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Abstract

Presence-only data are referred to situations in which, given a censoring mecha-
nism, a binary response can be observed only with respect to on outcome, usually
called presence. In this work we present a Bayesian approach to the problem of
presence-only data based on a two levels scheme. A probability law and a case-
control design are combined to handle the double source of uncertainty: one due
to the censoring and one due to the sampling. We propose a new formalization for
the logistic model with presence-only data that allows further insight into inferential
issues related to the model. We concentrate on the case of the linear logistic re-
gression and, in order to make inference on the parameters of interest, we present a
Markov Chain Monte Carlo algorithm with data augmentation that does not require
the a priori knowledge of the population prevalence. A simulation study concerning
24,000 simulated datasets related to different scenarios is presented comparing our
proposal to optimal benchmarks.

Keywords: Bayesian modeling, case-control design, data augmentation, logistic regres-
sion, Markov Chain Monte Carlo, population prevalence, presence-only data, simulation.

1 Introduction
There is a significant body of literature in statistics, econometrics and ecology dealing with
the modeling of discrete responses under biased or preferential sampling designs. They
are particularly popular in the natural sciences when species distributions are studied.
Such sample schemes may reduce the survey cost especially when one of the responses is
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rare. A large part of statistical literature concerns the case-control design, retrospective,
choice-based or response-based sampling (Lancaster and Imbens, 1996). In the simplest
case a sample of cases and a sample of controls are available and for each observation a
set of “attributes/covariates” is observed in both samples. Then inference is carried out
following standard statistical procedures (Armenian, 2009).
A case that has received increasing attention in the literature is the situation where the
sample of controls is a random sample from the whole population with information only
on the attributes and not on the response (Lancaster and Imbens, 1996). This situation
is fairly common in ecological studies where only species’ presence is recorded when field
surveys are carried out. In the ecological literature, since the 1990’s such data are called
presence only data (see Araùjo and Williams, 2000, and references therein). Pearce and
Boyce (2006) define presence-only data as “consisting only of observations of the organism
but with no reliable data where the species was not found”. Atlases, museum and herbar-
ium records, species lists, incidental observation databases and radio-tracking studies are
examples of such data.
In recent years we find a considerably growing literature describing approaches to the
modeling of this type of data, among the many ecological papers we recall Keating and
Cherry (2004), Pearce and Boyce (2006), Elith et al. (2006), Elith and Leathwick (2009),
Franklin (2010) and, most notably, in the statistical literature Ward et al. (2009), Warton
and Shepherd (2010), Chakraborty et al. (2011), Di Lorenzo et al. (2011) and Dorazio
(2012). While in Warton and Shepherd (2010) and Chakraborty et al. (2011) to model the
presence-only data Poisson point processes are considered in the likelihood and Bayesian
framework respectively, in Ward et al. (2009) and Di Lorenzo et al. (2011) a modified case-
control logistic model is adopted in the likelihood and Bayesian perspective respectively,
in both papers there is no account for possible dependence structure in the observations.
In Dorazio (2012) the asymptotic relations between the two approaches are discussed.
A different approach, MaxEnt, is based on the maximum entropy principle (Jaynes, 1957).
In MaxEnt (Phillips et al., 2006; Elith et al., 2011) the relative entropy between the dis-
tribution of covariates at locations where the species is present and the unconditional
background distribution of covariates is maximized subject to some constrains concerning
empirical statistics (see Philips et al., 2006, for details). As pointed by Dorazio (2012) “the
MaxEnt method requires knowledge of species’ prevalence for its estimator of occurrence
to be consistent”.
In what follows we are going to use the name presence-only data when referring to the
above sketched general problem of having information on the presence and covariates
jointly on a sample from a population, while information on only the covariates is avail-
able on any sample from the same population. This work is developed in the same discrete
setting as in Ward et al. (2009) and Di Lorenzo et al. (2011), i.e., we have a population
of independent units, no dependence structure, such as spatial correlation, is anticipated.
We defer the treatment of this extension to a subsequent work.
The main contribution of the paper is a new rigorous formalization of the logistic regres-
sion model with presence-only data that allows further insight into the inferential issues.
This leads us to an algorithmic procedure that, among other results, returns a MCMC ap-
proximation of the response prevalence under general knowledge of the process generating
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the data. We also present a large simulation study involving 24,000 simulated datasets
and comparing our approach to other two models representing optimal benchmarks.
The paper is organized as follows. Section 2 introduces a general framework for the
presence-only data problems, Section 3 presents our Bayesian approach, Section 4 de-
scribes the MCMC algorithm while results related to the simulation study are reported
in Section 5. Finally in Section 6 some conclusions are drawn and future developments
briefly described.

2 Linear logistic regression for presence-only data.
The analysis of a binary response related to a set of explicative covariates is usually
carried out through the use of the logistic regression where the logit of the conditional
probability of occurrence is modeled as a function of covariates. In this section, we first
introduce a general framework for the modeling of presence-only data and then consider
the case of the linear logistic regression. The approach proposed is built on two levels
and we partially follow the formulation introduced by Ward et al. (2009) but adopting a
Bayesian scheme as in Divino et al. (2011).

2.1 A two level approach.

Let Y be a binary variable informing on the presence (Y = 1) or absence (Y = 0) of
a population’s attribute and let X = (X1, ..., Xk) denote a set of highly informative,
on the same attribute, covariates which are available on the same population. Then, the
presence-only problem can be formalized by considering a censorship mechanism that acts
when observing the response Y , so that part of the population units are not reachable.
In particular, we refer to the situation in which we are able to detect only a partial set of
units on which the attribute of interest is present while the information on the covariates
X is available on the entire population. In this situation, we have to consider two types of
uncertainty: the uncertainty due to the mechanism of censorship and the uncertainty due
to the sampling procedure. Moreover, since we are not able to collect a random sample
of observable data, we need to adjust for the sampling mechanism through the use of a
case-control scheme (Breslow and Dey, 1980; Breslow, 2005; Armenian, 2009) .
In order to build a Bayesian model, in this framework we adopt the following conceptual
scheme in two levels.

