q o�o� … o�Y … o�JKJ�o�  o�JKo� … o�o� q r q r q q r q o�o�JKJ� … o�o�JKJ� … o�JKJ�Y  o�JKo�JKJ� … o�o�JKJ� o�o�JK … o�o�JK … o�JKJ�o�JK o�JKY  … o�o�JK q r q r q q r q o�o� … o�o� … o�JKJ�o� o�JKJ�o�  … o�Y 

 89:�I�	 … Z[8�I� , I�	 … Z[8�I�JKJ�, I�	 Z[8�I�JK , I�	 … Z[8�I� , I�	 q r q r q q r q Z[8�I�, I�	 … 89:�I�	 … Z[8�I�JKJ�, I�	 Z[8�I�JK , I�	 … Z[8�I� , I�	 q r q r q q r q Z[8�I�, I�JKJ�	 … Z[8�I� , I�JKJ�	 … 89:�I�JKJ�	 Z[8�I�JK , I�JKJ�	 … Z[8�I� , I�JKJ�	Z[8�I�, I�JK	 … Z[8�I� , I�JK	 … Z[8�I�JKJ�, I�JK	 89:�I�JK	 … Z[8�I� , I�JK	 q r q r q q r q Z[8�I�, I�	 … Z[8�I� , I�	 … Z[8�I�JKJ�, I�	 Z[8�I�JK , I�	 … 89:�I�	 
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because 89:�I�� � 0 for j � 1, … , � C : C 1 and 

Z[8�I�, I�^� � t�,�^u89:�I�	89:�I�^	 � 0 for j � 1, … , � C : C 1 e jH � 1, … , � C
: C 1 with j v jH. 

If all totals of constraints are exactly-known (: � 0), variance estimate (3.4) 

becomes simply (2.2), because both dH� e	 d and 2�! 1,9f�g	′hijk are equal to 0. 

When there is at least a sampling constraint, if it is a ML� constraint, 89:��!wxO � `
89:��!abca� � dH�e	d, whilst if it is an L� constraint (3.4) holds. Moreover, if we 

define 89:�7	 � dH� e	 d � 2�! 1,9f�g	′hijk, (3.4) can be written: 

89:��!wxO � ` 89:��!abca� � 89:�7	, (3.5) 

where 89:�7	 is the exogenous variance, or equivalently the adding error we 

introduce when considering sampling-known constraints. 

4. SELECTION OF AUXILIARY VARIABLES IN yze ESTIMATOR 

The choice of variables to insert into the constraint system of ��� estimator is a 

relevant problem. Besides sampling error reduction, in official statistics, we also need 

to have a consistent estimate system, that is to have the same estimate for the same 

aggregate provided by simultaneous surveys. 

As already said, our aim is to build a new tool, based on sampling error, 

computationally efficient and able to give mathematical support to the decision of 

adding further auxiliary variables in the constraint system of ��� estimator. 

e � 

 

0 0 

0 

o�JKY 89:�I�C:	 … o�JKo�Z[8�I�, I�C:	 q r q o�o�JKZ[8�I�C:, I�	 … o�Y89:�I�	 
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Moreover, our tool should provide, with a good approximation, a measure of the 

expected gain of efficiency when considering further auxiliary variables. 

It is known that from the {| estimator to 0670 (equivalently to ���), using 

auxiliary variables, we have a reduction of sampling error proportional to the 

correlation among auxiliary variables and interest variable (Bethlehem & Keller, 

1987, 146). 

However, our main interest consists in studying how sampling error changes when 

} �~ 1	 auxiliary variables are added to a ��� estimator already including � (~ 1) 

auxiliary variables. Hereafter we denote ���� the calibrated estimator with � � } 

auxiliary variables. 

Looking at (2.2), we can see that this is a function of residuals of regression model 

based on variables used as constraints. Intuitively, we may think that introducing 

more variables in the constraints system, and in the joint regression model, produces a 

sampling error reduction due to model fitting improvement. 

Théberge (1999, 2000) presents a generalization of ��� estimator. He shows a 

method able to tell us under what conditions the constrained minimum problem 

admits solution. He also determines, in non-iterative way, a weight system equivalent 

to that of the ��� estimator. 

Our proposal is to construct a quicker tool, useful especially in the planning stage 

of surveys, that permits to choose constraints for the estimator. This tool does not 

depend by the computation of final weights, that can take long time, especially for 

large size samples and complex system of constraints as in the Italian Labour Force 

Survey. Instead, it should depend only by the fitting of the model based on the 

considered auxiliary variables. 
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The proposed tool consists in a function that relates the fitting of two models, 

Model 1 (}�) and Model 2 (}Y). The }� is the model on which ��� estimator is 

based, whilst }Y is the model including only the additional constraints that we want 

include and the � variable. The output of this function is the reduction of sampling 

error that we can expect considering the additional auxiliary variables. 

This reduction is evaluated by � � "x�"#$�	"x�"#$	 , that is the ratio between the variation 

coefficient of ��� estimator and that of ���� estimator. We can see � as the 

constraints effect. 

