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Abstract

Motivated by the possibility of a systemic crisis in the quality of sovereign
credit standings, we investigate the effects of a systemic component in default
correlations for typical Italian life insurance segregated fund portfolios, com-
paring with a more traditional approach where such component is absent.
The systemic effects are modelled with a multidimensional Marshall-Olkin
model, that – in addition – allows to describe possible segmentation effects of
the market. In particular, we compare the valuation of the Solvency Capital
Requirement in the Solvency II framework under the classical CreditRisk+

approach and the Marshall-Olkin model.

1 The problem

We investigate the problem of party default risk measurement for Italian life
insurance segregated fund portfolios, by introducing a systemic component
in default correlations.
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In the Solvency II framework, the measurement of counterparty default risk
“should reflect possible losses due to unexpected default, or deterioration in
the credit standings, of the counterparties and debtors of undertakings over
the forthcoming twelve months ”(see [4]). In particular, our investigation is
motivated by the peculiarity of Italian life insurance segregated fund port-
folios, which are strongly dominated by fixed interest rate assets and, in
particular, by Italian sovereign bonds. The possibility of a systemic crisis in
the quality of sovereign credit standings can hence be considered quite rele-
vant. It involves either tactical asset allocation issues or strategical solvency,
profitability and rating issues for the company as a whole.
The existence of a systemic sovereign risk has been recently analysed by fi-
nancial regulators. As stated by Bank of Italy, “for several [european] coun-
tries ... in the most recent period the sovereign spread vis-à-vis the German
Bund has risen well above the value consistent with country-specific fiscal
and macroeconomic fundamentals ... For Italian government bonds, most
estimates of the 10-year spread fall around 200 basis points, as opposed to a
market value of almost 450 points (at end-August 2012). These results are
likely due to the fact that the models used so far do not take into account
the new risks which have recently emerged in euro-area sovereign debt mar-
kets. In fact, several reasons suggest that euro-area sovereign spreads are
increasingly affected by investors’ concerns of a break-up of the Economic
and Monetary Union” (see [3]).
In the words of the European Central Bank, studying sovereign bond spreads
of the G7 countries over the last two decades, “several risk factors have
not been priced in the years preceding the financial crisis. This pattern is
particularly pronounced for the determinants of the Italian-German and the
French-German spreads, i.e. for spreads of the euro area member countries,
where macro fundamentals, general risk aversion and liquidity risks used to
be priced in the uprun to monetary union and following the outbreak of the
financial crisis, but not in the first years of monetary union. ... These findings
support the belief that swings in risk appetite have led to an underpricing
of risk prior to the global financial crisis, and either an over-pricing of risk
during the European sovereign debt crisis or the pricing of catastrophic events
like a break-up of the euro area and a risk that government bonds of some
euro area countries might get re-denominated in other currencies than the
euro” (see [2]).
In our investigation, we have modelled the systemic sovereign risk with a
multidimensional Marshall-Olkin model, that is particularly suited to de-
scribe systemic market shocks. In addition, it allows to describe possible
segmentation effects of the market. In particular, we compare the valuation
of the Solvency Capital Requirement in the Solvency II framework under the
classical CreditRisk+ approach and the Marshall-Olkin model.
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2 Portfolio Credit Risk modelling

Since in this work we address the question of default it is quite natural to
refer to a standard model such as CreditRisk+ ([1], [7]) as a benchmark.
As we shall discuss, CreditRisk+, by construction, has a limited capacity
of incorporating default correlations for obligors of high credit standings.
Therefore it is interesting to investigate possible modelling alternatives that
are more sensitive to systemic crises.

2.1 CreditRisk+

CreditRisk+ is a conditionally independent factor model that reduces to the
well-known actuarial Poisson-gamma model in absence of correlations. The
structure of dependence of defaults is equivalent (see, e.g [11]) to a multi-
variate Clayton copula where the K independent risk factors are gamma-
distributed. Conditional default probabilities are a linear combination of
risk factors and an idiosyncratic risk component:

pi(x) = p̄i

(
ωi0 +

K∑
i=1

ωik
xk

E[xk]

)
, (1)

where x ∈ RK+ is the vector of risk factors, xk ∼ Γ(αk, βk), pi(x) (resp.
p̄) is the conditional (resp. unconditional) default probability of obligor i
over the time horizon [0, T ], ωi0 ∈ [0, 1] is the idiosyncratic loading factor
and ωik ∈ [0, 1] are the economy risk factors, satisfying

