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Abstract. In this paper we consider the general space-time fractional equa-

tion
∑m
j=1 λj

∂
νj

∂t
νj w(x1, · · · , xn; t) = −c2 (−∆)β w(x1, · · · , xn; t), for νj ∈

(0, 1], β ∈ (0, 1] with initial condition w(x1, · · · , xn; 0) =
∏n
j=1 δ(xj). We

show that the solution of the Cauchy problem above coincides with the distri-

bution of the n-dimensional vector process S2β
n

(
c2Lν1,··· ,νm (t)

)
, t > 0, where

S2β
n is an isotropic stable process independent from Lν1,··· ,νm (t) which is the

inverse of H ν1,··· ,νm (t) =
∑m
j=1 λ

1/νj
j Hνj (t), t > 0, with Hνj (t) independent,

positively-skewed stable r.v.’s of order νj . The problem considered includes the

fractional telegraph equation as a special case as well as the governing equation

of stable processes. The composition S2β
n

(
c2Lν1,··· ,νm (t)

)
, t > 0, supplies a

probabilistic representation for the solutions of the fractional equations above

and coincides for β = 1 with the n-dimensional Brownian motion at the ran-

dom time Lν1,··· ,νm (t), t > 0. The iterated process Lν1,··· ,νmr (t), t > 0, inverse

to Hν1,··· ,νmr (t) =
∑m
j=1 λ

1/νj
j 1H

νj ( 2H
νj ( 3H

νj (· · · rHνj (t) · · ·))), t > 0,

permits us to construct the process S2β
n

(
c2Lν1,··· ,νmr (t)

)
, t > 0, the distribu-

tion of which solves a space-fractional equation of the form of the generalized

fractional telegraph equation. For r → ∞ and β = 1 we obtain a distribu-

tion, independent from t, which represents the multidimensional generalisation
of the Gauss-Laplace law and solves the equation

∑m
j=1 λjw(x1, · · · , xn) =

c2
∑n
j=1

∂2

∂x2j
w(x1, · · · , xn). Our analysis represents a general framework of

the interplay between fractional differential equations and composition of pro-
cesses of which the iterated Brownian motion is a very particular case.

1. Introduction and preliminaries

1.1. Introduction. The study of the relationships between fractional differential
equations and stochastic processes has gained considerable popularity during the
past three decades. In pioneering works simple time-fractional diffusion equations
have been considered (see for example Fujita [8]) and its connection with stable
processes has been established (see Orsingher and Beghin [13]; the reader can also
consult Zolotarev [18] for details on stable laws). In such papers the authors have
shown that the compositions of processes have distributions satisfying fractional
equations of different form. The iterated Brownian motion B1 (|B2(t)|), t > 0, (with
B1 and B2 independent Brownian motions) has distribution solving the fractional
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equation (see Allouba and Zheng [1])

∂
1
2

∂t
1
2

u(x, t) =
1

2
3
2

∂2

∂x2
u(x, t), x ∈ R, t > 0. (1.1)

as well as the fourth-order equation (see DeBlassie [5])

∂

∂t
u(x, t) =

1

23

∂4

∂x4
u(x, t) +

1

2
√

2πt

d2

dx2
δ(x), x ∈ R, t > 0. (1.2)

It has been shown by different authors (see Benachour et al. [3]) that the solution
to the biquadratic heat-equation

∂

∂t
u(x, t) = − 1

23

∂4

∂x4
u(x, t), x ∈ R, t > 0, (1.3)

coincides with

u(x, t) = E

{
1√

2π |B(t)|
cos

(
x2

2 |B(t)| − π
4

)}
(1.4)

and appears as the distribution of the composition of the Fresnel pseudoprocess
with an independent Brownian motion (see Orsingher and D’Ovidio [14]).

When the fractional telegraph equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = c2

∂2

∂x2
u(x, t), x ∈ R, t > 0, (1.5)

for ν ∈ (0, 1], λ > 0, c > 0, is considered, the solution of problem (1.5) for ν = 1
2

has been proved to coincide with the distribution of T (|B(t)|), t > 0, where T (t),
t > 0, is a telegraph process independent from the Brownian motion B(t), t > 0.
From the analytical point of view, equations similar to (1.5) have been studied in
the form

∂α

∂tα
u(x, t)+a

∂β

∂tβ
u(x, t) = c2

∂γ

∂xγ
u(x, t)+ξ2u(x, t)+ϕ(x, t), x ∈ R, t > 0, (1.6)

for α ∈ [0, 1], β ∈ [0, 1], by Saxena et al. [15]. These authors have provided the
Fourier transform of solutions of fractional equations of the form

a1
∂α1

∂tα1
u(x, t) + · · ·+an+1

∂αn+1

∂tαn+1
u(x, t) = c2

∂β

∂xβ
u(x, t) + ξ2u(x, t) +ϕ(x, t) (1.7)

for α1, · · · , αn+1 ∈ (0, 1) and β > 0, (see Saxena et al. [16]) in terms of generalized
Mittag-Leffler functions (but no probabilistc interpretation has been given to these
solutions). Telegraph equations emerge in electrodynamics, in the study of damped
vibrations, in the analysis of the telegraph process. Its multidimensional version
appears in studying vibrations of membranes and other structures subject to fric-
tion. Equations with many fractional derivatives emerge in the study of anomalous
diffusions as pointed out by Saxena et al. [15, 16].

The symmetric stable laws have distribution satisfying the space-fractional equa-
tion

∂

∂t
u(x, t) = − ∂ν

∂|x|ν
u(x, t), x ∈ R, t > 0, (1.8)

where ∂ν

∂|x|ν is the Riesz fractional derivative. For asymmetric stable laws the con-

nection with fractional equations has been established by Feller [7]. The connection
between fractional telegraph equations and stable laws has been established in a
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recent paper by D’Ovidio et al. [6], in which the authors considered the multidi-
mensional space-fractional extension of (1.5)(

∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = −c2 (−∆)

β
u(x, t), x ∈ Rn, t > 0, (1.9)

for ν ∈
(
0, 1

2

]
, β ∈ (0, 1]. The solution to (1.9) subject to the initial condition

u(x, 0) = δ(x) is given by the law of the composition of the form S2β
n

(
c2Lν(t)

)
,

t > 0, where S2β
n (t), t > 0, is a n-dimensional isotropic stable vector process and