Level 1. Given the population of interest U of size N , the binary responses y =
(y1, ..., yN) are generated independently by a probability lawM.

Level 2. Let Up be the subset of U where we observe Y = 1. A modified case-control
design is applied so that a sample of presences, considered as cases, is selected from Up

3



and a sample of “contaminated” controls (Lancaster and Imbens, 1996) is selected from
the whole population U , with all the covariates but no information on Y .

Here, we cannot approach the model construction using only a finite population ap-
proach (Särndal, 1978) because of the censoring mechanism that “masks” distributional
information on Y already at the population level. By the introduction of Level 1 we
can describe the censored observations as random quantities generated by the modelM.
Hence, the problem of presence-only data can be formalized as a problem of missing data
(Rubin, 1976; Little and Rubin, 1987).

2.2 The model generating population data.

At the first level, we assume that the law M is defined in terms of the conditional
probability of occurrence Pr(Y = 1|x), denoted by π∗(x), when the covariates are X =
x. Moreover, we consider that the relation between Y and X is formalized through a
regression function φ(x) on the logit scale

φ(x) = logit π∗(x), (1)

that is

π∗(x) =
eφ(x)

1 + eφ(x)
. (2)

When the data y = (y1, ..., yN) are independently generated fromM, we denote by π the
empirical prevalence of the binary response Y in U , expressed as the ratio of the number
of presences N1 to the size of the population, that is

π =
N1

N
.

2.3 The modified case-control design.

At the second level, we adopt a case-control design modified for presence-only data (Lan-
caster and Imbens, 1996) in order to account for the specific sampling procedure consid-
ered. The use of the case-control scheme is necessary at all times when it is appropriate
to select observations in fixed proportions with respect to the values of the response vari-
able. This can occur when the attribute of interest represents a phenomenon that is rare
among the units of the population as for example a rare disease or a rare exposure in
epidemiological studies (Woodward, 2005).
Now, let C be a binary indicator of inclusion into the sample (C = 1 denotes that a unit
is in the sample), let ρ0 = Pr(C = 1|Y = 0) and ρ1 = Pr(C = 1|Y = 1) be the inclusion
probability of the absences and the presences, respectively. Under the assumption that,
given Y , the sampling mechanism is independent from the covariates X, the conditional
probability of occurrence is modified through the Bayes rule as

Pr(Y = 1|C = 1, x) =
ρ1e

φ(x)

ρ0 + ρ1eφ(x)
. (3)
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Hence, the corresponding case-control regression function φcc(x) defined as the logit of
(3) is given by

φcc(x) = φ(x) + log
ρ1
ρ0
. (4)

In particular, if the selection of cases (n1) and controls (n0) is made independently without
replacement, the inclusion probabilities are given in terms of the empirical prevalence π
by

ρ0 =
n0

(1− π)N

and
ρ1 =

n1

πN
,

so that the equation (4) becomes

φcc(x) = φ(x) + log
n1

n0

− log
π

1− π
. (5)

In our framework, since the response variable Y is already censored at the population
level, the standard case-control design cannot be adopted but it should be modified in
such a way that a sample of presences is matched with an independent sample drawn
from the entire population, named the background sample (Zaniewski et al., 2002; Ward
et al., 2009). Remark that in this sample the response variable is unobserved and only
the covariates are available.
In this way, the complete sample S is composed by a set Su of nu independent background
data, where the response Y is not observed, drawn from the entire U and by a set Sp
of np independent observations selected from the sub-population of presences Up. This
procedure implies that the reference population U is augmented with its subset Up so that
the total number of observations considered in the sampling scheme becomes N + N1.
To illustrate the sampling framework we are going to adopt here, let us consider the
following situation: we can label population units of type y = 1 only when they are
isolated from units of type y = 0. This can be formalized by introducing a binary stratum
variable Z such that Z = 0 indicates when an observation is drawn from the entire
population U while Z = 1 denotes the sampling from the sub-population Up. Remark
that Z = 1 implies Y = 1 whilst Z = 0 implies that Y is an unknown value y ∈ {0, 1}.
Moreover, by construction Z is independent from the covariates X, given the response
Y . The introduction of the variable Z allows us to define the structure of the data
at the population level and at the sample level in terms of presences/absences (Y ) and
known/unknown data (Z), as reported in Table 1 and Table 2.

Y/Z Z = 0 Z = 1 Total

Y = 0 N0 0 N0

Y = 1 N1 N1 2N1

Total N N1 N +N1

Table 1: Data structure at the population level.
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Y/Z Z = 0 Z = 1 Total

Y = 0 n0u 0 n0

Y = 1 n1u np n1

Total nu np n

Table 2: Data structure at the sample level.

In Table 1, N0 is the number of absences in the population U while in Table 2, n0u

and n1u respectively denote the unknown frequencies of absences and presences in the
sub-sample Su. Remark that, in the above described situation, the inclusion probability
of units with or without the mentioned attribute changes. In fact, while an absence can
be drawn only when sampling from U , a presence can be selected when sampling both
from U and from Up. Thus, one has

ρ0 =
n0

N0

=
n0u

(1− π)N
, (6)

and
ρ1 =

n1

2N1

=
n1u + np

2πN
. (7)

The introduction of the stratum variable Z allows us also to exactly derive the logis-
tic regression model under the case-control design modified for presence-only data. In
fact, when we consider the population U augmented with its subset Up, the model π∗(x)
represents the conditional probability to mark a presence only when Z = 0, that is
Pr(Y = 1|Z = 0, x) = π∗(x). On the other hand, when Z = 1, we simply have
Pr(Y = 1|Z = 1, x) = 1. We can prove the following result.

Proposition 1. Under the assumption that Z is independent from X given Y , one has

Pr(Y = 1|x) =
2π∗(x)

1 + π∗(x)
. (8)

Proof. From the hypothesis of conditional independence it results

Pr(Z|Y, x) = Pr(Z|Y ),

that can be express also as

Pr(Y |Z, x)Pr(Z|x)

Pr(Y |x)
=
Pr(Y |Z)Pr(Z)

Pr(Y )
.