∑K
k=0 ωik = 1 for

any obligor i. Independence is achieved when the relative weight of the
idiosyncratic component is 100% (∀ i, ωi0 = 1), while maximal correlation is
achieved when the idiosyncratic component is absent (∀ i, ωi0 = 0), and the
economy is described by a single (K = 1) risk factor.
Since the probability generating function (PGF) of the loss distribution can
be computed analytically, the loss distribution can be easily computed in a
semi-analytic way using the Panjer recursion or the fast Fourier transform
techniques. Moreover, numerical precision can be kept under control by
computing the loss distribution moments directly from the PGF.
Default correlations are indirectly related to model parameters. The linear
correlation coefficient between default indicators 1I{τ<T} (where τ is the time
of default) of obligors i and j is known only in the limit of small default
probabilities:

ρ
(

1I{τi≤T}, 1I{τj≤T}

)
' √pipj

K∑
k=1

ωikωjk
Var[xk]

E[xk]2
. (2)

Thus, the maximal attainable correlation depends on the absolute level of
default probabilities and the coefficients of variation of the gamma distri-
butions. Since, typically, default probabilities are small, and the variation
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coefficients are of order 1, the model has a limited capacity of incorporating
default correlations, in particular for sovereign obligors that have very small
default probabilities. In fact, we will show that, for portfolios where the
sovereign component is high, the effects of correlations on the risk capital is
numerically negligible.

2.2 The Marshall-Olkin model

The Marshall-Olkin model is originally conceived [9] to account for simulta-
neous defaults in a very general context. In the recent financial literature the
Marshall-Olkin model has been considered mainly in the valuation of credit
derivatives such as CDO’s where its rich default dependence structure allows
to reproduce accurately market values [5]. It has also been used to discuss
the effects of default dependence structure in the framework of government
guarantees [12].
In the following we introduce firstly the bivariate case and discuss some
qualitative features. We then introduce the multivariate case and finally the
particular version proposed in [13], that, inter alia, is computationally faster.

2.2.1 The bivariate Marshall-Olkin model

In the bivariate Marshall-Olkin model [9] there are two obligors subject to
default and three independent Poisson processes N1

t , N2
t and N12

t with in-
tensities λ1 ≥ 0, λ2 ≥ 0 and λ12 ≥ 0.

The default of obligor i (i = 1, 2) can arrive either at the first jump time
Xi = inf{t ≥ 0 : N i

t > 0} of the Poisson process N i
t , or at the first jump

time X12 = inf{t ≥ 0 : N12
t > 0} of the Poisson process N12

t , which triggers
the simultaneous default of both obligors. Therefore, letting τi (i = 1, 2) the
default time of the i-th obligor, then

τi = min{Xi, X12} i = 1, 2.

The joint distribution of default times (τ1, τ2) is called the Marshall-Olkin
bivariate exponential distribution with parameters (λ1, λ2, λ12). The corre-
sponding survival copula is:

CMO(u1, u2) = u1u2 min{u−α1
1 , u−α2

2 }, (3)

where αi = λ12/(λi + λ12) (i = 1, 2). Marginal distributions are exponential
with intensities:

g1 = λ1 + λ12, g2 = λ2 + λ12. (4)

The intensities gi are related to default probabilities pi (i = 1, 2):

gi = − log(1− pi). (5)
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Eq. (4) shows that (a) the marginal default intensities receive a contribution
from a common “systemic” factor, and (b) for given default probabilities
pi, the common systemic intensity λ12 cannot exceed the smallest marginal
intensity min{g1, g2} = min{log(1− p1)−1, log(1− p2)−1}.

In the Marshall-Olkin bivariate model both the linear correlation between
default times and default indicators are available in closed form:

Cor[τ1, τ2] =
g1 + g2 − g12

g12
=

λ12

λ1 + λ2 + λ12
, (6)

Cor[1I{τ1<t}, 1I{τ2<t}] =

√
e−(g1+g2)t

(1− e−g1t)(1− e−g2t)

(
eλ12 t − 1

)
, (7)

where g12 = λ1 + λ2 + λ12. From eq. (6) it is clear that independence is
obtained for λ12 = 0 and maximal dependence for (λ1 + λ2)→ 0.
However, since λ12 ≤ min{g1, g2}, the maximal attainable correlation be-
tween default times is:

max
g1,g2,λ12

Cor[τ1, τ2] =
min{g1, g2}
max{g1, g2}

, (8)

while the maximal attainable correlation between default indicators is:

max
g1,g2,λ12

Cor[1I{τ1<t}, 1I{τ2<t}] =

√
Pd
PD

(1− PD)

(1− Pd)
, (9)

where Pd = min{p1, p2} and PD = max{p1, p2}. Notice that it is possible to
attain full correlation (Cor[·] = 1) only if p1 = p2, i.e. if default probabilities
are equal, and that a strong asymmetry in default probabilities (Pd << PD)
implies low correlation. For a general discussion on attainable correlations,
see e.g. [11].

