
A Mathematical Programming Approach to Hierarchical Clustering

Lavinia Amorosia,∗, Justo Puertob, Carlos Valverdeb

aDepartment of Statistical Sciences, Sapienza University of Rome, Italy
bDepartment of Statistical Sciences and Operational Research, University of Seville, Spain

Abstract

Hierarchical clustering is a statistical technique to study the occurring groups (clusters) within a dataset
creating a hierarchy of clusters. This is represented by a rooted tree (dendrogram) whose leaves correspond
to the data points, and each internal node represents the cluster containing its descendant leaves. Among
methods to perform hierarchical clustering, the agglomerative ones are based on greedy procedures that
return a sequence of nested partitions, where each level up joins two clusters of the lower partition relying on
a local criterion. In this work, motivated by the lack of exact approaches that guarantee global optimality,
we focus on a unified mathematical programming formalisation that embeds single and complete linkage
procedures. Through preliminary experiments, we evaluate, according to different measures commonly used
in this context, the dendrograms obtained from the exact resolution of the formulations and those produced
by the greedy approach. Furthermore, by exploiting the mathematical formulation, we also present a scalable
matheuristic algorithm capable of generating better quality dendrograms than those produced by the greedy
approach, even for large-sized datasets.
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1. Introduction

Cluster analysis is a statistical technique to study the occurring groups (clusters) within a dataset. Among
the different types of cluster analysis, hierarchical clustering creates nested partitions of a dataset. This is
represented by a rooted tree (dendrogram) whose leaves correspond to the data points, and each internal
node represents the cluster containing its descendant leaves (Everitt et al., 2011). Differently from flat
partition-based clustering, like k-means clustering, this method does not require the number of clusters to
be specified at the beginning. When clusters may, themselves, be closely related to other clusters, and more
distantly related to others, hierarchical clustering is more appropriate than the flat-based clustering. For
example, in clustering of images, we might want not just to have a cluster of flowers, but roses and tulips
within that. Or, for example, in clustering patient medical records, we might want respiratory illnesses as
a super-cluster of pneumonia and influenza. There are several methods to perform hierarchical clustering
that can be distinguished between agglomerative and divisive (Roux, 2018). In the first case, a bottom-up
approach is adopted, that starts by considering each data point as its own cluster and merging them together
into larger groups from the bottom up into a single giant cluster. In the latter case, starting with one cluster
including all data points, recursive divisions in clusters are performed, based on a function of the similarities
or distances in the data, until all clusters are singletons. As regards the agglomerative approaches, these are
based on greedy procedures that return a sequence of nested partitions where each level up joins two clusters
of the lower partition. The differences among procedures in this context are related to the way in which
distances between clusters are computed at each level of the dendrogram. The most commonly adopted are:
(i) the minimum distance among elements of the two clusters (single linkage), (ii) the maximum distance
among elements of the two clusters (complete linkage), (iii) the average distance among elements of the two
clusters (average linkage), (iv) the distance between centroids of the two clusters (centroid linkage) and (v)

∗Corresponding author
Email addresses: lavinia.amorosi@uniroma1.it (Lavinia Amorosi), puerto@us.es (Justo Puerto), cvalverde@us.es

(Carlos Valverde)

Preprint submitted to DSS Sapienza January 10, 2025



the within-cluster deviance (Ward’s method). Moreover, the distance between single data points can be
defined in different ways, as, for example, those induced by the lp norm. The greedy procedures adopted in
hierarchical clustering start by defining the initial distance matrix associated with the set of all individuals
of the dataset under consideration. At each iteration, the clusters at minimum distance (the individuals at
minimum distance at the first iteration) are joined and the distance matrix is consequently updated. The
procedure stops when all the individuals are joined in a single cluster.

In this paper, we focus on a unified mathematical programming formalization that embeds single and
complete linkage procedures adopted in hierarchical clustering. The goal is to evaluate, according to different
measures commonly used in this context, the dendrograms obtained from the exact solution of the formula-
tions and those produced by the greedy approach. Furthermore, we want to study the limits in terms of the
maximum size of the datasets that can be solved to certified optimality in this way. Moreover, by exploiting
the mathematical formulation, we also design a scalable matheuristic algorithm capable of generating better
quality dendrograms than those produced by the greedy approach even for large size datasets.

2. State of the art

In recent years, a lot of effort has been devoted to improving data science techniques by taking advan-
tage of optimisation advances. We can find a number of contributions in different fields such as regression
analysis, classification, dimensionality reduction, correspondence analysis, canonical correlation, etc. (see,
e.g., Amorosi et al. (2024), Benati and García (2014), Benati et al. (2017), Benati et al. (2018), Bertsimas
and Shioda (2007), Blanco et al. (2018), Blanco et al. (2022), Blanquero et al. (2020), Carrizosa et al. (2021,
2023b,a), Gambella et al. (2021), Toriello and Vielma (2012), among many others).

Our focus in this paper is on improving a specific technique, namely hierarchical clustering, still marginally
studied in literature from an optimisation perspective. Indeed, we can mention few previous approaches to
finding hierarchical clusters via mathematical programming (see, e.g., Burgard et al. (2023), Chen and Wu
(2005); Hansen and Jaumard (1997); Labbé et al. (2023); Nielsen (2016)).

Since the area of hierarchical clustering is very broad, we cannot be comprehensive. Therefore, in the
following, we only review some of the most relevant contributions in the application of mathematical pro-
gramming to hierarchical clustering.

