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ABSTRACT. In this work we construct compositions of vector processes of the
form S%B (CQLU(t)), t>0,ve (0, %], B € (0,1], n € N, whose distribution is
related to space-time fractional n-dimensional telegraph equations. We present
within a unifying framework the pde connections of n-dimensional isotropic
stable processes s?f’ whose random time is represented by the inverse LY (t),
t > 0, of the superposition of independent positively-skewed stable processes,
HY(t) = H? (t) + (2)\)% HY¥(t),t >0, (H?", HY, independent stable subordi-
nators). As special cases forn=1,v = % and 8 = 1 we examine the telegraph
process T at Brownian time |B| (Orsingher and Beghin [20]) and establish the
equality in distribution B (CQL% (t)) law T (|B(t)]), t > 0. Furthermore the
iterated Brownian motion (Allouba and Zheng [2]) and the two-dimensional
motion at finite velocity with a random time are investigated. For all these
processes we present their counterparts as Brownian motion at delayed stable-
distributed time. The last section of the paper is devoted to the interplay
between time-fractional hyperbolic equations and processes defined on the n-
dimensional Poincaré half-space.
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1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction. The study of the interplay between fractional equations and
stochastic processes has began in the middle of the Eighties with the analysis of
simple time-fractional diffusion equations (see Fujita [10] for a rigorous work on
this field, or more recently Allouba and Nane [1], where the compositions of Brow-
nian sheets with Brownian motions are considered). In some papers the connection
between fractional diffusion equations and stable processes is explored (see for ex-
ample Orsingher and Beghin [23]; Zolotarev [26]). The iterated Brownian motion

has distribution satisfying the following fractional equation
1

02 1 6°
! u(z,t) = g@u(:r,t), zeRt >0, (1.1)
(see for example Allouba and Zheng [2]) and also the fourth-order equation

dute) = b ute + L

gt Y T g3 g o2t dz? )
see DeBlassie [7] (also for an interpretation of the iterated Brownian motion to
model the motion of a gas in a crack).

When the fractional equation has a telegraph structure, with more than one
time-fractional derivative involved, that is for v € (0, 1]

reRt>0, (1.2)

ot otv Ox?
the relationship of its solution with the time-changed telegraph processes is exam-
ined and established in Orsingher and Beghin [20] . The space-fractional telegraph
equation (with M. Riesz space derivatives) has been considered in Orsingher and
Zhao [21], while the connection between space-fractional equations and asymmetric
stable processes has been established in Feller [8].

Fractional telegraph equations from the analytic point of view have been studied
by many authors (see Saxena, Mathai and Haubold [24] for equations with n time
derivatives). For their solutions have been worked out also numerical techniques
(see, for example, Momani [19]). Telegraph equations have an extraordinary im-
portance in electrodynamics (the scalar Maxwell equations are of this type), in the
theory of damped vibrations and in probability because they are connected with
finite velocity random motions.

In this paper we consider various types of processes obtained by composing
symmetric stable processes S2%(t), t > 0, 0 < 8 < 1, with the inverse of the sum
of two independent stable subordinators, say £¥(t), t > 0, 0 < v < % These
time-changed processes, W,,(t) = S5 (L¥(t)), t > 0, have distributions, w?(z,t),
x € R", t > 0, which satisfy telegraph-type space-time fractional equations of the
form

82u ov 82
< +2)\) u(z,t) = =—u(x,t), re€Rt>0,A>0,c>0, (1.3)

2v v
(;QU +2A§t”> wl (@,t) = —2 (=A) wf (1), zeR",t>0,c>0,A>0,
(1.4)

where 0 < #<1,0<v < %, subject to the initial condition
w? (x,0) = §(z). (1.5)

The fractional Laplacian (fA)ﬁ , appearing in (1.4), is defined and analyzed in
Section 3 below. The fractional derivatives appearing in (1.4) are meant in the
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Dzerbayshan-Caputo sense, that is, for a function f € L! (R) (for fractional calculus
consult Kilbas, Srivastava and Trujillo [16]),

ey ! /t i 5 l<v<mmeN. (L6)
— = s, m — v<m,m . .
otv L(m—-v) S, (t—syti—m

Equation (1.4) includes as particular cases all fractional equations studied so far
(including diffusion equations) and also the main equations of mathematical physics
as limit cases. Thus the distribution of the composed process S$2° (¥ (t)), t > 0,
represents the fundamental solution of the most general n-dimensional time-space
fractional telegraph equation. We give the general Fourier transform of the solution
to (1.4) with initial condition (1.5) as

Eeigsﬁ? (L7 (v))

1 A A
=5 | |1+ —— | B () + |1 - ————— | Bua (1) ,
VA2 =gl VA% = e €]
(1.7)
where
ro= A+ A=), = A=Az =2 (1.8)
and

E,y(z) = kg() Tkt o) v, >0, (1.9)

is the two-parameters Mittag-Leffler function (see, for example, Haubold, Mathai
and Saxena [14] for a general overview on the Mittag-Leffler functions). Our result
therefore includes all previous results in a unique framework and sheds an additional
insight into the literature in this field.

An important role in our analysis is played by the time change based on the
process LY(t), t > 0. We consider first the sum of two independent positively
skewed stable r.v.’s H?(t) and H¥(t),t>0,0<v < 3,

HY(t) = HP () + (207 HY(t), ¢ >0, (1.10)
whose distribution #, (x,t) is governed by the space fractional equation
0 0% 0" 1
= = — > <= (L
8tﬁ”(x’t) <8m2” +2)\8m”) hy(z,1), x>0,t>0,0<v< 3 (1.11)

In (1.11) the fractional derivatives must be meant in the Riemann-Liouville sense
which, for a function f € L' (R), is defined as

o B 1 am [* f(s) B
8x”f(z) = F(m—u)dwm/o @ syrrim ds, m—1<v<m,meN.
(1.12)

We then take the inverse £¥(t), t > 0, to the process #"(t), t > 0, defined as
£Y(t) = inf {s >0: H2(s) + (20) HY(s) > t} . >0, (1.13)

whose distribution is related to that of #"(t), t > 0, by means of the formula
Pr{c"(t) <z} = Pr{#H"(z) > t}. (1.14)
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The distribution 4, (z,t) of £L¥(t), t > 0, satisfies the time-fractional telegraph equa-
tion
0% v 0 1
20— t) = —— t >0t < - 1.1
<8t2”+ )xaty>£,(z, ) 8:13[”(56’ ), x>0, >0,O<V_2, (1.15)

where the fractional derivatives appearing in (1.15) are again in the Riemann-
Liouville sense. We are able to give explicit forms of the Laplace transforms of
iy (z,t) and £4,(x,t) in terms of Mittag-Leffler functions for all values of 0 < v < %
For example, for the distribution £, (x,t) of £¥(t) we have that, for v < A2,

/00 e " (x,t)de =
0

A v _ # rot”
(1 T /\2_7) Eyq (rit") + (1 o3 7) By (rat )] ; (1.16)

S SN v NS SN v (1.17)

The distribution £, (z,t) of £”(t), t > 0, has the general form

"2

where

L(z,t) / loy (x,8) hy(t—s 2/\x)ds+2)\/ 1,(2X\z, ) hay (t — s,x) ds, (1.18)

where the distributions of H?”, H”, and that of their inverse processes L?* and
LY appear. For our analysis it is relevant to obtain the distributions of # 3 (1),
t >0, and £2(t), t > 0. We also obtain explicitely the distributions of H3 (t) and
H3(t), t > 0, and also of their inverses L3 (t) and L3 (t), t > 0, in terms of Airy
functions. By means of the convolutions of these distributions we arrive at the
following cumbersome density of the random time £3 (t), t >0,

1 2 ¢ i 1 22w 2\x
P 3 = TWaTs AL =2 Ai .
r{L (t)de} ﬁ/ds/ dwe "w 1( x 3(t—s)2> 1<335>

\3/?,/ e 25 f da. (1.19)

Forn=1,g=1and v =1 in we get the telegraph equation which is
satisfied by the distribution of the one- d1mens10nal telegraph process

T(t) = V(0) /Ot(—l)N(” ds, t>0, (1.20)

where N(t), t > 0 is an homogeneous Poisson process independent from the sym-

metric r.v. V(0) (with values +c). Properties of this process (including first-passage

time distributions) are studied in Foong and Kanno [9] and a telegraph process with

random velocities has been recently considered by Stadje and Zacks [25].
Forn=1g=1andv = % the special equation

1 2
<88t+2)\§t%)w1§(x,t) = CQ%w%(x,t), r€e€Rt >0,
wi (2,0) = d(),
2

(1.21)

has solution coinciding with the distribution of T'(|B(t)|), ¢ > 0, where |B(t)],
t > 0, is a reflecting Brownian motion independent from 7' (see Orsingher and
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Beghin [20]). For A — o0, ¢ — o0, in such a way that % — 1 the fractional
diffusion equation (1.1) is obtained from (1.21) and the composition T' (|B(¢)|), ¢t >
0, converges in distribution to the iterated Brownian motion. Our result, specialized
to this particular case gives the following unexpected equality in distribution

T(|B(t)]) 2 B(C%%(t)), >0, (1.22)
where
Nz (7 22 A2s2 5
Pr{B (L7 (4) € do} — o /. s(tl— > € 325 tos (Q(t—s) + 1> ds,
(1.23)
and
Pr{T (|B(t)|) € dx} = /000 Pr{T'(s) € dz} Pr{|B(t)| € ds}. (1.24)

The absolutely continuous component of the distribution of the telegraph process
T(t), t > 0, reads

—\t
Pr{T(s) e dz} = dm; {)\Io ()\\/ 2?2 — x2> + %I@ (A\/ 2?2 — x2> } ,

’ ’ (1.25)

where |z| < ct, t >0, ¢ > 0, and

Liz) =3 (g)% ﬁ (1.26)

k=0

Forn =2, = 1 and v = 1, equation (1.4) coincides with that of damped
planar vibrations (we call it planar telegraph equation) and governs the vertical
oscillations of thin deformable structures. The solution to

2 2 2
(% + 2)%) r(z,y,t) = (% + 3872) r(z,y,t), 22 4+ 9% < 22t >0,
r(z,y,0) = d(z,y),

’I"t(.’L', Y, O) = 07
(1.27)

corresponds to the distribution r(x, y, t) of the vector T'(¢t) = (X (¢), Y (¢)) related to
a planar motion described in Orsingher and De Gregorio [22]. This random motion
T(t), t > 0, is performed at finite velocity ¢, possesses sample paths composed by
segments whose orientation is uniform in (0,27), and with changes of direction at
Poisson times. The distribution r(z,y,t) of T'(t), t > 0, is concentrated inside a
circle C; of radius ¢t and has an absolutely continuous component which reads

N\ e MR/ —(a2+y?)

