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Abstract

Meta-heuristic methods to detect multiple additive outliers in multivariate
time series are proposed. The implemented algorithms are: simulated an-
nealing, threshold accepting and two different versions of genetic algorithms.
In contrast with many of the existing methods, they do not require to specify
a vector ARMA model for the data and are able to detect any number of
potential outliers simultaneously reducing possible masking and swamping
effects. A generalized AIC-like criterion has been used as objective function
where the penalty constant has been suggested by both a simulation study
and a theoretical approximation. The comparison and the performance of
the proposed methods are illustrated by simulation studies and real data
analysis. Simulation results show that the proposed approaches are able to
handle patches of additive outliers.

Keywords: Genetic algorithms, Simulated annealing, Threshold accepting

1. Introduction

Outliers are commonly defined as observations which appear to be in-
consistent with the remainder of the data set, and may be due to occasional
unexpected events. The detection of outliers is an important problem in time
series analysis because they can have adverse effects on model identification,
parameter estimation (see Chang and Tiao [15]) and forecasting (see Chen
and Liu [17]). The presence of just a few items of anomalous data can lead
to model misspecification, biased parameter estimation, and poor forecasts.
Therefore, it is essential to identify outliers data, estimate their magnitude
and correct the time series, avoiding false identifications (i.e. observations
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that are identified as outliers while they are not). Several approaches have
been proposed in the literature for handling outliers in univariate time se-
ries. Among these methods we can distinguish those based on an explicit
model (parametric approach) from the ones using non-explicit models (non-
parametric approach). For the parametric approach, Fox [26] developed a
likelihood ratio test for detecting outliers in a pure autoregressive model.
Chang and Tiao [15], Chang et al. [16], Tsay [54, 55], Chen and Liu [17]
extended this test to an autoregressive integrated moving-average (ARIMA)
model and proposed an iterative procedure for detecting multiple outliers.
For the non-parametric approach, Ljung [39], Ljung [40], Peña [47], Gómez
et al. [32], Baragona and Battaglia [3] and Battaglia and Baragona [10] pro-
posed specific procedures based on the relationship between additive outliers
and linear interpolator, while Baragona et al. [5] used a genetic algorithm.

For multivariate time series, only three procedures have been proposed.
Tsay et al. [53] proposed a sequential detection procedure, which we will call
the TPP method, based on individual and joint likelihood ratio statistics; this
method requires an initial specification of a vector ARMA model. Galeano
et al. [27], Baragona and Battaglia [4] proposed a method based on univariate
outlier detection applied to some useful linear combinations of the vector time
series. The optimal combinations are found by projection pursuit in the first
paper and independent component analysis (ICA) in the second one. Barbieri
[7] used a Bayesian method and finally a graphical method was explored by
Khattree and Naik [36].

Multiple outliers, especially those occurring close in time, often have se-
vere masking effect (one outlier masks a second outlier) and smearing effect
(misspecification of correct data as outliers) that can easily render the itera-
tive outlier detection methods inefficient. A special case of multiple outliers
is a patch of additive outliers. For univariate time series this problem has
been addressed firstly by Bruce and Martin [14]. They define a procedure
for detecting outlier patches by detecting blocks of consecutive observations.
Other useful references for the patch detection are McCulloch and Tsay [44],
Barnett et al. [8] and Justel et al. [35]. For multivariate time series, only
Baragona and Battaglia [4] report simulation results for an outlier patch.

Unlike the univariate case where there are specific procedures on the
identification of consecutive outliers, in multivariate time series framework,
methods for identification of consecutive outliers do not exist.

We propose a class of meta-heuristic algorithms to overcome the difficul-
ties of iterative procedures in detecting multiple additive outliers in multivari-
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ate time series. This class includes: simulated annealing (SA)(Kirkpatrick
et al. [37], Rayward-Smith et al. [48]), threshold accepting (TA) (Winker
[58]) and genetic algorithm (GA) (Holland [34]; Goldberg [31]). These meth-
ods are illustrated in appendix. Our procedures are less vulnerable to the
masking and smearing effects because they evaluate several outlier pattern
where all observations that are possibly outlying ones are simultaneously
considered. In this way, meta-heuristic methods deal efficiently the detection
of patch of additive outliers.

Each outlier configuration is evaluated by a generalised AIC-criterion
where the penalty constant is suggested by both a simulation study and
a theoretical approximation. So, the meta-heuristic algorithms seem able to
provide more flexibility and adaptation to the outlier detection problem.

2. Meta-heuristic methods

Many optimization problems do not satisfy the necessary conditions to
guarantee the convergence of traditional numerical methods. For instance, in
order to apply standard gradient methods to maximum likelihood estimation
we need a globally convex likelihood function, however there are a number of
relevant cases with non convex likelihood functions or functions with several
local optima. Another class of “hard” problems is when the solution space
is discrete and large. These problems are known as combinatorial problems.
A simple approach for solving an instance of a combinatorial problem is to
list all the feasible solutions, evaluate their objective function, and pick the
best. However, for a combinatorial problem of a reasonable size, the complete
enumeration of its elements is not feasible, and most available searching al-
gorithms are likely to yield some local optimum as a result (Rayward-Smith
et al. [48]).
Meta-heuristic algorithms are often used to solve such problem instances.
These methods do not rely on a set of strong assumptions about the opti-
mization problem, on the contrary, they are robust to changes in the char-
acteristics of the problem. But, on the other side, they do not produce a
deterministic solution but a high quality stochastic approximation to the
global optimum.
In this work we are interested in the following methods: simulated annealing,
threshold accepting and genetic algorithms. The first two are classified as
local search methods. Classical local search algorithms move from an initial
random solution ξc to another one, chosen in a neighborhood of ξc, that has
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a better value of the objective function f(·). The procedure is iterated until
a stopping criterion is satisfied. However, these algorithms may get stuck in
local optima. To avoid this problem, the local search algorithms we employ
here, sometimes accept worse solutions than the current one. Genetic algo-
rithms have been initially developed by Holland [34] and they are classified as
population based methods, or evolutionary algorithms. They work on a whole
set of solutions that is adapted simultaneously by imitating the evolutionary
process of species that reproduce sexually.
We give a brief sketch of the three methods.

2.1. Simulated annealing

Simulated annealing (SA) is a random search technique based on an anal-
ogy between the way a metal cools and freezes into a minimum energy crys-
talline structure (the annealing process) and the search for a minimum in a
more general system. The ideas that form the basis of this method were first
published by Metropolis et al. [45] in an algorithm to simulate the annealing
process. Only thirty years later, Kirkpatrick et al. [37] suggested that this
type of simulation could be used to search for feasible solutions of an opti-
mization problem, with the objective of converging to an optimal solution
which minimizes the objective function. Recent applications of the simulated
annealing algorithm are discussed by Vera and Dı́az-Garćıa [56], Depril et al.
[20], Duczmal and Assunção [21] and Angelis et al. [2].
In analogy with the annealing process, simulated annealing is characterised
by the presence of a control parameter T called temperature. A simulation
starts by choosing the initial temperature T0, a final temperature Tf close
to zero and a cooling schedule whereby the parameter T is decreased. The
simulation stops when the temperature T assumes the value Tf . Different
cooling schedules are suggested in the literature; in our work the geometric
schedule is used :

Tt = aTt−1, (1)

where a is a constant close to 1.
The algorithm proceeds by choosing an initial random solution ξc as the cur-
rent solution. A new potential solution ξn is drawn randomly in the neigh-
borhood of ξc through a random mechanism explained in section 3.2. The
new potential solution ξn will always be accepted as the new current solu-
tion if its objective function is smaller. Moreover the algorithm also accepts
an increase of the objective function, but only with a given probability (see
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statements 7 and 8 in Algorithm 1). Note that the acceptance probability is
a function of the temperature T . That way, when T goes to zero, the system
will increasingly often select candidate solutions that decrease the objective
function, and avoid those that increase it. Every value assigned to T (and
affecting the acceptance probability) will be used for SAiter different choices
of potential solutions. The total number of iterationISAtot is obtained as the
number of different temperatures Ntemperature (function of T0, Tf , a) times the
number of steps SAiter. In terms of the minimization problem, the algorithm
for a simulated annealing heuristic consists of the steps reported in algorithm
(1).

Algorithm 1 Pseudocode for simulated annealing.