4.1. A SIMULATION STUDY 

To determine this function we employed a simulation study. Population of 5500 

units has been first generated. The variable of interest � has been simulated from a 

binomial distribution and ten auxiliary variables I��, I��, … , I�� have been 

generated from a binomial distribution with different correlation with the variable �. 

In this way we have the known totals we will use as constraints in ��� estimator. 

As a measure of correlation between the interest variable and auxiliary variables 

the coefficient 6 � �:�,�� has been used. It can be considered as an index of a 

regression model fitting. We denote it in their subscript, for instance I�� is an 

auxiliary variable that has correlation with �, measured with 6, equal to 0.3. 

Since the sampling error may also depend on the size of aggregate to estimate, we 

have simulated several � (and relatives I��, I��, … , I��) for several proportions of 

population units that present the given feature of �. From now on, it will be called 

“incidence” and denoted by ���	. 

With a simple random sampling without replacement, 600 units are selected from 

our population. On this sample we estimated, by ��� estimator, the total of the 
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variable � and its sampling error, through all possible pairs of I. We repeated this 

procedure for 1000 samples (see Appendix, Simulation results). 

In Figure 1, (a) and (b) show two extreme scenarios: simulation with � with 

incidence in the population of 40% and with incidence of 10%. 

 (a) ���	 � 0.40 (b) ���	 � 0.10 

  
RM1=0.0 RM1=0.9 

Figure 1 Reduction of variation coefficient (�) when we use yze estimator based on a 

model with ��d equal to 0.0 or 0.9 and we add variables that form a model 

with several ��� (from 0.0 to 1.0) for � incidence in the population of 40% and 

with incidence of 10%. 

To make the figure more readable we have drawn only the extreme cases, where 

6�� is equal to 0.0 and 0.9, respectively. Indeed the other cases �0.1 � 6�� � 0.8) 

draw curves nested within those represented. 

In a saturated model with a high 6��, the introduction of constraints, even if with 

high correlation with interest variable, has less effect on the gain of efficiency of our 

estimate. Hence, the relative curve is less steep. 

The cases where, in our estimate, � can be larger than one are more common for 

low incidence of � and when }� does already have a high fitting. 

Grouping together the results for 6�� we see that for several incidence levels of � 

there are unimportant variation of �. Therefore, we have decided to summarize the 

several curves through the median. 

  



13 

 

6��=0.5 

 ���	  N�+>1,9-	 

Figure 2 Reduction of variation coefficient (�	 when we use yze estimator based on a 

model with ��d=0.5 and we add variables that form a model with several ��� 

(from 0.0 to 1.0) for the different level of ���	 (incidence of � on population) 

and median of �. 

In Figure 2 the grey “wake” represents the � trend for the ��� estimator with 

several constraints that set up a model with � with 6�� equal to 0.5 for each 

incidence level of � and for each 6�Y change. Whilst the black curve is the 

interpolation curve of the median of � values for each incidence level of �. 

Removing the incidence effect on the sampling error, that has an unimportant 

influence variation of �, leaves the � values for 6�� and 6�Y, reported in Table 1. 

Table 1 

Reduction of variation coefficient percent (�) when we use yze estimator based on a 

model with ��d and we add variables that form a model with ���. 

� 
6�Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

6�� 

0.0 0.999 0.989 0.959 0.909 0.839 0.749 0.639 0.513 0.360 0.190 0.000 

0.1 1.000 0.990 0.961 0.910 0.841 0.751 0.643 0.514 0.364 0.191 0.000 

0.2 1.000 0.991 0.961 0.915 0.847 0.757 0.651 0.523 0.370 0.195 0.000 

0.3 1.001 0.991 0.964 0.917 0.855 0.768 0.662 0.537 0.383 0.206 0.000 

0.4 1.000 0.992 0.966 0.925 0.865 0.787 0.682 0.556 0.403 0.216 0.000 

0.5 1.001 0.993 0.970 0.931 0.883 0.807 0.709 0.591 0.432 0.238 0.000 

0.6 0.999 0.992 0.975 0.940 0.895 0.831 0.745 0.623 0.473 0.267 0.000 

0.7 0.999 0.992 0.980 0.952 0.913 0.860 0.783 0.682 0.540 0.316 0.000 

0.8 1.000 0.997 0.987 0.967 0.943 0.899 0.839 0.761 0.626 0.399 0.000 

0.9 0.997 0.994 0.989 0.981 0.963 0.942 0.907 0.850 0.757 0.565 0.000 
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An important result in Table 1 is that, even when we introduce variable with low 

correlation with �, we obtain a reduction, albeit small. This completely agrees with 

the remarks by Deville and Särndal (1992, p. 367). Adding constraints, we set up a 

weight system that performs better for the � variable. 

Using the model 
������������, � can be written as a function of 6�� and 6�Y: 

α � 1.004 C 1.003 6�Y1 C �0.126 6�� � 0.849	6�Y C �0.426 6��Y � 0.0146�� C 0.403	6�YY , (4.1) 

(see Appendix, Interpolation of � values in Table 1). 

By (4.1) we obtain the reduction of variation coefficient if we move from ��� 

estimator with � constraints to ���� with � � }. As already said, this can be 

considered the constraints effect. 