2me CQtQ _ (CE2 + y2)

r(z,y,t) = , (z,y) € Cut, t > 0. (1.28)
If no Poisson event occurs, the moving particle reaches the boundary 0C,; of C
with probability e~*. The vector process T(t), t > 0, taken at a random time
represented by a reflecting Brownian motion, |B(t)|, has distribution

q(z,y,t) = /000 Pr{X(t) € ds,Y(t) € ds} Pr{|B(t)| € ds} (1.29)
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which satisfies the fractional equation

B) o2 92 02
IN—— =2 =+ = R? .
<8t+ /\at;>q(x,y,t) c <8m2+8y2>q($’y’t)’ (z,y) €eR%,t >0
(1.30)

However, the distribution of Bj (CQL%(t)), t > 0, does not coincide with (1.29).

In this case the role of T'(t), ¢t > 0, in (1.22) is here played by a process which is a
slight modification of T'(t), t > 0. We take the planar process with law

Ae M [eém+e—i¢m

t(x7y7t) = 27TC

2, .2 2,2
, o4yt <ctttt >0,
22 — (22 + ) ]

(1.31)
which also solves equation (1.27). The process with distribution

a(e,y,1) = / (2,7, 5)
0

Pr{|B(t)| € ds} + %;% Pr{|B(t) ds}]

i 0
= [ (os)+ portops) ) PrBO] € ds), (1.32)

has the same law of a planar Brownian motion at the time £z (t), ¢ > 0. The
process T(t), t > 0, possessing distribution (1.31) is obtained from T'(¢), ¢t > 0, by
disregarding displacements started off by even-order Poisson events.

The last section of the paper is concerned with random motions on the hyper-
bolic Poincaré half-space, H" = {w, y:xeR"y> O}, whose distributions are
governed by fractional equations of the form

2v v . n— v
{(é?tzu + 2>\§tu) ph(nt) = & (Slnh Y (7sinhi71npn(n,t)>) , n>0,t>0
pn(n,0) = 4d(n),

(1.33)

for0<v < % and n € N. The corresponding kernel

K (n,t) = (1), n>0,t>0, (1.34)

sinh" '

solves instead the fractional equations

2v v . n— v
{(gﬁu + 2)\687) Kruz(nut) = ma@n (Slnh ! 77,9%"%(77715)) 9 77 > Out > 07

ki, (1,0) = ().
(1.35)

The process TV (t), t > 0, in H" which possesses distribution p%(x,t) solving (1.33)
is obtained by means of the composition

TV(t) = B (£¥(t), t>0, (1.36)

where B"P is the hyperbolic Brownian motion in H". The hyperbolic Brownian
motion has been introduced in the plane by Gertsenshtein and Vasiliev [11] and in
H?3 by Karpelevich, Tutubalin and Shur [15], in 1959. In successive papers many
properties of the hyperbolic Brownian motions have been explored (see for example
Getoor [12]; Gruet [13]; Lao and Orsingher [17]; Matsumoto and Yor [18]). The
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relationship between kernels in H? and H® and kernels in higher-order spaces is
represented by Millson formula
e 9

—— Kk (n,t 0,t>0 N. 1.37
S sinhn 91 n(n,1), n>0,t>0,n¢ (1.37)

knyo (n,t) =

Since pgp and k3 are considerably simpler than pgp and ko we give explicit expres-
sions for the distribution

Ansinhp [t e _a2:2 a2 S
= G e
21 0 ggw/t—g t—s

t—s 4s
where 77 > 0 and ¢ > 0. This distribution solves the fractional-hyperbolic telegraph
equation (1.33), for v = 1 and n = 3.

pi (n,t) + 2) ds, (1.38)

1.2. Notations. For the reader convenience we list below the main notations used
throughout the paper.

o S25(1) = (sfﬁ(t),sgﬁ(t),-.- ,Sgﬂ(t)), t>0,0<f <1 neNisa
isotropic stable n-dimensional process with law vg (z,t), £ € R, ¢ > 0.

e H¥(t),t> 0,0 <wv <1,is a totally positively-skewed stable process (stable
subordinator), with law h, (z,t), z > 0, t > 0.

o L¥(t), t > 0, is the inverse of H”(t), ¢ > 0, and has law [, (z,t), z > 0,
t>0. .

o HY(t) = Hy(t) + (2\)» H¥(t), t > 0, is the sum of two independent stable
subordinators and has law f,(z,t), > 0, ¢t > 0.

o LY(t),t > 0, is the inverse of #*(t), t > 0 and possesses distribution £, (x, ),
z>0,t>0.

e T(t), t > 0, is a telegraph process with parameters ¢ > 0 and A > 0 and
law pr(z,t), —ct <z <ect,t > 0.

e W, (t) = 82° (c*¥(t)), t > 0, has law w (z,t), x € R", t > 0.

e W(t) =T (|B(t)]), t > 0, has distribution w(x,t), z € R, t > 0.

e T'(t), t > 0, is the planar process with infinite directions, parameters ¢, A >
0 and law 7(z,y,t), (z,y) € Cet = {(z,y) € R? : 22 + y? < At*}, £ > 0.

e T(t), t > 0, is the planar process with infinite directions, parameters ¢, A >
0 and law v(z,y,t), (z,y) € Cot = {(:E,y) ER?: 2% +9y2 < Cth}, t > 0,
constructed by disregading displacements started off only by even-labelled
Poisson events.

e Q(t) =T (|B(t)]), t >0, has law q(z,y,t), (z,y) € R%, t > 0.

e B (t), t > 0, is the n-dimensional hyperbolic Brownian motion in H" =
{(m,y) cx e Ry > 0} and has law p/?(n,t), n > 0, t > 0 with kernel
kn(n,t), n >0,t>0.

o TV(t) = B (L¥(t)), t > 0, has distribution p%(n,t), n > 0, t > 0 and
kernel k% (n,t), n> 0, t > 0.

e By fwe denote the Laplace transform of the function f and by fwe denote
its Fourier transform.

1.3. Preliminaries. Let us consider a stable process S*(¢), ¢ > 0, 0 < v < 2,
v # 1, with characteristic function

Eeigsl’(t) _ efa|§|”t(17i0sign(§) tan "77’) (139)
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where 6 € [—1,1] is the skewness parameter and
ez

= —. 1.40
o = cos (1.40)

For 6 = 1 the distribution corresponding to (1.39) is totally positively skewed and
for # = —1 is totally negatively skewed. The stable process with stationary and
independent increments, totally positively skewed will be denoted as H”(t), t > 0.
We note that the density h,(z,t), of H"(t), is zero at * = 0 as the following
calculation show

1o . U o
h,(0,t) = —— Rei€H" () g — 7/ e~olelt(1-itan ) e
21 J_ o |
1 [ oo 5 - 0 V |
- / e—clél t(lfztan%)d§+/ o—olél t(1+ztan%)d§
o ’ —00

= 1 / 6,|£|Vtef“7“d£+/ eE"tedeg]
2 0 0
1 > %_1 i > %_1 1 i

= — / e ? (E) erer/ e ? (E> —e 2dz
2 LJo t 0 t t

ER T
_ COS?/ e? (5) Zdz = 0. (1.41)
7T 0 t t

The positively skewed stable r.v. H”(t) has z-Laplace transform

h,, (1, t) = Be ") — o=tn” 0<v<l, (1.42)
and therefore Fourier transform
o (6,1) = BSIT 0 = (-0 0) = ot(lelem @)’
— e—t|§|vcos%(l—isign(f)tan%)' (143)

This shows once again that the skeweness parameter is 0 = 1.
The probability law h, (x,t), of HY(t), t > 0, solves the boundary-initial problem

(5 + a57) hu(a,t) =0, £>0,t>0,0<v<1,
hy(0,1) =0, (1.44)
hy(z,0) = 6(x).