Lν(t) = inf
{
s : H2ν

1 (s) + (2λ)
1
νHν

2 (s) ≥ t
}

(1.10)

where H2ν
1 (t) and Hν

2 (t), t > 0, are independent positively-skewed stable processes,
with ν ∈

(
0, 1

2

]
. For β = 1 the composition above takes the form of a Brownian

motion at the delayed time Lν(t), t > 0. For ν = 1
2 and n = 1 this establishes the

fine distributional relationship

T (|B(t)|) law
= B

(
c2L

1
2 (t)

)
, t > 0, (1.11)

see D’Ovidio et al. [6].
In the present paper we consider the further generalization of the space-time

fractional equation with an arbirtrary number of time-fractional derivatives{∑m
j=1 λj

C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)

β
wβν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβν1,··· ,νm(x, 0) = δ(x),

(1.12)

for νj ∈ (0, 1], β ∈ (0, 1], λj > 0, j = 1, · · · ,m. The symbol
C∂ν

∂tν stands for the
Dzerbayshan-Caputo fractional derivative which is defined as

C∂ν

∂tν
f(t) =

1

Γ (m− ν)

∫ t

0

dm

dsmu(s)

(t− s)ν+1−m ds, m− 1 < ν < m,m ∈ N, (1.13)

for a function f ∈ L1 (R) (for fractional calculus the reader can consult Kilbas et al.

[10]). The fractional Laplacian (−∆)
β
, β ∈ (0, 1) is defined and explored in Section

1.2.2 below. We show that the solution to (1.12) is given by the law of the process
S2β
n

(
c2Lν1,··· ,νm(t)

)
, t > 0, where

Lν1,··· ,νm(t) = inf {s > 0 : H ν1,··· ,νm(s) > t} (1.14)

and

H ν1,··· ,νm(t) =

m∑
j=1

λ
1
νj

j H
νj
j (t), t > 0, (1.15)

for H
νj
j , j = 1, · · · ,m, totally positively-skewed stable processes (stable subordina-

tors), of order νj . In other words we show that the solution of a general space-time
fractional equation (which includes reaction-diffusion equations, telegraph equa-
tions, diffusion equations as very special cases) coincides with the distribution of
a stable vector process taken at a random time Lν(t), t > 0, constructed as the
inverse of the combination of independent stable subordinators. For the classi-
cal Laplacian (β = 1) we have that the solution to (1.12) is the distribution of a
Brownian motion at time Lν(t), t > 0.
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We also prove that the law of the processes (1.14) and (1.15) are also solutions
of fractional differential equations. In particular we show that

hν1,··· ,νm(x, t) =
Pr {H ν1,··· ,νm(t) ∈ dx}

dx
, (1.16)

is the solution to the space-fractional problem for νj ∈ (0, 1)
∂
∂thν1,··· ,νm(x, t) =

∑m
j=1 λj

∂νj

∂xνj
hν1,··· ,νm(x, t), x > 0, t > 0

hν1,··· ,νm(x, 0) = δ(x),

hν1,··· ,νm(0, t) = 0,

(1.17)

while the law of Lν2,··· ,νm(t) solves{∑m
j=1 λj

∂νj

∂tνj
lν1,··· ,νm(x, t) = − ∂

∂x lν1,··· ,νm(x, t), x > 0, t > 0,

lν1,··· ,νm(0, t) =
∑m
j=1 λj

tνj

Γ(1−νj) ,
(1.18)

for νj ∈ (0, 1). In (1.17) and (1.18) the fractional derivatives must be meant in the
Riemann-Liouville sense that is, for a function f ∈ L1 (R),

∂ν

∂xν
f(x) =

1

Γ (m− ν)

d

dx

∫ x

0

f(s)

(x− s)ν+1−m ds, m− 1 < ν < m,m ∈ N.

(1.19)
A section is devoted to the case of the fractional equation with two time deriva-

tives of order α ∈ (0, 1] and ν ∈ (0, 1] with α 6= ν,{(
C∂α

∂tα + 2λ
C∂ν

∂tν

)
wβα,ν (x, t) = −c2 (−∆)

β
wβα,ν (x, t) , x ∈ Rn, t > 0,

wβα,ν (x, 0) = δ(x),

(1.20)

which takes a telegraph-type structure for α = kν, k ∈ N, kν ≤ 1. The Fourier-
Laplace transform of the solution of (1.20) for α = kν reads∫ ∞

0

dt e−µt
∫
Rn
dx eiξ·xwβkν,ν (x, t) =

µkν−1 + 2λµν−1

µkν + 2λµν + c2 ‖ξ‖2β
. (1.21)

For k = 2, n = 1, β = 1, we have the classical fractional telegraph equation studied
in Orsingher and Beghin [12]. The Fourier transform of w2ν,ν(x, t) reads∫ ∞

−∞
dx eiξxw2ν,ν(x, t) =

=
1

2

[(
1 +

λ√
λ2 − c2ξ2

)
Eν,1 (−η1t

ν) +

(
1− λ√

λ2 − c2ξ2

)
Eν,1 (−η2t

ν)

]
(1.22)

where η1 and η2 are the solutions to µ2ν + 2λµν + c2ξ2 = 0 and

Eψ,ϑ(z) =

∞∑
k=0

zk

Γ (ψk + ϑ)
, ψ, ϑ > 0, z ∈ R, (1.23)

is the two-parameter Mittag-Leffler function. For ν = 1, (1.22) coincides with the
characteristic function of the telegraph process. For k = 3 and ν ≤ 1

3 in (1.21) we
obtain explicitely the Fourier transform of the solutions in terms of Mittag-Leffler
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functions and the Cardano roots A, B and C of the third order algebraic equations

µ3ν + 2λµν + c2 ‖ξ‖2β = 0. For k > 3 we can write

˜̂wβkν,ν (ξ, µ) =
µkν−1 + 2λµν−1

µkν + 2λµν + c2 ‖ξ‖2β
= µν−1

k∏
i=1

µν−1

µν − Zi
+ 2λµν−1

k∏
i=1

1

µν − Zi
(1.24)

but the explict evaluation of Zi is, in general, impossible.
In Orsingher and Beghin [13] n-times iterated Brownian motion

In(t) = B1 (|B2 (|B3 · · · (|Bn+1(t)|) · · ·|)|) , t > 0, (1.25)

is considered and its connection with the fractional diffusion equation

∂
1
2n

∂t
1
2n
u(x, t) = 2

1
2n−2 ∂

2

∂x2
u(x, t) (1.26)

investigated. Here we consider first the n-times iterated positively-skewed stable
process jH