The expected coefficient of variation for ���� (��� �), so based on � � } 

constraints, is simply: 

��� � � �� �. (4.2) 

5. APPLICATION ON REAL DATA 

In the application on real data, we aim at computing the real sampling error for the 

estimates of the Italian Labour Force Survey (��-���), and check if our model, 

constructed in Section 4, is useful to predict the reduction of sampling error due to the 

addition of further constraints in the ��� estimator. 

The ��-��� is a continuous survey carrying out all the weeks of the year. It 

represents the official source of the labour market in Italy (for more information see 

Istat, 2006). 

The sampling design for each quarterly sample is complex. It has two-stages 

(municipalities and families) with stratification of the primary units on the basis of 
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location and demographic size. Moreover, the sampling design provides a rotation 

scheme of sampling (2�, 2�, 2�). That is a rotation group remains in the sample for 

two consecutive quarters, then leaves the sample for two quarters, and then it re-

enters the sample for another two consecutive quarters. It is then dropped from the 

sample completely. The Italian National Institute of Statistics (Istat), in agreement 

with Eurostat, organizes also a time sampling design to provide a monthly estimate 

and to guarantee an accurate representation of monthly samples. 

However, monthly samples have one-third of the size of quarterly samples. 

Therefore, Istat, following the experience of the Canadian Labour Force Survey, 

adopted longitudinal constraints to provide less volatile estimates through monthly 

samples steadier and more similar in structure. 

Because of the rotation scheme, the overlapping sample, between a quarter and 

four quarters (one year), should be about 50%, but it is really less than 30% for both, 

due to nonresponse (especially for attrition). So, the impact of imputation for high 

fraction of previous period missing value for the present month’s respondent can be 

serious (Singh, Kennedy & Wu, 2001, p. 34). 

The calibration strategy for ��-��� consists in 302 constraints, 206 exactly-known 

by administrative sources (sex, age and location) and 96 sampling-known, such as 

estimate of work status (employed, unemployed and inactive) three months before 

and twelve months (one year) before. These are called longitudinal constraints. 

Therefore, for this particular sampling design we have L� constraints. 

We apply (3.4) and our model to the sample of September 2009, with 20,928 

families and 49,114 units. The sampling constraints are the estimates of work status 

three and twelve months before (June 2009 and September 2008). 
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We start from ��� estimator that uses only the 206 administrative constraints. The 

estimates and their relative error for several interest domains are in Table 2. 

Table 2 

Estimates of Employed, Unemployed and Inactive 

and their sampling error for Italy and for Males and 

Females with yze estimator. h�-egn, September 

2009. 

 

Estimate 

[1] 

Variance 

[2] 

CV% 

[3] 

ITALY 

Employed 22,786,251 10,045,544,438 0.440 

Unemployed 2,021,889 2,930,847,610 2.678 

Inactive 34,982,481 9,287,085,077 0.275 

MALES 

Employed 13,599,617 4,467,486,520 0.491 

Unemployed 1,092,265 1,468,480,200 3.508 

Inactive 14,371,974 3,914,412,178 0.435 

FEMALES 

Employed 9,186,634 5,785,715,715 0.828 

Unemployed 929,624 1,332,023,546 3.926 

Inactive 20,610,507 5,518,925,815 0.360 

Now, before compute ��� estimator including longitudinal constraints, it is of 

interest to evaluate how much gain in efficiency we may expect. 

Using the model in the previous section, and mainly (4.1), we want predict the 

improvement in efficiency. We need the �� of estimates achieved with only the 

administrative constraints, I� C IY�  (Table 2[3]) and the fitting coefficients for each 

parameter and each domain we aim to estimating. Therefore, the first model (}�) is 

� � N�I� C IY� 	, namely the model based only on the 206 constraints with exactly-

known totals from administrative sources. The second model �}Y	 does have the 

form � � N�IY�¡ C I��Y	. It only considers the constraints from sampling sources 

that we would add. 

Results in Table 3 show the reduction of the sampling error we can expect adding 

these 96 constraints to our estimator. 
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The percent variation coefficients (��� %�
) in Table 3 are very close to those 

actually computed by considering constraints as known from administrative sources. 

To compute values of ��� %�
 we have avoid to use expression (2.2), whilst used for 

��%� in Table 4[3], which would require the computation of all sampling weights. 

Table 3 

Results of application of our model to h�-egn of 

September 2009. 

 ITALY MALES FEMALES 

Employed 6�� 0.708 0.758 0.626 6�Y 0.637 0.612 0.654 � 0.766 0.814 0.708 ��� %� 0.337 0.400 0.586 

Unemployed 6�� 0.224 0.232 0.217 6�Y 0.345 0.366 0.320 � 0.888 0.875 0.902 ��� %� 2.377 3.069 3.542 

Inactive 6�� 0.738 0.791 0.657 6�Y 0.618 0.594 0.633 � 0.789 0.846 0.745 ��� %� 0.220 0.368 0.268 

The ��� %�
 drawn with our model differ by 5% at most from ��%� value actually 

computed (Table 4[3]). The difference is greater than 5% only in the case of 

unemployed females (8.7%). 