By taking the z-Laplace transform of the Riemann-Liouville fractional derivative
appearing in (1.44) we have that

L [;ﬂ;hy(m,t)} () = /000 e_‘“%hy(x,t) dx
- /Ooo c {1—‘ (11— v) /Oz % hy(xz; = dz+ r (}iyfol’/;)x”} de
h.,(0,1)

—_¥Y\ —px l—v—1 haind —px & _
I‘(lfz/)/o e My dx_‘_I‘(lfy)/ z”/z dxe dxh,,(x z,t)
. d

1 (o] OOO
:hl,(O,t)uV_l + m‘/o B_MZZ_VdZ/O e_ulah,y(x7t)d$
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o0 1 o
=h, (0, )"~ + L/ e " hy,(x,t)dx| p e w T, (0,t) = phy (p,t).
0

(1.45)
Therefore
97~ vy =
Sehy (ot) + phy () = 0, > 0,8>0, (1.46)
hu (Hao) = 1’
so that _
hl/ (M;t) = e_'u”t- (147)

In other words the density of a positively skewed stable r.v. solves the space-
fractional problem (1.44).
We will also deal with the inverse process of H”(t), t > 0, say L”(t), t > 0, for
which
Pr{H"(x) >t} = Pr{L"(t) < x}, x> 0,t>0. (1.48)
Such a process has non-negative, non-stationary and non-independent increments.
Furthemore we recall that the law [, (x,t) of L”(t), can be written as

1 x
L(at) = Wiy ( tu) . 2>0,t>0, (1.49)
where
(oo} "L‘k
Weop(z) = ,; m, re€Ra>—-1,b€eC, (1.50)
=0

is the Wright function, and has Laplace transform

- (oo} oo 1 v
lV(m7/’[’) = / e_'utlu(xat)dt = / e_”ttfwal/,l*l/ (_%) dt = ,uy_le_x“ .
0 0

2. SUM OF STABLE SUBORDINATORS, #”(t) = H2"(t) + (2\)v HY(t)

For the construction of the vector process W, (t) = S2° (c2£"(t)), t > 0, whose
distribution is driven by the general space-time fractional telegraph equation (1.4),
we need the sum #¥(t), t > 0, of two independent positively skewed processes.
The second step consists in constructing the process £¥(t), t > 0, inverse to #H"(t),
t > 0. We now start by considering the following sum

1
v

HY(t) = H(t) + (2\)» HY(t), t>0,0<v< % (2.1)

with H?V, HY, independent, positively-skewed, stable random variables, A > 0.
The distribution of #"(t) can be written as

Ao = | "y, 1) (& — 3,200 dy. (2.2)
Taking the double Laplace transform of (2.2), with respect to t and x, we get
Fi (v, 1) = /OO e*“t/oo e hy(x,t)drdt = /OO e M=ty =220 gy
0 0 0
S D SR G S
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where, for 0 < g < A2,

T = —A— /A2 —p, (2.4)
7“2:—/\4-\/)\2—/,6. '

By means of formula

e 1
e 2 B, o (n2®) do = , (2.5)
/0 /]
where E, ,(z) is the Mittag-Leffler function defined in (1.9), we can invert the
x-Laplace transform in (2.3) obtaining, for u < A2,

fy (z, 1) =
e B (o vIR) o) = B (A V) )
E *12#0 —A+\1/m;ﬂ"vl((—“ V¥ —)a)

B (A v xv)] | 26)

Formula (2.6) gives the explicit form of the t-Laplace transform of f,(z,t) in terms
of Mittag-Leffler functions. In view of formula

1
1 [ e Mgy leinqy
E, 1 (=Xt") = — dx, 0<v<l, 2.7

a ) 7r/0 22 11+ 22" cosav v 27)

we have that

1
P (o) 1 1 d /°° (A=) y’~Lsinmv dy
T, ) = =
H 2N — | =X+ /A2 = p 07 Jo m (y?¥ + 1 4 2yY cos mv)

1
n 1 ﬁ/oo eiaﬁy(pr )‘L”> y " Lsin v dy
A /A2 —p 0z )y 7w (y? + 14 2y¥ cos )

e dy y¥ sin v 1 vl
= A /A2 )
/0 7 (Y2 + 1+ 2y” cosmv) 2,./X2 — i ( a

—ry()\—m)% vl —zy(A+ )\2—#)%
e —(A—&-V)@—u) e

=F {"Ll” |:(—r2)'1/1 e_xuu(—TZ)% — (—7‘1)%71 e_z‘u"(_ﬁ)‘l’] }

2/ 22 —
1 1
1 o efm‘u"(frg)i efz‘u"(frl)i
= —E — , 2.8
rg — 11 0% l o r1 (28)
where U is the Lamperti distribution with density
Pr{u” € du} _ sinmy w1 p>0, (2.9)

du w14 u2¥ 4+ 2u¥ cosmr’
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and represents the law of the ratio of two independent stable r.v.’s of the same
order v.

Theorem 2.1. The law f,(x,t) of the process HY (t) = H (t)+(2)\)% HY(t) solves
the fractional problem
2 f, (3,1) = — ((;97 +2A51”V) fy(z,t),  >0,t>00<v<l
hy(0,t) = 0, (2.10)
fy(2,0) = 6(x).

The fractional derivatives appearing in (2.10) are intended in the Riemann-Liouville
sense.

Proof. By considering (1.43), we have that the Fourier transform of 4, (z,t) is writ-
ten as

ﬁ:,(g,t) — Rl () — Rt [Hz”(t)+(2A)%H”(t)] — Rei€H™ (1) Li€H” (2A1)

_ eft\f\m' cos v (1—isign(€) tan wv)—2XA¢t|€|" cos %”(1772 sign(¢) tan %’)

(|g\5*%" sﬁ:n(&))2”_2/\75(‘5‘67%5;5,1(5))v
?

=¢! (2.11)
and thus
3 -~ i e 2v P v
el - —Fsign(§)) _ — 5 sign(¢) .
i €0) = | (1 F @)™ o (jg e F 900’
o t(lele™ F @) _axg (gl F o ©) (2.12)
In view of the relationship
gl e F sien®) = —ig (2.13)
we have that formula (2.12) can be rewritten as
0 ~ o o] ()2 —ant(—if)”
S (68) = [ (<i8)® — 2 (mig)" | e O IMEOT (21
In (1.45) we have shown that
au oo aV —
—hy (z,t = THE—hy(x,t)de = phy(p,t 2.1
£l gt @] o = [T e ds = whwt) (219
and thus we have the following Fourier transform
al/ oo . al/ Ny
F |:axl,ﬁu ({E7t):| (6) = A e_(_zg)xwﬁu(‘r?t) de = (_Zg)y ﬁl/ (§7t) (216)

In view of (2.16) we have that the Fourier transform of the right-hand side of the
equation (2.10), equipped with the boundary conditions, is written as

_I[aQV fo (z,t) + 2X o /iy(x,t)] € =

o2V oxv
= — /OO 67(71.5)9667%@ (z,t) de — 2A /OO 67(45)@;1% (z,t) dx
0 afﬂQV ’ 0 (%E” ’
= — (9™ + 27 (=i)" ) (1)

—iF sign(e)) ¥ — i sign v
(i) 2 (—ig)) (e F ) (e )
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= - ((—i§)2” + 2/\(—2'5)”) e IO —2(=i0)" (2.17)

which coincides with formula (2.14). This is tantamount to saying that the Fourier
transform £, (£,t) is the solution to

o 7 _ L\ 2V A A
{itmm) = (T2 ) R 6D, geREz0
f, (£,0) = 1,
and this completes the proof. O

2.1. The inverse process L”(t). Let £V(t), t > 0, be the inverse process of #"(t),
t > 0, in the sense that

Pr{c"(t) <z} = Pr{#"(z) > t}, x,t >0, (2.19)
and let £, (z,t) be the law of £¥(t), t > 0. We have the following result.

Theorem 2.2. The law ,(xz,t) of the process LV(t), t > 0, solves the time-
fractional boundary-initial problem

(gT +2A%) L(t) = —2h(xt), 2>0t>00<v<l,
b(2,0) = b(2), (2.20)

—2v —v
£(0,t) = F(t1—21/) +2)‘F(t1—y)’

and has x-Laplace transform which reads, for 0 < v < A2,

A v A rot”
(14-)\27) E, ;1 (rt") + (1 )\27> E, 1 (rat )] ;
(2.21)

M= AV, m= A- VA, (2:22)

The fractional derivatives appearing in (2.20) are intended in the Riemann-Liouville
sense.

1

where

Proof. We first show that the analytical solution to the problem (2.20) has double
Laplace transform Z (7, 1) written as

=~ MQV_l +2)\ul/—1

) = . 2.23
L) = (223
By taking the t-Laplace transform of the equation in (2.20) we have that
IJ~ V~ a P
Wl () + 200 (2, p1) = =l (2, 11) (2.24)

By taking into account the boundary condition and performing the z-Laplace trans-
form of (2.24) we have that

(1 + 201" by (7. 12) = b (0,11) — SACATS (2.25)

Now, by considering the boundary condition, we get that

N o o =2 tr
— —Ht = —ut
b (0, ) —/0 dte "4, (0,1) */0 dte”" [r(1—2u) +2/\F(1—V)

= p? 22l (2.26)
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and thus

~ 2v—1 v—1

~ M + 2\

b (v,p) = B
Now we show that the double Laplace transform of the law £, (z,t) coincides with
(2.23). We first recall that

(2.27)

() = / dte M h,(t,z) = Be (@) = Ee #H™ (@)Fe—nH" (2Az)
0

= hay () by (1, 20x) = e~ =22 g g, (2.28)

where we used result (1.42). By considering the construction of the process £¥(t),
t > 0, as the inverse process of #¥(t), t > 0, as stated in (2.19), we get

Pr{c’(t) edz} _ 0 o [t

L(x,t) = I e Pr{#"(z) <t} = “or , (s, x)ds.
(2.29)

In view of (2.29), the double Laplace transform of £,(z, t) can be obtained observing
that

~ 00 00 t
b (y, 1) = / dxe_w/ dte M [_3/ (s, x) ds]
0 0 9z Jo
00 3 o] . t
= — d:vefw—/ dte * / hy(s,x)ds
/0 oz Jo 0 (s )
o0 1 o0

1 0 ~ 0 20 v
- __ dr e 7® h, - _ dp e % —zp”’ =2z p
N/o me gt (@ H) M/o e {&Ee }

e’} 2v—1 v—1
— (;f”_l + 2)\u”_1) / dg e~ vE—en® =2 ap” —M2 +2Mu ,
0 2 420" 4y
(2.30)
which coincides with (2.23). Now we pass to the derivation of the z-Laplace trans-
form of 4, (x,t). We can write