Let consider the case with Y = 1 and Z = 0, one has

Pr(Y = 1|Z = 0, x)Pr(Z = 0|x)

Pr(Y = 1|x)
=
Pr(Y = 1|Z = 0)Pr(Z = 0)

Pr(Y = 1)
.
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The probabilities enclosed in the second term can be derived from Table 1 and one has

π∗(x)Pr(Z = 0|x)

Pr(Y = 1|x)
=

N1

N
N

N+N1

2N1

N+N1

=
1

2
. (9)

In the case Y = 1 and Z = 1 one similarly obtains

Pr(Z = 1|x)

Pr(Y = 1|x)
=

N1

N1

N1

N+N1

2N1

N+N1

=
1

2
. (10)

From (10) it results Pr(Y = 1|x) = 2Pr(Z = 1|x) and by substituting in (9), one can

derive that Pr(Z = 0|x) =
1

1 + π∗(x)
and hence Pr(Z = 1|x) =

π∗(x)

1 + π∗(x)
. Now, it is

simple to obtain that

Pr(Y = 1|x) =
2π∗(x)

1 + π∗(x)
.

�
If we assume that, given Y , the inclusion into the sample (C = 1) is independent from
the covariates X, one has 1

Pr(Y = 0|C = 1, x)Pr(C = 1|x) =
1− π∗(x)

1 + π∗(x)
ρ0 (11)

and
Pr(Y = 1|C = 1, x)Pr(C = 1|x) =

2π∗(x)

1 + π∗(x)
ρ1. (12)

Then, from the ratio of (12) to (11), it results

Pr(Y = 1|C = 1, x)

Pr(Y = 0|C = 1, x)
=

2π∗(x)

1− π∗(x)

ρ1
ρ0
,

and by plugging the quantities ρ0 and ρ1, as defined in (6) and in (7), into the logit of
Pr(Y = 1|C = 1, x), one obtains the following relation

logitPr(Y = 1|C = 1, x) = log

[
2π∗(x)

1− π∗(x)

ρ1
ρ0

]
= log

[
2π∗(x)

1− π∗(x)

n1u + np
n0u

1− π
2π

]
= log

[
π∗(x)

1− π(x)

n1u + np
n0u

1− π
π

]
= logit π∗(x) + log

n1u + np
n0u

− log
π

1− π

= φ(x) + log
n1u + np
n0u

− log
π

1− π
, (13)

1see Appendix for the detailed proof.
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that represents the logistic regression model under the case-control design for presence-
only data. As well, we can now formalize the presence-only data regression function
φpod(x) as

φpod(x) = φ(x) + log
n1u + np
n0u

− log
π

1− π
. (14)

Although the derivation is substantially different, we end with the same formulation as
in Ward et al. (2009). Now, in order to make parameter estimation possible, we need to
handle the ratio

ρ1
ρ0

=
n1u + np
n0u

1− π
2π

, (15)

where the quantities π and n1u are unknown (n0u = nu − n1u).
In the recent literature, two main approaches have been proposed. The first one by Ward
et al. (2009) replace the ratio n1u+np

n0u
with the ratio of the expected numbers of presences

and absences in the sample, that is
ρ1
ρ0
≈ E[n1u + np]

E[n0u]

1− π
2π

=
πnu + np
(1− π)nu

1− π
2π

=
πnu + np

2πnu
. (16)

These authors adopt a likelihood approach and computation is carried out via the EM al-
gorithm. As they underline, this approximation can be easily implemented if the empirical
population prevalence π is known a priori. They discuss also the possibility to estimate
π jointly with the regression function when the prevalence is identifiable, as for example
in the linear logistic regression, and with respect to this case they present a simulation
example. The difficulty in obtaining efficient joint estimates because of the correlation
between π and the intercept of the linear regression term is discussed. Notice that Ward
et al. (2009) considers a slightly different representation of the ratio (16), omitting the
multiplier “2” in the denominator.
Di Lorenzo et al. (2011), dealing with a problem of abundance data, use the approximation
(16), but they adopt a Bayesian approach and consider the population prevalence π as a
further parameter in the model. They choose an informative Beta prior for π, but their
MCMC algorithm contains an unusual weakness since the simulation of π is performed
from its prior and not from the posterior that can be derived through the interaction
between the parameter π and the regression function φ(x).
A different approximation of the ratio (15) can be obtained by considering the sample
prevalence in Su (the background sample)

πu =
n1u

nu
,

where
n1u =

∑
i∈Su

yi.

Due to the censorship process, this quantity is unknown but it would be the maximum
likelihood estimator for π if the data yu = {yi, i ∈ Su} could be observed. Now, replacing
π by πu in (15) one obtains

ρ1
ρ0
≈ n1u + np

n0u

1− πu
2πu

=
n1u + np
nu − n1u

nu − n1u

2n1u

=
n1u + np

2n1u

, (17)
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that allows to formulate a computable version of the regression function for presence-only
data as

φpod(x) ≈ φ(x) + log
n1u + np
n1u

. (18)

This function depends on the data yu in Su which are not directly observable, but if
yu is treated as missing data one can enclose it into the estimation process and then
obtain a consistent approximation for φpod(x). In particular, in a Bayesian framework,
this idea can be performed by using a Markov Chain Monte Carlo computation with
data augmentation. Moreover from the use of MCMC simulations we can also obtain an
approximation of πu and therefore an estimate of the empirical population prevalence π.
Details are given in Section 4.
The approximation (17) can, in principle, be always adopted, but some care must be
used as identifiability issues are present. We follow the recommendation in Ward et al.
(2009) to approach jointly estimates of φ(x) and π only when the latter is identifiable
with respect to the regression function, as for example in the linear regression case (see
Ward et al., 2009, for mathematical details).

2.4 The linear logistic regression.

If we consider a linear regression function φ(x) = xβ, where β = (β1, ..., βk) is the vector
of the regression parameters, a computable model for presence-only data can be defined
through the following approximation

φpod(x) ≈ xβ + log
n1u + np
n1u

, (19)

or equivalently through the approximation of the conditional probability of occurrence at
the sample level

Pr(Y = 1|C = 1, x) ≈
exp{xβ + log n1u+np

n1u
}

1 + exp{xβ + log n1u+np

n1u
}

=

(
1 + np

n1u

)
exp{xβ}

1 +
(

1 + np

n1u

)
exp{xβ}

. (20)

In this particular case, all the unknowns of the model are the linear parameters vector β
and the missing data yu in the background sample Su.