Table 4 shows the actual evaluation of sampling error using ��� estimator with 

L� constraints. We relate the variance and the percent variation coefficient, both 

computed by not considering exogenous variance (Table 4[2] and 4[3]), and 

including the exogenous variance (Table 4[4] and 4[5]). When we say that we not 

considering exogenous variance, it means that the additional 96 constraints are 

considered as known from administrative sources. 
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The introduction of longitudinal constraints leads to stable estimates guaranteeing 

the same work status of three months before and of one year before to all those who, 

meanwhile, in fact do not change their condition. 

Table 4 

Estimate of Employed, Unemployed and Inactive and their sampling error for Italy and 

for Males and Females with yze and yzeP� estimators. h�-egn, September 2009. 

  

without 89:�7	 �!���� 

with 89:�7	 �!���P � 

  
Estimate 

[1] 

Variance 

[2] 

��%� 

[3] 

Variance 

[4] 

��%� 

[5] 

ITALY 

Employed 22,886,373 5,729,943,806 0.331 5,798,793,460 0.333 

Unemployed 2,031,044 2,107,238,156 2.260 2,111,420,352 2.262 

Inactive 34,873,584 5,694,253,968 0.216 5,913,857,533 0.221 

MALES 

Employed 13,647,567 2,753,880,461 0.385 2,793,283,490 0.387 

Unemployed 1,093,438 1,144,596,083 3.094 1,146,978,094 3.097 

Inactive 14,323,053 2,385,261,041 0.341 2,448,691,593 0.345 

FEMALES 

Employed 9,238,806 3,173,204,562 0.610 3,201,923,547 0.612 

Unemployed 937,606 933,831,700 3.259 935,497,533 3.262 

Inactive 20,550,531 3,187,456,800 0.275 3,338,568,872 0.281 

Small variations in estimates occur. For all the domains the number of inactive 

units decreases, and there is a redistribution of these units towards labour force 

(employed and unemployed). However, we have an improvement in efficiency of 

estimates, as stressed by the decrease of percent relative error (Table 2[3] vs. 4[5]).  

In every domain, the gain of efficiency is larger for unemployed. It reaches a 

maximum of 0.7% for females. 

This efficiency gain is due to better specification of the regression model with the 

adding of longitudinal sampling constraints. This widely offsets the increasing of 

error due to the sampling source of constraints, which is never bigger than 0.006% 

(Table 4[3] vs. 4[5]). 
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6. CONCLUSION AND REMARKS 

This work suggests two strongly innovative elements, mainly for the use of 

calibrated estimators for surveys with complex design and in complex contests such 

as those of the National Institute of Statistics. 

Nowadays the improvement of estimates efficiency and consistency with other 

sampling surveys are key elements in the production of official statistics. But, another 

equally important aim is to provide estimates for unplanned domains for which we 

have not information from administrative sources. 

However, besides this, there is the need to evaluate the amount of error that we 

introduce using auxiliary variables from sampling sources and how, on the whole, the 

procedure can be more or less statistically profitable. 

This work aimed to meet these demands with a novel contribute. First, it provides 

an analytical quantification of sampling error of a total estimate through calibrated 

estimator with sampling constraints. Moreover, it introduces a strong simplification 

of the computation of the relative error with several combination of constraints, that 

can be used simply and quickly in design phase of an estimator. In addition it help us 

to decide which scenarios to adopt, in terms of variance. 

The choice of auxiliary variables, obviously, is not conditioned only by the 

decrease of relative error, but it is a decision that has to take account of other 

considerations like, for instance, the opportunity to produce more accurate estimates 

consistent with unplanned domains. 

Therefore having a tool, like the proposal model, strongly simplifies the operations 

leading to the choice of constraint system of the calibrate estimator. 
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Appendix 

Proof 1. 

The 0670 estimator with sample constraints, from Ballin, Falorsi and Russo 

(2000, p. 48) can be written as �!abcaP � �!£¤ � mp��EE C �E£¤	. Adding and deducting 

the vector of real values of auxiliary variables totals, �, we have �!abcaP � �!£¤ �
mp ¥�� C �E£¤� � F�EE C �G¦. This expression can be decomposed in two elements 

�� � �!£¤ � mp�� C �E£¤	 that is the expression of the 0670 estimator (Fuller, 2002, 

p. 6) and �Y � mp F�EE C �G. If �EE are total estimates of ML� constraints, �� and �Y are 

independent and Z[8���, �Y	 � 0. When �EE are total estimates of L� constraints, �� 

and �Y are dependent. By denoting �[8���, �Y	 � 7i���Yk C 7i��k7i�Yk, because 

�� and �Y are dependent, 7i���Yk  is equal to 7i��k � 7i�Yk C  7i��k7i�Yk, so 

�[8���, �Y	 �  7i��k � 7i�Yk C  27i��k7i�Yk. �� is asymptotically unbiased so, 

for large size population, his expected value is �, moreover considering that �EE is an 

unbiased estimate for � and m is constant, �[8���, �Y	 � 2�. Therefore, an unbiased 

estimate is Z[8���, �Y	 � 2�!. 
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Simulation results. 