1: Initialise T0, Tf , a and SAiter

2: Generate initial solution ξc

3: T = T0

4: while T > Tf do
5: for r = 1 to SAiter do
6: Compute ξn ∈ N(ξc) (neighbour to current solution)
7: Compute ∆ = f(ξn)− f(ξc) and generate u from a uniform random

variable between 0 and 1
8: if ∆ < 0 or e−∆/T > u then
9: ξc = ξn

10: end if
11: end for
12: T ← aT
13: end while

2.2. Threshold accepting

Threshold accepting (TA) was introduced by Dueck and Scheuer [22] as a
deterministic analog to simulated annealing. They applied the algorithm to
a Travelling Salesman Problem and argued that their algorithm is superior to
classical simulated annealing. It is a refined local search procedure which es-
capes local optima by accepting solutions which are worse,but no more than
a given threshold. The algorithm is deterministic as it uses a deterministic
acceptance criterion instead of the probabilistic one used in simulated anneal-
ing for accepting worse solutions. The number of steps where we explore the
neighborhood for improving the solution is fixed. The threshold is decreased
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iteratively and reaches the value of zero after a given number of steps. The
TA algorithm has an easy parameterization, it is robust to changes in prob-
lem characteristics and works well for many problem instances. . Threshold
accepting has been successfully applied to different areas of statistics and
econometrics (Winker and Fang [59], Fang et al. [25], Winker [57], Winker
[58], Gilli and Winker [29], Maringer and Winker [43], Lin et al. [38], Lyra
et al. [42], Winker et al. [60]). An extensive introduction to TA is given in
Winker [58].

Algorithm (2) provides the pseudo-code for a prototype threshold accept-
ing implementation for a minimization problem.

Algorithm 2 Pseudocode for Threshold Accepting.

1: Initialise Nt, TAiter,
2: Generate the sequence τh, h = 1, . . . , Nt

3: Generate initial solution ξc

4: for h = 1 to Nt do
5: for r = 1 to TAiter do
6: Compute ξn ∈ N(ξc) (neighbour to current solution)
7: Compute ∆ = f(ξn)− f(ξc) and generate u from a uniform random

variable between 0 and 1
8: if ∆ < 0 or ∆ < τh then
9: ξc = ξn

10: end if
11: end for
12: end for

Comparing SA and TA algorithm we can see that, first, the sequence
of temperatures T is replaced by a sequence of Nt thresholds τh with h =
1, . . . , Nt and, the most important, the statement 8 of algorithm (1) is re-
placed by:

if ∆ < τh then ξc = ξn.

In this case the total number of iteration ITA
tot is obtained as the product of

the number of different thresholds Nt and the number of times each thresholds
is used, TAiter.

A crucial element of TA is its threshold sequence since it determines
TA’s ability to overcome local optima. Basically, the idea is to accept ξn
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if its objective function value is better or if it is not much worse than that
of ξc where not much worse means the deterioration may not exceed some
threshold τ defined by the threshold sequence. In extreme cases of threshold
settings, the algorithm behaves like a classical local search algorithm (if all
threshold values are set equal to zero) or like a random walk (if all values of
the threshold sequence are set to a very large value). Althöfer and Koschnick
[1] demonstrated the convergence of the TA algorithm under the hypothesis
that an appropriate threshold sequence exists. But in their proof they do
not provide a way to construct an appropriate sequence. Consequently, the
threshold sequence is often chosen in a rather ad hoc approach. Two simple
procedures can be used to generate the sequence of thresholds. In the first
place, one could use a linear sequence decreasing to zero. The advantage
of a linear threshold sequence consists in the fact, that for tuning purposes
only the first value of the sequence has to be selected as it fixes the whole
sequence. Alternatively, we can generate a sequence of selected thresholds
using the a data driven method suggested in Winker and Fang [59]. This
procedure is detailed in algorithm (3).

Algorithm 3 Pseudocode for generating threshold sequence.

1: Initialise Nt and M
2: for r = 1 to M do
3: Randomly choose solution ξcr
4: Randomly choose neighbour solution ξnr ∈ N(ξcr)
5: Compute ∆r =| f(ξ

c
r)− f(ξnr ) |

6: end for
7: Compute the cumulative distribution function F of ∆r, r = 1, . . . ,M
8: Compute the sequence of thresholds τi = F−1(Nt−1

Nt
), i = 1, . . . , Nt

This method uses a two step process to construct the threshold sequence.
For the first step a large number (M) of possible solutions ξc is generated at
random. Then, we compute the distances between the values of the objective
function at random point ξcr and its neighbour ξnr , ∆r =| f(ξcr) − f(ξnr ) |
, r = 1, 2, . . . ,M . In the second step the cumulative empirical distribution
F of the distances ∆r is computed. This distribution is an approximation
of the distribution of local relative changes of the objective function. The
thresholds τi are computed as the quantiles Qi corresponding to percentiles
Pi = Nt−i

Nt
, i = 1, . . . , Nt. The threshold sequence will be monotonically

decreasing to zero.
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2.3. Genetic Algorithm

Genetic algorithms (GA), inspired by Holland [34], imitate the evolution
process of biological systems, to optimize a given function. A GA uses a set
of candidate solutions, called population, instead of one single current solu-
tion. In GA terminology, any candidate solution is encoded via a numerical
vector called chromosome.
The GA proceeds by updating the population of active chromosomes (the sets
of current candidate solutions) in rounds, called generations. In each genera-
tion, some of the active chromosomes are selected (parents-chromosomes) to
form the chromosomes of the next generation (children-chromosomes). The
selection process is based on an evaluation measure called fitness function,
linked to the objective function, that assigns to each chromosome a positive
number. This fitness is the determining factor for the probability to select a
chromosome as a parent. A higher fitness value leads to higher probability
that the corresponding chromosome will be one of the parents used to form
the children-chromosomes. Children are formed by recombining (crossover)
the genetic material of their two parents-chromosomes and perhaps after a
random alteration of some of the genes (single digits of the chromosome)
which is called mutation (Holland [see 34], Goldberg [see 31, for a detailed
description]). The general structure of genetic algorithms is shown in algo-
rithm (4).

3. Algorithm Features

This section further describes the algorithms implementation we used for
outlier detection. A successful implementation of meta-heuristic methods
is certainly crucial to obtain satisfactory results. Before a meta-heuristic
method can be applied to a problem some important decisions have to be
made. The three meta-heuristic methods require a suitable encoding for the
problem and an appropriate definition of objective function. In addition, the
algorithms TA and SA require the structure of the neighborhood while for
genetic algorithms, operators of selection, crossover and mutation have to be
chosen. The following sections describe the choices made.

3.1. Solution Encoding

An appropriate encoding scheme is a key issue for meta-heuristic methods.
For all algorithms we use a binary encoding for the solutions of the outliers
problem as suggested in Baragona et al. [5]. Any solution ξc is a binary
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Algorithm 4 Pseudocode for genetic algorithms.

1: Set population size (pop), probability of crossover (pcross), probability
of mutation (pmut), number of generations (gen)

2: Generate initial population P of solutions
3: for i = 1 to gen do
4: Evaluate each individual’s fitness
5: Initialise P ′ = ∅ (set of children)
6: for j =1 to pop

2
do

7: Select individuals xa and xb from P with probability proportional to
their fitness

8: Generate p1 and p2 from a uniform random variable U(0, 1)
9: if p1 > pcross then
10: Apply crossover to xa and xb to produce xchild

a and xchild
b

11: else
12: xchild

a = xa and xchild
b = xb

13: end if
14: if p2 > pmut then
15: Apply mutation to xchild

a and xchild
b

16: end if
17: P ′ = P ′ ∪ {xchild

a , xchild
b }

18: end for
19: P = P ′

20: end for
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string of length N , where N is the number of observations of the time series:
ξc = (ξc1, ξ

c
2, . . . , ξ

c
N), where ξ

c
i takes the value 1 if at time i there is an outlier

(we assume that all the s components are influenced) and 0 otherwise. Then,
ξc represent a chromosome of GA and ξci a gene. Obviously, the number of
outliers for a given time series is unknown. We allow for solutions with a
maximum number of outliers equal to g. The value of g should be chosen
according to the series length and every relevant a priori information on its
accuracy and instability. The constant g should be chosen large enough to
allow for the detection of any reasonable number of outliers in the series.