The asymmetry between Pd and PD is relevant not only for the maximal
attainable correlation, but also for the level of idiosyncratic risk. To illus-
trate this point we compare two set of default intensities, the first in which
(g1, g2) = (0.005, 0.005) and the second in which (g1, g2) = (0.001, 0.005). To
specify the model we have still to chose the systemic default intensity λ12; in
the following we consider the two extreme cases of independence (λ12 = 0)
and maximal correlation (λ12 = min{g1, g2}). The corresponding distribu-
tions of the number of defaults over a time horizon of 1 year are reported in
Table 1.
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Table 1: Probability distribution of the number of defaults in the bivariate
Marshall-Olkin model for two sets of marginal default intensities (g1, g2) in
the cases of independence and maximal correlation.

(g1, g2) = (0.005, 0.005) (g1, g2) = (0.001, 0.005)

defaults Probab. Cumulated Probab. Cumulated

λ12 = 0
0 0.99005 0.99005 0.99402 0.99402
1 0.00993 0.99998 0.00598 1.00000

(indepen.) 2 0.00002 1.00000 0.00000 1.00000

λ12 =g1 ∧ g2
0 0.99501 0.99501 0.99501 0.99501
1 0.00000 0.99501 0.00399 0.99900

(max. cor.) 2 0.00499 1.00000 0.00100 1.00000

Notice that:

1. Increasing correlation moves the mass of probability towards the extreme
values (no defaults, 2 defaults);

2. in the symmetric case (g1 = g2) the distribution is perfectly bimodal with
P[1 default] = 0 since the maximal attainable correlation is 1, while in
the asymmetric case P[1 default] 6= 0;

3. in the symmetric case with maximal correlation there is only one Poisson
process, with intensity λ12 and only 0 or 2 defaults can be observed;
in the asymmetric case with maximal correlation there are two Poisson
processes, with intensities λ12 and λ2 = g2 − λ12, thus obligor #1 cannot
default alone but obligor #2 can;

4. if a confidence level of α = 0.995 is used the Value-at-Risk is 0 for the
correlated cases, whilst is surely positive for the independent cases, de-
pending on the loss given default of the two obligors; while for a confidence
level of α = 0.9999 the Value-at-Risk for the independence cases is smaller
than that computed in case of dependent risks.

From the above stylized example we infer that:

1. increasing correlation can either lower or increase the Value-at-Risk de-
pending on the confidence level (a well established result in the credit risk
literature);

2. when default probabilities are asymmetric, asking maximal systemic risk
does not imply that idiosyncratic risk is completely cancelled out.

The above considerations will be useful in explaining the results obtained in
the multivariate setting, that otherwise may appear counterintuitive.
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2.2.2 The multivariate Marshall-Olkin model

In the multivariate Marshall-Olkin (MO) model there is a set composed of
n obligors subject to failure. Let Υ = {1, 2, . . . , n} be the set indexing the n
obligors. With n objects it is possible to construct 2n subsets composed of
0, 1, 2, . . . , n elements each. Excluding the empty set we are left with 2n − 1
non-trivial subsets. Let Θ ⊆ Υ stand for a generic subset of cardinality
|Θ|= k, with k = 1, . . . , n. For each of these subsets the model assumes that
there is an independent Poisson process NΘ

t with arrival rate λΘ, such that
NΘ

0 = 0. A “fatal” shock arrives at the first jump of the process NΘ
t :

XΘ = inf{t ≥ 0 : NΘ
t > 0}, (10)

and produces the simultaneous default of all the elements in Θ. Therefore
the failure time of the i-th element is:

τi = min{XΘ : i ∈ Θ}, i = 1, . . . , n. (11)

The joint distribution of failure times (τ1, . . . , τn) is called the MO multi-
variate exponential distribution of parameters λΘ.
To compute the marginal distributions, let first compute the probability that
all the components of a given subset Θ of cardinality k survive until time
t. Since Poisson processes relative to different subsets are independent this
probability is:

P (τΘ > t) = e−gΘt, τΘ = τ1 ∧ τ2 · · · ∧ τk, (12)

where the intensity gΘ is the sum of the intensities of all the processes relative
to subsets that have at least one obligor in common with those of the subset
Θ, i.e.:

gΘ =
∑

Ξ⊆Υ:Ξ∩Θ 6=∅

λΞ (13)

and x ∧ y = min{x, y}.
When Θ has cardinality 1, the above relationship gives the marginal survival
rates:

gi =
∑

Θ⊆Υ:i∈Θ

λΘ. (14)