3 The hierarchical Bayesian model.
Due to the censorship process affecting the data, we can acquire complete information
only on the stratum variable Z and not on the binary response Y . Then, it seems natural
to model Z as the observable variable. If we consider the conditional joint distribution of
Z and Y

Pr(Z, Y |C = 1, x) = Pr(Z|Y,C = 1, x)Pr(Y |C = 1, x), (21)
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through the marginalization over Y , the probability Pr(Z|C = 1, x) can be obtained and
we can express the relation between presences and covariates in terms of regression of Z
respect to X. Notice that, while Pr(Y |C = 1, x) can be obtained from (20), the term
Pr(Z|Y,C = 1, x), due to the conditional independence between Z and X given Y , simply
reduce to be equal to Pr(Z|Y,C = 1) that can be derived from Table 2.
We point out that, even if the response Y does not play an explicit role after the marginal-
ization step, we need to keep it in the model as a hidden variable in order to obtain the
approximation for the quantity n1u =

∑
i∈Su

yi, necessary to correct the linear regression
function for presence-only data.
Now, we can formalize the hierarchical Bayesian model to estimate the parameters of a
linear logistic regression under the case-control scheme adjusted for presence-only data.
In order to better explain the conditional relationship underlying the hierarchy, we intro-
duce the graph in Figure 1. The dashed node indicates a variable hidden with respect to
the conditional relationships.

θ

β

Y
u

Y
p

Z

C=1

X

Figure 1: Graphical representation of the hierarchical Bayesian model.

The priors. At the top of the hierarchy, we assume the hyper parameter θ distributed
as p(θ). At the second level, we consider the prior probability distribution on β depending
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on the hyper parameter θ, that is β|θ ∼ p(β|θ). At the third level, the unobserved data
yu in Su are considered latent parameters with prior distribution Bernoulli (denoted by
Be) with probability of occurrence given by the approximation in (20), that is

yi|Ci = 1, xi, β ∼ Be


(

1 + np

n1u

)
exp{xβ}

1 +
(

1 + np

n1u

)
exp{xβ}

 , i ∈ Su.

This point is important for deriving the predictive distribution of the unobserved data yu
necessary in the estimation algorithm.

The likelihood. At the lowest level of the hierarchy, we have the likelihood, defined
with respect to the observable stratum variable Z. Recalling that from the Table 2 we
have Pr(Z = 1|Y = 0, C = 1) = 0 and Pr(Z = 1|Y = 1, C = 1) =

np
n1u + np

, when (21)

is marginalized over Y , one obtains the approximation

Pr(Z = 1|C = 1, x, β) ≈ np
n1u + np

exp{xβ + log n1u+np

n1u
}

1 + exp{xβ + log n1u+np

n1u
}

=

np

n1u
exp{xβ}

1 +
(

1 + np

n1u

)
exp{xβ}

(22)

and hence

Pr(Z = 0|C = 1, x, β) = 1− Pr(Z = 1|C = 1, x, β)

≈ 1 + exp{xβ}

1 +
(

1 + np

n1u

)
exp{xβ}

. (23)

Thus, we can assume that for all i ∈ S the conditional distribution of Zi is Bernoulli with
probability of occurence given by (22), that is

Zi|Ci = 1, xi, β ∼ Be

 np

n1u
exp{xβ}

1 +
(

1 + np

n1u

)
exp{xβ}

 , i ∈ S.

Recalling that Zi = 0 for all i ∈ Su while Zi = 1 for all i ∈ Sp, the likelihood function can
be written as

L(β; z,x) =
∏
i∈Su

1 + exp{xiβ}

1 +
(

1 + np

n1u

)
exp{xiβ}

×
∏
i∈Sp

np

n1u
exp{xiβ}

1 +
(

1 + np

n1u

)
exp{xiβ}

.

Ward et al. (2009) defines this function as the observed likelihood versus the full likelihood
that, instead, considers the distribution of the stratum variable Z jointly with the response
Y .
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The posterior. Now, through the Bayes rule we derive the full posterior

p(β, θ|z,x) ∝ p(θ)p(β|θ)L(β; z,x) (24)

that can be used to make inference on the quantities of interest.

4 The MCMC computation.
Samples from (24) can be obtained via Markov Chain Monte Carlo simulation (Robert
and Casella, 2004; Liu, 2008). While it seems quite standard to implement a direct sam-
pler for the vector β and the hyper parameter θ, we need to sample also the latent yu. For
this reason we introduce a step of data augmentation (Tanner and Wong, 1987; Tanner,
1996) in the estimation procedure. The basic idea of the data augmentation technique
is to augment the set of observed data to a set of completed data that follow a simpler
distribution (Liu and Wu, 1999). In our framework, we need to augment the observations
of the stratum variable z with the missing values yu in order to have, at each itera-
tion, a consistent value of the quantity n1u, necessary to adjust the regression function
φpod(x) ≈ xβ + log n1u+np

n1u
for presence-only data. The following result allows for an easy

implementation of the data augmentation step.

Proposition 2. Using the approximation (17) of the ratio (15), the posterior predictive
probability of occurrence for an unobserved response y in the sub-sample Su is approxi-
mated by the modelM that generates the data at the population level, that is

Pr(Y = 1|Z = 0, C = 1, x) ≈ π∗(x). (25)

Proof. From the conditional independence between Z and X given Y , the predictive
probability of occurrence in Su is given by

Pr(Y = 1|Z = 0, C = 1, x) =
Pr(Z = 0|Y = 1, C = 1)Pr(Y = 1|C = 1, x)

Pr(Z = 0|C = 1, x)
.