E(,Y N) _ ,ul21/71 + 2)\/11/71 _ Mufl N ,ulllfl B M21/71
’ P2 M+ = =1y (=) (u = r2)
v—1 v—1 v—(1-v) v—(1-v) 1
=L 4+ £  _|E e (2.31)

po—rop =y [ = | 22—y

M= AV, m= A /R (2:32)

Now we need the following results

where

ee] Mv—l
/ e ME, 1 (rit¥) dt = , j=1,2,
0 ' w =
o) U2U71
/ e P A=ITIE | (rtY) dE = : (2.33)
0 w =
Therefore
~ t—v
g/ (Wat) = Eu,l (Tlty) + Eu,l (T2tl’) - W [Eu,lfu (rlty) - Eu,lft/ (TZtV)] .
-

(2.34)
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Since

Buies () = 2Bual®) + Fr—o (2.35)

we have that
—V

b (v,t) = By (rit") + Ey,q (rat”) — [r1t" By (r1t”) — rot” By 1 (rot”)]

24/A%2 — v
A+ /A2 = A+ /A2 =y
= (1- 2TV E,1(rt")+(1- ATVA T E, 1 (rat”)
2¢/A% — 24/ A2 —y
1 A , A ,
= 5 <1 —|— )\2_7) EV,I (’I"lt ) + (1 - )\2_7> El,71 (T'Qt )] 5

(2.36)

which coincides with (2.21).
Now we check that the Laplace transform (2.36) solves the fractional equation

821/ 81/ _ _
o TR0 ) b (nt) = =7h (1) + 6 (01)

~ t*2l/ t*l/
= —Mj(%t)+r(1_2y) +2/\F(1_y) (2.37)

which is the z-Laplace transform of the equation appearing in (2.20). Since

v t—2v Co2v
Lty Qe A Cayi( t) (2.39)
otv I (1 — y) ot s .
we therefore need to show that
08211 Cay _ "
( ot2v +2A otv ) g’(’% t) = _A/[V(’Ya t)- (240)
In light of
Cau
WE}/71 (T‘jtl/) = ’I“jEl,,l (’I“jty), ] = 1’ 2’ (241)
0621/ t_V’f‘]

Eyq(rjt’) = 7«]2. By (rit") + (2.42)

otz T(l_v)

we are able to show that (2.21) solves (2.37). We first check result (2.42) as follows,
for0 <2v <1

Ca2u k 0821/ ok

gz e it Z T z/k T

> rk vk ¢

_ J vk—1 _ —2v
_kzlf(uk+1)l“(1—2u)/os (t=s) = ds

tuk 2v 1

[e%e) 1
vk—1 1-2v—1
1 d
kzzj 1—2u)/0 =) s
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0 ,,Jg: tuk—Qu 00 r}§?+1 tuk—l/
_ J _ J
;F(uk—2y+1) kzOF(l/k—V—i—l)
(rtv)k 1 t7Vr;
=it J =r2E, 1 (rjt") + —— 2.43
— 7 l Toh—vtD) T Ta=y| Bt + = (243)
Therefore

0821/ Cau .
<8t2” +2X o ) L (v,t) =

1 by 0821/ y by C 92v
) <1+ A2 7) gz Bra (nt) + <1_ Az_ﬁy) g Bva (rat )]
1 A C qv A Cau
+22> |14 Eyq(rt") + (1 - —— B, (rot
2 < A27> g Pra (rit”) ( m) g P (12 )1
71 A 2 t7Yr1
2 (H A?—v) <T1E“(m)+F(1—v))
A 2 t7Vry
*(1 A2—7><T2Eu1(r2t)+F(1—V)>]
+2>\ <1+ A )(rE (m))+<1 A >7«E (rt")]
—— 18,1 (T1 — | T2y 1 (T2
VA VA2 =~
1 A
:5 T‘1< Tlt 7“1-‘1-2/\)-‘1-7“2(1—)\2_7).

cEyq (rot”) (re + 2)\)}

= AV g ) - IV D 2 )
2 \/27 y 1\"1 2 \/77 1/
= l < > v, ’I"lt + (1 \/7> EI/71 (Tgtu)]]
=~ b (1,t) (2.44)
In the last steps we used the fact that
A ritv A rot™?
1 1— =0 2.45
(* A2_7>r(1—y)+< A2_7>r(1—y) ’ (245)
and
1+ 2\ = —ry, ro + 2\ = —rq, rire = 7. (2.46)

]

Remark 2.3. The derivation of result (2.21) suggests an alternative proof for the
Fourier transform (Theorem 2.2 in Orsingher and Beghin [20]) of the law of the
time-fractional telegraph process.
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Remark 2.4. From (2.31) we get the time Laplace transform of f,(x,t), for x >
O,u>0,0<u<%,as

E (1,7 M) _ ’u21/—le—xu2”e—2/\xu” + 2)\NV—1€—2>\xu”e—wu2". (247)
Since

7 o tl z v—1_—ap’

l(z,u) = e M tT/W*V»l*V (—t—y) dt = p" e (2.48)

0
and -
o) = [ e h (e de = e (2.49)
0

we are able to invert (2.47) and we obtain the explicit distribution of the process
£¥(t), t > 0, which reads

_ Pr{cv(t) € dx}
- dz

¢ ¢
= / loy (z,8) hy(t —s,2\x) ds + 2/\/ 1,(2)\x, ) hoy (t — s,x) ds
0 0

L(x,t)

t
1
:/ EW,QVJ,QV (— ZL' ) hl,(t—872)\.’)3) ds

0 8 521/

b1 2\
+ 2)\/ o W_,i1-v <— S x) hoy (t — s, ) ds. (2.50)
0

v

The densities h, and hs, can be written down in terms of series expansion of stable
laws (see pag. 245 of Orsingher and Beghin [23]).

3. N-DIMENSIONAL STABLE LAWS AND FRACTIONAL LAPLACIAN

Let
S?%B(t) - (Sfﬁ(t)vsgﬁ(t)’ e ,Siﬁ(t)) ) t> Oaﬁ € (07 1}’ (31)

be the isotropic stable n-dimensional process with joint characteristic function
— — 28
2 2 L. Q28 —t 24e24 4 %
v”ﬁ (67 t) = vnB (517 521 e 75717 t) = Eelg S (8) =€ ( Gte ¢ )

— o then*” (3.2)

The density corresponding to the characteristic function v2P (&,t) is given by
1 g 28
v?LB (w7t) = U721,B ($1a$27"' 7xn7t) = W/ € i€ Te tgl d£ (33)

The equation governing the distribution v2” (z,t) of the vector process S2°(t),
t>0,is

ot
where the fractional negative Laplacian is related to the classical Laplacian by
means of the following relationships (Bochner representation, see for example Bal-
akrishnan [3]; Bochner [5])

sm7rﬁ/ A1 ()\—A)71 A — M/ A1 (/ ew(AA)dw) Ad
0 s 0 0
A

(8 + (—A)B) v2P (x,t) = 0, x e R, t>0, (3.4)

™

_sinwf3

o0 o0
= AT / wr A lem (=™ gy = 7/ wl Ao w(=4) gy
8) 0 L'(1-8)Jo

™
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_ (—A)ﬁ ) (3.5)

A definition of the fractional negative Laplacian can be given in the space of the
Fourier transforms as follows

(A ule) = g [ @) T@ ) (0)

where
Dom (-4)" = {u € Lie (R") : /}R ) (1 + le1”) de < oo}. (3.7)

An equivalent alternative definition of the n-dimensional fractional Laplacian is

(=AY u(z) = ¢(8,n) P.V./ Mdy (3.8)

D) )
wn [l -y

where the multiplicative constant ¢(f,n) must be evaluated in such a way that

/" ¢i€® (LAY y(z)de = — ngﬂ/ 6% (x) da. (3.9)

n

Let us focus our attention on the one-dimensional case of (3.8). In this case we
have that, for 0 < 25 < 1,

(_;;)ﬁu(x) = ¢(B, l)P.V.AW

— (8, 1) lim [/0_6 “(“””)_“(””_Z)dH/M “(x)—“(ff—z)dz]

=0 | ) o |z|1+28 |z|1+28
B . * u(x) —u(x + z) * u(z) —ulx — z)
7C(ﬂ, ]_) ll_I)l’(l) [A+E sz -+ /0+6 zl_,’_—mdz

where in the intermediate steps, we considered the relation between the Marchaud
and the Weyl fractional derivatives. If

C(ﬁ,l) - -

we have that, for 0 < 26 < 1,
92 B
(~3) o=
1 1 d [ wu(z)dz 1 d [ u(z)dz
 2cos [m fzﬂ)ﬁ/o@ (x—2)2 T(1 725)@/95 (zo:)w}

1 1 d %P

= — Y ) B i
~ 2cosfrT(1—2B) dx /_OC |z — 2|25 dz = 8‘x|25u(aj), (3.12)

26
2T (1 —28) cosfn’

(3.11)

528 .
where Bl represents the Riesz operator.

Remark 3.1. We notice that, for 0 < 28 < 1,

23
F [aiw“@] © = e ae). (3.13)
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This is due to the calculation

[ﬁwum] (©) =

o 1 g ([ M)

T 2cosfBr I (1-28) l/_oodxef (dx/_oo (x_z)w dsc/ (z — )]
S 1 [ > itn T owu(z) dz

~ 2cos B I (1 —2p) /_Oodx65 (/_Oo (x—z)2/3_ « (z2—x) ]

i€ 1 e o eiT (g Z e dg
ZQCOSBWF(l—Qﬁ) [wdzu(z) </Z (x—z)w 700 (z —x) )]

_ i€ 1 [ e ety Oo e
~ 2cos B I (1 —2p) _/_OO e u(z) dz </0 y?P =

2 1 ® ez > sin gy

~ 2cos B I (1 —2p) /_ooe u(z) dz/o y2h =4

RS 1 ul€) [ [ —wy, 281

= GrT(1—25) T(25) /0 /0 sin &y e “Yw dw dy

¢ 1 i) = [ e ity
_Cosﬁwf(l—2ﬂ)F(2ﬁ)/o dwwwl/o dye y( 2% )

__ & ! a) [, wl
~cos BT (1—28) F(Qﬂ)/ dww2+§2

_ @ 1 W) [ s [T y(wtee

fcosﬁﬂ'r(l—Qﬁ) F@ﬁ)/) dw w? 1/0 dye y(w?+€?)