We begin our review with the seminal paper by Gower and Ross (1969). These authors first proved that
the result of hierarchical clustering, using nearest neighbour (single linkage), coincides with the minimum
spanning tree. Later, Hansen and Jaumard (1997) gave the first mathematical programming formulations
for understanding clustering analysis under the optimisation lens. Chen and Wu (2005) propose a clustering
model based on integer programming 0-1 to maximise the associations between orders within each batch in
a logistic application, where small orders are consolidated, trying to achieve high-volume order processing
operations. Nielsen (2016) also provides a more recent overview of mathematical programming approaches
to handle clustering analysis. Gilpin and Davidson (2017) formalise hierarchical clustering as an integer
linear programming (ILP) problem with a natural objective function and the dendrogram properties enforced
as linear constraints. We also include the contribution by Roy and Pokutta (2017), which improves the
hierarchical clustering approximation algorithm of Dasgupta (2016) using an integer linear programming
formulation. Another interesting contribution on this area is the paper by Cohen-Addad et al. (2019),
which develops an axiomastic approach to define good objective functions for hierarchical clustering. This
methodology allows one to analyse the performance of different algorithms, as well as provides better and
faster algorithms for hierarchical clustering. Labbé et al. (2023) propose different formulations that include
the constraints of the minimum spanning tree problem, as well as the constraints of feature selection to
jointly determine a set of features and a dendrogram, according to the single-link method. Carrizosa et al.
(2023b) tackle the problem of enhancing the interpretability of the results of cluster analysis by proposing
two mathematical optimisation models, inspired by classic Location Analysis problems, that differ in the way
individuals are allocated to prototypes. Finally, Carrizosa et al. (2023a) propose a methodology to find a
clustered table with the highest χ2 statistic from a given contingency table and a fixed granurality.

3. Problem Description

Let X ∈ Rn×p be a dataset containing n observations oi, i ∈ N := {1, . . . , n}, each with p features
oi ∈ Rp. Without loss of generality, we assume that the features measured in the dataset take real values. To
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quantify the similarity between these observations, we consider the Euclidean distance as a default measure,
although other metrics induced by lp norms can also be used. Let dii′ denote the Euclidean distance between
observations oi and oi′ .

Agglomerative hierarchical clustering aims to construct a hierarchy of nested clusters, starting with each
observation as an individual cluster and progressively merging them into larger clusters until all points belong
to a single cluster. Let T be the set that represents the levels at which two clusters are merged during this
process. Note that |T |< n, since the maximum number of joins that we can make to build a hierarchy of
nested clusters is n − 1. In our models, we assume that we perform all the joins until all points belong to
a single cluster. In this work, we propose two ways to evaluate the hierarchical process. The first consists
of computing the total distance, named D, between the clusters that are merged at each level t ∈ T . The
second, similar to the first one, consists of computing the total distance, named Dtotal, between all clusters
that exist at each level t ∈ T . Thus, setting D and Dtotal as possible objectives to minimise, results in higher
similarity clusters.

To illustrate the relationships between clusters based on the hierarchy built by the agglomerative process,
the most commonly used diagram is the dendrogram. Starting from the bottom, with individual data points,
each merge represents two clusters combining into one. The height at which clusters merge shows how similar
or different they are, a lower merge represents a higher similarity, and the opposite. In other words, the goal
of this work is to generate dendrograms with the smallest height possible to obtain more similar clusters at
each level.

The decision to merge two clusters is guided by a linkage criterion, which determines the distance between
two clusters based on the pairwise Euclidean distances between their observations. Two of the most commonly
used linkage methods in agglomerative hierarchical clustering are single linkage and complete linkage. Taking
into account the measures proposed before, these methods adopt a greedy strategy: at each level t, the two
closest clusters are merged. If the single-linkage clustering method is considered, the greedy approach yields
the optimal solution. This optimal solution is computed by solving the Minimum Spanning Tree for the
weighted complete graph whose nodes are the observations and the weight of the edges, the metric distance
between any pair of observations. However, for complete linkage, the greedy approach yields suboptimal
solutions, as decisions are made locally at each level without considering their impact on subsequent merges.
Figures 1 and 2 show the solutions obtained with complete linkage when we consider the greedy approach
and the optimal one, respectively. The reader may note that the second join, represented in the third picture,
is different between the two approaches. Although 1 and 5 are closer than 1 and 4, the latter join produces a
new cluster whose consequent joins are better, as it is shown in terms of the total distance produced by the
joins, namely, D.

Figure 1: Sequence of joins associated with the greedy complete linkage approach with D = 301.33.

Figure 2: Sequence of joins associated with the optimal complete linkage approach with D = 289.64.

A widely recognized metric for evaluating clustering techniques is the Dunn Index (DI), which assesses
the compactness and separation of clusters (Dunn, 1974). The goal of the Dunn Index is to identify clusters
that are both compact, with low variance among members, and well-separated, with significant distance
between different clusters.
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The Dunn Index is defined as follows:

DI(k) =
min1≤i<j≤k d(Ci, Cj)

max1≤l≤k ∆(Cl)
,

where d(Ci, Cj) represents the minimum distance between points in clusters Ci and Cj , ∆(Cl) denotes the
maximum distance between any two points within cluster Cl, and k is the total number of clusters. Notably,
the single linkage method prioritises minimising the numerator of the Dunn index by joining clusters with the
closest pair of observations, whereas the complete linkage method focusses on minimising the denominator
by controlling the cluster diameter.

Inspired by the Dunn index, we propose an extension of these linkage methods by introducing an α-
weighted version that takes advantage of the strengths of both the single linkage and complete linkage
approaches. This extension, named Optimal Dunn Linkage (ODL), seeks to overcome the limitations of
greedy strategies by formulating the clustering process as mixed-integer linear programming problems that
take into account the merges made at every hierarchical level. Furthermore, this approach incorporates the
flexibility to build nested clusters. It allows one to decide on different measures to build the hierarchy or a
different number of joins that are performed at each level. In this work, we assume that only two clusters
are joined at each level.