From Table 2 we have that Pr(Z = 0|Y = 1, C = 1) = n1u

np+n1u
and hence

Pr(Y = 1|Z = 0, C = 1, x) =
n1u

np + n1u

Pr(Y = 1|C = 1, x)

Pr(Z = 0|C = 1, x)
. (26)

Now, recalling that in the general case one has

Pr(Y = 1|C = 1, x) ≈

(
1 + np

n1u

)
exp{φ(x)}

1 +
(

1 + np

n1u

)
exp{φ(x)}

(27)
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and

Pr(Z = 0|C = 1, x) ≈ 1 + exp{φ(x)}

1 +
(

1 + np

n1u

)
exp{φ(x)}

, (28)

by substituting (27) and (28) in (26), one obtains

Pr(Y = 1|Z = 0, C = 1, x) ≈ n1u

np + n1u

(
1 + np

n1u

)
exp{φ(x)}

1 + exp{φ(x)}

=
exp{φ(x)}

1 + exp{φ(x)}
= π∗(x).

�

4.1 The data augmentation algorithm.

A general MCMC scheme to perform inference on a linear regression model for presence-
only data can be defined as follow.

Step 0. Initialize θ, β and yu

Step 1. Set n1u =
∑

i∈Su
yi

Step 2. Sample θ from p(θ|z,x, β)

Step 3. Sample β from p(β|z,x, θ)
Step 4. Sample yi from p(yi|Zi = 0, Ci = 1, xi, β) for all i ∈ Su
Goto Step 1

After the initialization of all the arrays (Step 0), Step 1 sets a current value for the quantity
n1u to adjust the regression function φpod(x). Step 2 and Step 3 consider the sampling from
the posterior of the hyper parameter θ and the regression parameter β, respectively, and
they can be performed by Metropolis-Hasting schemes (Robert and Casella, 2004). Step
4 concerns the data augmentation for the unobserved yu in order to update consistently
the quantity n1u at the following iteration. From the result (25), this simulation can be
obtained by a Gibbs sampler (Robert and Casella, 2004) since the posterior predictive
distribution for all i ∈ Su is approximated by Bernoulli with parameter of occurrence
π(xi) = exp{xiβ}

1+exp{xiβ} .

13



4.2 The estimation of the prevalence π.

From the data augmentation algorithm we can obtain a MCMC estimate of the population
prevalence π. In fact, if at each iteration t, after the Markov chain has reached the equi-
librium, we save the current value n(t)

1u , we can obtain a consistent MCMC approximation
of the sample prevalence πu in Su by

π̂mcmc =
n̄1u

nu
(29)

where n̄1u is the ergodic mean of the augmentations n(t)
1u over the Markov chain, that is

n̄1u =

∑T
t=1 n

(t)
1u

T
.

Therefore, since πu would be a consistent estimator for π, π̂mcmc represents also a consis-
tent estimation of the empirical population prevalence.

5 A comparative simulation study.
We present a simulation experiment to evaluate the performances of the model (20). To
this aim we generate several datasets in the way described below and we compare our
proposal with respect to two models acting in two different situations: (a) the censorship
process does not act on the population U so that the data y are completely observed;
(b) the censorship is present, but we assume known the population prevalence so that
approximation (16) can be used. In (a) we are able to estimate a linear logistic model
(denoted by M0), no correction is required and φ0(x) = xβ. In (b) we consider a linear
logistic model for presence-only data, denoted by M1, with regression function φ1(x) =
xβ + πnu+np

πnu
. Model (20) (denoted by M2) is estimated when the censorship process acts

on the data and no information is available on the population prevalence. In this case,
the regression function is given by φ2(x) = xβ + n1u+np

n1u
. Remark that model M2 can be

estimated when the least amount of information is available, M1 requires less information
than M0 but more than M2 and M0 can be used only in the ideal situation of complete
information. We assume M1 as benchmark model in the case of presence-only data.

The generation of data. In order to set the simulation study, we need to generate
the covariates X and the binary response Y . In particular, we consider two covariates:
X1, giving strong information on the distribution of the response Y , and X2, representing
a term of noise, not available in the estimation step. We assume X1 distributed as a
mixture of two Gaussian densities (denoted by N ), centred in µa = 4.0 and µb = −4.0
respectively, and with equal variances σ2 = 4.0, that is

X1 ∼ wNa(µa;σ
2) + (1− w)Nb(µb;σ

2).

The weight w is a realization of a Bernoulli random variable with probability of occurrence
fixed to p = 0.165. X2 has standard Gaussian distribution N(0, 1). Finally, the binary
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response Y , given the covariates X1 and X2, is Bernoulli distributed with probability of
occurrence

π(x) =
exp{β0 + β1x1 + β2x2}

1 + exp{β0 + β1x1 + β2x2}
.

We generate covariates and binary response with respect to a population U of size N =
10000. Three general scenarios with different level of complexity have been considered:

(i) β0 = 0, β1 = 1, β2 = 0 : only the informative covariate X1 generates the
data;

(ii) β0 = 0, β1 = 1, β2 = 1 : a term of noise X2 is added to the informative
covariate;

(iii) β0 = 1, β1 = 1, β2 = 1 : X1, X2 and a constant effect generate the data.

The case-control sampling. For each scenario, we sample under the case-control de-
sign with a ratio of presence/unobserved equal to 1 : 4 and with respect to eight different
sample sizes

n = 50, 100, 200, 500, 1000, 1500, 2000, 3000.

For example, if the sample size is equal to n = 500, we build the corresponding simulated
experiment by extracting a random sample Sp from Up of np = 100 presences and a
random sample Su from U of nu = 400 unobserved values, covariates are available for
the whole sample S. We consider k = 1000 independent replications of each experiment.
In summary, we generate a database of 24,000 datasets (8 sample sizes, 3 scenarios and
1000 replications). With respect to the generating of the data, we considered a quite
general framework since the contribution of an informative covariate was combined with
a constant effect and a white Gaussian noise. With respect to the three scenarios, we
obtained empirical population prevalences respectively π(i) = 0.215, π(ii) = 0.223 and
π(iii) = 0.286.