Binary encoding implies that the solution space Ω consists of
∑g

k=0

(

N
k

)

distinct elements, since the total number of outliers is limited to a constant
g.We can see that Ω is really large even when g is considerably lower than the
length of the time series. All our algorithms either severely penalise solutions
with a maximum number of outliers larger then g , or do not consider such
solutions at all. TA and SA algorithms are built so that they do not evaluate
solutions with more than g outliers. With regard to the GA, chromosomes
not belonging to Ω will be severely penalised subtracting a positive quantity
(the penalty factor pen) to the fitness (function to be maximised), so that
the algorithm tends to avoid these chromosomes. We set the value of pen to
1,000.

3.2. Neighbourhood search in simulated annealing and threshold accepting

Each solution ξc ∈ Ω has an associated set of neighbours, N(ξc) ⊂ Ω,
called the neighbourhood of ξc where every ξn ∈ N(ξc) may be reached
directly from ξc by an operation called move.Given the current solution ξc,
its neighborhood is constructed using three different moves: add an outlier;
remove an outlier; change the position of an outlier.Since a maximum of g
outliers is allowed, moves are applied according to the current solution in the
following way: if ξc doesn’t contain outliers (i.e., it is a string where every
bit is 0), algorithms can only introduce an outlier; if ξc contains less than g
outliers, algorithms can add, remove or change the position of an outlier, with
probability 1/3; if ξc already contains g outliers, algorithms cannot proceed
adding an outlier but can only remove or change the position of one of them,
with probability 1/2.

3.3. Objective function

Let yt = [y1,t, . . . , ys,t]
′ be a vector time series generated from a Gaussian

s-dimensional jointly second order stationary real-valued process Yt, with

10



mean zero for each component, covariance matrix Γu and inverse covariance
matrix Γiu for integer lag u. When outliers are present, yt is perturbed and
unobservable. We suppose that k perturbations ωt = [ω1,t, . . . , ωs,t]

′ impact
the series yt at time points tj , j = 1, . . . , k such that at each tj they affect all
s components. The total number of outlying data is equal to h = ks. Denote
the observed time series by zt = [z1,t, . . . , zs,t]

′ generated by the observable
multivariate stochastic process Zt. Given a sample of N observations we may
write the following model

z = y +Xω, (2)

where z = [z′1, . . . , z
′
N ]

′ is the vector obtained by stacking the s component
observations at each time point, y = [y′1, . . . , y

′
N ]

′ is the vector obtained
by stacking the s component of the unobservable outlier free time series at
each time point, ω = [ω′

t1
, . . . , ω′

tk
]′ is the vector obtained by stacking the s

components of the k outliers and X is a Ns×h pattern design matrix defined
as follows.
For each tj with j = 1, . . . , k, the [(tj − 1)s+ r, (j − 1)s+ r]-th entry is one
for r = 1, . . . , s. All the remaining entries are zero.
Matrix X contains information about the perturbed time indices of a given
outlier pattern. Thus, each feasible solution ξ corresponds to a matrix X.

The natural logarithm of the likelihood for z may be written

L(z;X,ω) = −
Ns

2
log(2π)−

1

2
log(detΓ)−

1

2
(z −Xω)′Γ−1(z −Xω), (3)

where Γ denotes the Ns×Ns block Toeplitz matrix with Γi−j as the (i, j)-th
block. Assuming both Γ and X known, the maximisation of (3) with respect
to ω yields:

ω̂ = (X′Γ−1X)−1X′Γ−1z. (4)

If we approximate Γ−1 with Γi (Shaman [51]), where Γi denotes the Ns ×
Ns block Toeplitz matrix with Γii−j as the (i, j)-th block, the maximum
likelihood estimate (4) of ω takes the form:

ω̂ = (X′ΓiX)−1X′Γiz. (5)

Since Γi is unknown, we have to estimate it from the data. We may
use two different ways to estimate the inverse covariance matrices. A first
approach is based on the estimation of the spectral density matrix and then
taking the Fourier transform of its inverse. The second one fits a high-order
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vector autoregressive model to the data and derives estimates of the inverse
covariance matrix from the estimated parameters of the model (Battaglia
[9]). Bhansali [11] has shown that under reasonable regularity conditions
both methods give consistent and asymptotically Gaussian estimates. We
follow the second approach where the estimates of the inverse covariance are
obtained as follows:

Γiu =







∑m
j=u Φ̂

′
j−uΣ̂

−1Φ̂j 0 ≤ u ≤ m

0 u > m

Γ̂i(−u)
′ u < 0

(6)

where Φ̂1, Φ̂2, ..., Φ̂m are the LS estimates of the parameter matrices of the
VAR(m) model, Σ̂ is the estimated variance matrix of the noise and where
we set Φ̂0 = −I.

If we look at the expression (6) can see that the estimate of the inverse
covariance depends on estimates of autoregressive parameters and the es-
timated variance-covariance matrix Σ̂ of innovations. In the presence of
outliers the residuals of VAR model are contaminated, hence Σ̂ may be bi-
ased. For obtaining a better estimate we use the α% trimmed method. To
compute the α% trimmed variance-covariance matrix Σ̂, we first remove the
5% largest values (according to their absolute values) and then compute Σ̂
based on trimmed sample.

The natural logarithm of the maximised likelihood is obtained by replac-
ing ω by ω̂ and Γ−1 by Γ̂i in (3) :

L̂(z;X,ω) = −
Ns

2
log(2π)−

1

2
log(det Γ̂i)−

1

2
z′Γ̂iz−

1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz.

(7)
The matrix Γ̂i is fixed for any outlier pattern X, so that the maximised
likelihood in (7) depends only on matrix X. Since matrix X conveys all
information about the outlier’s location, it seems natural to detect the outlier
pattern by determining the matrix X maximising the quadratic form in (7)

LX =
1

2
(X′Γ̂iz)′(X′Γ̂iX)−1X′Γ̂iz. (8)

Obviously the likelihood increases when the number of estimated parameters
ω̂, i.e. the number of outliers, is increased. Thus, in a similar fashion as
identification criteria for model selection (see Bhansali and Downham [12]),
we contrast the likelihood with a linear function of the number of outliers.
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So, the search of outliers in a multivariate series is equivalent to search the
chromosome ξ or the design matrix X that minimizes the following objective
function:

f(ξ) = −2LX + ch, (9)

where c is an arbitrary constant and h is the actual number of outliers. The
function f(ξ) depends on both the matrix X and the penalty constant c.
Different values are suggested in literature for the constant c (see Bhansali
and Downham [12]). We propose two alternative approaches for selecting
appropriate c values in Section (5.1.1).

In a genetic algorithm, the fitness function assigns a positive real number
to any possible solution in order to evaluate its plausibility, therefore in the
GA we adopt the following non-decreasing transform of (9):

fitness = exp(−f(ξ)/β) (10)

where β is a parameter of scale. In the following experiments this parameter
is set equal to 100.

3.4. Operators and other implementation issues in the genetic algorithms

We do not use the “standard” randomly generated initial populations
(Goldberg [31]), while in the algorithms used here, the initial populations
consist of chromosomes with just one outlier, different from each other (the
size of the population is less than the number of observations). At the be-
ginning, all possible single-outlier chromosomes are generated and sorted in
terms of fitness value and the initial population consists of the chromosomes
having the largest fitness. In this way we evaluate from the beginning the
most promising one-outlier patterns (see Baragona et al. [5]).

The “roulette wheel” rule is used for parent selection. The probability
of a chromosome being selected as a parent is proportional to the rank of
its fitness. Each selected couple of parents will produce two “children” by
methods of crossover and mutation.

The crossover operator used is “uniform crossover” Goldberg [31]. For
each gene of the first child, one of the parents is selected at random (with
equal probability of selection) and its corresponding gene is inherited at the
same position. The other parent is used to determine the second child’s
corresponding gene.

Finally, a probability is chosen for randomly changing the value of each
gene of the child-chromosome (mutation). In our encoding, where we have
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only two admissible values for a gene (“0” and “1”) the application of the
mutation operator is pretty straightforward.

The entire population of chromosomes is replaced by the offsprings cre-
ated by the crossover and mutation processes at each generation except for
the best chromosome, which survives to the next generation. This elitist
strategy ensures that the fitness will never decrease through generations
(Rudolph [49]).