Table 1 describes the parameters that serve as input to the models presented in Section 4.

Table 1: Nomenclature for the mathematical programming model

Problem Parameters

P. Name Range Description

n Z+ Number of individuals in the dataset.

N {1, . . . , n} Set of individuals in the dataset.

T {1, . . . , n− 1} Set of levels of the dendrogram.

dii′ RN×N
+ Distance matrix containing the initial Euclidean distances between any pair of individuals in the dataset.

α [0, 1] Weight factor in the Optimal Dunn Linkage formulation.

4. Mathematical Programming Formulations

In this section, we present two alternative MILP formulations for the ODL that will be compared com-
putationally in Section 6. Firstly, we discuss in depth which are the objective functions that we are going
to consider throughout the paper. Secondly, we describe a formulation whose nature is based on how the
distance matrix is updated when we consider the single- or complete-linkage approach. It defines continuous
variables that represent the distance between clusters for each level t ∈ T , which are updated sequentially
using the distances calculated at the previous level t − 1 and the join produced at the level t − 1. Thirdly,
we present an alternative formulation that computes the distance between clusters in an aggregated way, by
controlling how clusters are built along the levels.

Evaluating the quality of a hierarchical clustering
The main goal of the models proposed in this section is to find better hierarchies of clusters by means of

exact approaches. In Section 3, we briefly described what the two main criteria followed in this work are to
evaluate a hierarchy. These criteria can be formalised by describing the corresponding objective functions.
We define It as the set of existing clusters at level t, and Jt ⊆ It, the subset of clusters that are merged at
level t. Let dtii′ be the distance between existing clusters i and i′ at level t.

The first objective function that we consider consists of minimising the overall distance of the pair of
clusters that are joined at each level t:

D =
∑
t∈T

∑
i,i′∈Jt

dtii′ .

This objective function allows us to focus on obtaining the best merges without taking into account the
distances between the other clusters that are not involved in the joint.
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Table 2: Summary of decision variables used in ODL-1

Binary and Integer Decision Variables

Name Domain Range Description

xt
i (i, t) ∈ N × T {0, 1} 1, if cluster i is involved in the joint at level t,

0, otherwise.

ut
i (i, t) ∈ N × T {0, 1} 1, if cluster i, involved in the joint at level t, is the one with the lowest label,

0, otherwise.

ytii′ (i, i′, t) ∈ N ×N × T {0, 1} 1, if clusters i and i′ are merged at level t,
0, otherwise.

δ1tii′i′′ (i, i′, i′′, t) ∈ N ×N ×N × T {0, 1} 1, if the minimum distance between cluster i and i′ is equal to the distance between i′′ and i′ at level t,
0, otherwise.

δ2tii′i′′ (i, i′, i′′, t) ∈ N ×N ×N × T {0, 1} 1, if the minimum distance between cluster i and i′ is equal to the distance between i′′ and i at level t,
0, otherwise.

Continuous Decision Variables

dtii′ (i, i′, t) ∈ N ×N × T R+ Distance between cluster i and cluster i′ at level t.

dtmin ii′ (i, i′, t) ∈ N ×N × T R+ Minimum distance between cluster i and cluster i′ at level t.

d0tmin ii′ (i, i′, t) ∈ N ×N × T R+ Distance between clusters i and i′ when both/any of them are involved in the merge at level t.

pltmin ii′ (i, i′, t) ∈ N ×N × T R+ Auxiliary variable modelling the product of dtmin ii′ and xt
i.

prtmin ii′ (i, i′, t) ∈ N ×N × T R+ Auxiliary variable modelling the product of dtmin ii′ and xt
i′ .

ptmin ii′ (i, i′, t) ∈ N ×N × T R+ Auxiliary variable modelling the product of dtmin ii′ and ytii′ .

d1tmin ii′ (i, i′, t) ∈ N ×N × T R+ Minimum distance between clusters i and i′ when i is involved in the merge at level t.

p1tmin ii′i′′ (i, i′, i′′, t) ∈ N ×N ×N × T R+ Auxiliary variable modelling the product of dtmin ii′ and δ1tii′i′′ .

d2tmin ii′ (i, i′, t) ∈ N ×N × T R+ Minimum distance between clusters i and i′ when i′ is involved in the merge at level t.

p2tmin ii′i′′ (i, i′, i′′, t) ∈ N ×N ×N × T R+ Auxiliary variable modelling the product of dtmin ii′ and δ2tii′i′′ .

On the other hand, the second objective function that we study, which minimises the overall distance of
all the pairs of clusters existing at each level t, independently of whether they are merged or not, can be
expressed as:

Dtotal =
∑
t∈T

∑
i,i′∈It

dtii′ .

In this case, this objective function seeks to find the merge that produces clusters that are the closest after
the joint.

These two objective functions are considered in the formulations presented in the following of this section.
In Section 6 we provide a deep comparison and evaluation of the resulting hierarchies in terms of other
commonly used measures in hierarchical clustering.

4.1. MILP based on updating the distance matrix
In this section, we present the formulation for the ODL based on the update of the distance matrix

(ODL-1). Then, we set the constraints that model the process of merging clusters and the constraints that
model how the distance matrices are updated. Finally, we combine all these constraints to define the exact
formulation.