The MCMC estimation. The estimation is performed in a Bayesian framework for all
the models M0, M1 and M2. The likelihood function we use in the estimation is based on
a model that does not always replicate the model used to generate data. More precisely
for all experiments (i), (ii) and (iii) the estimation model is:

logit(Pr(Y = 1|X1 = x1)) = β0 + β1x1 (30)

than with scenario (i) the model that generates the data and the one defining the likelihood
are the same, whilst for scenarios (ii) and (iii) the likelihood model becomes increasingly
different from the one that generates the data. Notice that we consider a simpler structure
than the one shown in Figure (1) as we choose a Gaussian prior N(0, 25) for all regression
parameters (β0, β1) and no hyper parameter is considered. Then, MCMC estimates are
computed using 5000 runs after 10000 iterations of burn-in, no thinning is applied as
samples autocorrelation is negligible.
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Results. In what follows we report Figures and Tables built on scenario (iii) as it rep-
resents the most complex of the three alternatives and it is our “worst” case. In each
replicate of an experiment, point estimates are computed as posterior means over 5000
iterations. In Figure 2 boxplots describing point estimates behaviour are reported, hor-
izontal lines corresponding to the “true” values are drawn. The first box corresponds to
procedure M0, the second to M1 and the third to our proposal M2. In M0 the prevalence
π is estimated as the ratio of the observed presences in Su to the sample size nu. In M1,
although π is assumed known a priori, we consider its posterior prediction in Su. Finally
inM2, the prevalence is obtained at each MCMC step as described in section 4.2 and then
the mean over 5000 runs is taken. In Table 3 further details of the point estimates are
reported: the median and in parenthesis the first and third quartiles. From the Figures
and the values we can see that the three procedure lead to “comparable” values with the
obvious reduction of variability when n increases. Remark that the estimates for M2,
although affected by a larger variability with small sample sizes, rapidly approaches M0

and M1 behaviour with increasing sample size. This can be seen more clearly in Figure 3
where rooted mean square errors (rmse) are reported. As far as β1 is concerned the lack
of knowledge on X2 leads to biased point estimates regardless the estimation procedure.
Tables 5 and 6 in Appendix report point estimates for scenarios (i) and (ii). For scenarios
(i) unbiased estimates are obtained while (ii) is affected by the same distortion as (iii)
but with smaller variability.
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n Model β0 β1 π

50
M0 1.42 (0.68 ; 2.33) 1.15 (0.88 ; 1.55) 0.28 (0.25 ; 0.35)
M1 3.13 (1.78 ; 4.46) 1.69 (1.17 ; 2.28) 0.31 (0.26 ; 0.35)
M2 1.79 (-3.38 ; 4.26) 1.44 (0.76 ; 2.12) 0.24 (0.13 ; 0.34)

100
M0 1.14 (0.72 ; 1.62) 1.00 (0.86 ; 1.22) 0.29 (0.25 ; 0.33)
M1 2.12 (1.11 ; 3.51) 1.30 (0.97 ; 1.80) 0.30 (0.26 ; 0.34)
M2 1.92 (0.16 ; 3.87) 1.24 (0.89 ; 1.78) 0.28 (0.21 ; 0.36)

200
M0 1.01 (0.72 ; 1.36) 0.94 (0.83 : 1.06) 0.29 (0.26 ; 0.31)
M1 1.53 (0.89 ; 2.39) 1.08 (0.87 ; 1.37) 0.29 (0.27 ; 0.32)
M2 1.49 (0.59 ; 2.62) 1.07 (0.83 ; 1.37) 0.29 (0.24 ; 0.34)

500
M0 0.94 (0.75 ; 1.15) 0.89 (0.82 ; 0.96) 0.29 (0.27 ; 0.30)
M1 1.12 (0.78 ; 1.57) 0.94 (0.82 ; 1.10) 0.29 (0.28 ; 0.31)
M2 1.17 (0.62 ; 1.82) 0.94 (0.80 ; 1.12) 0.29 (0.26 ; 0.32)

1000
M0 0.91 (0.78 ; 1.04) 0.88 (0.83 ; 0.92) 0.28 (0.28 ; 0.30)
M1 1.03 (0.79 ; 1.34) 0.91 (0.83 ; 1.01) 0.29 (0.28 ; 0.30)
M2 1.05 (0.68 ; 1.49) 0.91 (0.82 ; 1.03) 0.29 (0.27 ; 0.31)

1500
M0 0.89 (0.80 ; 1.00) 0.86 (0.83 ; 0.91) 0.29 (0.28 ; 0.29)
M1 1.00 (0.78 ; 1.24) 0.89 (0.82 ; 0.98) 0.29 (0.28 ; 0.30)
M2 1.01 (0.71 ; 1.35) 0.90 (0.82 ; 0.99) 0.29 (0.27 ; 0.31)

2000
M0 0.89 (0.82 ; 0.98) 0.87 (0.84 ; 0.90) 0.29 (0.28 ; 0.29)
M1 0.96 (0.79 ; 1.15) 0.89 (0.83 ; 0.95) 0.29 (0.28 ; 0.29)
M2 0.96 (0.71 ; 1.23) 0.88 (0.82 ; 0.96) 0.29 (0.27 ; 0.30)

3000
M0 0.90 (0.83 ; 0.97) 0.87 (0.84 ; 0.89) 0.29 (0.28 ; 0.29)
M1 0.94 (0.82 ; 1.09) 0.88 (0.84 ; 0.93) 0.29 (0.28 ; 0.29)
M2 0.95 (0.76 ; 1.17) 0.88 (0.83 ; 0.94) 0.29 (0.28 ; 0.30)

Table 3: Scenario (iii): point estimates of regression parameters and prevalence computed
as medians over 1000 replicates with increasing sample sizes and different models (M0,M1

and M2). In parenthesis distributions quartiles are reported.
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Figure 2: Scenario (iii): boxplots of simulations with increasing sample sizes and different
models(M0,M1 and M2).
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Figure 3: Scenario (iii): root mean squared errors for different models (M0,M1 and M2)
over the 1000 replications, plots with increasing sample sizes for β0 (a), β1 (b) and π (c).
Dashed trajectories are reported to show the patterns.
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From Ward et al. (2009) we know that pairwise correlation between parameters is
present. In Table 4 we report the empirical pairwise correlation measures, obtained as
the averages with respect to the 1000 samples, with increasing sample sizes across the
different models. No significant differences in the pattern of correlation (β0; β1) between
the models M1 and M2 while the correlation (β1, π) has a general weaker pattern in M1

than M2. With respect to the correlation (β0, π) more significant difference are present
between M1 and M2. In Figure 4 scatterplots of β0 versus π in the 1000 replicates are
plotted with equal axis across estimation procedures and sample sizes. These pictures help
us to understand how this correlation evolves with increasing sample sizes. M2 produces
the most positive correlated point estimates this being an advantage whenever the model
is properly specified.