νj with weights λj > 0, j = 1, · · · ,m,

Hν1,··· ,νmr (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj (t) · · ·))) , t > 0, (1.27)

We construct the inverse of the process (1.27) as follows

Lν1,··· ,νmr (t) = inf {s > 0 : Hν1,··· ,νmr (s) ≥ t} , t > 0. (1.28)

We show that the distribution of the composition

Bn

(
c2Lν1,··· ,νmr (t)

)
, t > 0, (1.29)

where Bn represents the n-dimensional Brownian motion, is the solution to the
Cauchy problem for νj ∈ (0, 1], r ∈ N,{∑m

j=1 λj
C∂

νrj

∂t
νr
j
wβ,rν1,··· ,νm(x, t) = c2∆wβ,rν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβ,rν1,··· ,νm(x, 0) = δ(x).
(1.30)

We show that for the number r of iterations tending to infinity

Bn

(
c2Lν1,··· ,νmr (t)

) law
=⇒

r →∞
Xm,n, (1.31)

where Xm,n is a r.v. independent from t and possesses density equal to

Pr {Xm,n ∈ dx}
dx

=
1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2

‖x‖−
n−2
2 Kn−2

2


√∑m

j=1 λj

c
‖x‖

 ,

(1.32)
where Kν(x) is the modified Bessel function. For n = 1 the distribution (1.32)
becomes the Gauss-Laplace law

wm (x) =

√∑m
j=1 λj

2c
e−
√∑m

j=1
λj

c |x|. (1.33)

Result (1.33) was obtained also in Orsingher and Beghin [13] and by a different
approach for λ1 = 1, λj = 0 for j ≥ 2, c = 1

2 , was derived by Turban [17] as the
limit of iterated random walks.
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1.2. Preliminaries.

1.2.1. One dimensional stable laws. Let us consider a stable process, say Sν(t),
t > 0, ν ∈ (0, 2], ν 6= 1, for which, in general,

EeiξS
ν(t) = e−σ|ξ|

νt(1−iθsign(ξ) tan νπ
2 ) (1.34)

where θ ∈ [−1, 1] is the skewness parameter and σ = cos πν2 . In this paper we
consider positively skewed processes (θ = 1) say Hν(t), t > 0, whose characteristic
function writes

ĥν(ξ, t) =EeiξH
ν(t) = e−t|ξ|

ν cos πν2 (1−i sign(ξ) tan πν
2 ) = e

−t
(
|ξ|e−

iπ
2

sign(ξ)
)ν

= e−t(−iξ)
ν

(1.35)

where we used the fact that |ξ| e−iπ2 sign(ξ) = −iξ. The process Hν(t), t > 0, has the
important property of having non-negative, stationary and independent increments,
and thus it is suitable to play the role of a random time. The law hν(x, t), x ≥ 0,

t > 0 of Hν(t), t > 0, with Fourier transform ĥν(ξ, t) and Laplace transform

h̃ν(µ, t) = e−tµ
ν

, (1.36)

solves the fractional diffusion equation, for ν ∈ (0, 1],
(
∂
∂t + ∂ν

∂xν

)
hν(x, t) = 0, x > 0, t > 0,

hν(x, 0) = δ(x),

hν(0, t) = 0,

(1.37)

where the fractional derivatives are intended in the Riemann-Liouville sense. We
notice that the process given by the composition of r ∈ N independent stable
subordinators of the same order ν ∈ (0, 1), say 1H

ν (2H
ν (· · ·rHν(t) · · ·)), t > 0

has law which reads

Pr {1Hν (2H
ν (· · ·rHν(t) · · ·)) ∈ dx}

dx
=

=

∫ ∞
0

ds1 1hν(x, s1)

∫ ∞
0

ds2 2hν(s1, s2)

∫ ∞
0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t).

(1.38)

In view of (1.35) and (1.36) we can easily write the Laplace and Fourier trans-
forms of (1.38). For example the Laplace transform reads

Ee−µ 1H
ν(2H

ν(···rHν(t)···)) =

∫ ∞
0

dx e−µx Pr {1Hν (2H
ν (· · ·rHν(t) · · ·)) ∈ dx}

=

∫ ∞
0

ds1 e
−s1µν

∫ ∞
0

ds2 2hν(s1, s2)

∫ ∞
0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t)

=

∫ ∞
0

ds2e
−s2µν

2
∫ ∞

0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t) = e−tµ
νr

(1.39)

and therefore we have the following Fourier transform

Ee−iξ 1H
ν(2H

ν(···rHν(t)···)) = e−t(−iξ)
νr

(1.40)
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1.2.2. Multidimensional stable laws and fractional Laplacian. Let us consider the
isotropic n-dimensional process S2β

n (t), t > 0 , β ∈ (0, 1], with density

vβ (x, t) =
1

(2π)n

∫
Rn
dξ e−iξ·x e−t‖ξ‖

2β

, x ∈ Rn, t > 0, (1.41)

and therefore characteristic function

v̂β (ξ, t) = Eeiξ·S
2β
n (t) = e−t‖ξ‖

2β

, (1.42)

where the symbol ‖·‖ stands for the usual Euclidean norm. The law (1.41) is the
solution to the fractional Cauchy problem, for β ∈ (0, 1]{(

∂
∂t + (−∆)

β
)
vβ (x, t) = 0, x ∈ Rn, t > 0,

vβ(x, 0) = δ(x).
(1.43)

The fractional negative Laplacian appearing in (1.43) has been considered by many
authors (see for example Balakrishnan [2]; Bochner [4]). The Bochner representa-
tion of the fractional Laplacian reads

− (−∆)
β

=
sinπβ

π

∫ ∞
0

dλλβ−1 (λ−∆)
−1

∆. (1.44)

Equivalently, an alternative useful definition can be given in the space of the Fourier
transforms, as

− (−∆)
β
u(x) =

1

(2π)n

∫
Rn
e−ix·ξ ‖ξ‖2β û (ξ) dξ (1.45)

where

Dom (−∆)
β

=

{
u ∈ L1

loc (Rn) :

∫
Rn
|û (ξ)|2

(
1 + ‖ξ‖2β

)
dξ <∞

}
. (1.46)

In the one-dimensional case and for 0 < 2β < 1 we have that (see for example
D’Ovidio et al. [6] for details on this point),(