4.1.1. Modelling the hierarchy
In the following, we present the constraints that model the hierarchy of clusters. To build the hierarchy,

we define the binary variable xt
i that takes value 1 if the cluster i is involved in the joint at the level t. In

addition, a second family of binary variables, ut
i, is required to be introduced to ensure that the cluster with

the lowest label involved at level t can not be merged in later joins. By means of these variables, the following
constraints model the hierarchy of nested clusters:∑

i∈N

xt
i = 2, ∀t ∈ T, (h1-C1)

ut
i ≥ 1− (1− xt

i)− (1− xt
i′), ∀i, i′ ∈ N : i < i′,∀t ∈ T, (h1-C2)

ut
i ≤ xt

i, ∀i ∈ N, ∀t ∈ T, (h1-C3)
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1− ut
i ≥ xt′

i , ∀i ∈ N, ∀t, t′ ∈ T : t′ > t. (h1-C4)

Constraint (h1-C1) imposes that at each level the joint of two clusters must be performed. Constraints (h1-
C2) represent the binary variables ut

i. If cluster i is involved in the merge at level t and its label is the lowest
in the set of merged clusters, then ut

i takes the value 1. Through constraints (h1-C3) the value of the binary
variable ut

i is forced to be equal to 0 if cluster i is not involved in the joint performed at level t. Constraints
(h1-C4) guarantee that if a cluster i is involved in the joint at level t and its label is the lowest one, it can no
longer be involved in the joints performed in subsequent levels.

Depending on the approach adopted for updating distances between clusters after a new joint is performed,
different hierarchical clustering can be obtained. In the following, we present mathematical programming
constraints to represent the single and complete linkage.

4.1.2. Single linkage constraints
In single linkage, the updated distance between a cluster i not involved in the joint carried out at level

t and the new cluster i′ generated at level t is computed as the minimum distance between the elements of
the cluster i and the elements belonging to the new generated cluster i′. Thus, it is possible to represent the
distances between each pair of clusters at the following level t+1, represented by dt+1

min ii′ . The representation
considers both the distance between the clusters, represented by dtmin ii′ , and the clusters involved in the
merge produced at level t, determined by xt

i:

d0min ii′ = dii′ , ∀i, i′ ∈ N.

dt+1
min ii′ = dtmin ii′x

t
ix

t
i′ + dtmin ii′(1− xt

i)(1− xt
i′)

+ min
i′′ ̸=i′

{dtmin ii′ , d
t
min i′′i′x

t
i′′}xt

i(1− xt
i′)

+ min
i′′ ̸=i

{dtmin ii′ , d
t
min ii′′x

t
i′′}(1− xt

i)x
t
i′ , ∀i, i′ ∈ N, ∀t ∈ T \ {|T |}. (SL-G)

This expression states that the distance between clusters i and i′ at level t + 1 remains the same if both
clusters are merged at level t or both clusters are not involved in the joint at level t. Otherwise, we need
to update the distance between them by finding the other cluster i′′ that is involved in the joint and taking
the minimum of the distances between i′′ and the other two clusters i and i′. In the following, we set the
required constraints to obtain a linear form of (SL-G).

First, we introduce the auxiliary continuous variable d0tmin ii′ , which represents the first two addends of
(SL-G):

d0tmin ii′ = dtmin ii′(1− xt
i)(1− xt

i′) + dtmin ii′x
t
ix

t
i′ , ∀i, i′ ∈ N, ∀t ∈ T,

that is equivalent to the following constraint:

d0tmin ii′ = dtmin ii′ − dtmin ii′x
t
i − dtmin ii′x

t
i′ + 2dtmin ii′x

t
ix

t
i′ , ∀i, i′ ∈ N, ∀t ∈ T, (d0min-C)

This expression leads to two products of a binary variable and a continuous variable, and another of three
terms, composed of a continuous variable and two binary variables. The first two products are linearised by
means of the McCormick envelopes (see McCormick (1976)). Let pltmin ii′ = dtmin ii′x

t
i and prtmin ii′ = dtmin ii′x

t
i′

be the continuous variables that represent the slice products with respect to the first and second index of
dtmin ii′ , respectively. These variables are linearised as follows:

pltmin ii′ ≤ Mxt
i, ∀i, i′ ∈ N, ∀t ∈ T, (plmin-C1)

pltmin ii′ ≤ dtmin ii′ , ∀i, i′ ∈ N, ∀t ∈ T, (plmin-C2)

pltmin ii′ ≥ dtmin ii′ −M(1− xt
i), ∀i, i′ ∈ N, ∀t ∈ T, (plmin-C3)

prtmin ii′ ≤ Mxt
i′ , ∀i, i′ ∈ N, ∀t ∈ T, (prmin-C1)

prtmin ii′ ≤ dtmin ii′ , ∀i, i′ ∈ N, ∀t ∈ T, (prmin-C2)

prtmin ii′ ≥ dtmin ii′ −M(1− xt
i′), ∀i, i′ ∈ N, ∀t ∈ T, (prmin-C3)
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where M represents a big-M constant that is computed as the maximum distance between any pair of
observations.

The product of three variables is linearised following the strategy in Speakman and Lee (2017). First, we
define the binary variable ytii′ = xt

ix
t
i′ , that takes the value 1 if the clusters i and i′ are merged at level t. To

define ytii′ , we use the McCormick envelopes:

ytii′ ≤ xt
i, ∀i, i′ ∈ N, ∀t ∈ T, (y-C1)

ytii′ ≤ xt
i′ , ∀i, i′ ∈ N, ∀t ∈ T, (y-C2)

ytii′ ≥ xt
i + xt

i′ − 1, ∀i, i′ ∈ N, ∀t ∈ T. (y-C3)

Then, we introduce the continuous variable ptmin ii′ = dtmin ii′y
t
ii′ , that is linearised in the same way:

ptmin ii′ ≤ Mytii′ , ∀i, i′ ∈ N, ∀t ∈ T, (pmin-C1)

ptmin ii′ ≤ dtmin ii′ , ∀i, i′ ∈ N, ∀t ∈ T, (pmin-C2)

ptmin ii′ ≥ dtmin ii′ −M(1− ytii′), ∀i, i′ ∈ N, ∀t ∈ T. (pmin-C3)

Second, we introduce the auxiliary continuous variables d1tmin ii′ and d2tmin ii′ , that represent the last two
addends in (SL-G):

d1tmin ii′ = min
i′′ ̸=i′

{dtmin ii′ , d
t
min i′′i′x

t
i′′}xt

i(1− xt
i′), ∀i, i′ ∈ N, ∀t ∈ T,

d2tmin ii′ = min
i′′ ̸=i

{dtmin ii′ , d
t
min ii′′x

t
i′′}(1− xt

i)x
t
i′ , ∀i, i′ ∈ N, ∀t ∈ T.