For example, when n = 2 one has Υ = {1, 2} and there are three possible
subset, two of cardinality 1, resp. {1} and {2}, and one of cardinality 2,
{1, 2}. Accordingly, there are three Poisson shock processes with arrival
rates λ1, λ2 and λ12. The marginal rates are:

g1 = λ1 + λ12, g2 = λ2 + λ12. (15)

Moreover, for the “joint” set {1, 2}, the rate is g12 = λ1 + λ2 + λ12.
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The inverse of eq. (13) allows to compute the arrival rates of the Poisson
shocks from the survival rates of the subsets Θ:

λΘ =
∑
Ξ⊆Θ

(−1)|Θ|−|Ξ|+1gΞc , (16)

where Ξc is the complementary set of the set Ξ.
For example, when n = 2 one has:

λ1 = g12 − g1, λ2 = g12 − g2, λ12 = g1 + g2 − g12. (17)

The simulation of the survival times in the MO model needs the simulation
of up to 2n − 1 Poisson processes. For a portfolio with n different obligors
and m subsets (that could be e.g. economic sectors and geographical areas)
n+m+ 1 Poisson processes are needed, the last one referring to the subset
containing all the obligors. A technique to reduce the computational burden
of the model when n is large is suggested in [13].

2.2.3 An alternative framework for the Marshall-Olkin model

The alternative framework (for more details and proofs see [8] and [13]) is
based on the following proposition.

Proposition 1. Let St be a one-dimensional subordinator, i.e. a non-
decreasing Lévy process with Laplace exponent φ(u; ~p), and E(1) an expo-
nential random variable of rate λ = 1. Define:

τ = inf{t ≥ 0 : St ≥ E(1)}. (18)

Then the distribution of τ is exponential of parameter φ(1, ~p).

A suitable class of subordinators is provided by the tempered stable subordi-
nators with Laplace exponent:

φ(u, ~p) =

{
−C Γ(α)

[
(u+ η)α − ηα

]
, α 6= 0

C log(1 + u/η), α = 0
(19)

with ~p = (C,α, η), where C > 0, α ∈ (0, 1) and η > 0 . The special
cases of α = 1/2 and α = 0 correspond respectively to the inverse Gaussian
(IG) subordinator and the gamma subordinator. The above proposition

suggests that instead of using Poisson processes for the simulation of default
times in the MO model, it is possible to use a subordinator processes. The
generalization of proposition 1 to dimension n is the following.

Proposition 2. Let T be a n-dimensional subordinator with Laplace ex-
ponent φ(u, ~p) and Ei(1) be n independent exponential random variables of
parameters λi = 1 (i = 1, . . . , n). Define:

τi = inf{t ≥ 0 : Ti ≥ Ei(1)}, i = 1, . . . , n. (20)
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Then the random vector (τ1, . . . , τn) has a joint MOmultivariate n-dimensional
exponential distribution with parameters:

gΘ = φ
((

1IΘ(1), . . . , 1IΘ(n)
)
, ~p
)
, (21)

where 1IΘ(k) = 1 if k ∈ Θ, 0 otherwise.

To reduce the computational burden it is possible to reduce the effective
dimension of the subordinator in a way similar to that factor models are
constructed. In practice, one defines only m independent one-dimensional
subordinators with Laplace exponent φj(u; ~pj) (j = 1, . . . ,m) and a mixing
matrix A, such that:

T (i)
t =

m∑
j=1

Aij S(j)
t . (22)

The Laplace exponent of such subordinator is:

φ(u, ~p) =
m∑
j=1

φj

( n∑
i=1

Aijui; ~pj

)
. (23)

Thus, we consider a setting where we have as many independent subordina-
tors as obligors, plus one subordinator for each of the nS risk sectors and a
subordinator for the whole set of obligors (the global economy sector):

T (i)
t = S(id,i)

t + ω
(i)
G S

(G)
t +

nS∑
k=1

ω
(i,k)
S SR,it , i = 1, . . . , n. (24)

The parameters of the model are:

1. the n+ nS × n coefficients ω(i)
G and ω(i,k)

S ;

2. the n+nS + 1 (vector) parameters of the subordinators ~pi (i = 1, . . . , n),
~pS,k (k = 1, . . . , nS), ~pG.

Constraints are imposed by the knowledge of one-year default probabilities
p

(i)
d of the obligors:

gi = φ(1; ~pi)
(i) + φ(G)(ω

(i)
G ; ~pG) +

nS∑
k=1

φ(k)(ω
(i,k)
S ; ~pS,k)

= − log(P[τi > 1]) = − log(1− p(i)
d ).