− ∂2

∂x2

)β
u(x) = − ∂2β

∂|x|2β
u(x), (1.47)

where ∂2β

∂|x|2β is the Riesz operator usually defined as

∂2β

∂|x|2β
u(x) =

1

2 cosβπ

1

Γ (1− 2β)

d

dx

∫ ∞
−∞

u(z)

|x− z|2β
dz (1.48)

and for which the Fourier transform becomes

F
[
− ∂2β

∂|x|2β
u(x)

]
= |ξ|2β û (ξ) . (1.49)

2. Generalized fractional equations

2.1. Linear combination of stable processes. In this section we start by con-
sidering processes of the form

H ν1,··· ,νm(t) =

m∑
j=1

λ
1
νj

j H
νj
j (t), t > 0, νj ∈ (0, 1) , j = 1, · · · ,m, (2.1)

where H
νj
j (t), t > 0, are independent stable subordinators of order νj ∈ (0, 1]

introduced in section 1.2.1. Furthermore we will deal with the inverse process of
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H ν1,··· ,νm , say Lν1,··· ,νm(t), t > 0, which can be defined as the hitting time of
H ν1,··· ,νm as

Lν1,··· ,νm(t) = inf

s > 0 : H ν1,··· ,νm(s) =

m∑
j=1

λ
1
νj

j H
νj
j (s) ≥ t

 , t > 0. (2.2)

The definition (2.2) of the process Lν1,··· ,νm permits us to write

Pr {Lν1,··· ,νm(t) < x} = Pr {H ν1,··· ,νm(x) > t} . (2.3)

We present the following two results.

Theorem 2.1. We have that

i) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m,
∂
∂thν1,··· ,νm(x, t) = −

∑m
j=1 λj

∂νj

∂xνj
hν1,··· ,νm(x, t), x > 0, t > 0,

hν1,··· ,νm(x, 0) = δ(x),

hν1,··· ,νm(0, t) = 0.

(2.4)

is given by the law of the process H ν1,··· ,νm(t), t > 0, defined in (2.1).
ii) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m,{∑m

j=1 λj
∂νj

∂tνj
lν1,··· ,νm(x, t) = − ∂

∂x lν1,··· ,νm(x, t), x > 0, t > 0,

lν1,··· ,νm(0, t) =
∑m
j=1 λj

t−νj

Γ(1−νj) ,
(2.5)

is given by the law of the process Lν1,··· ,νm(t), t > 0, defined in (2.2).

The fractional derivatives appearing in (2.4) and (2.5) must be intended in the
Riemann-Liouville sense.

Proof of i). Since for the Riemann-Liouville fractional derivative we have that

F
[
∂ν

∂xν
u(x)

]
(ξ) = (−iξ)ν u(x) (2.6)

we can write the Fourier transform of the problem (2.4) as

∂

∂t
ĥν1,··· ,νm (ξ, t) = −F

[
m∑
j=1

λj
∂νj

∂xνj
hν1,··· ,νm(x, t)

]
(ξ) =

m∑
j=1

λj (−iξ)νj ĥν1,··· ,νm (ξ, t) ,

and therefore we have that{
∂
∂t ĥν1,··· ,νm(ξ, t) =

∑m
j=1 λj (−iξ)νj ĥν1,··· ,νm (ξ, t)

ĥν1,··· ,νm(ξ, 0) = 1.
(2.7)

The Fourier transform of the law hν1,··· ,νm(x, t) of the process (2.1) is written as

EeiξH ν1,··· ,νm (t) = Eeiξ
∑m
j=1 λ

1
νj
j H

νj
j (t) (1.35)

= e−t
∑m
j=1 λj(−iξ)

νj
. (2.8)

for which

∂

∂t
EeiξH ν1,··· ,νm (t) =

m∑
j=1

λj (−iξ)νj e−t
∑m
j=1 λj(−iξ)

νj
. (2.9)

This is tantamount to saying that the Fourier transform of hν1,··· ,νm(x, t) is the
solution to the problem (2.7) and thus hν1,··· ,νm(x, t) is the solution to (2.4). �
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Proof of ii). In this proof we will make use of the Laplace transform of the Riemann-
Liouville fractional derivative which, in view of (2.6), can be written as

L
[
∂ν

∂tν
u(t)

]
(µ) = µν ũ (µ) . (2.10)

Taking the Laplace transform of (2.5) with respect to t we get

m∑
j=1

λjµ
νj l̃ν1,··· ,νm(x, µ) = − ∂

∂x
l̃ν1,··· ,νm(x, µ), (2.11)

and performing the x-Laplace transform of (2.11) we arrive at

m∑
j=1

λjµ
νj ˜̃l ν1,··· ,νm(γ, µ) = l̃ν1,··· ,νm(0, µ)− γ˜̃l ν1,··· ,νm(γ, µ). (2.12)

The boundary condition appearing in (2.12) can be derived from (2.5) as

l̃ν1,··· ,νm(0, µ) =

∫ ∞
0

dt e−µt
m∑
j=1

λj
t−νj

Γ (1− νj)
=

m∑
j=1

λjµ
νj−1 (2.13)

and thus from (2.12) we have that

˜̃l ν1,··· ,νm(γ, µ) =

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + γ
. (2.14)

Now we show that the Fourier-Laplace transform of the law of the process Lν1,··· ,νm(t),
t > 0, coincides with (2.14). By taking into account the property (2.3) of the law
of Lν1,··· ,νm , we obtain˜̃l ν1,··· ,νm(γ, µ) =

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γxlν1,··· ,νm(x, t)

=

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γx
[
− ∂

∂x

∫ t

0

dz hν1,··· ,νm(z, x)

]
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
h̃ν1,··· ,νm(µ, x)

]
= − 1

µ

∫ ∞
0

dx e−γx

[
∂

∂x
Ee−µ

∑m
j=1 λ

1
νj
j H

νj
j (x)

]
(1.36)

= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
e−x

∑m
j=1 λjµ

νj

]
=

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + γ
,

(2.15)

which coincides with (2.14). The proof of Theorem 2.1 is thus concluded. �

2.2. Generalized fractional telegraph-type equations. In this section we study
equations of the form

m∑
j=1

λj
C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)

β
wβν1,··· ,νm(x, t), x ∈ Rn, t > 0,

(2.16)

for νj ∈ (0, 1], j = 1, · · · ,m, β ∈ (0, 1], c > 0, λ > 0. The symbol
C∂ν

∂tν stands
for the Dzerbayshan-Caputo fractional derivative. Equation (2.16) generalizes the
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telegraph equation in that an arbitrary number m of time-fractional derivatives
appears and the n-dimensional fractional Laplacian governs the space fluctuations.
Concerning the equation (2.16) we present the following result.