���	 6�� 
6�Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.90 0.0 1.018 1.002 0.968 0.964 0.835 0.742 0.633 0.507 0.358 0.194 0.000 

0.90 0.1 1.004 0.985 0.965 0.943 0.844 0.742 0.624 0.506 0.351 0.179 0.000 

0.90 0.2 0.987 0.995 0.947 0.942 0.825 0.741 0.635 0.516 0.372 0.192 0.000 

0.90 0.3 0.984 0.960 0.946 0.908 0.825 0.746 0.643 0.506 0.353 0.195 0.000 

0.90 0.4 1.002 0.979 0.970 0.975 0.866 0.762 0.685 0.563 0.391 0.209 0.000 

0.90 0.5 1.008 1.005 0.971 0.968 0.880 0.770 0.715 0.594 0.436 0.249 0.000 

0.90 0.6 0.984 0.997 0.978 0.967 0.919 0.817 0.731 0.597 0.463 0.265 0.000 

0.90 0.7 1.017 1.008 0.971 0.963 0.893 0.861 0.722 0.693 0.524 0.335 0.000 

0.90 0.8 1.057 1.061 1.051 1.006 1.004 0.908 0.866 0.766 0.666 0.410 0.000 

0.90 0.9 1.067 1.003 1.080 1.036 0.992 1.035 0.896 0.889 0.782 0.589 0.000 

0.80 0.0 1.003 1.003 0.955 0.909 0.847 0.761 0.639 0.507 0.350 0.184 0.000 

0.80 0.1 1.001 0.981 0.957 0.921 0.842 0.750 0.650 0.516 0.371 0.191 0.000 

0.80 0.2 1.000 0.997 0.960 0.907 0.837 0.745 0.655 0.518 0.366 0.194 0.000 

0.80 0.3 0.991 0.989 0.976 0.915 0.854 0.754 0.650 0.518 0.380 0.201 0.000 

0.80 0.4 0.991 0.980 0.947 0.911 0.842 0.753 0.669 0.539 0.391 0.205 0.000 

0.80 0.5 0.991 0.992 0.968 0.939 0.877 0.814 0.700 0.579 0.436 0.229 0.000 

0.80 0.6 0.990 0.984 0.960 0.908 0.860 0.820 0.733 0.601 0.452 0.248 0.000 

0.80 0.7 1.000 1.003 0.978 0.953 0.932 0.869 0.785 0.681 0.518 0.319 0.000 

0.80 0.8 0.986 0.956 0.962 0.954 0.901 0.909 0.806 0.725 0.639 0.385 0.000 

0.80 0.9 1.066 1.015 1.026 1.065 0.997 0.983 0.937 0.880 0.778 0.606 0.000 

0.75 0.0 1.006 0.992 0.971 0.920 0.835 0.752 0.639 0.508 0.373 0.195 0.000 

0.75 0.1 1.003 0.987 0.962 0.910 0.838 0.756 0.644 0.511 0.361 0.191 0.000 

0.75 0.2 0.999 0.984 0.966 0.905 0.841 0.759 0.649 0.519 0.367 0.197 0.000 

0.75 0.3 1.004 0.989 0.965 0.907 0.837 0.771 0.641 0.544 0.387 0.205 0.000 

0.75 0.4 1.004 0.999 0.969 0.927 0.874 0.773 0.705 0.562 0.408 0.220 0.000 

0.75 0.5 0.988 0.982 0.956 0.901 0.858 0.767 0.685 0.600 0.423 0.236 0.000 

0.75 0.6 0.993 0.991 0.976 0.929 0.913 0.818 0.754 0.629 0.466 0.270 0.000 

0.75 0.7 1.014 0.999 0.986 0.968 0.932 0.903 0.793 0.676 0.529 0.310 0.000 

0.75 0.8 1.007 0.997 0.989 0.968 0.950 0.912 0.833 0.762 0.652 0.411 0.000 

0.75 0.9 0.997 1.000 1.000 0.984 0.974 0.974 0.896 0.824 0.757 0.579 0.000 

0.70 0.0 0.996 0.991 0.952 0.904 0.831 0.754 0.638 0.514 0.367 0.195 0.000 

0.70 0.1 1.005 0.997 0.962 0.907 0.851 0.754 0.652 0.518 0.365 0.200 0.000 

0.70 0.2 0.986 0.981 0.951 0.904 0.839 0.758 0.646 0.522 0.364 0.197 0.000 

0.70 0.3 1.007 0.991 0.972 0.923 0.856 0.769 0.676 0.540 0.391 0.205 0.000 

0.70 0.4 1.005 1.000 0.994 0.929 0.881 0.815 0.690 0.559 0.407 0.222 0.000 

0.70 0.5 0.995 0.984 0.973 0.929 0.893 0.805 0.700 0.582 0.433 0.232 0.000 

0.70 0.6 0.994 0.991 0.965 0.942 0.893 0.826 0.735 0.620 0.469 0.266 0.000 
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���	 6�� 
6�Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.70 0.7 1.001 0.998 0.971 0.959 0.894 0.858 0.792 0.669 0.523 0.325 0.000 