__¢ 1L r@ere-g

_20056771“(1—25) I'(28) |¢[2—28 |§|25 u(§). (3.14)

This concludes the proof of (3.13).

4. SPACE-TIME FRACTIONAL TELEGRAPH EQUATION
We consider now the composition of an isotropic vector of stable processes S2°(t),
t > 0, defined in (3.1), with the positively-valued process, defined in (2.19),
£U(t) = inf{s >0:HY(s) = H?(s)+ (2\)F HY(s) > t}, t>0, (41)

where H?V, HY are independent positively skewed stable processes of order 2v and
v, respectively. The distribution wf (x,t) of the process S2° (c*£¥(t)), t > 0, B €
(0, 1], is the fundamental solution to the space-time fractional telegraph equation

<082V Cal/

+ 2

B _ _2( AP B n
520 8t”)w” (z,t) (A" w) (x,t), zeR"t>0. (4.2)

In our view the next theorem generalizes some previous results because we here
have fractionality in space and time and the equation (4.2) is defined in R"™.
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Theorem 4.1. For v € (0,3], 8 € (0,1] and ¢ > 0 the solution to the Cauchy
problem for the space-time fractional n-dimensional telegraph equation

(55 + G ul @) = A i@y,  weRL>0
wy) (x,0) = & (),
coincides with the probability law of the vector process
W, (t) = S2F (2r¥(1)), t >0, (4.4)
and has Fourier transform which reads
wy (€.1) =
1 A A
= 5 1 —|— —2 E,/J (Tlty) + 1 — —2 El/,l (TQtV) B
RS RS
(4.5)
where

L= A2 E)?, e = —a— a2 =g (4.6)

The time derivatives appearing in (4.3) must be meant in the Dzerbayshan-Caputo
sense. The fractional Laplacian is defined in (3.6).

Proof. By taking the Laplace transform of (4.3) we have

B2 ) = 1 8(a) 4 20 |l () = @) =~ (<) 0k (o),

(4.7)
where we used the fact that
Cau —
£ | vt 0] = il - i o (.0), (48)
Now the Fourier transform of (4.7) yields
(12 + 20wl (&) — (2" + 20 ") = €] w SEn. (19
and thus
:\\B MZV—I +2)\MV—1
wy (&, 1) = w>0,€6eR™ (4.10)

H2 20 + e €]
The probability density of the process W, (t), t > 0, defined in (4.4), can be written
as

wh (z,t) = / vg (z,c%s) L, (s,t) ds, (4.11)
0
and has Fourier transform equal to
o0
/ € (m,t) do = / e sIE [ (5. 1) ds. (4.12)
n 0

In order to show that the Laplace transform of (4.12) concides with (4.10), we have
to derive the Laplace transform of 4, (x,t), with respect to the time ¢. Since

Pr{c"(t) <z} = Pr{#H"(z) >t} (4.13)
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we have that

b (z, ) =
/OO e*NtQ/OOPr{H”(x) €ds}t dt = /Oo e —8/tﬁ (s,z)ds ) dt
0 81‘ t 0 333 0 v ’

b —zp? —2Xzp y y
_ %6 . _ (N2y71 +2)\Iu1/71) 67:””2 —2\zp , (414)

where we used result (2.28). Now we can complete the proof by taking the Laplace
transform of (4.12) so that, in view of (4.14), we obtain

/ e—utdt/ e SIEN [ (o 1) ds =
0 0

o0 2v—1 v—1
_ (MQV—l +2/\Mu—1) / 6—502”5”213—5#2”—2)\51“’ ds — 1% + 2\
2v v 2 287
0 e el
4.

which coincides with (4.10). The unicity of Fourier-Laplace transform proves that
the claimed result holds. The proof that the Fourier transform of w? (zx,t) has the
form (4.5) can be carried out by means of the calculation performed in Theorem
2.2. We have that

Wl (G = R e e
p 2 + g7 e (W =) ()
_ Mu—l N Mu—l B |:MV_(1_V) B MV_(l_V):| 1
e e e ey e a e

(4.16)

ro= A+ A2 =g, = A= A2 =g (4.17)

and thus by inverting (4.16) by means of (2.33), we obtain result (4.5). An alter-
native derivation of (4.5) can be carried out as follows

1;\5 (&t) = /OO e dx /Oo Pr {82 (¢%s) € dz} Pr{L"(t) € ds}
0

where

o0
_ / e~ SIEIP Pr v (h) € ds) = (4.5) (4.18)
0
because of Theorem 2.2. O

4.1. The case v = 1

5» subordinator with drift. The fractional equation (4.2),

forn=1v= %, reads
d €93 020
— 42— | w? = =) v 1 4.1
<8t+ A8t§> wE(x,t) c <8|m|25> wy (z,t), 0<pB<1, (4.19)

where Bﬁc% is the Riesz operator. For = 1 we have the special case

9 Cos 2
= + ZAT wh (z,t) = 2= wi (x,1) (4.20)
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dealt with in Orsingher and Beghin [20]. The construction of the composition
related to equation (4.19) involves the subordinator

HE(t) = t+ (2N H2(t), t>0, (4.21)
where Hz (), t > 0, is a positively-skewed stable process and has the same law as
the first-passage time of a Brownian motion through level % We note that %2 (1),
t > 0, has distribution with support [¢,00) and thus differs from #*(t), t > 0,
0 < v < 3, which instead has support [0, 00). The distribution of (4.21) writes
ﬁ t e’%

0 ﬁ vV 271'2’3

Pr {y{% (t) < a:} - dz,  x>t>0. (4.22)
The inverse process
L3(t) = inf{s Cs+ (202 HE(s) Zt} = inf{s L3 (s) Zt} (4.23)

is related to (4.21) by means of the relationship

22
xr e 4z

&5 V22123

From (4.24) we can extract the distributon of £2(t), ¢ > 0, in the following manner

oo

Pr {L% (t) < x} = Pr {}[% () > t} = dz. (4.24)

1
Pr{Lz(t) Gd:r} 9 [ re %
L(x,t) = = — z
2 dx oz t—z /423
(20?2
o\ge- (22z)2 _ (222)?
i(t—=) 4(t—=)
°e c O<az<t (4.25)

_ 2Ae TN o
\/47r(t—w)3+ v(t — )

Remark 4.2. The distribution (4.25) can be also obtained from the general case
(2.50) which for v = % becomes, for 0 < z < t,

f(x,t) = /Oté(s—m)hé(t—5,2)\x)d8+2)\/Otlé(2)\x,s)6(x—(t—s)) ds

hy (t = 2,2Xx) 4+ 2X 11 (2Az,t — 2)

oAre Soh e
4(t—=x 4(t—=
= e 22— . (4.26)
A (t —x)? m(t - )
In the last step we used the fact that
LE(t) 'Y |B(t)], t>0, (4.27)

where L= (t), t > 0, dealt with in section 1.3, is the inverse of the totally positively-
skewed stable process Hz(t), t > 0.

The t-Laplace transform of (4.25) becomes

oo
L(w,p) = / ekt Lz, t)dt =

2z [ 6_% o 6_%
= — P —; 2)\/ L ——,
V2 Js V27 (t —x)3 e w(t — x)
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2\x e e~ er® e e~ ®
_ o —px —pt — Q@ —put
= ﬂe ; e 7@ dt + 2Xe /o e 7\/5 dt
= e MmNV | 9N T3 g MmNV (4.28)

Finally the z-Laplace transform of (4.28) becomes

~ 00 S
[% (v, ) = / e (/ e Kt [% (z,t) dt) dz
0 T
1

_ 1 L2 ! _ L2 (4.29)
BTN Ep Y20 p 20/ '

which coincides with (2.31), for » = . Let us now consider the process W, (t) =
820 (2L (1)), t > 0, dealt with in Theorem 4.1. For 8 =1, n =1 and v = % this
process becomes

Wi(t) = S2 (CZ‘L%(t)) - B (c%%(t)), £>0 (4.30)

where B represents a standard Brownian motion and £2 (t), t > 0, is the process
defined in (4.23). With

M

x

e at
p|B|(xat) = \/H’

we denote the law of the process |B(t)|, t > 0. In view of the previous results we
are able to prove the following theorem.

x>0,t>0, (4.31)

Theorem 4.3. The law of (4.30) coincides with the law of the composition
w(t) = T (|B())), t >0, (4.32)

where T is a telegraph process with parameters ¢ > 0, A > 0 and law pr(x,t) which
has characteristic function

pr(&1) =
L A et/ [ A oMt/ 3z |
2 N2 — c2¢2 22— c2¢2
(4.33)
In other words we have the following equality in distribution
B (C%%(t)) o (B®)),  t>o. (4.34)

Proof. First we show that the Fourier-Laplace transform of the law wlé (z,t) of the
process Wy (t) = S? (CQL% (t)) =B (CQL% (t)), t > 0, is written as in (4.15) for
Vz%,ﬂzl,n:L and reads

142 "2

wi (& p) = PRy W T (4.35)

o~

We have that

(z,p) = /OOO e Ht </0th (x,¢*s) L1 (s,1) ds) dt

w\?»—t?
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= / pp(x, s ds/ e_’“"[%(s,t)dt
0 s

(225)2 (2xs)2
o0 o0 —ut A\s e 4GE—s) e 4t—s)