Theorem 2.2. The solution to the problem for νj ∈ (0, 1], j = 1, · · · ,m, β ∈ (0, 1],{∑m
j=1 λj

C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)

β
wβν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβν1,··· ,νm(x, 0) = δ (x) .

(2.17)

is given by the law of the process

W ν1,··· ,νm
n (t) = S2β

n

(
c2Lν1,··· ,νm(t)

)
, t > 0, (2.18)

where S2β
n is the isotropic vector process dealt with in section 1.2.2 and Lν1,··· ,νm(t),

t > 0 is the process defined in (2.2).

Proof. Since for the Dzerbayshan-Caputo fractional derivative we have that,

L
[
∂ν

∂tν
u(t)

]
(µ) = µν ũ(µ)− µν−1u(0), ν ∈ (0, 1) , (2.19)

we can write the Laplace transform of (2.17) as

m∑
j=1

λjµ
νj w̃βν1,··· ,νm (x, µ)−

m∑
j=1

λjµ
νj−1δ(x) = −c2 (−∆)

β
w̃βν1,··· ,νm (x, µ) . (2.20)

The Fourier-Laplace transform of (2.17) is therefore written as

̂̃wβν1,··· ,νm (ξ, µ) =

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + c2 ‖ξ‖2β
. (2.21)

Considering (2.3) we can derive the Fourier-Laplace transform of the process (2.18).
We have that̂̃wβν1,··· ,νm (ξ, µ) =

∫
Rn
dx eiξ·x

∫ ∞
0

dt e−µt
∫ ∞

0

ds vβ
(
x, c2s

)
lν1,··· ,νm (s, t)

=

∫ ∞
0

ds e−sc
2‖ξ‖2β

∫ ∞
0

dt e−µt
[
− ∂

∂s

∫ t

0

hν1,··· ,νm(z, s) dz

]
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
h̃ν1,··· ,νm(µ, s)

)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
Ee−µ

∑m
j=1 λjH

νj
j (s)

)
(1.36)

= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
e−s

∑m
j=1 λjµ

νj

)
=

m∑
j=1

λjµ
νj−1

∫ ∞
0

ds e−sc
2‖ξ‖2β−s

∑m
j=1 λjµ

νj

=

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + c2 ‖ξ‖2β
= (2.21). (2.22)

Since the Fourier-Laplace transform of the problem (2.17) coincides with that of
the law of the process S2β

n

(
c2Lν1,··· ,νm(t)

)
, t > 0, the proof is complete. �
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2.3. Telegraph-type equations with two time-fractional derivatives. When
in the equation (2.16) only two time derivatives appear we can rewrite the problem,
for α, ν ∈ (0, 1] as{(

C∂α

∂tα + 2λ
C∂ν

∂tν

)
wβα,ν(x, t) = −c2 (−∆)

β
wβα,ν(x, t), x ∈ Rn, t > 0,

wβα,ν(x, 0) = δ(x).

(2.23)

For α = 2ν, ν ∈
(
0, 1

2

]
the reader can recongnize in (2.23) the standard form of

the classical fractional telegraph equation, investigated from a probabilistic point
of view in Orsingher and Beghin [12] (for n = 1 and β = 1) and in D’Ovidio et al.
[6] (for n ∈ N and β ∈ (0, 1)). In view of Theorem 2.2 is it not difficult to prove
the following result.

Corollary 2.3. The solution of the fractional Cauchy problem (2.23) is given by
the law of the process

W α,ν
n (t) = S2β

n

(
c2Lα,ν(t)

)
, t > 0. (2.24)

where

Lα,ν(t) = inf
{
s > 0 : H α,ν(s) = Hα

1 + (2λ)
1
ν Hν

2 (s) > t
}
, (2.25)

for Hα
1 and Hα

2 independent stable subordinators.

Proof. The proof of this result can be carried out by repeating the arguments of
Theorem 2.2 and will not be reported here. It is sufficient to assume that λ1 = 1,
λ2 = 2λ, λ > 0 and λj = 0 for j > 2. �

2.4. The case α = kν. Let us consider α = kν, ν ∈
(
0, 1

k

]
, k ∈ N, in (2.23). The

problem becomes{(
C∂kν

∂tkν
+ 2λ

C∂ν

∂tν

)
wβkν,ν(x, t) = −c2 (−∆)

β
wβkν,ν(x, t), x ∈ Rn, t > 0,

wβkν,ν(x, 0) = δ(x).

(2.26)

In view of Corollary 2.3 the solution to (2.26) is given by the law of the process

S2β
n

(
c2Lkν(t)

)
, t > 0. The Fourier-Laplace transform of wβkν,ν(x, t) can be now

written as

̂̃wβkν,ν (ξ, µ) =
µnν−1 + 2λµν−1

µnν + 2λµν + c2 ‖ξ‖2β
= µn−1

k∏
i=1

µν−1

µν − Zi
+ 2λµν−1

k∏
i=1

1

µν − Zi
(2.27)

where Zi are the roots of µnν + 2λµν + c2 ‖ξ‖2β = 0.
For k = 3 we get

̂̃wβ3ν,ν (ξ, µ) =
µ3ν−1

µν −A
1

µν −B
1

µν − C
+ 2λ

µν−1

µν −A
1

µν −B
1

µν − C
, (2.28)

where A, B and C are the solutions to µ3ν + 2λµν + c2 ‖ξ‖2β = 0. Formula (2.28)
can be rewritten aŝ̃wβ3ν,ν (ξ, µ) =

=

(
µ3ν−1 + 2λµν−1

)
µν −A

[(
1

µν −B
− 1

µν − C

)
1

B − C

]
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=
(
µ3γ−1 + 2λµν−1

) [( 1

µν −A
− 1

µν −B

)
1

(A−B) (B − C)

−
(

1

µν −A
− 1

µν − C

)
1

(A− C) (B − C)

]
=
(
µ3ν−1 + 2λµν−1

) [ 1

µν −A
1

(B −A) (C −A)
+

1

µν −B
1

(A−B) (C −B)

+
1

µν − C
1

(A− C) (B − C)

]
. (2.29)

By considering now the relationship∫ ∞
0

e−µtt(1−2ν)−1Eν,1−2ν (Ctν) dt =
µν−(1−2ν)