4. The TPP procedure

Let yt = [y1,t, . . . , ys,t]
′ be a k-dimensional vector time series following the

stationary and invertible vector autoregressive moving average (VARMA)
model:

Φ(B)yt = Θ(B)ǫt, t = 1, . . . , N, (11)

where B is the backshift operator such that Byt = yt−1, Φ(B) = (I −
Φ1B − Φ2B

2 − . . .ΦpB
p) and Θ(B) = (I − Θ1B − Θ2B

2 − . . .ΘpB
p) are

k × k matrix polynomials of finite degrees p and q and ǫt = (ǫ1t, . . . , ǫkt)
is a sequence of independent and identically distributed (iid) Gaussian ran-
dom vectors with mean 0 and positive-definite covariance matrix Σ. For the
VARMA model in equation (11), we have the AR representation Π(B)yt = ǫt
where Π(B) = Θ(B)−1Φ(B) = I −

∑∞

i=1ΠiB
i.

Given an observed time series z = [z1, . . . , zN ] where zt = [z1,t, . . . , zs,t]
′

Tsay et al. [53] generalized additive univariate outliers to the vector case in
a direct manner using the representation

zt = yt + ωI
(h)
t (12)

where I
(h)
t is a dummy variable such that I

(h)
h = 1 and I

(h)
t = 0 if t 6= h,

ω = (ω1, ω2, . . . , ωk)
′ is the size of the outlier, and yt follows a VARMA

model.
Tsay et al. [53] showed that when the model order is known, the estimate

of the size of an additive multivariate outlier at time h is given by:

ω̂A,h = −(
N−h
∑

i=0

Π̂′
iΣ

−1Π̂i)
−1

N−h
∑

i=0

Π̂′
iΣ

−1 (13)
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The covariance matrix of this estimate is Σ−1
A,h = (

∑N−h
i=0 Π̂′

iΣ
−1Π̂i)

−1.
Tsay et al. [53] proposed an iterative procedure similar to that of the uni-
variate case to detect multivariate outliers. Assuming no outlier, the proce-
dure starts building a multivariate ARMA model for the series under study
and let ât be the estimated residuals and Π̂i the estimated coefficients of the
autoregressive representation. The second step of the procedure requires the
calculation of the test statistic:

Jmax = max
1≤t≤N

{Jt},

where Jt = ω̂′
A,tΣ

−1
A,hω̂A,h. As in the univariate case, if Jmax is significant

at time index t0 we identify a additive multivariate outlier at t0. Once an
outlier is identified, its impact on underlying time series is removed, using
the model in equation (12). The adjusted series is treated as a new time
series and the detecting procedure is iterated. The TPP method terminates
when no significant outlier is detected. Tsay et al. [53] used simulation to
generate finite sample critical values of statistic Jmax.

5. Performance of meta-heuristic methods

To test the performance of meta-heuristic algorithms for identifying out-
liers in multivariate time series we applied the proposed methods to simulated
time series models of the class VARIMA. We consider eight vector VARMA
models, four bivariate (s = 2) and four trivariate models (s = 3). The sam-
ple sizes used are N = 200 and N = 400. The models considered in this
simulation study and reported in Galeano et al. [27], Lütkepohl [41], Tsay
et al. [53] are listed below.

Model 1 - VAR(1) bivariate model: Φ1 =

[

0.6 0.2
0.2 0.4

]

.

Model 2 - VAR(1) bivariate model: Φ1 =

[

0.2 0.3
−0.6 1.1

]

.

Model 3 - VAR(2) bivariate model: Φ1 =

[

0.5 0.1
0.4 0.5

]

Φ2 =

[

0.0 0.0
0.25 0.0

]

.

Model 4 - VARMA(1,1) bivariate model: Φ1 =

[

0.6 0.2
0.2 0.4

]

Θ1=

[

−0.7 0.2
−0.1 0.4

]

.
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Model 5 - VAR(1) trivariate model: Φ1 =





0.6 0.2 0.0
0.2 0.4 0.0
0.6 0.2 0.5



 .

Model 6 - VAR(1) trivariate model: Φ1 =





0.2 0.3 0.0
−0.6 1.1 0.0
0.2 0.3 0.6



 .

Model 7 - VAR(2) trivariate model:

Φ1 =





−0.3 0.15 0.95
0.0 −0.15 0.3
0.0 0.2 −0.25



 Φ2 =





−0.15 0.1 0.9
0.0 0.0 0.0
0.0 0.35 0.0



 .

Model 8 - VARMA(1,1) trivariate model:

Φ1 =





0.6 0.2 0.0
0.2 0.4 0.0
0.6 0.2 0.5



 Θ1 =





−0.7 0.0 0.0
−0.1 −0.3 0.0
−0.7 0.0 −0.5



 .

where the covariance matrix of the Gaussian noise is the identity matrix for
seven models. For the Model 2, it has diagonal entries equal to 1.0 and all
off-diagonal entries equal to -0.2.

We have considered three different outlier configurations. The first two
instances have a small contamination: the first configuration has two isolated
outliers at time indices t = 100, 150, and the second one has a patch of two
outliers introduced at time indices t = 100, 101. The last one consists in
a heavier contamination, that includes two isolated outliers and a patch of
three outliers introduced at time indices t = 40, 100, 101, 102, 150. For the
first two cases the size of each outlier is chosen equal to ω = (3.5, 3.5)′ for
bivariate models and is chosen equal to ω = (3.5, 3.5, 3.5)′ for the trivariate
models. When the contamination is heavier we set the size of each outlier
equal to ω = (5.0, 5.0)′ for bivariate models and we set ω = (5.0, 5.0, 5.0)′ for
the trivariate models. For each model, sample size and outliers configuration,
we generate a set of 100 time series.

We may consider several criteria for evaluating the performance proce-
dure. Since the proposed procedures are designed to detect the outliers
avoiding false identifications, we used as criteria of evaluation the relative
frequency of correct outlier detection, defined as a correct identification of
outlier pattern. For the case of two outliers (100, 150 or 100, 101) this means
the relative frequency of detecting both outliers and only them, while for
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the case of five outliers the relative frequency of detecting all five outliers
and only them. For each method, we include the relative frequency of par-
tial correct configuration detection (the relative frequency of only one outlier
correctly detected or the relative frequency of less than five outliers correctly
detected) and the relative frequency of wrong identifications (i.e., solutions
where at least one observation identified as outlier in fact is not).

To apply the algorithms we need to determine the values of two types
of parameters, one concerning the outlier problem itself and the other one
regarding the meta-heuristic algorithms. The parameters of the outlier de-
tection problem are three: the constant c in (9), the order of the multivariate
autoregressive process m in (6) and the maximum number of outliers g.

5.1. The problem of parameters tuning

5.1.1. The constant c

In order to obtain the critical values of the test statistics for outlier detec-
tion (in univariate and multivariate time series) one can rely on simulation,
using a large number of series from different models (Tsay et al. [53], Galeano
et al. [27]). Programs TRAMO and SCA, for example, have outlier detection
routines that use critical values obtained by such a simulation study. In our
work we follow the same idea to establish the value of the constant c through
a Monte Carlo experiment.

We consider the eight vector VARMA models listed above and sample
sizes N = 200, 400. For each model and sample size, we generate a set of 500
time series and apply the algorithms to each set, employing different values
of c and recording the corresponding values of the type I error α (where α is
the frequency of clean observations identified as outliers).

Table 1 provides the c values obtained via simulation according to differ-
ent values of α, models, dimensions and sample sizes. We observed that the
three meta-heuristic algorithms lead to similar simulation results, therefore
in Table 1 we do not consider the effect of these algorithms on the constant
c. Table 1 suggests the following observations. First, for each α, we see only
minor differences in the c values among different models given dimension and
sample size. Second, the estimated c values increase with the sample size N
and decrease with the dimension s. In general, the sample size and the time
series dimension are important factors affecting the behaviour of constant c,
while the type of model does not seem to have a significant effect.
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Table 1: Simulation study: c values corresponding to different type I error α

N s Model α
0.10 0.05 0.01

200 2 1 7.17 7.68 9.53
2 7.33 7.93 9.25
3 7.29 7.89 9.20
4 7.18 7.84 9.50

3 5 5.71 6.13 7.03
6 5.78 6.30 7.20
7 5.72 6.20 7.50
8 5.67 6.17 7.50

400 2 1 8.10 8.83 10.20
2 8.05 8.59 10.50
3 7.93 8.55 9.80
4 7.57 8.19 9.68

3 5 6.13 6.70 8.13
6 6.23 6.78 8.13
7 6.15 6.67 8.00
8 5.80 6.33 7.80
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In real application, it may be necessary to analyze time series with differ-
ent sample sizes and different number of components. To address this need,
we suggest a theoretical approximation to derive the constant c.