They describe the minimum distance when one of the clusters is involved in the previous joint. These auxiliary
variables require introducing two binary variables δ1tii′i′′ and δ2tii′i′′ , respectively, to define the minimum. The
constraints that express them are the following:

d1tmin ii′ ≤ dtmin i′′i′ +M(1− xt
i′′) +M(1− xt

i(1− xt
i′)), ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T,

(d1min-C1)

d1tmin ii′ ≥ dtmin i′′i′δ
1t
ii′i′′ −M(1− xt

i′′)−M(1− xt
i(1− xt

i′)), ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T,
(d1min-C2)

δ1tii′i′′ ≤ xt
i′′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T,

(d1min-C3)∑
i′′ ̸=i′

δ1tii′i′′ = 1, ∀i, i′ ∈ N, ∀t ∈ T.

(d1min-C4)

d2tmin ii′ ≤ dtmin ii′′ +M(1− xt
i′′) +M(1− (1− xt

i)x
t
i′), ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T,

(d2min-C1)

d2tmin ii′ ≥ dtmin ii′′δ
2t
ii′i′′ −M(1− xt

i′′)−M(1− (1− xt
i)− xt

i′), ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T,
(d2min-C2)

δ2tii′i′′ ≤ xt
i′′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T.

(d2min-C3)∑
i′′ ̸=i

δ2tii′i′′ = 1, ∀i, i′ ∈ N, ∀t ∈ T.

(d2min-C4)

Constraints (d1min-C1), (d1min-C2) define the value of d1tmin ii′ . If cluster i is involved in the merge and i′ does
not, to express the updated distance from i to i′, we compute the minimum of the distance from cluster i
to i′ and the distance from cluster i and the other one involved in the join, i′′. Constraints (d1min-C3) and
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(d1min-C4) ensure that the minimum distance is achieved in a single cluster that is involved in the merge at
level t. In a similar way, d2min variables are represented by means of constraints (d2min-C1)-(d2min-C4).

The representation of the minimum generates the products p1tmin ii′i′′ = dtmin ii′δ
1t
ii′i′′ and p2tmin ii′i′′ =

dtmin ii′δ
2t
ii′i′′ that, again, are linearised as follows:

p1tmin ii′i′′ ≤ Mδ1tii′i′′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T, (p1min-C1)

p1tmin ii′i′′ ≤ dtmin ii′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T, (p1min-C2)

p1tmin ii′i′′ ≥ dtmin ii′ −M(1− δ1tii′i′′), ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T. (p1min-C3)

p2tmin ii′i′′ ≤ Mδ2tii′i′′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T, (p2min-C1)

p2tmin ii′i′′ ≤ dtmin ii′ , ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T, (p2min-C2)

p2tmin ii′i′′ ≥ dtmin ii′ −M(1− δ2tii′i′′), ∀i, i′, i′′ ∈ N : i′′ ̸= i,∀t ∈ T. (p2min-C3)

Once defined the addends in (SL-G), we set the variable dmin as:

dt+1
min ii′ = d0tmin ii′ + d1tmin ii′ + d2tmin ii′ , ∀i, i′ ∈ N, ∀t ∈ T \ {|T |}. (dmin-C)

4.1.3. Complete linkage constraints
In complete linkage, the updated distance between a cluster i, which is not involved in the merge performed

at level t, and the newly formed cluster i at level t, is computed as the maximum distance between any element
of cluster i and any element of the newly generated cluster i′. Thus, the distances dt+1

ii′ between each pair of
clusters at the next level t+ 1 can be expressed through the following set of constraints:

d0max ii′ = dii′ , ∀i, i′ ∈ N.

dt+1
max ii′ = dtmax ii′x

t
ix

t
i′ + dtmax ii′(1− xt

i)(1− xt
i′)

+ max
i′′ ̸=i′

{dtmax ii′ , d
t
max i′′i′x

t
i′′}xt

i(1− xt
i′)

+ max
i′′ ̸=i

{dtmax ii′ , d
t
max ii′′x

t
i′′}(1− xt

i)x
t
i′ , ∀i, i′ ∈ N, ∀t ∈ T \ {|T}. (CL-G)

In this case, different from the single linkage case, since both criteria consist of minimising, the maximum
is attained without the necessity of defining a binary variable that selects which is the maximum one. The
linearisation of (CL-G) is described as follows:

dt+1
max ii′ ≥ dtmax ii′ , ∀i, i′ ∈ N, ∀t ∈ T \ {|T |}, (dmax-C1)

dt+1
max ii′ ≥ dtmax i′′i′x

t
i′′ −M(1− xt

i(1− xt
i′)), ∀i, i′, i′′ ∈ N : i′′ ̸= i, ∀t ∈ T \ {|T |}, (dmax-C2)

dt+1
max ii′ ≥ dtmax i′′i′x

t
i′′ −M(1− (1− xt

i)x
t
i′), ∀i, i′, i′′ ∈ N : i′′ ̸= i′,∀t ∈ T \ {|T |}. (dmax-C3)

For each pair i, i′ ∈ N the distance dt+1
max ii′ at level t+1 must be greater than or equal to the one associated to

the previous level t. This is imposed via constraints (dmax-C1). In particular, if both i and i′ are not involved
in the joint performed at level t, the distance between them does not change. Via constraints (dmax-C2), if
cluster i is involved in the joint at level t and cluster i′ is not, the new distance between cluster i and cluster
i′ is given by the maximum distance between dtmax ii′ and the distance between cluster i′′, involved in the
joint at level t, and cluster i′. Note that, because of constraint (dmax-C3), in addition to variable xt

i′ , only
one variable xt

i′′ is equal to 1. If, on the contrary, cluster i is not involved in the joint at level t and cluster
i′ is involved, the new distance between cluster i and cluster i′ is given by the maximum distance between
dtmax ii′ and the distance between cluster i and cluster i′′ involved in the merge at level t.