0.70 0.8 1.006 1.009 0.977 0.936 0.941 0.907 0.831 0.731 0.624 0.395 0.000 

0.70 0.9 0.988 1.007 1.042 1.022 1.000 0.939 0.937 0.879 0.806 0.575 0.000 

0.60 0.0 0.998 0.993 0.960 0.910 0.844 0.753 0.633 0.508 0.364 0.194 0.000 

0.60 0.1 0.997 0.992 0.958 0.909 0.840 0.751 0.633 0.516 0.365 0.194 0.000 

0.60 0.2 1.000 0.988 0.956 0.909 0.849 0.756 0.651 0.524 0.374 0.197 0.000 

0.60 0.3 0.990 0.988 0.962 0.909 0.855 0.763 0.649 0.516 0.386 0.214 0.000 

0.60 0.4 1.003 0.983 0.975 0.924 0.862 0.789 0.680 0.541 0.406 0.222 0.000 

0.60 0.5 0.999 0.999 0.962 0.934 0.883 0.803 0.696 0.559 0.431 0.236 0.000 

0.60 0.6 1.003 0.995 0.977 0.938 0.890 0.822 0.733 0.621 0.479 0.273 0.000 

0.60 0.7 0.982 0.991 0.978 0.928 0.904 0.827 0.777 0.680 0.537 0.323 0.000 

0.60 0.8 1.005 1.007 0.993 0.982 0.930 0.920 0.847 0.783 0.629 0.406 0.000 

0.60 0.9 0.978 0.997 1.001 0.962 0.933 0.943 0.915 0.849 0.744 0.549 0.000 

0.50 0.0 0.989 0.977 0.943 0.894 0.826 0.750 0.664 0.461 0.355 0.192 0.000 

0.50 0.1 0.998 0.992 0.948 0.898 0.808 0.748 0.663 0.462 0.357 0.190 0.000 

0.50 0.2 0.998 0.993 0.955 0.899 0.818 0.759 0.673 0.478 0.364 0.201 0.000 

0.50 0.3 0.998 0.994 0.952 0.910 0.824 0.775 0.679 0.481 0.382 0.203 0.000 

0.50 0.4 0.999 0.993 0.960 0.912 0.854 0.789 0.702 0.513 0.405 0.226 0.000 

0.50 0.5 0.995 0.993 0.964 0.919 0.852 0.802 0.728 0.529 0.427 0.243 0.000 

0.50 0.6 1.000 0.999 0.968 0.930 0.869 0.824 0.766 0.564 0.460 0.266 0.000 

0.50 0.7 1.001 0.993 0.969 0.951 0.906 0.867 0.807 0.714 0.558 0.334 0.000 

0.50 0.8 1.023 0.998 1.017 0.975 0.945 0.903 0.866 0.719 0.630 0.419 0.000 

0.50 0.9 1.028 1.009 1.002 1.021 0.990 0.947 0.932 0.849 0.796 0.550 0.000 

0.40 0.0 0.999 0.989 0.957 0.911 0.836 0.740 0.633 0.508 0.377 0.200 0.000 

0.40 0.1 0.998 0.985 0.957 0.911 0.832 0.741 0.637 0.519 0.376 0.200 0.000 

0.40 0.2 1.002 0.990 0.959 0.913 0.846 0.751 0.644 0.526 0.384 0.207 0.000 

0.40 0.3 1.001 0.992 0.960 0.912 0.844 0.763 0.653 0.532 0.398 0.211 0.000 

0.40 0.4 1.004 0.992 0.966 0.917 0.862 0.777 0.673 0.554 0.413 0.232 0.000 

0.40 0.5 0.958 0.982 0.961 0.929 0.879 0.806 0.704 0.587 0.440 0.255 0.000 

0.40 0.6 0.997 1.004 0.972 0.942 0.888 0.835 0.754 0.612 0.498 0.290 0.000 

0.40 0.7 0.995 1.000 0.978 0.953 0.857 0.761 0.760 0.661 0.530 0.330 0.000 

0.40 0.8 0.985 0.989 0.981 0.958 0.915 0.880 0.827 0.715 0.607 0.401 0.000 

0.40 0.9 0.990 0.960 0.983 0.970 0.952 0.907 0.882 0.846 0.760 0.604 0.000 

0.30 0.0 1.001 0.990 0.953 0.906 0.832 0.743 0.640 0.496 0.351 0.178 0.000 

0.30 0.1 1.027 1.017 0.982 0.931 0.857 0.767 0.663 0.508 0.357 0.181 0.000 

0.30 0.2 0.999 0.994 0.961 0.909 0.840 0.754 0.652 0.515 0.370 0.180 0.000 

0.30 0.3 1.002 1.000 0.965 0.917 0.846 0.763 0.668 0.525 0.376 0.190 0.000 

0.30 0.4 0.994 0.988 0.956 0.916 0.853 0.779 0.676 0.539 0.394 0.202 0.000 

0.30 0.5 1.005 1.000 0.975 0.928 0.880 0.808 0.711 0.577 0.426 0.219 0.000 
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���	 6�� 
6�Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.30 0.6 1.001 0.996 0.972 0.943 0.889 0.826 0.733 0.616 0.458 0.254 0.000 