Let us consider a test where under the null hypothesis the time series is
outlier free and under the alternative hypothesis a single outlier occurs at
unknown time t. We may use as statistic test:

Λmax = max
1≤t≤N

{Λt},

where Λt = (X′
t
Γ̂iz)′(X′

t
Γ̂iXt)

−1(X′
t
Γ̂iz) and Xt is the pattern design corre-

sponding to just one outlier at time t. The statistic Λt is a quadratic form
and is distributed approximately as a chi-squared random variable with s
degrees of freedom under the null hypothesis of no outliers. The finite sam-
ple distribution of Λmax is complicated because of the correlation between
the Λt. We may obtain the approximate percentiles of Λmax assuming the
independence among the Λt (though a relatively strong hypothesis)

P (Λmax < λα) = [P (χ2
s < λα)]

N = 1− α

or
P (χ2

s < λα) = (1− α)1/N ,

where λα is the (1−α)th quantile of the chi-square distribution with s degrees
of freedom. We reject the null hypothesis if Λmax is greater than the quantile
λα at the α significance level.

Now, a problem arises, when the value of N increases the quantity (1 −
α)1/N → 1 and λα → ∞. To solve this problem we approximate the distri-
bution of Λmax with the Gumbel distribution:

P

(

Λmax − dN
cN

< να

)

= exp(−e−να) = 1− α,

where dN = 2(logN + ( s
2
− 1) log(logN) − log Γ( s

2
)) and cN = 2, and we

obtain the quantiles for Λmax as λα = cnνα + dN .
Now we can choose the constant c so that, whenever the null hypothesis of

no outlier is accepted, the fitness of the chromosome with no outlier is larger
than the one of the best one-outlier chromosome, or similarly Λmax < cs,
therefore put c = λα/s.

In Table 2 we observe that the resulting theoretical c values are always
slightly larger than the simulated ones, so that by using them the test is
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more conservative. The discrepancy between the theoretical and simulated c
values may be caused by the dependence among the Λt variables.

The c values used in our simulation experiments are the simulated ones
values reported in Table 2 corresponding to α = 0.05

Table 2: Simulated and theoretical c values corresponding to different type I error α,
dimensions s and sample sizes N

N s α
0.10 0.05 0.01

200 2 7.2 7.9 9.4
7.5 8.3 9.9

3 5.7 6.2 7.3
5.9 6.4 7.5

400 2 7.9 8.5 10.0
8.2 8.9 10.6

3 6.0 6.6 8.0
6.3 6.7 8.0

5.1.2. The parameters m and g

To determine the value of order m in (6) we used the FPE criterion
(Lütkepohl [41]). Alternatively we could use Akaike’s Information Criterion
which differs from FPE essentially by a term of order O(N−2) and thus the
two criteria are almost equivalent for large N (Lütkepohl [41]).

The value of the parameter g should be chosen by taking into account
the length of the time series and all other relevant information. The value g
affects the choice of the iteration number. If we increase the value for g it
seems reasonable to increase also the iteration number of the meta-heuristic
algorithms because a larger solution space has to be explored. The selected
value for g is 5 for all algorithms.

5.2. Meta-heuristic control parameters tuning
A correct choice of the value of the control parameters is important for the

performance of the meta-heuristic algorithms. For the genetic algorithms,
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choices have to be made for the crossover probability (pcross), mutation
probability (pmut), population size (pop) and the number of generations or
termination criterion (gen).

For the simulated annealing algorithm we have to determine the initial
temperature (T0), final temperature (Tf), number of internal loop iterations
at any temperature (SAiter), and the constant a in (1), characterising the
cooling schedule. As reported in section (2.1), the number of evaluations
of the objective function ISAtot depends on the choice of these parameters.
Generally we establish a number of ISAtot and the parameters are chosen in
order to meet this constraint.

Threshold accepting requires two parameters: the number of thresholds
(Nt) and the number of internal loop iterations at any threshold (TAiter).
Also in this case, if we set ITA

tot , Nt and TAiter must be chosen in such a way
that their product is equal to ITA

tot .
Unfortunately, the correct choice of the suitable parameter values is a

difficult task because a wide range of values needs to be considered for each
parameter and some parameters may be correlated with each other. Few the-
oretical guidelines are available while experience with practical applications
of meta-heuristic algorithms is offered by a vast literature.

Regarding the TA, two simple procedures that can be used to generate
the threshold sequences are reported in section (2.2). First, one might use
a linear threshold sequence decreasing to zero and, alternatively, one might
use a data driven generation of the threshold sequence (see algorithm (3))
suggested by Winker and Fang [59]. In our simulation experiments we set the
value of M in algorithm (3) to 2,000. There are several examples in literature
suggesting that the two procedures are equivalent, while in some applications
the method proposed by Winker and Fang [59] yields better results. As far
as the number of thresholds Nt is concerned, Gilli and Winker [30] suggested
the minimum value for Nt around 10. However, when the total number of
iterations ITA

tot becomes very large, Nt might be increased.
Some guidelines for the choice of GA parameters may be found in de Jong

[19], Schaffer et al. [50], da Graça Lobo [18], Eiben et al. [24], South et al.
[52]. de Jong [19] studies the effects of some control parameters of GA
on its performance, concerning the population size, and the crossover and
mutation probabilities. Using five different function optimisation scenarios,
De Jong systematically varies these parameters, analyses the results and
thus establishes guidelines for robust parameter choice. De Jong suggests
population size pop = 50, probability of crossover pcross = 0.6, probability
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of mutation pmut = 0.001 and the adoption of the elitist strategy. However,
other empirical studies (Eiben et al. [24], South et al. [52], da Graça Lobo [18],
Gao [28], Grefenstette [33]) indicate different values for these parameters.

Regarding the SA algorithm, the initial temperature must be set to a high
value enough to allow a move to almost any neighbourhood state. However,
if the temperature starts at too high a value then the search can move to
any neighbour and thus transform the search (at least in the early stages)
into a random search. Then, a very high initial temperature may influence
the quality of the performance and the length of the computational time.
If we know the maximum distance (objective function difference) between
one neighbour and another then we can use this information to calculate a
starting temperature. Another method, suggested in (Rayward-Smith, 1996),
is to start with a very high temperature and cool it rapidly until about
60% of worst solutions are being accepted. This forms the real starting
temperature and it can now be cooled more slowly. A similar idea, suggested
in (Dowsland, 1995), is to rapidly heat the system until a certain proportion
of worse solutions are accepted and then slow cooling can start. This can be
seen to be similar to how physical annealing works in that the material is
heated until it is liquid and then cooling begins (i.e. once the material is a
liquid it is pointless carrying on heating it).

Theoretically, the cooling rate parameter a in (1) assumes values between
0 and 1, while Eglese [23] reports that values used in practice lie between 0.8
and 0.99. Park and Kim [46] suggest a systematic procedure, based on the
simplex method for non linear programming, to determine parameter values.

In conclusion we can say that there is no uniformly best choice of param-
eters, but specific problems may require different values. Baragona et al. [6]
suggest that a good choice may be obtained by considering a range of possible
values for the same problems. In our applications these parameters values are
chosen by a tuning experiment. For each algorithm, different combinations
of parameters values are tried, keeping the number of the objective function
evaluations constant. We select the parameter combination that yields the
largest frequency of true outlier pattern detection.

5.2.1. A simulation experiment for tuning parameters

The remaining parameter values are chosen by means of a tuning exper-
iment where a set of 200 time series with N = 400 have been generated by
Model 2, and outliers at time indices 100 and 150 are analysed. All the al-
gorithms run with a total of 2,000 evaluations of the objective function.
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For the SA, the Tf is always kept equal to 0.05. Since Tf has the role of
stopping criterion, a value close to zero seems reasonable, thus the probability
of accepting a worse solution during the last iterations is very small. The
examined values for a are [0.90, 0.94, 0.95, 0.96] and for T0 are [2, 4, 6, 8, 10].
For each combination, the number of internal loop iterations SAiter is equal
to the ratio between the total number of evaluations of the objective function
(2000) and the number of different temperatures (the number depending on
T0 and a). Table 3 shows the frequencies of correct identifications (based
on 200 time series) for each pair of a and T0. When decreasing the value of
a, the best performance is obtained by increasing the value of T0. The pair
a = 0.95 and T0 = 8 is used.