4.1.4. A first formulation for the Optimal Dunn Linkage based on updating the distance matrix
In this subsection, we put all the constraints together to propose the first formulation for the ODL.

minimize D =
∑
t∈T

∑
i,i′∈N

dtii′y
t
ii′ (ODL-1)
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subject to dtii′ ≥ (1− α)dtmin ii′ + αdtmax ii′ , ∀i, i′ ∈ N, ∀t ∈ T,

(h1-C1) − (h1-C4),

(dmin-C), (d0min-C), (d1min-C1) − (d1min-C4), (d2min-C1) − (d2min-C4),

(plmin-C1) − (plmin-C3), (prmin-C1) − (prmin-C3), (pmin-C1) − (pmin-C3),

(p1min-C1) − (p1min-C3), (p2min-C1) − (p2min-C3),
(dmax-C1) − (dmax-C3),
(y-C1) − (y-C3)

The objective function accounts for the total distance between the clusters that are merged at each level
t ∈ T . As exposed in Subsection 4, this objective function can be replaced by Dtotal, that considers the
overall distances between any pair of clusters existing at each level t. The first constraint represents the
α-weighted sum of the minimum and maximum distance between clusters i and i′ at level t. The second
family of constraints models the hierarchy of nested clusters. The family of constraints appearing in the
third, fourth and fifth line represents the single linkage. The family of constraints in the sixth line accounts
for the complete linkage. Finally, the last set of constraints linearises the product of x variables by means of
the y variables.

The ODL-1 formulation gives us a first way to extend and combine the single and complete linkage
approaches in a unique model. This formulation is a natural way of proceeding, since the concept of updating
matrix distances is the first draft used to explain the foundations of hierarchical clustering. However, the main
drawback of this formulation is the excessive use of the McCormick envelopes to linearise all the products of
continuous and binary variables defined throughout the model. These linearisations yield big-M constraints
that make the linear relaxation weaker. It motivates the modelling of an alternative formulation that tries
to simplify the representation of the ODL in terms of the number of variables and constraints.

4.2. MILP based on clique partitioning
The combinatorial structure of the constraints of the second approach followed in this work is borrowed

from a previous clustering model, namely the clique partitioning (see Bertsimas and King (2016); Bertsimas
and Shioda (2007); Grötschel and Wakabayashi (1990)). However, in our model, we impose a hierarchy of
nested clusters.

Table 3: Summary of decision variables used in the alternative mathematical programming model

Binary and Integer Decision Variables

Name Domain Range Description

xt
ii′ (i, i′, t) ∈ N ×N × T {0, 1} 1, if observations i and i′ are in the same cluster at level t,

0, otherwise.

ztic (i, c, t) ∈ N ×N × T {0, 1} 1, if observation i belongs to cluster c at level t,
0, otherwise.

ytcc′ (c, c′, t) ∈ N ×N × T {0, 1} 1, if clusters c and c′ are joint at level t,
0, otherwise.

ut
c (c, t) ∈ N × T {0, 1} 1, if cluster c involved in the joint at level t is the one with lowest label,

0, otherwise.

δtii′cc′ (i, i′, c, c′, t) ∈ N ×N ×N ×N × T {0, 1} 1, if the minimum distance between cluster c and c′ at level t is equal to the distance between i and i′, where i ∈ c and i′ ∈ c′,
0, otherwise.

µt
ii′cc′ (i, i′, c, c′, t) ∈ N ×N ×N ×N × T {0, 1} 1, if i and i′ belong to c and c′, respectively, at level t,

0, otherwise.

νtii′cc′ (i, i′, c, c′, t) ∈ N ×N ×N ×N × T {0, 1} 1, if i and i′ belong to clusters c and c′ at level t and the pair (i, i′) gives the minimum distance between clusters c and c′,
0, otherwise.

Continuous Decision Variables

dtcc′ (c, c′, t) ∈ N ×N × T R+ Distance between cluster c and cluster c
′
at level t.

dtmin cc′ (c, c′, t) ∈ N ×N × T R+ Minimum distance between cluster c and cluster c′ at level t.

dtmax cc′ (c, c′, t) ∈ N ×N × T R+ Maximum distance between cluster c and cluster c′ at level t.