Model M0 M1 M2

n β0;β1 β0;π β1;π β0;β1 β0;π β1;π β0;β1 β0;π β1;π

50 0.65 0.26 -0.09 0.59 0.10 -0.30 0.68 0.81 0.31
100 0.75 0.24 -0.12 0.89 0.29 0.02 0.82 0.76 0.37
200 0.78 0.34 -0.04 0.94 0.39 0.18 0.90 0.78 0.48
500 0.79 0.38 0.00 0.95 0.41 0.24 0.92 0.77 0.51
1000 0.77 0.38 -0.01 0.94 0.46 0.27 0.91 0.81 0.54
1500 0.78 0.42 0.00 0.95 0.48 0.28 0.92 0.81 0.55
2000 0.77 0.35 -0.06 0.94 0.49 0.30 0.92 0.81 0.55
3000 0.81 0.37 -0.01 0.95 0.43 0.23 0.91 0.80 0.52

Table 4: Scenario (iii): pairwise parameters correlation (average over the 1000 replicates)
with increasing sample sizes and different models (M0,M1 and M2).
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Figure 4: Scenario (iii): scatterplot of π versus β0 with increasing sample sizes and
different models (M0,M1 and M2).

To verify the predictive performance we considered relative measures of specificity and
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sensitivity (Fawcett, 2006) build as the ratio of the same measures forM2 (numerator) and
for M1 (denominator) respectively. In Figure 5 the obtained values are reported versus
sample sizes. Remark that M2 rapidly reaches the same level of performance as M1 with
increasing sample size.
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Figure 5: Scenario (iii): relative specificity and sensitivity computed as ratios between
M2 and M1 specificity and sensitivity measures with increasing sample sizes. Dashed
trajectories are reported to show the patterns.

6 Conclusions
In this work, we presented a Bayesian procedure to estimate the parameters of logistic
regressions for presence-only data. The approach we proposed is based on a two levels
scheme where a generating probability law is combined with a case-control design ad-
justed for presence-only data. The new formalization allows to consider rigorously all the
mathematical details of the model as for instance the approximation of the ratio (15) that
represents the crucial point when modeling presence-only data in the finite population
setting. We want to point out that our formalization is substantially different from the
work by Ward et al. (2009), although we end with the same statistical model. We con-
centrated on the case of the linear logistic regression because we were aware that some
care is necessary to handle the identifiability issues present in the model.
The comparative simulation study considered three scenarios with different levels of com-
plexity across increasing sample sizes. We presented detailed results with respect to the
most difficult case where the contribution of an informative covariate was mixed with a
constant effect and a white Gaussian noise. In term of point estimation, the estimates
based on our model were comparable to those obtained under the presence-only data
benchmark in which the empirical population prevalence was assumed to be known. On
the other hand, this lack of information on the population prevalence affected the effi-
ciency of the estimates, that resulted smaller for our model than for the benchmark. This
difference was significant only when the sample size n was smaller than 1000, i.e. when
the number of observed presences np was smaller than 200. From the predictive point
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of view, our model performed as well as the benchmark already for sample sizes about
n = 200, i.e. for a number of observed presences at least np = 40. Also the pairwise
correlation between β0 and π, that represents an important issue as pointed by Ward
et al. (2009), became negligible with increasing sample sizes.
From the computational point of view, the procedure were carried out through a MCMC
scheme with data augmentation and implemented in Fortran codes.
Future work will investigate the possibility of adding dependence structures among the
population units into the model as, for instance, through the use of regression functions
with structured random effects.
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Appendix
Proposition 3. Under the assumption that, given Y , the inclusion into the sample
(C = 1) is independent from the covariates X, it results

Pr(Y = 0|C = 1, x)Pr(C = 1|x) =
1− π∗(x)

1 + π∗(x)
ρ0

and
Pr(Y = 1|C = 1, x)Pr(C = 1|x) =

2π∗(x)

1 + π∗(x)
ρ1.

Proof. In general we have that

Pr(Y |C = 1, x) =
Pr(C = 1|Y, x)Pr(Y |x)

Pr(C = 1|x)
(31)

From the conditional independence between C = 1 and X given Y , the (31) becomes

Pr(Y |C = 1, x) =
Pr(C = 1|Y )Pr(Y |x)

Pr(C = 1|x)
.

Recalling that Pr(Y = 1|x) = 2π∗(x)
1+π∗(x)

and the definitions of ρ0 = Pr(C = 1|Y = 0) and
ρ1 = Pr(C = 1|Y = 1) the proofs for Y = 0 and Y = 1 can be derive by simple algebra.
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n Model β0 β1 π

50
M0 0.40 (-0.31 ; 1.45) 1.56 (1.08 ; 2.72) 0.20 (0.18 ; 0.25)
M1 2.19 (0.68 ; 3.57) 2.19 (1.37 ; 3.74) 0.23 (0.18 ; 0.27)
M2 1.03 (-2.51 ; 3.35) 2.00 (1.07 ; 3.44) 0.19 (0.12 ; 0.26)

100
M0 0.31 (-0.18 ; 0.88) 1.23 (0.99 ; 1.61) 0.21 (0.19 ; 0.25)
M1 1.24 (0.29 ; 2.36) 1.55 (1.12 ; 2.22) 0.23 (0.19 ; 0.26)
M2 1.22 (-0.40 ; 2.69) 1.50 (1.07 ; 2.22) 0.16 (0.16 ; 0.27)