Table 3: SA tuning experiment: frequencies of correct identifications for different values
of T0 and a.

a T0

2 4 6 8 10
0.90 0.825 0.845 0.850 0.830 0.870
0.94 0.820 0.850 0.860 0.880 0.880
0.95 0.835 0.880 0.840 0.900 0.855
0.96 0.820 0.835 0.875 0.870 0.845

For the GA algorithms, we compare the frequency of the correct outlier
pattern identification for 8 different combinations of population size pop and
number of generations gen, keeping the mutation probability pmut and the
crossover probability pcross constant for all experiments. The values consid-
ered for the population size are [10, 20, 30, 40, 50, 70, 100, 200], for the num-
ber of generations are [10, 20, 30, 40, 50, 70, 100, 200], while pcross = 0.001
and pmut = 0.6 (these values were suggested by de Jong [19]).

Table 4 suggests for the parameter pop an average value (between 70
and 100). In a second stage, different combinations of pmut and pcross are
considered from pmut = {0.1, 0.01, 0.001, 0.0005} and pcross = {0.4, 0.6,
0.8, 0.9} whereas the population size and the number of generations are kept
constant at 100 and 20, respectively. The results of some combinations of
pmut and pcross are reported in table 4. The results indicate that better
results are obtained for average values of crossover probability pcross and
very low values, but not too much, of mutation probability pmut. Based on
these results, we use as values: pmut = 0.001 and pcross = 0.6.
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For TA algorithm, we compared a linear sequence of thresholds and a
sequence generated by the method given in Winker and Fang [59]. The
linear sequences were generated considering different initial thresholds and
different rates of decrease. The initial thresholds {6, 8, 10, 14} are used while
the values {0.90, 0.96} are considered as rates of decrease. For the method
proposed by (Winker and Fang [59]) , we considered 8 combinations of the
number of thresholds Nt and number of iterations SAiter choices from Nt

={10, 20, 30, 40 , 50, 70, 100, 200} and SAiter = {10, 20, 30, 40, 50, 70, 100,
200 }. With regard to the linear sequence, the results suggest to use a high
threshold and a rate of decrease of the thresholds not very rapid. For the
method proposed by (Winker and Fang [59]) the best result is obtained in
correspondence to number of thresholds Nt equal to 100. However, there is
not a constant improvement as the number of thresholds is incremented and
also the differences are not very marked. Observing the thresholds provided
by Winker and Fang [59] method, we observed that the initial threshold is
large enough (slightly more than 14) and the thresholds decrease very slowly.
This particular result depends on the type of problem considered. The value
of the objective function for the solutions that belong to a neighborhood can
be very different because the removal or insertion of a given anomaly can lead
to great changes in the value of the AIC. This means that the distribution
F (∆) (see algorithm (3)) does not appear to be symmetrical around zero,
but is asymmetric towards higher values. From these results it was decided
to use a sequence of thresholds Nt = 100 obtained by the method of Winker.

Table 4: TA and GA tuning experiment: frequencies of correct identifications for different
combinations of parameters.

TA GA
(Nt, TAiter) fTA (pop, gen) fGA (pmut, pcross) fGA

(10, 200) 0.860 (10,200) 0.815 (0.01,0.4) 0.850
(20,100) 0.865 (20,100) 0.830 (0.01,0.6) 0.875
(30,70) 0.860 (30,70) 0.850 (0.01,0.8) 0.835
(40,50) 0.880 (40,50) 0.850 (0.01,0.9) 0.825
(50,40) 0.875 (50,40) 0.840 (0.001,0.4) 0.880
(70,30) 0.885 (70,30) 0.885 (0.001,0.8) 0.880
(100,20) 0.885 (100,20) 0.885 (0.001,0.9) 0.850
(200,10) 0.855 (200,10) 0.880 (0.0005,0.6) 0.830

We summarize the parameter values used in the simulations. We imposed
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that the objective (fitness) function were evaluated not more than 10,000
times: ITA

tot = ISAtot =IGA
tot =10,000. For the algorithm SA we chose T0 = 8.0,

Tf = 0.05, SAiter = 100, a = 0.95. For the algorithm TA, we set Nt = 100
and TAiter = 100. For the genetic algorithm we selected pcross = 0.6,
pmut = 0.001, pop = 100, gen = 100. With g = 5, the solution space Ω is of
order 2 × 109 when the sample size is N = 200, and it is of order 8 × 1010

when the sample size is N = 400 whereas the meta-heuristic algorithms reach
a satisfying convergence to the optimum evaluating the objective function
(fitness) no more than 10, 000 times.

6. Results

In Tables 5, 6 and 7 we report the results of the three meta-heuristic
algorithms and the TPP detection procedure. In Tables 5 and 6, the rows
labelled P2 summarise the relative frequency of the correct outlier pattern
(both outliers detected and only them), the rows labelled P1 summarise the
relative frequency of only one outlier correctly detected and the rows labelled
E summarise the relative frequency of the solutions with wrong identifications
(i.e., observations that are identified as outliers while they are not). The
complement to one of the sum of these three frequencies is the frequency
of the no outlier solution. In Table 7, the rows labelled P5 summarise the
relative frequency of the correct outlier pattern (all five outliers detected and
only them), the rows labelled P<5 summarise the relative frequency of less
than five outliers correctly detected and the rows labelled E summarise the
relative frequency of solutions with wrong identifications (i.e., observations
that are identified as outliers while they are not). The complement to one
of the sum of these three frequencies is again the frequency of the no outlier
solution.

Table 5 shows that each of the four algorithms has a high percentage of
success when the two outliers are far from each other (t = 100, 150). The
frequencies of full identifications are nearly equivalent for the four methods.
The results are mixed and no method seems uniformly superior to the others.
For some models the frequency of correct identification of the TPP method
is larger than the corresponding meta-heuristic frequency, while for other
models the converse is true.

Table 6 reports simulation results concerning the outliers patch detection
where outliers are introduced at time indices t = 100, 101. We can see from
this table that for almost all models the meta-heuristic algorithms detect the
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outlier patch with frequencies higher than those achieved by the TPP. Only
for the model (7) the TPP method provides satisfactory results. Moreover,
for almost all the models the TPP’s frequency of wrong identification E
is considerable larger than the corresponding frequencies achieved by meta-
heuristic methods. In comparison to the preceding case (two outliers for each
other) here the frequency of the no outlier solution is larger, and the largest
for the TPP method. Finally, we can see that the frequencies P2 for models
with 200 observations are less than same models with 400 observations. This
may be due to the fact that the solution space is larger and the meta-heuristic
methods are were easily trapped in some local optimum.

In Table 7 are reported the results for the configuration with 5 outliers
where three are consecutive. The configuration is very complex and very
difficult to detect if the size of the outlier is not large enough. For this reason
outlier sizes are set to 5.0 for the instants 40, 100, 101, 102, 150. In the table
7 we can see that the relative frequencies of correct configuration P5 obtained
through the meta-heuristic methods are very different and depending on the
model. For some models the relative frequency of correct outlier detection
are very low.

To reduce the lack of convergence, we reported the simulations allow-
ing for a total number of objective function (fitness) evaluations increased
to 100,000 (instead of 10,000), both for the most complex configuration
(40, 100, 101, 102, 150) and for the simpler one (100, 101).

Table 8-9 shows the results obtained for the configurations 100, 101 and
40, 100, 101, 102, 150 setting the number of evaluations equal to 100,000. We
can see an improvement of the results in both cases but the increase of the
frequencies of correct identification is very large for the case of 5 outliers. Now
the relative frequencies of correct configuration detection obtained through
the meta-heuristic methods are high and much larger than those obtained
with the TPP method for seven of the eight models considered. For some
models the correct pattern is always found (frequency P5 assumes the value
1). The meta-heuristic algorithms show a better performance than the TPP
also in the third configuration outliers (see Table 9).