4.2.1. Modelling the partition
To give a formulation for the Optimal Dunn Linkage based on clique partitioning (ODL-2), we first define

a partition for each level t ∈ T in the dendrogram. Let xt
ii′ be a binary variable that is active if observations

i and i′ belong to the same cluster at level t. Let ztic also be a binary variable that indicates if observation i
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belongs to cluster c at level t. Then, the following constraints represent a partition at each level t ∈ T of the
dendrogram:

xt
ii′ ≤ ztic +

∑
c′∈N
c′≥i′

c′ ̸=c

zti′c′ , ∀i, i′, c ∈ N : i < i′, i ≤ c,∀t ∈ T, (p-C1)

xt
ii′ ≥ ztic + zti′c − 1, ∀i, i′, c ∈ N : i < i′ ≤ c,∀t ∈ T, (p-C2)

ztic ≤ ztcc, ∀i, c ∈ N : i ≤ c,∀t ∈ T, (p-C3)∑
c∈N
c≥i

ztic = 1, ∀i ∈ N, ∀t ∈ T, (p-C4)

∑
c∈N

ztcc = |T |−t+ 1, ∀t ∈ T. (p-C5)

Constraints (p-C1) ensure that if observations i and i′ are in the same cluster at level t, then there is at least
one representative of a cluster where both observations can be assigned. Constraints (p-C2) guarantee that
xt
ii′ takes the value 1 if they are assigned to the same cluster c at level t. Constraints (p-C3) state that each

observation is assigned to a cluster represented by a observation i if i is assigned to this cluster. Constraints
(p-C4) guarantee that each observation belongs to just one cluster and this is represented by the observation
with the highest index. Finally, constraints (p-C5) guarantee that the number of clusters existing at level t
is |T |−t+ 1.

In the following, we model the hierarchy of clusters. Let ytcc′ be a binary variable that takes value equal
to 1 if clusters c and c′ are merged at level t. Again, a binary variable ut

c is required to be introduced to
ensure that the cluster with the highest label involved at level t cannot be merged in later levels. By means
of these variables, the following constraints model the hierarchy of nested clusters:∑

c,c′∈N
c<c′

ytcc′ = 1, ∀t ∈ T, (h2-C1)

zt+1
ic′ ≥ ytcc′ + ztic − 1, ∀i, c, c′ : i ≤ c, i ≤ c′, c < c′,∀t ∈ T \ {|T |}, (h2-C2)

zt+1
ic′ ≥ ytcc′ + ztic′ − 1, ∀i, c, c′ : i ≤ c, i ≤ c′, c < c′,∀t ∈ T \ {|T |}, (h2-C3)

ut
c ≥ ytcc′ , ∀c, c′ ∈ N : c < c′,∀t ∈ T, (h2-C4)

1− ut
c ≥ yt

′

cc′ , ∀c, c′ ∈ N : c < c′,∀t, t′ ∈ T : t′ > t, (h2-C5)

xt+1
ii′ ≥ xt

ii′ , ∀i, i′ ∈ N : i < i′,∀t ∈ T \ {|T |}. (h2-C6)

Constraints (h2-C1) ensure that two clusters are merged at each level t ∈ T . Constraints (h2-C2) and (h2-C3)
state that if c and c′ are merged at level t and the observation i belongs to any of these clusters, then i must
belong to the new merged cluster represented by the highest index, c′, at level t + 1. Constraints (h2-C4)
ensure that ut

c is equal to 1 if cluster c is involved in a joint at level t. Constraints (h2-C5) impose that if a
cluster c is involved in the joint at level t and its label is the lowest one, it can no longer be involved in the
joints performed in subsequent levels. Finally, constraints (h2-C6) state that if observations i and i′ belong
to the same cluster at level t, then they belong to the same cluster at subsequent levels.

The benefits of representing a nested partition of clusters at each level of the hierarchy can be observed
in the following sections by allowing us to define the single and complete linkage constraints in a more clever
way.

4.2.2. Single linkage constraints
Let dtmin cc′ be a continuous variable that represents the minimum distance between cluster c and c′ at

level t. The representation of the partition allows us to compute this value by means of the original dis-
tance between the observations belonging to each cluster. The following constraints determine the minimum
distance between any pair of clusters:

dtmin cc′ ≤ dii′ +M(1− zticz
t
i′c′), ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (SL2-G)
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dtmin cc′ ≥ dii′z
t
icz

t
i′c′δ

t
iicc′ , ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T,∑

i,i′∈N
i<i′

δtii′cc′ = ytcc′ , ∀c, c′ ∈ N : c < c′,∀t ∈ T.

The first group of constraints states that the minimum distance between clusters c and c′ at level t must be
computed by the observations belonging to c and c′, respectively. To represent the minimum, it is required
to introduce the binary variable δtii′cc′ , which takes the value 1 if the minimum distance between c and c′ is
attained in dii′ , where i belongs to cluster c and i′ belongs to cluster c′. In addition, a big-M is introduced
as an upper bound of the distance, that we consider to be the maximum distance between any pair of
observations. The second family of constraints imposes that the minimum between clusters c and c′ must
be achieved in a single pair of observations (i, i′) such that i belongs to c and i′ belongs to c′. The reader
may note that, in this case, this family of constraints can be linearised by following the same strategy as the
one in (d0min-C). Finally, the third group of constraints ensure that this minimum must be achieved only if
clusters c and c′ are merged at level t.

To linearise (dmin-C2), we first introduce the binary variable µt
ii′cc′ that takes the value 1 if i and i′ belong

to clusters c and c′ at level t, respectively. Then, µt
ii′cc′ can be described using the McCormick’s envelopes:

µt
ii′cc′ ≤ ztic, ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (µ-C1)

µt
ii′cc′ ≤ zti′c′ , ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (µ-C2)

µt
ii′cc′ ≥ ztic + zti′c′ − 1, ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T. (µ-C3)

Secondly, we define the binary variable νtii′cc′ that is active if i and i′ belong to clusters c and c′ at level t
and the pair (i, i′) gives the minimum distance between clusters c and c′. Again, this variable linearises the
product of µt

ii′cc′ and δtii′cc′ as follows:

νtii′cc′ ≤ µt
ii′cc′ , ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (ν-C1)

νtii′cc′ ≤ δtii′cc′ , ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (ν-C2)

νtii′cc′ ≥ µt
ii′cc′ + δtii′cc′ − 1, ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T. (ν-C3)