= pe(z, ? s)ds e
0 s / t _ S \/ T t - 8

= / pp (z,c%s (6_5(“+2)‘\/ﬁ) +2)\\/ﬁ6_5(“+2)“/ﬁ)) ds
0

= / ﬁ (H+2>\ﬁ) ds + 2)\/.L 2 /Oo e i e_s(/L+2)‘\/ﬁ) ds
0 \/47r02 o V4rc3s ( ' )
4.36

and thus taking the Fourier transform we get

0

wll (57 ) _ / 6_80252678(H+2/\\/ﬁ) ds+2)\u_%/ 6_50252675(M+2)\\/ﬁ) ds
2 0 0

142\ 2
= . 4.37
A 20/ + c2€2 (4.37)
Now we are going to prove that the law w(x,t) of the process W(t), t > 0, has
Fourier-Laplace transform that coincides with (4.35). We have that

w(x,t) = /000 pr(z,s) p|(s,t) ds, (4.38)

and thus the Fourier transform of w(x,t) reads

@ (,1) = / ¢ do / pr (3, 5) pi)(5,1) ds

—00

_ 1 /00 1+ A ef)\s+s\/)\27c2£2
2 0 22 — 6252
A —As—s+/A2_c2¢2

Passing now to the Laplace transform we have

= 1 o > )\ TN 2__2¢2
w(&, =— e Ht dt/ 14+ ——2 e AstsvAT—c¢
(& n) 2/0 ; < SV RET 02£2> v

+ (1_ A2/\> exssm] e

6252 Tl
— /
2 0

(1o A eassyae eV
/\2 — 0252 \/ﬁ

14 A A
)\2 0252

A 1
5 | (1 o) (e
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() rare)
(A V=€) (A + v+ /X - )
(2N =€) (n+ 22V + 2€)
(V=€ - 2) (A+ v — V37 =€)

+
(2\/;7\ /3E = c2§2) (1 + 2\ + 2€2)

142\ 2
= , 4.40
B 2N/l + c2E2 (4.40)
which coincides with (4.35). O

This shows that for each ¢t we have the following equality in distribution

T(B®)|) 'Y B (CQL%(t)) . t>0, (4.41)

where the role of the Brownian motion is interchanged in the two members of
(4.41). Thus, by suitably slowing down the time in (4.41), we obtain the same
distributional effect of a telegraph process taken at a Brownian time.

Remark 4.4. The probability distribution of the process
Wi(t) = B (c%%(t)), t>0, (4.42)

can be written as

( t) A / 1 _ 22 7>\252 [ S + 1} d
Z, = — ————€ 4c2s t—s _ S
cT Jo ‘/s(t—s) 2(tfs)

A ¢ 1 22 252 |1 t
= — — ¢ 4c2s t—s — (1 _— d
/\/ L‘—s64 {2(+t_3>} ’
2
y= )\s f — -ty 1 |:1( t >:|
e aty e "N ——= |1+ —= || dy. (4.43)
e Jo vivicr 2\ Ti=g

w

W=

Taking the limit for ¢ — oo, A — oo, % — 1, formula (4.43) becomes
1 poof ¢ e # 4.44
W gy (1) = o Vi v (4.44)

2
51

which coincides with the distribution of an iterated Brownian motion Bj (|Ba(t)|),
t > 0, with B;,j = 1,2, independent Brownian motions. From (4.43) we can see
that the distribution of Wi (t), ¢ > 0, has a bell-shaped structure.

Finally we show that the density w! (z,t) integrates to unity in force of the
calculation ’

/_O;w (x,t) dx / dx/ ds < f(s,t) = /tds <§S/OO 3%(12)

s=t +2

®© geTi ® te—iz
dz = / dz = 1. 4.45
|~/(t2/\)52 VAarz3 ] o o V4rmz3 ( )

W=
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In the intermediate step, formula (4.25) has been applied.

Remark 4.5. The characteristic function of the process T2#(t), t > 0, whose
distribution satisfies

2 2 28 2
(82 +205) ¥ (@.0) = Pl @), 0<B<1,8#}

p;6<x70) = §(x), (4.46)
2
L@ =0,
reads
EeigTZE(t) =
Il | U S W= S D W G =
2 22— c2[¢|2B A? — 3¢

(4.47)

see Orsingher and Zhao [21]. Therefore by performing the same steps as in theorem (4.3)
we prove that

526 (L%(t)) 2 28 (1BM))),  t>o0. (4.48)

4.2. The case v = %, convolutions of Airy functions. We first recall that the
totally positively-skewed stable process H 3 (t), t > 0 has law

t t
Pr {H%(t) € d:c} = A <\/%) dv, x>0,t>0, (4.49)

where Ai(-) is the Airy function. Result (4.49) can be obtained from the general
series expansion of the stable law of order % (see Orsingher and Beghin [23] page
245) which reads

1 o r ﬁ 1 1. T
hi(z,1) = 37Tz:(—l)k(kf)gv s(btD)=1gip <§(k‘—|—1))
k=0 '
1 & [ (kL k41 _ . 2n(k + 1
_ 37 (_1>k (k'B )l‘ 5 1(—1)ksm ( ( 3 ))
k=0 ’
1 33 1 1 1
— -2 Ai - Aj , 4.50
3xdx (\?/37:17 3z (\S/?TJT> (450
where we used formula (4.10) of [23], which reads
. (2m(k41)
: 378 o 1 NPT )kt
Ai(w) = ==~ (3aw) ( o >r ( . > . (4.51)
k=0 '
Since
Hi(t) 2 #3813 (1), (4.52)

we have result (4.49). From the relatioship between H 3 (t), t > 0, and the inverse
process L3 (t), t > 0,

Pr{H%(t) < x} - Pr{L%(:c) > t} (4.53)
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(%J

(4.54)

o () = e () 459

we conclude that, for x > 0, t > 0,

t.2) = Pr {Lsz) € dt}

-, s (5m) o | e (5m)
/os 13 ( >ds+{3333 <‘°’t38>} +/os 3s (\tﬁ)

3 .. t
= A (@) . (4.56)
In the last step we took into account the asymptotic expansion 7.2.19 of Bleistein
and Handelsman [4].
With similar calculation we obtain the law A2 (z,t) of the process H3(t), t > 0,
which is expressed in terms of Airy function. From the general series expression of
the stable law (see [23]) we have that,

we extract the density of L3 (z), # > 0,

Pr{L()edt} 3/E

dt 0

Since

l

=

h%(CL’, 1) =
© T(2(k+1 2
= 31 (71)kwx*§(k“)*l sin <2;(k + 1))
T =0 '

2 (—1)F z= 30411 (k—!—l) (27r ) kbl 1
= E r sin (k+1) / dwe Yw s tz71
| —z
3my/m = k2! 2 (k+1) 3

D) oo
= 1\3/ =1 / eMwTE A (4.57)
x V 3227 Jo
O /2 22w

Remark 4.6. We check that the distribution (4.58) integrates to unity. We have
that
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T T N 0 W AN = S I
= ﬁ/o dwe Yw G\/;2 <t 3> /0 dy Ai(—y)
= }/mdwe_ww_éi/f(ﬁ>l
T Jo

1 o0 1 1 1 o0 1 1
= — dwe w875 = —/ dwe "wz"" =1, (4.59)
ﬁ/o VT Jo
where we used the fact that
> 2
/ dy Ai(—y) = -. (4.60)
0 3

For the law of the process L%(:r), x > 0, we therefore have that

Pr{L%(x) < t} - Pr{H%(t) > x}

ot 1, 22 1
/ / \/ Ai {2 e dwdz (4.61)
T2 322
and thus

2 (t,x) / / dwdz 4 322 ° A <—t3 Zg) R
/ / dods o[, (—t3 Zg) S
- 7/ /Oo f 3z2 w“’i%%Ai <t3 i:;) dw dz
/ / dwdz 5 A1< Lo 22w> i
322 322
[Qf/ \/: w GAI( 2 )] )
/ / dwdz A1 (—f’ f;:) Wyt
2f/ \/7 w 6A1< \/ﬁ> dw. (4.62)

Remark 4.7. For checking that (4.62) integrates to unity, we note that

/Ool%(t ) dt —

=gz ) il

o=

O“H
?.
A
w

w
‘g:;’ ‘\E;
NJ
v
IS
~
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—¢ 3/ 22w 0 [ 92 [92
Y t:Mz —3 / dw?y 2—6_“’11/_% Y 2 / Ai(—
2ﬁ 0 3332
-5, /°° dw\sl 2726_“%0_ ) 20w g
NG 322 322 3

1 /':>O B ) / l l_l
=— dwe™" w™s dwe " w25 = 1. (4.63)
V7 Jo T VE

Now we have all the information to get the distribution of the process L%(t),
t > 0, by means of formula (2.50). We have that

Pr {L%(t) c dm}
dzr

ol

O‘\»—\
w\»—\

[%(ac,t):
¢ ¢
:/ lz(z,t—5)hi(s,2)z ds—|—2)\/ L1 (2, 8) hz (t — s,2) ds

S = |
w(r) s (?%)

vl i dwe%w_éﬁ 3<t—s>2>
et (F ) (%)
SRR | o

Result (4.64) permits us to write exphmtely the solution of the fractional telegraph
equation (1.4) for v = g, B=1landn=1, as

w

ol =

6T 1S
r,t) = [1(s,t)ds, reR,t>0. 4.65
@ = [ Snen (1.65)

4.3. The planar case. Let us consider the planar process
T(t) = (X(t),Y(t)), t>0, (4.66)

with infinite directions and finite velocity ¢, investigated in Orsingher and De Gre-
gorio [22], which has probability law (see formula 1.2 therein)

A 67At+%\/ c2t2—(z24y?2)

Ho 2, .2 242 4 4.
r(z,y,t) = 5~ ey peprrs S +y” <ctt>0, (4.67)
which satisfies the telegraph equation
0? 0 5 [ 07 0?
<6t2 + 2)\8t) r(z,y,t) = ¢ <83:2 + 8y2> r(z,y,t). (4.68)

The distribution of T'(t), ¢ > 0, has a singular component uniformly distributed
on the circle 9Ce = {(z,y) € R? : 22 + y? = ¢?t?} with probability mass equal to
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e~ . The process T'(t), t > 0, describes a random motion where directions change
at Poisson paced times and the orientation of each segment of the sample paths is
uniform in [0, 27).