(25)

As a further simplification we define αG ∈ (0, 1) and α
(k)
S ∈ (0, 1) (k =

1, . . . , nS) such that:

φ(G)(ω
(i)
G ; ~pG) = αG gi, φ(k)(ω

(i,k)
S ; ~pS,k) = α

(k)
S gi. (26)
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with :

αG +

nS∑
k=1

α
(k)
S ≤ 1. (27)

Notice that the α coefficients do not depend on the obligor index i; in practice
we are assuming that the default rate of each obligor is receiving a contri-
bution from non-idiosyncratic components that is the same, in relative size,
for all obligors. The idiosyncratic component is:

αid = 1− αG −
nS∑
k=1

α
(k)
S , (28)

thus, when αid = 1 the default times are all independent.

For a given set of p(i)
d and for given parameters of the Laplace exponents

of the subordinators, the choice of αG and α
(k)
S univocally determines the

coefficients ω(i)
G and ω(i,k)

S by inverting eq. (26), from which, using (21), all
the rates gΘ are determined.

The simulation of default times can be performed using an algorithm defined
in [13] composed by the following steps:

1) define a partition {t0, t1, . . . , tnT = T} of the time horizon [t0, T ];

2) simulate the increments of the nS + 1 common subordinators over each
time interval (tk−1, tk):

(
S(G)
tk
− S(G)

tk−1

)
and

(
S(S,j)
tk
− S(S,j)

tk−1

)
(j = 1, . . . , nS);

3) compute the probability qci (tk−1, tk) of each obligor (i = 1, . . . , n) to sur-
vive from time tk−1 to time tk, conditionally of having survived up to time
tk−1:

qci (tk−1, tk) = e−gi (tk−1 − tk)×

× exp

{
−ω(i)

G

(
S(G)
tk
− S(G)

tk−1

)
−

nS∑
j=1

ω
(i,j)
S

(
S(S,j)
tk
− S(S,j)

tk−1

)}
×

× exp

{
φ(G)(ω

(i)
G ; ~pG)

(
tk − tk−1

)
+

nS∑
j=1

φ(j)(ω
(i,j)
S ; ~pS,j)

(
tk − tk−1

)}
.

(29)

4) generate a uniform random variable Ui for each obligor and declare the
default if qci (tk−1, tk) < Ui.

Notice that the above algorithm needs to simulate only the nS + 1 subor-
dinators and does not need to simulate the n idiosyncratic subordinators,
since their contribution is already included in eq. (29).
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Similarly to CreditRisk+ moments of the distribution of the number of de-
faults over the time horizon [0, t]:

Nt =
n∑
i=1

1Ii(t), (30)

can be computed analytically and used to control the precision of the Monte
Carlo procedure. The expected number of defaults is:

E[Nt] =

n∑
i=1

E[1Ii(t)] =

n∑
i=1

(
1− e−git

)
= n− α1(t), (31)

where α1(t) =
∑n

i=1 e
−git. Notice that E[Nt] depends only on the default

rates gi. The variance of Nt is:

Var[Nt] = α1(t) + 2α2(t)− α1(t)2, (32)

where:

α2(t) = E
[n−1∑
i=1

n∑
j=i

1̄Ii(t)1̄Ij(t)
]
, with 1̄Ii(t) = (1Ii(t)− 1). (33)

In case of independence between defaults:

2α2(t) = 2
n∑
i=1

n∑
j>i

e−(gi+gj)t = α1(t)2 −
n∑
i=1

e−2git, (34)

so that:

Var[Nt] =

n∑
i=1

[
e−git

(
1− e−git

)]
, (35)

that could have been easily anticipated since Var[1Ii(t)] = e−git(1 − e−git).
Differently, as shown in [13], α2(t) can be computed using the Laplace ex-
ponent of the subordinator Tt:

α2(t) =

n−1∑
i=1

n∑
j=i+1

exp

{
αid(gi+gj) +φ(G)(ω

(i)
G +ω

(j)
G ; ~pG) +

nS∑
k=1

φ(k)

}
t. (36)

Equation (32) can be used both to control the numerical accuracy of the
Monte Carlo determination of the loss distribution, and as a constraint in
the calibration of the parameters of the Laplace exponents of the elementary
subordinators S(G)

t and S(S,j)
t , resp. ~pG and ~pS,k (j = 1, . . . , nS), when the

standard deviation of default frequencies are known.
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3 Application to Italian life insurance portfolios

3.1 Reference portfolios

We considered a reference portfolio composed of 199 fixed rate bonds all with
maturity larger than one year. The bonds are issued by 43 different obligors,
both sovereign and corporate, and are actively traded on the market. All
obligors belong to the euro area with corporate obligors being mainly Italian.
We define 5 different asset allocation schemes, ranging from a simple equally
weighted portfolio to a very high concentrated portfolio almost exclusively
composed of Italian government bonds (BTP’s). With the exclusion of the
equally weighted portfolio, the other are mimicking Italian life insurance
segregated fund portfolios. The Macaulay durations of the five portfolios
range between 2.5 and 6 years. The asset allocation is resumed by giving the
fraction of value invested in one of the three economic sectors we considered,
namely “financial”, “government” and “other”, as reported in Table 2. The
normalised Herfindahl index (H-index) is used to identify the five portfolios.