Tables 8 and 9 evidently illustrate masking and smearing problems en-
countered by the TPP procedure when additive outliers exist in a patch.
It has been noticed that this problems persist despite the size of outliers
whereas the meta-heuristic methods improve their performance when the
outliers are inserted with a bigger magnitude. Detecting a set of consecutive
outliers seems much more difficult and affected by the underlying models.
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The good performance of TPP in model 7 depends on the particular pa-
rameters of the model generating data. The three algorithms proposed here
clearly outperform the TPP method to detect patch of additive outliers.

To understand the poor TPP’s results, let us to consider the situation
in which the time series follows a VAR(1) and there exists a patch of two
additive outliers at time indices t = T, T + 1, with magnitudes ωt = ω for
t = T, T + 1. Suppose that the model parameters are known, then the
expected values of the perturbations at time indices t = T, T + 1 are given
by

E(ω̂T ) = ωT + Γi0
−1Γi1ωT+1 = (Is + Γi0

−1Γi1)ω,

E(ω̂T+1) = ωT+1 + Γi0
−1Γi−1ωT = (Is + Γi0

−1Γi−1)ω.

We observe that they are biased. The bias depends on the inverse covari-
ance matrices and it may cause the masking effect. The good performance
achieved by the TPP in model 7 may depend on the peculiar parameters of
the models. On the contrary in our methods the estimates of the magnitude
of outliers are unbiased.

6.1. Real time series data

In this subsection we illustrate the performance of the meta-heuristic
procedures by analysing a real example. The data are the well-known gas-
furnace series of Box et al. [13]. This bivariate time series consists of an input
gas rate in cubic feet per minute and the CO2 concentration in the outlet gas
as a percentage, both measured at 9–second time intervals. There are 296
observations. The TPP method finds additive multivariate outliers at posi-
tions 42, 54, 113, 199, 235, 264. All the other algorithms, based on 1,000,000
objective function (fitness) evaluations (T0= 8.0, Tf= 0.05, SAiter = 10,000,
a = 0.95, gen=30,000, pop=30, Nt=100 and TAiter = 10,000, g = 15, c = 8.2
and m = 6) converge to the solution with 4 outliers at positions: 42, 54,
199 and 264. Additional information may be derived by looking also at the
sub-optimal solutions. Table 10 displays the outliers patterns corresponding
to the best ten solutions found after 1,000,000 objective function evaluations.
It suggests that additional time indices may be considered as candidates for
the true outlier positions, giving additional insight about the probably out-
lying observations. It turns out that for this series the TPP method has not
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Table 5: Comparison of the algorithm performances: outliers at t = 100, 150 based on 104

iteration
N = 200 N = 400
TA SA GA TPP TA SA GA TPP

Model 1

P2 0.90 0.91 0.91 0.94 0.87 0.87 0.92 0.89
P1 0.05 0.04 0.04 0.02 0.10 0.10 0.05 0.06
E 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.04

Model 2

P2 0.91 0.90 0.91 0.92 0.92 0.92 0.94 0.93
P1 0.03 0.04 0.03 0.03 0.04 0.04 0.02 0.02
E 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.05

Model 3

P2 0.94 0.94 0.94 0.94 0.91 0.91 0.93 0.93
P1 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00
E 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.07

Model 4

P2 0.94 0.94 0.94 0.90 0.91 0.91 0.91 0.91
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.06 0.06 0.06 0.10 0.09 0.09 0.09 0.09

Model 5

P2 0.90 0.90 0.90 0.93 0.94 0.94 0.94 0.94
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.10 0.10 0.10 0.07 0.06 0.06 0.06 0.06

Model 6

P2 0.90 0.90 0.90 0.92 0.90 0.90 0.90 0.94
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.10 0.10 0.10 0.08 0.10 0.10 0.10 0.06

Model 7

P2 0.95 0.94 0.95 0.94 0.90 0.90 0.90 0.93
P1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
E 0.05 0.05 0.05 0.06 0.01 0.10 0.10 0.07

Model 8

P2 0.94 0.94 0.94 0.92 0.96 0.96 0.96 0.96
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E 0.06 0.06 0.06 0.08 0.04 0.04 0.04 0.04

P2= frequency of event ’exactly two outliers found at times 100 and 150’
P1= frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications
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Table 6: Comparison of the algorithm performances: outliers at t = 100, 101 based on 104

iteration
N = 200 N = 400
TA SA GA TPP TA SA GA TPP

Model 1

P2 0.72 0.71 0.72 0.23 0.55 0.56 0.58 0.19
P1 0.05 0.06 0.05 0.08 0.07 0.06 0.05 0.07
E 0.11 0.11 0.11 0.18 0.13 0.13 0.12 0.14

Model 2

P2 0.74 0.74 0.75 0.22 0.68 0.67 0.69 0.21
P1 0.10 0.10 0.10 0.37 0.15 0.14 0.12 0.40
E 0.13 0.13 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.83 0.83 0.84 0.34 0.74 0.75 0.78 0.43
P1 0.03 0.03 0.03 0.06 0.05 0.05 0.04 0.05
E 0.07 0.07 0.06 0.23 0.12 0.11 0.09 0.21

Model 4

P2 0.52 0.52 0.54 0.00 0.40 0.41 0.42 0.01
P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
E 0.21 0.21 0.19 0.30 0.29 0.28 0.27 0.41

Model 5

P2 0.89 0.89 0.89 0.55 0.83 0.82 0.83 0.55
P1 0.00 0.00 0.00 0.08 0.01 0.02 0.01 0.11
E 0.11 0.11 0.11 0.23 0.15 0.15 0.15 0.23

Model 6

P2 0.84 0.84 0.84 0.55 0.81 0.81 0.82 0.52
P1 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01
E 0.13 0.13 0.13 0.32 0.17 0.17 0.17 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87
P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04
E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.91 0.91 0.91 0.10 0.89 0.89 0.91 0.03
P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08
E 0.09 0.09 0.09 0.70 0.11 0.11 0.09 0.88

P2= frequency of event ’exactly two outliers found at times 100 and 150’
P1= frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications
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Table 7: Comparison of the algorithm performances: outliers at t = 40, 100, 101, 102, 150
based on 104 iteration

N = 200 N = 400
TA SA GA TPP TA SA GA TPP

Model 1

P2 0.60 0.58 0.63 0.32 0.32 0.32 0.37 0.24
P1 0.28 0.30 0.25 0.39 0.48 0.48 0.44 0.46
E 0.12 0.12 0.12 0.29 0.20 0.20 0.19 0.30

Model 2

P2 0.75 0.00 0.00 0.29 0.68 0.00 0.00 0.27
P1 0.13 0.00 0.00 0.45 0.20 0.00 0.00 0.50
E 0.12 0.00 0.00 0.26 0.12 0.00 0.00 0.23

Model 3

P2 0.72 0.75 0.76 0.28 0.47 0.47 0.49 0.35
P1 0.15 0.13 0.12 0.29 0.24 0.24 0.23 0.25
E 0.13 0.12 0.12 0.43 0.29 0.29 0.28 0.40

Model 4

P2 0.23 0.22 0.26 0.01 0.20 0.21 0.23 0.00
P1 0.31 0.32 0.31 0.22 0.21 0.20 0.20 0.19
E 0.46 0.46 0.43 0.77 0.59 0.59 0.57 0.81

Model 5

P2 0.84 0.84 0.85 0.55 0.72 0.71 0.72 0.54
P1 0.03 0.03 0.02 0.13 0.08 0.09 0.08 0.15
E 0.13 0.13 0.13 0.32 0.20 0.20 0.20 0.31

Model 6

P2 0.95 0.95 0.95 0.41 0.90 0.90 0.90 0.40
P1 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.03
E 0.03 0.03 0.03 0.55 0.08 0.08 0.08 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.57 0.58 0.60 0.00 0.66 0.65 0.68 0.01
P1 0.11 0.10 0.08 0.35 0.03 0.04 0.03 0.28
E 0.32 0.32 0.32 0.65 0.31 0.31 0.29 0.71

P5= frequency of event ’exactly five outliers found at times 40, 100, 101, 102, 150’
P<5= frequency of event ’some of correct outliers are detected’
E= frequency of solutions with wrong identifications
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Table 8: Comparison of the algorithm performances: outliers at t = 100, 101 based on 105

iteration
N = 200 N = 400
TA SA GA TPP TA SA GA TPP

Model 1

P2 0.73 0.73 0.73 0.23 0.61 0.61 0.61 0.19
P1 0.05 0.05 0.05 0.08 0.05 0.05 0.05 0.07
E 0.10 0.10 0.10 0.18 0.09 0.09 0.09 0.14