µν − C
(2.30)

we can invert (2.29) with respect to µ. Thus we can explicitely write the charac-
teristic function of the process S2β

n

(
c2L3ν,ν(t)

)
, t > 0, as

ŵβ3ν,ν (ξ, t) = Eeiξ·S
2β
n (c2L3ν,ν(t))

=
t−2νEν,1−2ν (Atν) + 2λEν,1 (Atν)

(B −A) (C −A)
+
t−2νEν,1−ν (Btν) + 2λEν,1 (Btν)

(A−B) (C −B)

+
t−2νEν,1−2ν (Ctν) + 2λEν,1 (Ctν)

(A− C) (B − C)
. (2.31)

3. Multidimensional Gauss-Laplace distributions and infinite
compositions

In Orsingher and Beghin [13] the authors have shown that the process

In(t) = B1 (|B2 (|B3 · · · (|Bn+1(t)|) · · ·|)|) , t > 0, (3.1)

converges in distribution for n → ∞ to a Gauss-Laplace (or bilateral exponential)
random variable independent from t > 0. In this section we show that the process
Bn (Lν1,··· ,νmr (t)), t > 0, converges in distribution, for r →∞, to a multidimensional
version of the Gauss-Laplace r.v. and solves the equation, for νj ∈ (0, 1), r ∈ N,

m∑
j=1

λj
C∂ν

r
j

∂tν
r
j
wβ,rν1,··· ,νm(x, t) = c2∆wβ,rν1,··· ,νm(x, t), x ∈ Rn, t > 0. (3.2)

The process Lν1,··· ,νmr (t), t > 0, is defined as

Lν1,··· ,νmr (t) = inf {s > 0 : Hν1,··· ,νmr (s) ≥ t} , t > 0 (3.3)

where

Hν1,··· ,νmr (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj (t) · · ·))) , t > 0. (3.4)

We start by presenting the following results.

Corollary 3.1. We have that
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i) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m, r ∈ N,
∂
∂t h

r
ν1,··· ,νm(x, t) = −

∑m
j=1 λj

∂
νrj

∂x
νr
j
hrν1,··· ,νm(x, t), x > 0, t > 0,

hrν1,··· ,νm(x, 0) = δ(x),

hrν1,··· ,νm(0, t) = 0,

(3.5)

is given by the law of the process

Hν1,··· ,νmr (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj (t) · · ·))) , t > 0. (3.6)

ii) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m, r ∈ N,
∑m
j=1 λj

∂
νrj

∂t
νr
j
lrν1,··· ,νm(x, t) = − ∂

∂x l
r
ν1,··· ,νm(x, t), x > 0, t > 0,

lrν1,··· ,νm(0, t) =
∑m
j=1 λj

t
νrj

Γ(1−νrj )

(3.7)

is given by the law of the process

Lν1,··· ,νmr (t) = inf {s > 0 : Hν1,··· ,νmr (s) ≥ t} , t > 0. (3.8)

Proof of i). The proof is carried out in the same spirit of Theorem 2.1, thus by
considering the Fourier transform of (3.5) we get{

∂
∂t ĥ

r
ν1,··· ,νm(ξ, t) = −

∑m
j=1 λj (−iξ)ν

r
j ĥrν1,··· ,νm(ξ, t)

ĥrν1,··· ,νm(ξ, 0) = 1.
(3.9)

The proof is completed by observing that the solution to (3.9) is given by the Fourier
transform of the law of the process Hν1,··· ,νmr (t), t > 0, which can be obtained by
means of the calculation

EeiξH
ν1,··· ,νm
r (t) =Eeiξ

∑m
j=1 λ

1
νj
j 1H

νj ( 2H
νj ( 3H

νj (··· rHνj (t)···))) (1.40)
= e−t

∑m
j=1 λj(−iξ)

νrj
,

(3.10)

that is the solution to (3.9). �

Proof of ii). By considering the double Laplace transform of (3.7) we have that

m∑
j=1

λjµ
νrj ˜̃l rν1,··· ,νm (γ, µ) = l̃rν1,··· ,νm (0, µ)− γ̃̃l rν1,··· ,νm (γ, µ) , (3.11)

where the boundary condition is given by∫ ∞
0

dt e−µt
m∑
j=1

λj
tν
r
j

Γ
(
1− νrj

) =

m∑
j=1

λjµ
νrj−1, (3.12)

and thus ˜̃
l rν1,··· ,νm (γ, µ) =

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + γ
(3.13)

The definition (3.8) permits us to state that the processes Lν1,··· ,νmr (t), t > 0, and
Hν1,··· ,νmr (t), t > 0, are related by the fact that

Pr {Lν1,··· ,νmr (t) < x} = Pr {Hν1,··· ,νmr (x) > t} , (3.14)
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and thus we can perform manipulations similar to those of Theorem 2.1. We have
that the double Laplace transform of the law lrν1,··· ,νm(x, t) is then given by

˜̃
l rν1,··· ,νm(γ, µ) =

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γx
[
− ∂

∂x

∫ t

0

dz hrν1,··· ,νm(z, x)

]
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
h̃rν1,··· ,νm(µ, x)

]
= − 1

µ

∫ ∞
0

dx e−γx

[
∂

∂x
Ee−µ

∑m
j=1 λ

1
νj
j 1H

νj ( 2H
νj ( 3H

νj (··· rHνj (t)···)))

]
(1.40)

= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
e−x

∑m
j=1 λjµ

νrj

]
=

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + γ
,

(3.15)

and coincides with (3.13). �

Theorem 3.2. The solution to the problem for νj ∈ (0, 1], β ∈ (0, 1], j = 1, · · · ,m,
r ∈ N,{∑m

j=1 λj
C∂

νrj

∂t
νr
j
wβ,rν1,··· ,νm (x, t) = −c2 (−∆)

β
wβ,rν1,··· ,νm (x, t) , x ∈ Rn, t > 0,

wβ,rν1,··· ,νm (x, 0) = δ (x) ,

(3.16)

is given by the law of the process

Wn (t) = S2β
n

(
c2Lν1,··· ,νmr (t)

)
, t > 0. (3.17)

where the process Lν1,··· ,νmr (t), t > 0, is defined in (3.8). For β = 1, the process
(3.17) becomes the subordinated Brownian motion Bn

(
c2Lν1,··· ,νmr (t)

)
, t > 0.