Table 2: Composition of the five reference portfolios in terms of allocation
on the three economic sectors. For more details see Table 5.

Asset allocation (% of portfolio market value)

Sector H-index (%)
0.0 7.7 17.6 29.9 47.8

GOVT 16,28 66,83 46,20 65,58 83,38
FIN 65,12 27,14 47,39 31,39 12,67

OTHER 18,60 6,03 6,41 3,03 3,94

3.2 Results

We have computed the loss distribution for each portfolio using a T = 1 year
time horizon and different configurations of CreditRisk+ and the Marshall-
Olkin model. Table 4 reports the expected loss and the α = 0.995 confidence
level quantile of the distributions from which the Solvency Capital Require-
ment (SCR) is easily derived.
Regarding the effects of concentration in the determination of the SCR,
we recall that – in the case of default risk – highly concentrated portfolios
can have lower risk capital than diversified portfolios (see, e.g., the stylized
example in [6, §2.3]).
For CreditRisk+ we have used default frequencies and their standard devia-
tions from Moody’s reports based on the ratings of the obligor. The standard
deviations are used to infer the parameters of the gamma-distributed risk fac-
tors. The values for each obligor are reported in Table 5. Similarly, exposures
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have been computed with the hypothesis of deterministic recovery rates fixed
to average Moody’s values. For what concerns risk factors, we have consid-
ered the two extreme cases of independence and maximal dependence, thus
in eq. (1) either ωi0 = 1 or ωi1 = 1 for all obligors (i = 1, . . . , 43).

For the Marshall-Olkin model we have used the same set of default proba-
bilities and recovery rates. For what concern risk factors we have considered
four settings: the independence case (αid = 1), and three different cases with
maximal systemic risks, namely the “all sector” (αS = 1), the “all global”
(αG = 1) and the “equally mixed” (αS = αG = 0.5) cases. The parameters
of the subordinators are reported in Table 3.
The loss distributions have been determined by Monte Carlo 100,000 simula-
tions with ∆t = 1 day. We have compared the values of the expected number
of defaults and its variance obtained by simulation and by eqs. (31),(32)
finding good agreement.
Analysing the results of Table 4 we observe that:

1. in case of independence the CreditRisk+ and the Marshall-Olkin model
give very similar results;

2. the effects of correlations in CreditRisk+ are small, and, in particular, be-
come negligible for portfolios with higher concentrations; this is explained
on the basis of comments to eq. (2);

3. the effects of correlations in the Marshall-Olkin model depends on the
concentration of the portfolios and become more important when the
concentration is lower; this is explained by the structure of the model:
systemic effects are more important when the diversification is larger;

4. in the Marshall-Olkin model increasing the effects of the systemic com-
ponent of the sectors is more important than increasing the effects of the
“global component”; this is explained by the fact that the global compo-
nent is limited by the smallest default probabilities as discussed in the
example of the bivariate case;

5. the risk capital obtained with the Marshall-Olkin model with correlations
is found to be both larger and smaller than the value obtained in case of
independence; this is explained by the fact that with low concentration
and correlations the loss distributions is likely to become bimodal; again,
as discussed for the bivariate case, increasing correlations can lower the
risk capital;

6. concerning absolute values of the risk capital, the Marshal-Olkin model
gives values as large as four times that of CreditRisk+ when the portfolio
is highly diversified, however gives lower values when the portfolio is con-
centrated; this is explained, as for the previous comment, as due to the
effects of correlations.
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3.2.1 Subordinators’ parameters calibration issues

The results reported in Table 4 have been obtained with the subordinators’
parameters reported in Table 3.
Changes in parameters’ values have two effects:

1. the distribution of subordinators increments (St+∆t − St) over the time
interval (0, t) changes; recalling that increments are gamma-distributed
with shape parameter αγ = C∆t and scale parameter βγ = 1/η and
that the expected value (resp. variance) of a gamma distribution is αγβγ
(resp. αγβ

2
γ) increasing (resp. decreasing) the C parameters results in

increments with larger mean and larger variance while the effects for η
are opposite;

2. the value of the loading factors ω(i)
G and ω

(i,k)
S (k = 1, . . . , nS) changes

since they are constrained by eq. (26); for example, in the case of ω(i)
G ,

inverting eq. (26) gives:

ω
(i)
G = η

(
eαGgi/C − 1

)
, (37)

that is monotonically decreasing in C and monotonically increasing in η.