Model 2

P2 0.75 0.75 0.75 0.22 0.72 0.72 0.72 0.21
P1 0.10 0.10 0.10 0.37 0.11 0.11 0.11 0.40
E 0.12 0.12 0.12 0.25 0.10 0.10 0.10 0.25

Model 3

P2 0.84 0.84 0.84 0.34 0.83 0.83 0.83 0.43
P1 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.05
E 0.06 0.06 0.06 0.23 0.05 0.05 0.05 0.21

Model 4

P2 0.60 0.60 0.60 0.00 0.64 0.64 0.64 0.01
P1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
E 0.13 0.13 0.13 0.30 0.05 0.05 0.05 0.41

Model 5

P2 0.90 0.90 0.90 0.55 0.93 0.93 0.93 0.55
P1 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.11
E 0.10 0.10 0.10 0.23 0.06 0.06 0.06 0.23

Model 6

P2 0.85 0.85 0.85 0.55 0.88 0.88 0.88 0.52
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.13 0.13 0.13 0.32 0.10 0.10 0.10 0.35

Model 7

P2 0.92 0.92 0.92 0.90 0.88 0.88 0.88 0.87
P1 0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.04
E 0.07 0.07 0.07 0.08 0.12 0.12 0.12 0.09

Model 8

P2 0.93 0.93 0.93 0.10 0.96 0.96 0.96 0.03
P1 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08
E 0.07 0.07 0.07 0.70 0.04 0.04 0.04 0.88

P2= frequency of event ’exactly two outliers found at times 100 and 150’
P1= frequency of event ’exactly one outlier found at time 100 or at time 150’
E= frequency of solutions with wrong identifications

31



Table 9: Comparison of the algorithm performances: outliers at t = 40, 100, 101, 102, 150
based on 105 iteration

N = 200 N = 400
TA SA GA TPP TA SA GA TPP

Model 1

P2 0.89 0.90 0.95 0.32 0.80 0.80 0.92 0.24
P1 0.06 0.05 0.00 0.39 0.09 0.09 0.00 0.46
E 0.05 0.05 0.05 0.29 0.11 0.11 0.08 0.30

Model 2

P2 0.86 0.86 0.87 0.29 0.84 0.85 0.87 0.27
P1 0.10 0.10 0.09 0.45 0.12 0.11 0.09 0.50
E 0.09 0.04 0.04 0.26 0.04 0.04 0.04 0.23

Model 3

P2 0.95 0.97 0.99 0.28 0.86 0.90 0.94 0.35
P1 0.02 0.00 0.00 0.29 0.04 0.02 0.00 0.25
E 0.03 0.03 0.01 0.43 0.10 0.08 0.06 0.40

Model 4

P2 0.74 0.73 0.75 0.01 0.82 0.82 0.84 0.00
P1 0.14 0.15 0.13 0.22 0.05 0.05 0.05 0.19
E 0.12 0.12 0.12 0.77 0.13 0.13 0.11 0.81

Model 5

P2 0.97 0.97 1.00 0.55 0.96 0.96 1.00 0.54
P1 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.15
E 0.03 0.03 0.00 0.32 0.04 0.04 0.00 0.31

Model 6

P2 1.00 1.00 1.00 0.41 0.98 0.98 1.00 0.40
P1 0.00 0.00 0.00 0.04 0.02 0.02 0.00 0.03
E 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.57

Model 7

P2 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.90
P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
E 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

Model 8

P2 0.93 0.92 0.95 0.00 0.93 0.93 0.94 0.01
P1 0.02 0.03 0.00 0.35 0.02 0.02 0.01 0.28
E 0.05 0.05 0.05 0.65 0.05 0.05 0.05 0.71

P5= frequency of event ’exactly five outliers found at times 40, 100, 101, 102, 150’
P<5= frequency of event ’some of correct outliers are detected’
E= frequency of solutions with wrong identifications

32



Table 10: Meta-heuristic algorithm solutions for the gas–furnace series

Solution f(x) Locations
S1 -53.82 42 54 199 264
S2 -53.29 43 54 199 264
S3 -51.42 42 54 199 235 264
S4 -50.89 43 54 199 235 264
S5 -50.10 42 54 113 199 264
S6 -49.57 43 54 113 199 264
S7 -48.55 42 55 199 264
S8 -48.02 43 55 199 264
S9 -47.78 42 54 198 264
S10 -47.70 42 54 113 199 235 264

Table 11: Statistics of empirical distributions for different values of I (based on 100 runs)

I TA SA
µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05

100 -19.50 14.77 -44.59 -39.42 -14.81 13.98 -40.32 -36.24
500 -42.54 6.43 -53.82 -53.82 -33.21 7.65 -45.54 -44.58
1,000 -48.68 4.71 -53.82 -53.82 -39.10 6.60 -53.82 -48.69
5,000 -52.83 1.87 -53.82 -53.82 -52.79 1.92 -53.82 -53.82
10,000 -53.16 1.17 -53.82 -53.82 -53.16 1.15 -53.82 -53.82

I GA1 GA2

µ̂ σ̂ best q0.05 µ̂ σ̂ best q0.05
100 -31.69 6.91 -44.92 -44.02
500 -44.59 6.86 -53.82 -53.82
1,000 -49.19 4.53 -53.82 -53.82
5,000 -51.71 2.92 -53.82 -53.82
10,000 -53.01 1.17 -53.82 -53.82
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given the best solution, but the ten-th one in order of decreasing objective
function.

Let I denote the number of evaluations of the objective function. In order
to compare the convergence of the algorithms we calculate, for different val-
ues of I (100, 500, 1,000, 5,000, 10,000), the empirical distribution, based on
100 restarts, of the best obtained objective function. Table 11 reports some
relevant statistics (mean, standard deviation, best value and 5-th percentile)
about the empirical distributions along the guidelines suggested by Gilli and
Winker [30]. As I increases, the distributions shift to the left (µ̂ decreases)
and become less dispersed (σ̂ decreases). The GA show a better initial per-
formance due to the favourable way the initial population is chosen, but the
SA and the TA have a faster convergence speed.

At the last iteration (I = 10, 000), the best value (f(x) = −53.82) is
found in 59 out of 100 runs for the SA, in 58 out of 100 runs for the TA, in
46 out of 100 for the GA.

7. Conclusions

In this paper three meta-heuristic methods for detecting additive outliers
in multivariate time series are proposed. Meta-heuristic algorithms, unlike
other methods in literature, do not identify and remove outliers one at a
time, but examine several proposed outlier patterns, where all observations
are simultaneously considered. This feature seems to be effective in handling
masking (meaning that one outlier hides others) and swamping (when out-
liers make other clean observations to appear outliers as well) effects caused
by multiple outliers. Furthermore, our methods do not require the specifi-
cation of an adequate multivariate model, which is usually a difficult task,
especially when the data are contaminated by outliers. The procedures are
illustrated by analysing artificial and real data sets. The results obtained
from the simulation experiments seem to support the idea that the meta-
heuristic algorithms constitute a valid approach to detect the time points
where potential outliers in vector time series are located. In our experiment
the meta-heuristic methods provide better results than the TPP method
to identify outlier patch, while the results are similar for the case of well
separated outliers. The examination of the “gas-furnace” data of Box and
Jenkins yields satisfactory results. Comparing the results obtained by the
detection procedure of Tsay et al. [53] with the best solution provided by
meta-heuristic algorithms, we observe that they have in common four out of
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six outliers locations. Such small discrepancy is caused by the difference be-
tween the two identification procedures. The efficiency of the meta-heuristic
methods proposed in this study, depends crucially on the choice of appropri-
ate values for some control parameters. The simulation and the theoretical
study used for determining the value of parameter c, allows us to control for
the type I error α. For any given value of α there is a corresponding value
for c that does not depend on the underlying model. It only depends on the
number of components (s) and the length of the time series. In the case of
real data, given a value of α, the corresponding value of c, as reported in
Table 2, can be used.

The presence of partial outliers, i.e., anomalies that affect only some
components of the multivariate series, may be an issue to be considered for
future developments. Moreover, an interesting further problem is the outlier
identificability, that is, studying how large should the outliers size to ensure
that the correct outlier configuration has the maximum fitness.
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