0.30 0.7 1.001 0.990 0.966 0.958 0.912 0.850 0.786 0.666 0.533 0.307 0.000 

0.30 0.8 1.009 1.012 0.990 0.981 0.933 0.916 0.847 0.750 0.662 0.376 0.000 

0.30 0.9 0.983 0.969 0.981 0.974 0.946 0.923 0.892 0.861 0.744 0.583 0.000 

0.25 0.0 1.001 1.000 0.962 0.905 0.842 0.753 0.634 0.495 0.360 0.196 0.000 

0.25 0.1 0.988 0.986 0.957 0.901 0.835 0.752 0.637 0.491 0.367 0.190 0.000 

0.25 0.2 0.997 0.994 0.958 0.910 0.849 0.780 0.639 0.511 0.377 0.194 0.000 

0.25 0.3 0.994 0.983 0.954 0.917 0.842 0.767 0.643 0.524 0.389 0.202 0.000 

0.25 0.4 1.021 0.995 0.965 0.917 0.858 0.778 0.661 0.541 0.405 0.219 0.000 

0.25 0.5 1.004 0.994 0.966 0.944 0.875 0.806 0.700 0.572 0.431 0.232 0.000 

0.25 0.6 0.997 0.993 0.968 0.934 0.880 0.831 0.742 0.596 0.484 0.283 0.000 

0.25 0.7 1.014 0.985 0.969 0.954 0.916 0.863 0.763 0.698 0.533 0.331 0.000 

0.25 0.8 1.010 1.018 0.972 0.962 0.929 0.900 0.826 0.727 0.603 0.406 0.000 

0.25 0.9 0.986 1.041 0.996 0.959 0.972 0.929 0.915 0.836 0.761 0.561 0.000 

0.20 0.0 1.002 0.974 0.962 0.898 0.836 0.754 0.644 0.504 0.350 0.178 0.000 

0.20 0.1 0.996 0.985 0.952 0.899 0.836 0.744 0.637 0.499 0.344 0.180 0.000 

0.20 0.2 0.990 0.975 0.971 0.909 0.841 0.762 0.641 0.519 0.357 0.187 0.000 

0.20 0.3 1.004 0.996 0.968 0.931 0.857 0.775 0.661 0.532 0.372 0.193 0.000 

0.20 0.4 0.995 0.999 0.970 0.926 0.851 0.782 0.672 0.540 0.401 0.212 0.000 

0.20 0.5 0.999 0.993 0.972 0.947 0.868 0.807 0.709 0.578 0.417 0.231 0.000 

0.20 0.6 1.003 0.996 0.969 0.946 0.885 0.845 0.748 0.618 0.468 0.264 0.000 

0.20 0.7 1.002 0.999 0.989 0.950 0.905 0.862 0.784 0.677 0.518 0.307 0.000 

0.20 0.8 1.000 0.996 0.975 0.957 0.923 0.899 0.833 0.735 0.620 0.406 0.000 

0.20 0.9 0.976 0.936 0.942 0.935 0.920 0.910 0.856 0.842 0.725 0.575 0.000 

0.10 0.0 1.023 1.011 0.956 0.928 0.860 0.756 0.658 0.514 0.386 0.184 0.000 

0.10 0.1 1.049 1.040 0.990 0.950 0.892 0.782 0.679 0.537 0.394 0.192 0.000 

0.10 0.2 1.019 0.990 0.979 0.921 0.861 0.770 0.658 0.525 0.386 0.193 0.000 

0.10 0.3 1.030 1.008 0.969 0.954 0.865 0.783 0.683 0.544 0.408 0.192 0.000 

0.10 0.4 0.996 0.989 0.951 0.917 0.856 0.777 0.677 0.557 0.419 0.211 0.000 

0.10 0.5 0.997 1.000 0.975 0.939 0.881 0.805 0.718 0.596 0.458 0.225 0.000 

0.10 0.6 0.995 0.987 0.974 0.958 0.894 0.821 0.746 0.623 0.486 0.257 0.000 

0.10 0.7 0.989 0.988 0.972 0.938 0.920 0.855 0.787 0.664 0.550 0.310 0.000 

0.10 0.8 0.920 0.931 0.910 0.895 0.873 0.833 0.711 0.683 0.586 0.357 0.000 

0.10 0.9 0.946 1.005 0.990 0.998 1.047 0.906 0.893 0.862 0.810 0.601 0.000 

0.05 0.0 0.984 0.990 0.972 0.887 0.828 0.741 0.631 0.504 0.351 0.189 0.000 

0.05 0.1 0.986 0.967 0.943 0.903 0.844 0.740 0.638 0.514 0.350 0.176 0.000 

0.05 0.2 1.009 0.962 0.973 0.928 0.842 0.774 0.662 0.526 0.367 0.191 0.000 

0.05 0.3 0.994 0.993 0.941 0.919 0.860 0.753 0.645 0.523 0.378 0.196 0.000 

0.05 0.4 0.987 0.989 0.953 0.917 0.849 0.789 0.692 0.556 0.391 0.196 0.000 
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���	 6�� 
6�Y 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.05 0.5 0.998 1.014 0.961 0.954 0.884 0.809 0.723 0.579 0.447 0.212 0.000 