Let g(z,y,t) be the distribution obtained by means of the composition of the
process T'(t) with a reflecting Brownian motion with law

2

—s

e it

s,t) = , t>0,s>0, 4.69
which satisfies the equation
€93 d
t) = —— t 4.
61*,% p|B\(sa ) asp\Bl(sv ) ( 70)
and also
0 02
Sepii(s0) = pim(s:) (a71)
We have the following theorem.
Theorem 4.8. The law of the composition
Q) =T(BM®), t>0 (4.72)
written as
eg.t) = [ o) b (.00 ds, (4.73)
0

satisfies the 2-dimensional time-fractional equation

o Cpz 9 o2
<8t+2x\6é>q($,y7t) =c (a 5 +62> (z,y,t),  z,y€eR >0,
(4.74)

subject to the initial condition
q(2,9,0) = o(z,y). (4.75)
Proof. By considering (4.73) and (4.70) we can write

1

CH% oo Cos
T Q(xvyat) = / ’l"(l‘,y, 8) (%Tp|B\(Svt) ds
0 p)

at2
/ ( L) ) a ( ? )
Z y S p‘B‘ S t dS

— [p|B|(5,t)r(x,y,s)]z:;O+/Ooo p|B‘(s,t)%p(x,y,s) ds. (4.76)

From (4.73) and (4.71) we have that

82

Gpae ) = [ ) Soms.ds = /m ., gpi(s,1) ds

[(:Ey,)aapwstL_ / 75 r(z,y,s ap‘3|(st)d

- 0?
/0 p|B\(57t) 932 (xaya S) ds.
(4.77)

— - [ants.0) ferten)]
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Thus, by looking at (4.68), (4.76) and (4.77) we obtain

1

0 8

:/O p|B‘(S’t) |:a 2 (.’L‘ Y,s )+2)\as7“(x,y,s)} ds

osl 82 82 62 82
_ 2 _ 2
= /0 p|B\(Sat)C ((91'2 + 81/ ) T(.T,y,S) ds c ((31'2 + ayz) Q($7y7t)
(4.78)

which means that ¢(z,y,t) satisfies equation (4.74). O

It is easy to show that the process Q(t) = T (|B(¢)|), t > 0, has not the same law
of the process Ws(t) = Ba (ch% (t)), t > 0. However it is possible to construct a
planar process, say T (t), t > 0 (which is a slightly different version of T'(t), t > 0)

composed with a suitable ”time process” which has the same distribution as Wh(t),
t > 0. The planar random motion ¥ (), ¢t > 0, with distribution

Ne [ WH—W]

2me 22— (22 +¢?)

t(z,y,t) = (4.79)
where (z,y) € Coy = {(:c, y)x?+y? < cth}, can be constructed starting from the
model dealt with in Orsingher and De Gregorio [22]. The distribution is based on
the solution to the planar telegraph equation

02 0 0? 0?
2\ t) = t 4.
(5 + 2 ) slownt) = @ (goa + s ) slanth (450)
namely
Y
t(@,y,t) = c [Aet V=GR 4 et VERETRA] | (481)
02t2 _ (1‘2 + y2)

with A= B = ﬁ and thus we can easily check that

// dedyt(z,y,t) = 1 —e 2, (4.82)
Cet

We take a particle starting from the origin, moving at finite velocity ¢, and changing
direction (chosen with uniform distribution) at Poisson times and neglect displace-
ments started off by even-labelled times. The sample paths of this motion are

constructed by piecing together only odd-order displacements of the planar motion
T(t), t > 0. Since

v(z,y,1) =
CPr{I() eda} e M [e2VEPERA) 4 o2 V()
B d  27c 212 — (22 + 42)

k=0

A1 (A 22 (2 b e QP
= 2}((:) (2k +1) (ct —(x +y ))k (21 (2k + 1) (A)2F T

D B
=5 [Z(C ct? — (22 4+ y?) @
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> ()\t)2k+1
=2 Pr{X(t) € do,Y(t) € dy|N(t) = 2k + 1} e*“m
s )\t)Qk,—‘,—l
=2) Pr{T N() = 2k 41} e OO 4.
> Pr{T(t) € dx|N(t) =2k + 1} e RS (4.83)
where, for 2% + y? < ¢*t? (see [22]),
Pr{X(t) € dz,Y (t) € dy|N(t) =n} n 9.9 9 o\ -1
= — 2 4.84
dx dy 2n(ct)™ (c (2% +47)) , (4.84)
and
*ti 0 Z2Pr{N = 2k+1} = 1—e 2, (4.85)
P 0 2k + 1)!

The factor 2 appearing in (4.83) and (4.85) can be interpreted as follows. The
displacements generated by an even number of Poisson events are disregarded and
replaced by displacements produced by an odd number of deviations. Therefore,
odd-order Poisson events ignite twice the displacements considered in (4.83).

Theorem 4.9. The composition with distribution

o 1 92
q(mvyvt) - /(; dSt('/an?S) |}nB (Sat) + ﬁati%p‘Bl (5773)] y (486)

which satisfies the time-fractional equation

) Ca% , [ 02 02
has the same law of the process Wa(t) = Ba ( L2 (t ))

Proof. We begin by evaluating the Fourier-Laplace transform of (4.86).
q(&; o, )

oo oo , . 1 81
:/ ds/ dte_“t/ dx dy e %e(z, 9, 5) p‘3|(s,t)+——21p|3‘(s,t)
0 0 Clet 2)\ 8t§

2)‘_'—\/‘7 - i§x+ioy —s\Vi
_ €r+ia s . 4
Wi dS/M drdye t(z,y,8) e (4.88)

Now we need the Fourier transform of the law v(x,y,t) of the process E(t), t > 0,
which reads

?(gaO‘;t):
Ae Il Hy[ > ETGTR | o= /TG
= (&
Cet

2mc B — (@ + )

1 dx dy

— 2 c2t2 A
& At/ d9/ dppew@cowwsme))‘e” P e e/t p?
2me c /22 — p?

2,—At 2m—1
2)\ / Z( c2t2—p) ﬁﬁ)(p £2+a2> dp

m=0
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2k
/§2+a2
2he M & (A)%L - (_1)k< 2 ) ot 2,2 \M—% 2k+1
ST 2 em) Gt A G
m=0 © k=0 : 0

2 1
k . m—1
z:: 2(]{1')2 (ct)*(2m+2k+1) ~/O Yy (]. y) 2 dy

) @ i(nk(m >2k(d)2mm“”m+;)

2 o (1 (F)

=\c (2m)! e~ 2 BT (k+m+1+1) "
(4.89)
Thus, from (4.88), we have that
22+ Vi _ 142 "2
d t)ye SVH = 4.90
(gaau 2)\\/» / Sté—aa M+2)\\/ﬁ+62(£2+a2) ( )
in force of the calculation
/ dsT (€, a,s) e SVH =
0
Ve . .
\ A\2m (_1) < ) r (m + 5) v
ds e~ —s\/1
/ oe czm(Qm ! Z k! (cs)=@mH2k+D D (k+m+1+ 1) ‘

2k
o (—1)F (L) e
N VA2 (2m) Z /
N (ATEmEm)IT(m) &= KT (k+m+1+3) Jo
e (V)"
_ A i A frol=2m 2 2 [ (2k + 2m + 2)
2(\+ Vi) s mt v+ Vi) S R (A ym) e Dkt 1 3)
2k
~ s (—1)F (Y
(M\F )2 Ao ml A+ i) o KA+ ) ek 2R

A\2m Z ) (,/€2+a2)2k /oo i k+md
(A+f mom'(A'i_\mekO T R .

o S(MHVE) (2m+2k+1 ¢

)\277121 2m

2\ oo w22 _.° (5 e )7 ()\f)\ )2
=— 2 | due Grv@? U GvE? v
()\ + \/ﬁ)z 0 - A2 P 52(§2+a22)
(+vi)” - (Vi)
2\ 2\

T VR SNt R (@ a2 HHE+E (@ +a?) (4.91)
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The Fourier-Laplace transform of the law of the process By (C2L% (t)) is written

as in (4.15) for n =2, 8 =1 and v =  as the following calculation shows

wh (€0, 1) :/ 75 (€ 0,¢s) 0 (s 11) ds
2 0

00 —2Xs /1t
= (1 ‘1‘2)\/1_%)/ e—us—(§2+a2)c2s {e—zAsﬁ+2)\e ] ds
0

i
1+ 2)\u’%

Tt (2t a?) (4.92)

In the previous calculation we use the Laplace transform of /1 (z,t) obtained in

(4.29). The proof is complete since (4.92), coincides with (4.90) and with the
Fourier-Laplace transform of (4.87). O

Remark 4.10. Since for the first passage time T = inf {z :B(z) = %} of a

Brownian motion through level % we have that

> —ut . _ 75\/ﬁ
/0 e M Pr {T% € dt} =e ) (4.93)

o)
0

1

and
1

02 s
tat%pw‘(s,t) dt = e 5VH (4.94)

we can write

e 4

00 O3 o0 t
IR T~ 1 7t d = wr,y,s

:/0 gst(:c,y,s)e\/%ds :/0 %t(x,y,s)p|3|(s,t)ds. (4.95)

This representation of the second term of (4.86) is extremely interesting because
by integrating (4. 95) in C,; we get

/ 83 (1-e 2>‘9)p|B‘ (s,t)ds = 2/\/ p‘B| s,t)ds (4.96)

and yields the missing probability of the first term of (4.86).