Proof. The Fourier-Laplace transform of (3.16) can be easily derived as in Theorem
2.2 and reads

̂̃wβ,rν1,··· ,νm(ξ, µ) =

∑j
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + c2 ‖ξ‖2β
. (3.18)

By considering the law of the process S2β
n

(
c2Lν1,··· ,νmr (t)

)
we have that∫ ∞

0

dt e−µtEeiξ·S
2β
n (c2Lν1,··· ,νmr (t)) =

=

∫
Rn
dx eiξ·x

∫ ∞
0

dt e−µt
∫ ∞

0

ds vβ
(
x, c2s

)
lrν1,··· ,νm (s, t)

=

∫ ∞
0

ds e−sc
2‖ξ‖2β

∫ ∞
0

dt e−µt
[
− ∂

∂s

∫ t

0

hrν1,··· ,νm(z, s) dz

]
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
h̃rν1,··· ,νm(µ, s)

)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
Ee−µ

∑m
j=1 λ

1
νj
j 1H

νj ( 2H
νj ( 3H

νj (··· rHνj (t)···)))

)
(1.39)

= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
e−s

∑m
j=1 λjµ

νrj

)
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=

m∑
j=1

λjµ
νrj−1

∫ ∞
0

ds e−sc
2‖ξ‖2β−s

∑m
j=1 λjµ

νrj
=

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + c2 ‖ξ‖2β

(3.19)

which coincides with (3.18). �

We now consider the limiting case for r →∞ where the iteration of the process
S2β
n

(
c2Lν1,··· ,νmr (t)

)
, t > 0, is infinitely extended. In the next theorem we have

that the limiting law of

lim
r→∞

S2β
n

(
c2Lν1,··· ,νmr (t)

)
, t > 0, (3.20)

is, for β = 1, a generalization to Rn of the Gauss-Laplace probability density. This
result represents an extension to the n-dimensional case of the infinitely iterated
Brownian motion.

Theorem 3.3. The distribution of the limiting process

lim
r→∞

Bn

(
c2Lν1,··· ,νmr (t)

) law
= Xm,n (3.21)

does not depend on t and reads

wm(x1, · · · , xm) =
Pr {Xm,n ∈ dx}

dx

=
1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2

‖x‖−
n−2
2 Kn−2

2


√∑m

j=1 λj

c
‖x‖

 . (3.22)

The density (3.22) solves the equation m∑
j=1

λj

wm(x1, · · · , xn) = c2
n∑
j=1

∂2

∂x2
j

wm(x1, · · · , xn), (3.23)

which is obtained from (3.16) by letting r →∞.

Proof. By assuming

A =
1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2

, B =

√∑m
j=1 λj

c
, (3.24)

the density

wm(x) = A

 n∑
j=1

x2
j

−
n−2
4

Kn−2
2

B
√√√√ n∑

j=1

x2
j

 (3.25)

has first-order derivative which reads

∂

∂xj
wm(x) = −A

(
n− 2

2

)
xj

 n∑
j=1

x2
j

−n4− 1
2

Kn−2
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

+ABxj

 n∑
j=1

x2
j

−n4 K ′n−2
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
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= −ABxj

 n∑
j=1

x2
j

−n4 Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
. (3.26)

In the last step we applied the relationship

d

dz
Kν(z) =

ν

z
Kν(z)−Kν+1(z) (3.27)

of Lebedev [11], page 110. The second-order derivative now becomes

∂2

∂x2
j

wm (x1, · · · , xn) =

= −AB

 n∑
j=1

x2
j

−n4 Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

+
n

2
ABx2

j

 n∑
j=1

x2
j

−n4−1

Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

−AB2x2
j

 n∑
j=1

x2
j

−n4− 1
2

K ′n
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

= −AB

 n∑
j=1

x2
j

−n4 Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

+AB2x2
j

 n∑
j=1

x2
j

−n4− 1
2

Kn
2 +1

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
. (3.28)

By considering the relationship

Kν+1(z) = Kν−1(z) + 2
ν

z
Kν(z) (3.29)

of [11], page 110, the derivative (3.28) takes the form

∂2

∂x2
j

wm (x1, · · · , xn) =

=AB2x2
j

 n∑
j=1

x2
j

−n4− 1
2

Kn
2−1

(
B
(
x2

1 + · · ·+ x2
n

))
. (3.30)

The Laplacian of wm(x1, · · · , xm) therefore becomes

n∑
j=1

∂2

∂x2
j

wm (x) = AB2

 n∑
j=1

x2
j

−
n+2
4

Kn−2
2

B
 n∑
j=1

x2
j

 1
2

 (3.31)

and thus taking A and B explicitely we obtain the desired result

c2
n∑
j=1

∂2

∂x2
j

wm(x1, · · · , xn) =

m∑
j=1

λjwm(x1, · · · , xn). (3.32)
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�

Remark 3.4. For r →∞ the Fourier-Laplace transform (3.18) becomes

̂̃wβm(ξ, µ) =
1

µ

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
, (3.33)

and thus the Fourier transform takes the form

ŵβm (ξ) =

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
. (3.34)

The inversion of the Fourier transform (3.34) can be carried out by means of the
hyperspherical coordinates. Thus we have that

wβm (x) =
1

(2π)n

∫
Rn
e−iξ·x

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
dξ

=
1

(2π)n

∫ ∞
0

dρ ρn−1

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθn−2∫ 2π

0

dφ e−iρ[x1 sin θ1 sin θ2··· sin θn−2 sinφ+x2 sin θ1 sin θ2··· sin θn−2 cosφ]

e−iρ[x3 sin θ1 sin θ2··· sin θn−3 cos θn−2+ ··· +xn−1 sin θ1 cos θ2+xn cos θ1]

sinn−2 θ1 sinn−3 θ2 · · · sin θn−2

∑m
j=1 λj∑m

j=1 λj + c2ρ2β

=
1

(2π)n−1

∫ ∞
0

ρn−1dρ

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθn−2 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2

e−iρ[x3 sin θ1 sin θ2··· sin θn−3 cos θn−2+ ··· +xn−1 sin θ1 cos θ2+xn cos θ1]∑m
j=1 λj∑m

j=1 λj + c2ρ2β
J0

(
ρ
√
x2

1 + x2
2 sin θ1 sin θ2 · · · sin θn−2

)
(3.35)

We now evaluate the integrals with respect to θj by means of formula 6.688 page
727 of Gradshteyn and Ryzhik [9], which reads∫ π

2

0

sinν+1 x cos (β cosx) Jν (α sinx) dx =

√
π

2

αν

(α2 + β2)
ν
2 + 1

4

Jν+ 1
2

(√
α2 + β2

)
.