200
M0 0.11 (-0.20 ; 0.46) 1.08 (0.95 ; 1.28) 0.22 (0.19 ; 0.24)
M1 0.46 (0.00 ; 1.27) 1.23 (0.99 ; 1.56) 0.22 (0.20 ; 0.24)
M2 0.48 (-0.24 ; 1.55) 1.23 (0.96 ; 1.59) 0.22 (0.19 ; 0.25)

500
M0 0.06 (-0.10 ; 0.25) 1.02 (0.94 ; 1.12) 0.22 (0.20 ; 0.23)
M1 0.17 (-0.09 ; 0.47) 1.04 (0.92 ; 1.19) 0.22 (0.20 ; 0.23)
M2 0.14 (-0.26 ; 0.61) 1.03 (0.89 ; 1.20) 0.22 (0.19 ; 0.24)

1000
M0 0.04 (-0.05 ; 0.17) 1.01 (0.95 ; 1.07) 0.22 (0.21 ; 0.22)
M1 0.04 (-0.13 ; 0.26) 0.99 (0.91 ; 1.08) 0.21 (0.21 ; 0.22)
M2 0.03 (-0.22 ; 0.34) 0.98 (0.90 ; 1.09) 0.21 (0.20 ; 0.23)

1500
M0 0.05 (-0.04 ; 0.15) 0.99 (0.95 ; 1.04) 0.21 (0.21 ; 0.22)
M1 0.01 (-0.12 ; 0.18) 0.97 (0.91 ; 1.05) 0.21 (0.21 ; 0.22)
M2 0.00 (-0.24 ; 0.23) 0.97 (0.90 ; 1.05) 0.21 (0.20 ; 0.22)

2000
M0 0.03 (-0.04 ; 0.10) 0.99 (0.95 ; 1.03) 0.21 (0.21 ; 0.22)
M1 0.00 (-0.12 ; 0.14) 0.97 (0.92 ; 1.03) 0.21 (0.21 ; 0.22)
M2 -0.02 (-0.22 ; 0.14) 0.96 (0.90 ; 1.02) 0.21 (0.20 ; 0.22)

3000
M0 0.03 (-0.02 ; 0.10) 0.98 (0.96 ; 1.02) 0.21 (0.21 ; 0.22)
M1 0.00 (-0.10 ; 0.09) 0.96 (0.92 ; 1.00) 0.21 (0.21 ; 0.22)
M2 -0.03 (-0.18 ; 0.11) 0.95 (0.91 ; 1.00) 0.21 (0.20 ; 0.22)

Table 5: Scenario (i): point estimates of regression parameters and prevalence computed
as medians over 1000 replicates with increasing sample sizes and different models (M0,M1

and M2). In parenthesis distributions quartiles are reported.
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n Model β0 β1 π

50
M0 0.42 (-0.33 ; 1.42) 1.34 (0.94 ; 2.13) 0.23 (0.18 ; 0.28)
M1 2.12 (0.78 ; 3.39) 1.95 (1.25 ; 2.96) 0.24 (0.20 ; 0.28)
M2 1.26 (-2.99 ; 3.33) 1.75 (0.95 ; 2.79) 0.20 (0.13 ; 0.28)

100
M0 0.19 (-0.20 ; 0.73) 1.07 (0.88 ; 1.35) 0.23 (0.19 ; 0.25)
M1 1.13 (0.36 ; 2.40) 1.39 (1.00 ; 1.96) 0.23 (0.21 ; 0.26)
M2 1.03 (-0.40 ; 2.65) 1.34 (0.96 ; 1.96) 0.22 (0.17 ; 0.28)

200
M0 0.13 (-0.18 ; 0.45) 0.97 (0.84 ; 1.12) 0.23 (0.20 ; 0.25)
M1 0.48 (0.02 ; 1.17) 1.08 (0.88 ; 1.36) 0.23 (0.21 ; 0.25)
M2 0.48 (-0.38 ; 1.56) 1.07 (0.83 ; 1.41) 0.23 (0.18 ; 0.27)

500
M0 0.09 (-0.07 ; 0.27) 0.92 (0.85 ; 1.00) 0.22 (0.21 ; 0.24)
M1 0.22 (-0.04 ; 0.53) 0.95 (0.84 ; 1.09) 0.23 (0.21 ; 0.24)
M2 0.23 (-0.24 ; 0.69) 0.95 (0.81 ; 1.09) 0.22 (0.20 ; 0.25)

1000
M0 0.08 (-0.02 ; 0.20) 0.90 (0.86 ; 0.95) 0.22 (0.21 ; 0.23)
M1 0.09 (-0.07 ; 0.31) 0.90 (0.83 ; 0.99) 0.22 (0.21 ; 0.23)
M2 0.08 (-0.19 ; 0.38) 0.89 (0.82 ; 1.00) 0.22 (0.21 ; 0.24)

1500
M0 0.08 (0.00 ; 0.18) 0.90 (0.86 ; 0.94) 0.22 (0.22 ; 0.23)
M1 0.08 (-0.05 ; 0.23) 0.89 (0.84 ; 0.96) 0.22 (0.22 ; 0.23)
M2 0.05 (-0.17 ; 0.30) 0.89 (0.82 ; 0.96) 0.22 (0.21 ; 0.23)

2000
M0 0.07 (0.00 ; 0.15) 0.89 (0.86 ; 0.92) 0.22 (0.22 ; 0.23)
M1 0.06 (-0.06 ; 0.20) 0.89 (0.84 ; 0.95) 0.22 (0.22 ; 0.23)
M2 0.02 (-0.17 ; 0.24) 0.88 (0.82 ; 0.94) 0.22 (0.21 ; 0.23)

3000
M0 0.07 (0.01 ; 0.13) 0.89 (0.87 ; 0.91) 0.22 (0.22 ; 0.23)
M1 0.04 (-0.04 ; 0.15) 0.88 (0.84 ; 0.92) 0.22 (0.22 ; 0.23)
M2 0.02 (-0.13 ; 0.17) 0.87 (0.83 ; 0.92) 0.22 (0.21 ; 0.23)

Table 6: Scenario (ii): point estimates of regression parameters and prevalence computed
as medians over 1000 replicates with increasing sample sizes and different models (M0,M1

and M2). In parenthesis distributions quartiles are reported.
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