Remark 4.11. We check that the law

1

q(z,y,t) = /Ooo t(x,y,s) [pm(s,t) 21/\88 —pB|(s, t)] ds (4.97)

integrates to unity. By taking the ¢t-Laplace transform, the integral with respect to
(z,y) becomes

// dxdy/ dte " q(z,y,t)

Cct 0

:/m(l—e‘”‘g) /m p( )+~ 2 (s.1) ) | s
i ; 1B1(5:8) + 53 = T Pim

oo —s\/1 —s\/I
= / (1—e2*) {e + £ ] ds
0 VI 27
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(e[ [

RV 1 N1 Y,
W (\/ﬁ 2A+\/ﬁ) - _/O dt. (4.98)

The same check can be done directly by taking into account formulas (4.95) and

(4.96).

law

Relationships similar to B (CQL% (t)) = T (|B(t)]), t > 0, and the analogous one

in the plane, cannot be established in spaces of dimension n > 3, because random
motions governed by telegraph equations in such spaces have not been constructed.
Random flights in R™ have been studied (Orsingher and De Gregorio [22]) but their
distributions are not related to higher-dimensional telegraph equations.

5. HYPERBOLIC FRACTIONAL TELEGRAPH EQUATIONS
The Hyperbolic Brownian motion is a diffusion on the Poincaré half-space
H* = {(z,y) :x e R ",y >0}, (5.1)

with generator, written in cartesian coordinates,
—1
1| ye= 02 )
= = — +(2- — . 5.2
S = 5 y;agﬁ“ "y, (5:2)

In the half-plane H? the hyperbolic Brownian motion was introduced by Gertsen-
shtein and Vasiliev [11] while in H? it was introduced by Karpelevich, Tutubalin
and Shur [15]. The reader can also consult, for more details, Getoor [12]; Gruet
[13]; Lao and Orsingher [17]; Matsumoto and Yor [18]. The hyperbolic Poincaré
half-space is equipped with the metric

-1
oIy dad 4 dy?

ds* = e ) (5.3)
and thus the hyperbolic distance in H" is given by the formula
12 2
coshn(z',z) = 1+ 12" = =] , 2,2 € H", (5.4)
2yy’
where ||-|| is the usual euclidean norm. We define the operator $2 as the governing

operator of the planar hyperbolic Brownian motion Bg P(t), t > 0, which is written
as

9? 0?
in Cartesian coordinates and takes the form
" = G, + #iz (5.6)
2 = &2 sinh? 7 0o ’

in hyperbolic coordinates, where

1 0 /. 0
G2 = Sinhn dn (mnhnan) . (5.7)
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Note that we disregard the factor % in ﬁgp in the forthcoming calculation as in
the pioneering work by Gertsenshtein and Vasiliev [11]. The problem involving the
radial part of (5.6) which is written as

{éikz(n,t) = Goka(n,t), 1 >0,t>0, (5.9)

k2(n,0) = do(n),

has the following solution

2

e 1 > we_%
ko (n, 1) = d 5.9
2(1,1) T /17 eosh p — o ¥ (5.9)

to which we refer as the kernel of the law of B4?(t), t > 0. The law of By?(t), t > 0
is therefore written as

PP (n,t) = sinhnka(n,t),  1>0,t>0. (5.10)

The three-dimensional hyperbolic Brownian motion ng (t), t > 0 is driven by the

operator
0? 0? 0? 9]
2
P =2 <8z2+6y2+8z2>_zaz (5:-11)

written in Cartesian coordinates. We are interested in the Cauchy problem

{&ks(n,w = Giks(n,t), > 0,6>0, 612
k3(n,0) = o(n). '
where

1

0 9 O
= ———— | sinh"n— 5.13
’ sinh2n3n( nﬁn) 1)
represents the radial part of S’Jg” which coincides with $3 in hyperbolic coordinates.

The solution to (5.12) is given by

2

et pe i
k t) = —— 5.14
3(777 ) 2\/% SiIlhT]7 ( )
and thus the probability law of B;}p(t)7 t > 0, reads
p5"(n,t) = sinh®n ky(n, t). (5.15)
In general, the law of a n-dimensional hyperbolic Brownian motion is written as
pzp(%t) = Sinhn_lnkn(nvt)7 (516)
and solves the heat equation
00 = g (3t (e 00))
— ,t) = — [ sinh" — | ———=—pF(n,t 5.17
5P (1) n "5 T (n.t) (5.17)
where
0 0 1
*— — (sinh" tp— | —— ) ), neN, 5.18
5 = gy (3 055 (75 o1
is the adjoint of
1 9] 1 0
n = —————— | sinh™ — 1, 5.19
G sinh™ 17 dn ( 77377) ( )
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in the sense that

<gnknv pn> = <kn7 g;pn> ) n €N (5'20)
Thus the n-dimensional kernel satisfies
0
akn (m,t) = Gnkn(n,t). (5.21)

The kernels for n > 3 can be obtained from ks and k3 by means of Millson
recursive formula (see Debiard, Gaveau and Mazet [6])

e~ 9
knio (0,t) = ————— — K (0, 1) . 5.22
b2 (1.8) = gk (1) (5.22)
By working out the derivatives we obtain a more explicit version of Millson formula
e—(jz—l)t 7j—1 ) )
k2j+1(n’t) = T(@m)i Tt <_ sinlh'q %) 4 ks (777t)a Jjzln=2j+1,
(52 43)t L J _ _
k2j+2 (777 t) = 2m)d _sinhnf% kQ (77) t) ) J > 07 n= 2.] +2.
Theorem 5.1. The distribution of the composition
1
TV(t) = B (£¥(1)), ve (0, 2] ,t >0, (5.23)

where BM"P is the n-dimensional hyperbolic Brownian motion in the Poincaré hy-
perbolic half-space H", satisfies the fractional hyperbolic telegraph equation for v €

(0, 3],
{(25 HG) A nt) = 5 (s (e 00) ) >0,
pr (n,0) =6 (n),
and thus the kernel

K 00) = ) (5.24)

satisfies, for v € (0, %} ,

C 92v C qv . —
{(a?w + 2255 ) K (0,1) = g an (Smhn Yy (n,t)) , n>0,

ki, (1,0) = 8 (n),
(5.25)

Proof. Tt is convenient to consider the Laplace transform, x of the kernel x”. We
have that

nﬂmm:/mﬁfwamw:/man/m@mm$a@w (5.26)
0

0 0

= / ky (n,s) (02714 220" 7h) e (W H22n") g (5.27)
0

Now we show that (5.27) satisfies the Laplace transform of (5.25) written as

S—. (sinh”‘l n(%gi (mu)) . (528)

2v v\ o
LN R () = ——
(1 w) R () = s o
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By considering (5.21) and that k¥ (n,0) = 6 (n) we have, for n >0

1 9. .4 &~
- = h" U
sinh"~'n on (sm " on i (n, M))

E / Sln}fl’j—lnaan (Sinh”l ’r]aankn (7775)> (M2V_1 + 2)\/1/’/_1) e—S(M2V+2)\HV)
0

o0

0 v v

:/ ds ask” (1, 5) (u2u—1 +2)\Mu—1) o s(w? 22"
0

= [kn(n, s) (L2t 227t 6*5(M2"+2)\;¢"):|

S§=00

s=0
+ (M2u—1 + 2)\Mu—1> (MQV + 2)\MV)/ kn, (77’5) e—s(u2u+2>\uv) ds
0

= (1 +2)p¥) K (1, 1) - (5.29)
0

Remark 5.2. By taking profit of the simple structure of pgp (n,t) we can give, for
n = 3, an alternative direct proof of the result of theorem 5.1. We first evaluate

the Laplace transform Eg(n, 1), as follows

R (o) = /0 k(. 5) /0 eH (s, 1) dt ds — /0 ko (1,8) (3, 1) ds

n

2v—1 v—1
_ n (1 + 2 )/OO ems(lnaaer) € o
0

M

2/msinhn Vs3
2v—1 v—1
_ .+h2 M) i, (5.30)
sinhn

Now we show that (5.30) solves the Laplace transform of (5.25) for n = 3. We have
that

1 a 2 8 -
——— — | sinh” n—~¥ (n,
sinh?7) On ( nan 5(n ﬂ))
2v—1 v—1
N (FOR 772 (w271 + 22 )6—77\/1+N2”+2>\u”
sinh?7n On on sinh
2v—1 2\ v—1 - -
_ (M .+ . H )Q |:e*77\/1+u2 22 (sinhn 1+ p2 + 220 —i—COShT])}
sinh” n on
2v—1 Ay 1 —n\/ 1+ p2v+2Auv
(#1422 .)26 v [ T 5 2 2
sinh® n
. (sinhn 1+ p2¥ + 2 \p¥ + cosh n) - (coshn 1+ p2v + 2 \p¥ + sinh 77)}

(M2ll—1 _,’_2)\“1/—1) efm/1+#2u+2)\uu

[sinhn (1 +p? + 2)\,u”) — sinh 77]

B sinh? 7
2v—1 v—1
_ (,u Si‘;hQ;‘/i )e—fl*/1+lt2”+2/\ﬂ" ((1 +M2u + ZAMV) _ 1)
2v—1 2 v—1 — - N
_ (MQV +2>\Mu) (H S;Zhnﬂ )e—m/1+u2 2 _ (MQV —1—2)\,u”) K (0, 1)

(5.31)
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Remark 5.3. For v = 1 we know the explicit law of the process £”(t), t > 0,
which is written as in (4.25). Thus we have an explicit representation for the law
of the process

S

T2 (t) = BYP (L%(t)) . t>0 (5.32)

which reads

1
p3 (n,t)

2 2,2 2,2

h2 /t e~ et [ Ase s 2Ne s i

sin s
g o 2v/7s3 sinhn

Ansinhy 1 e™ a2 712<
e t E
2m 0 83/t —s
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