(3.36)
valid for <(ν) > −1. We start with the integral with respect to θn−2∫ π

0
dθn−2 e

−iρx3 sin θ1··· sin θn−3 cos θn−2 sin θn−2 J0

(
ρ
√
x21 + x22 sin θ1 · · · sin θn−2

)
= 2

∫ π
2

0
dθn−2 cos (ρx3 sin θ1 · · · sin θn−3 cos θn−2) sin θn−2J0

(
ρ
√
x21 + x22 sin θ1 · · · sin θn−2

)
=
√

2π

(
ρ sin θ1 · · · sin θn−3

√
x21 + x22 + x23

)− 1
2

J 1
2

(
ρ
√
x21 + x22 + x23 sin θ1 · · · sin θn−3

)
and thus the integral with respect to θn−3 becomes

√
2π

∫ π

0

dθn−3e
−iρx4 sin θ1··· sin θn−4 cos θn−3 sin2 θn−3(

ρ sin θ1 · · · sin θn−3

√
x2

1 + x2
2 + x2

3

)− 1
2

J 1
2

(
ρ
√
x2

1 + x2
2 + x2

3 sin θ1 · · · sin θn−3

)
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= 2
√

2π

(
ρ sin θn−1 · · · sin θn−4

√
x2

1 + x2
2 + x2

3

)− 1
2
∫ π

2

0

dθn−3 sin
3
2 θn−3

cos (ρx4 sin θ1 · · · sin θn−4 cos θn−3) J 1
2

(
ρ
√
x2

1 + x2
2 + x2

3 sin θ1 · · · sin θn−3

)
=
(√

2π
)2 (

ρ2 sin2 θ1 · · · sin2 θn−4

(
x2

1 + x2
2 + x2

3 + x2
4

))− 1
2

J1

(
ρ
√
x2

1 + x2
2 + x2

3 + x2
4 sin θ1 sin θ2 · · · sin θn−4

)
. (3.37)

After n− 2 integrations we arrive at the integral with respect to ρ which reads

wβm (x) = (2π)−
n
2

∫ ∞
0

dρ

∑m
j=1 λj∑m

j=1 λj + c2ρ2β
Jn−2

2

ρ
√√√√ n∑

i=j

x2
j

 ρ
n
2(√∑n

i=j x
2
j

)n−2
2

(3.38)
which, for β = 1 and after the change of variable ρ2c2 = y2, becomes

wm (x) =

= (2π)−
n
2

1

c

∫ ∞
0

dy

∑m
j=1 λj∑m

j=1 λj + y2
Jn−2

2

y
c

√√√√ n∑
j=1

x2
j

 (
y
c

)n
2(√∑n

j=1 x
2
j

)n−2
2

for n<5
=

1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2
√√√√ n∑

j=1

x2
j

−
n−2
2

Kn−2
2


√∑m

j=1 λj

c

√√√√ n∑
j=1

x2
j



=
1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2

‖x‖−
n−2
2 Kn−2

2


√∑m

j=1 λj

c
‖x‖

 , (3.39)

where we used formula 6.566 page 679 of Gradshteyn and Ryzhik [9], which reads∫ ∞
0

dxxν+1Jν(ax)
1

x2 + b2
= bνKν(ab), a > 0, <(b) > 0, −1 < <(ν) <

3

2
.

(3.40)

Remark 3.5. We can check that (3.22) for all n ∈ N is a true probability density.∫
Rn

wm(x) dx =

=
area (Sn1 )

(2π)
n
2


√∑m

j=1 λj

c


n+2
2 ∫ ∞

0

ρn−1−n−2
2 Kn

2−1

ρ
√∑m

j=1 λj

c

 dρ

=
(2π)

n
2

Γ
(
n
2

) 1

(2π)
n
2


√∑m

j=1 λj

c


n+2
2 ∫ ∞

0

ρ
n
2Kn

2−1

ρ
√∑m

j=1 λj

c

 dρ = 1 (3.41)

in force of formula 6.561(16) of Gradshteyn and Ryzhik [9] page 676∫ ∞
0

xµKν (ax) = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
, (3.42)
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valid for < (µ+ 1± ν) > 0 and <(a) > 0. The non-negativity of (3.22) is shown by
the following integral representation

Kν(z) =

∫ ∞
0

e−z cosh t cosh νt dt (3.43)

valid for |arg(z)| < π
2 (see [9] page 917 formula 8.432).

By considering that

K− 1
2
(z) = K 1

2
(z) =

√
π

2z
e−z, (3.44)

from (3.22) we derive the following probability density for x ∈ R3,

wm(x1, x2, x3) =

=

∑m
j=1 λj

(2c)2π
∑n
j=1 x

2
j

e−
√∑m

j=1
λj

c

√∑n
j=1 x

2
j =

∑m
j=1 λj

(2c)2π ‖x‖2
e−
√∑m

j=1
λj

c ‖x‖ (3.45)

In the two dimensional case the distribution (3.22) has a simple structure which
reads

wm(x1, x2) =
1

2π

∑m
j=1 λj

c2
K0


√∑m

j=1 λj

c
‖x‖

 . (3.46)

In view of (3.44) it is also easy to show that the distribution (3.22) coincides for
n = 1 with the classical Gauss-Laplace distribution. We have that for n = 1 (3.22)
becomes

wm(x) =
1√
2π


√∑m

j=1 λj

c


3
2 √
|x|
√√√√ πc

2
√∑m

j=1 λj |x|
e−
√∑m

j=1
λj

c |x|

=

√∑m
j=1 λj

2c
e−
√∑m

j=1
λj

c |x| (3.47)

Furthermore, for λ1 = 1, λ2 = 2λ, λ > 0 and λj = 0 for j = 3, · · · ,m, we note that
(3.47) coincides with formula (3.18) of Orsingher and Beghin [13].

Remark 3.6. By considering the iterated random walk

Yn(k) = S1 (S2 (· · · (Sn(k)) · · ·)) , k ∈ N, (3.48)

with Sj , j = 1, · · · , n, independent random walks, Turban [17] has shown that for
n→∞, Yn(k) converges to a stationary r.v. (independent from k) which possesses
Gauss-Laplace distribution, in accord with result (3.22) of the present work and
with (3.12) of Orsingher and Beghin [13].
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