0.05 0.6 0.987 1.011 0.988 0.947 0.921 0.849 0.737 0.479 0.469 0.248 0.000 

0.05 0.7 0.997 0.978 0.992 0.935 0.929 0.863 0.789 0.702 0.535 0.304 0.000 

0.05 0.8 0.931 0.976 0.989 0.897 0.919 0.863 0.844 0.739 0.611 0.383 0.000 

0.05 0.9 0.863 0.914 0.889 0.961 0.869 0.916 0.839 0.773 0.733 0.576 0.000 

0.03 0.0 0.985 0.965 0.985 0.925 0.827 0.750 0.658 0.513 0.351 0.189 0.000 

0.03 0.1 1.007 0.974 1.003 0.891 0.842 0.851 0.651 0.532 0.352 0.198 0.000 

0.03 0.2 1.035 1.013 0.962 0.954 0.859 0.795 0.487 0.536 0.364 0.191 0.000 

0.03 0.3 1.025 0.982 0.964 0.907 0.854 0.762 0.696 0.536 0.379 0.175 0.000 

0.03 0.4 0.967 0.959 0.936 0.916 0.860 0.762 0.664 0.553 0.371 0.213 0.000 

0.03 0.5 1.043 0.995 0.985 0.934 0.899 0.822 0.726 0.623 0.426 0.229 0.000 

0.03 0.6 0.998 0.990 0.941 0.968 0.942 0.836 0.784 0.632 0.475 0.250 0.000 

0.03 0.7 1.022 1.040 1.031 1.004 0.937 0.923 0.841 0.757 0.558 0.319 0.000 

0.03 0.8 0.991 0.978 0.983 0.980 0.960 0.910 0.861 0.760 0.659 0.455 0.000 

0.03 0.9 1.064 1.014 0.985 1.041 1.038 0.962 0.967 0.923 0.780 0.662 0.000 

0.02 0.0 1.095 0.977 1.141 0.976 0.866 0.877 0.646 0.549 0.403 0.163 0.000 

0.02 0.1 0.994 0.935 0.963 0.886 0.850 0.741 0.639 0.490 0.330 0.173 0.000 

0.02 0.2 1.008 0.967 1.000 0.904 0.843 0.751 0.629 0.534 0.364 0.167 0.000 

0.02 0.3 0.961 0.994 0.974 0.910 0.847 0.766 0.645 0.539 0.405 0.189 0.000 

0.02 0.4 0.989 0.968 1.008 0.949 0.872 0.788 0.673 0.560 0.399 0.203 0.000 

0.02 0.5 1.015 0.975 0.969 0.939 0.868 0.802 0.723 0.585 0.433 0.232 0.000 

0.02 0.6 0.941 0.972 0.906 0.913 0.873 0.824 0.717 0.646 0.510 0.251 0.000 

0.02 0.7 1.017 0.983 0.989 0.980 0.948 0.868 0.824 0.697 0.578 0.329 0.000 

0.02 0.8 1.962 1.944 1.924 1.912 1.950 1.841 1.744 1.565 1.341 0.889 0.000 

0.02 0.9 1.105 1.134 1.079 1.036 0.994 0.985 1.063 1.050 0.930 0.692 0.000 

 

  



25 

 

Interpolation of � values in Table 1. 

To interpolate values in Table 1 we decide to use the following model function of 

 6�Y: 

9 � a � ¨ 6�Y1 � Z 6�Y � 1 6�YY . 
The values of parameters in the model for several level of  6�� are: 

Table 5 

Parameters for several level of ©ªd. 

6�� a b c d :Y 

0.0 1.00541 -1.00377 -0.86171 0.39850 0.99987 

0.1 1.00633 -1.00484 -0.86227 0.39304 0.99987 

0.2 1.00605 -1.00472 -0.87274 0.38901 0.99989 

0.3 1.00610 -1.00484 -0.87386 0.35816 0.99990 

0.4 1.00408 -1.00336 -0.89716 0.34510 0.99994 

0.5 1.00403 -1.00367 -0.90917 0.30187 0.99994 

0.6 1.00188 -1.00160 -0.92486 0.25946 0.99996 

0.7 1.00157 -1.00165 -0.92966 0.11138 0.99991 

0.8 1.00208 -1.00217 -0.95799 0.13771 0.99992 

0.9 0.99889 -0.99888 -0.96895 0.06070 0.99998 

The values in the Table above can be written in function of  6�� like: 

Table 6 

Parameters of model as function of ©ªd. 

Parameters 6��Y   6��  intercept :Y 

a -0.00749 1.00701 0.84161 

b 0.00530 -1.00534 0.71701 

c -0.12636 -0.84898 0.96264 

d -0.42592 -0.01395 0.40316 0.95402 

so the model, replacing the value in the Table above, is given by (4.1). 
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