Therefore, the net effects on the increment of the multivariate T subordi-
nator in eq. (24) are partially compensating, variations of C being more
important due to the exponential dependence in eq. (37) and variations
of η cancelling out in the mean value of T .

Variations of the distribution of increments of the multivariate T sub-
ordinator modify the probability that its marginal component Ti simul-
taneously cross the trigger levels Ei(1): loosely speaking the smaller the
increments the more the Marshall-Olkin distribution tends towards the
case of independence. Thus, C → ∞, results in transforming the dis-
tribution in one similar to that obtained in case of independence, while
variations of η have only second order effects.

We have investigated numerically the sensitivity to the values of the pa-
rameters by varying the sector coefficients C and η. For example, consid-
ering the portfolio with a H-index value of H = 29.9%, with a value of CR
10 times larger than that of Table 3 we obtain a quantile of 1.7836% (that
is exactly what obtained in case of independence), while with a reduction
of CR by a factor of 10 the quantile is reduced to 0.5416%. Differently,
with a value of ηR 10 times larger or smaller than that of Table 3 the
quantile remains unaffected at the fourth digit.

We conclude that the qualitative picture emerging from the results ob-
tained in Table 4 remains unchanged with respect to changes in subordi-
nators’ parameters.
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Table 3: Common subordinators’ parameters values.

parameter Global Sectors
Financial Government Other

C 0.0012 0.001 0.001 0.001
η 0.005 0.01 0.01 0.01

Table 4: Statistics (in % of portfolio market value) of the loss distribution.
CreditRisk+ results are obtained in a semi-analytic way using the Panjer
algorithm. Marshall-Olkin results are obtained with 100,000 Monte Carlo
simulations with ∆t = 1 day. For CreditRisk+ the “with correlation” case
corresponds to a single economic sector without idiosyncratic risk (maximal
correlation).

Statistics without correlations with correlations
CR+ MO CR+ MO MO MO

αid = 1 αS = 1 αG=0.5 αG = 1
αS=0.5

H = 0 (minimum concentration)

E[L] 0.2155 0.2168 0.2155 0.2154 0.2154 0.2122
99.5% quantile 2.2900 2.1218 2.9717 8.5242 8.5550 5.9881

H = 7.7% (low concentration)

E[L] 0.1263 0.1275 0.1263 0.1240 0.1251 0.1246
99.5% quantile 2.2436 2.2733 2.3008 4.1144 4.1144 2.8018

H = 17.6% (moderate concentration)

E[L] 0.0575 0.0569 0.0575 0.0571 0.0582 0.0565
99.5% quantile 2.7134 2.6803 2.7134 1.5409 1.5367 0.3279

H = 29.9% (high concentration)

E[L] 0.0507 0.0492 0.0507 0.0488 0.0504 0.0491
99.5% quantile 1.8141 1.7836 1.8141 0.9301 0.9399 0.2208

H = 47.8% (very high concentration)

E[L] 0.0466 0.0442 0.0466 0.0431 0.0454 0.0444
99.5% quantile 0.7081 0.6470 0.7081 0.7454 0.7307 0.1312
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Table 5: Portfolio composition. For each of the 43 obligors the table shows
the economic sector, the default frequency and its standard deviation, and
the asset allocation for each of the five portfolios identified by the H-index.

Obl. Sector pd(%) σp(%) fraction of port. market value (%)

H-index (%)
0.0 7.7 17.6 29.9 47.8

1 GR GOVT 16,0633 23,4753 2,33 1,51 0,03 0,04 0,08
2 ES GOVT 0,2480 0,0431 2,33 8,04 0,42 0,60 0,79
3 NL GOVT 0,0001 0,0007 2,33 5,03 0,49 0,69 0,74
4 BE GOVT 0,0019 0,0027 2,33 5,53 0,34 0,48 0,62
5 DE GOVT 0,0001 0,0007 2,33 12,56 4,00 5,68 6,83
6 IT GOVT 0,0950 0,0773 2,33 23,12 37,91 53,81 69,16
7 FR GOVT 0,0001 0,0007 2,33 11,06 3,01 4,27 5,17
8 N1 FIN 0,0950 0,0773 2,33 1,01 0,04 0,03 0,01
9 N2 FIN 0,0001 0,0007 2,33 0,50 0,07 0,04 0,03

10 N3 FIN 0,4160 0,0208 2,33 0,50 0,14 0,10 0,04
11 N4 FIN 0,1370 0,1234 2,33 1,51 4,27 2,83 0,97
12 N5 FIN 0,0061 0,0084 2,33 0,50 0,04 0,03 0,03
13 N6 FIN 0,4160 0,0208 2,33 0,50 0,36 0,24 0,08
14 N7 FIN 0,4160 0,0208 2,33 0,50 0,11 0,08 0,03
15 N8 FIN 0,2940 0,1812 2,33 0,50 0,02 0,01 0,00
16 N9 FIN 0,0950 0,0773 2,33 0,50 0,02 0,01 0,01
17 N10 FIN 1,9780 1,0555 2,33 2,01 0,00 0,00 0,00
18 N11 FIN 0,0001 0,0007 2,33 1,01 0,94 0,62 0,20
19 N12 FIN 0,1370 0,1234 2,33 0,50 1,77 1,17 0,43
20 N13 FIN 0,4160 0,0208 2,33 0,50 0,04 0,02 0,04
21 N14 FIN 0,0061 0,0084 2,33 0,50 0,78 0,52 0,15
22 N15 FIN 0,4160 0,0208 2,33 1,51 0,25 0,17 0,06
23 N16 FIN 0,4160 0,0208 2,33 0,50 0,16 0,10 0,03
24 N17 FIN 0,4160 0,0208 2,33 0,50 0,15 0,10 0,03
25 N18 FIN 0,0950 0,0773 2,33 3,52 12,97 8,59 3,87
26 N19 FIN 0,0001 0,0007 2,33 1,01 1,44 0,95 0,37
27 N20 FIN 0,0950 0,0773 2,33 0,50 1,69 1,12 0,68
28 N21 FIN 0,2480 0,0431 2,33 0,50 0,28 0,18 0,06
29 N22 FIN 0,0001 0,0007 2,33 1,01 0,39 0,26 0,11
30 N23 FIN 0,2780 0,2524 2,33 0,50 0,00 0,00 0,00
31 N24 FIN 0,4160 0,0208 2,33 0,50 0,04 0,02 0,03
32 N25 FIN 0,1370 0,1234 2,33 1,51 5,63 3,73 1,29
33 N26 FIN 0,0950 0,0773 2,33 3,52 15,73 10,42 4,13
34 N27 FIN 0,1370 0,1234 2,33 0,50 0,03 0,02 0,01
35 N28 FIN 0,1370 0,1234 2,33 1,01 0,03 0,02 0,01
36 N29 OTHER 0,2940 0,1812 2,33 0,50 0,91 0,43 0,32
37 N30 OTHER 0,2940 0,1812 2,33 0,50 0,05 0,02 0,08
38 N31 OTHER 0,7850 0,3444 2,33 1,01 0,15 0,07 0,08
39 N32 OTHER 0,1370 0,1234 2,33 1,01 0,99 0,47 0,95
40 N33 OTHER 0,0950 0,0773 2,33 0,50 1,08 0,51 0,98
41 N34 OTHER 0,1370 0,1234 2,33 0,50 0,01 0,00 0,02
42 N35 OTHER 0,1370 0,1234 2,33 0,50 1,28 0,61 0,67
43 N36 OTHER 0,1370 0,1234 2,33 1,51 1,95 0,92 0,84
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4 Conclusions

Motivated by the possibility of a systemic crisis in the quality of sovereign
credit standings, we have investigated the effects of systemic components
in default correlations for the valuation of the internal model counterparty
default risk Solvency Capital Requirement (SCR) of typical Italian life in-
surance segregated fund portfolios.
In our investigation, we have modelled the systemic sovereign risk with a mul-
tidimensional Marshall-Olkin model, that is particularly suited to describe
systemic market shocks, comparing with the classical CreditRisk+ model as
a benchmark.
We have applied both models to five different portfolios obtained from a
basket of 199 actively traded bonds of the euro area.
As might have been expected, we have shown that for highly concentrated
portfolios of high credit standing, e.g. composed of government bonds, the
CreditRisk+ model is unable to account for high default correlations.
Differently, we found that the range of SCR obtainable with the Marshall-
Olkin model, depending on the market segmentation specification (sector
composition) is considerably wide. In absolute terms the SCR obtained with
the Marshall-Olkin model does not dominate the values obtained with the
CreditRisk+ model, but rather the comparison depends on the concentration
of the portfolios, systemic effects being more important for more diversified
portfolios.

Concerning Italian life insurance segregated funds, at least those similar in
composition to those analysed in this work, for the present level of default
probabilities and the actual high concentration of these portfolios, the anal-
ysis suggests that the use of CreditRisk+ model appears sufficiently pruden-
tial, even in presence of systemic effects, for the determination of counter-
party default risk when measured with the internal modelling approach.
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