Once defined the products in (SL2-G), we set the variable dmin by means of the following linear constraints:

dtmin cc′ ≤ dii′ +M(1− µt
ii′cc′), ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (dmin-C1)

dtmin cc′ ≥ dii′ν
t
ii′cc′ , ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T, (dmin-C2)∑

i,i′∈N
i<i′

δtii′cc′ = ytcc′ , ∀c, c′ ∈ N : c < c′,∀t ∈ T. (dmin-C3)

4.2.3. Complete linkage constraints
Let dtmax cc′ be a continuous variable that represents the maximum distance between cluster c and c′ at

level t. In this case, the following constraint is the only one required to model the maximum distance between
clusters:

dtmax cc′ ≥ dii′(z
t
ic + zti′c′ − 1), ∀i, i′, c, c′ ∈ N : c < c′, i ≤ c, i′ ≤ c′,∀t ∈ T. (dmax-C)

4.2.4. A second formulation for the Optimal Dunn Linkage based on clique partitioning
In this subsection, we put all the constraints together to propose the second formulation for the ODL.

minimize D =
∑

c,c′∈N
c<c′

∑
t∈T

dtcc′y
t
cc′ (ODL-2)

subject to dtcc′ ≥ (1− α)dtmin cc′ + αdtmax cc′ , ∀c, c′ ∈ N : c < c′,∀t ∈ T,

(p-C1) − (p-C5),
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(h2-C1) − (h2-C6),
(dmin-C1) − (dmin-C3),
(µ-C1) − (µ-C3), (ν-C1) − (ν-C3),
(dmax-C)

The objective function accounts for the total distance between the clusters that are merged at each level
t ∈ T . As exposed in previous sections, this objective function can be replaced by Dtotal, that considers the
overall distances between any pair of clusters existing at each level t. The first constraint represents the α-
weighted sum of the minimum and maximum distance between clusters c and c′ at level t. The second family
of constraints models the partitioning produced at each level. The third family represents the hierarchy of
nested clusters. The family of constraints appearing in the fourth and fifth lines represents the single linkage.
The family of constraints in the sixth line accounts for the complete linkage.

5. Matheuristic Algorithm

In this section, we describe a matheuristic algorithm to deal with larger-size datasets. It exploits the
mathematical formulations presented in Section 4 restricted to the maximum approachable size n̄ = 8, and
it is based on iterative improvements of the solution (the dendrogram) provided by the greedy approach to
hierarchical clustering. A sketch of the main steps of this procedure follows:

(0) Given a dataset of n individuals, compute the initial solution (dendogram) (x̄, D̄) by applying the
greedy algorithm;

(1) Identify a cluster of size no lower than a given threshold l̄ and not greater than n̄ individuals in the
solution (x̄, D̄), where n̄ is the maximum size that can be faced by the exact solution of the formulation;

(2) Solve the complete linkage formulation on the subset of the n̄ individuals identified at (1). Let (x∗, D∗)
be the optimal solution.

(3) Build the subdendogram associated with the optimal solution (x∗, D∗) generated at (2) and save the
associated order of joins;

(4) Update distances between the latest cluster generated at (3) and the remaining individuals in the
original dataset;

(5) Apply the greedy algorithm to the updated dataset (with n− n̄− 1 individuals);

(6) Repeat (1)-(5) until all individuals of the original dataset are included in a single cluster (root of the
dendogram).

6. Preliminary Computational Experiments

In this section, we present preliminary results obtained by implementing the matheuristic algorithm
presented in Section 5 and solving by Gurobi the mathematical formulations presented in Section 4. We
tested the proposed approach on both large-sized artificial datasets and real datasets adopted also in Vichi
et al. (2022). Regarding artificial datasets, we consider the hypercube [0, 5]10 related to 10 features and
select a number of vertices of the hypercube that range in the interval [5, 10] to identify the centre of a
multivariate normal distribution to generate an equivalent number of clusters. We generate a number of data
points for each cluster in the set {10, 15, 20} and, in order to model different levels of separation between
clusters, we consider three different covariance matrices: Σ = σ2I10, where σ2 ∈ {1, 4, 9} and I10 denotes the
identity matrix of dimension 10. We obtain, respectively, well-separated, partially-separated, and complete-
overlapped clusters. For each combination of number of clusters, number of data points per cluster, and
level of separation between clusters, we generate 5 datasets. Regarding real datasets, we report their main
characteristics (number of observations n, number of attributes p, and number of clusters K) in Table 4.

On both artificial and real datasets we run two different versions of the matheuristic algorithm based on
the two general formulations presented in Section 4. For each version, we consider the weight values α in
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Abbreviation n p K

Coffee 43 12 2
Ruspini 75 2 4
Seeds 210 7 3
Thyroid 215 5 3
Wine 178 13 3

Table 4: List of real datasets

the set {0, 0.25, 0.5, 0.75, 1}. Moreover, for each formulation, we consider two different objective functions:
(i) the minimisation of the overall distance of pairs of clusters that are joined at each level (D) and (ii) the
minimisation of the overall distance of all pairs of clusters existing at each level, independently of whether
they are merged or not (Dtotal). We set a time limit of 1 hour for each run of the matheuristic algorithm
and a time limit of 1 minute for each call of Gurobi within the procedure.

We code the matheuristic and exact formulation of the model in Python 3.8.10. The mathematical
programming formulation is implemented in Gurobi 10.0.2 (linux64). All tests are run on an AMD® Epyc
7452 32-Core Processor, using up to 6 threads.

Recalling that a dendrogram is a tree-like structure that represents the hierarchical relationships between
clusters of data points, evaluating the goodness of a dendrogram means checking whether the order in which
objects are grouped (as shown in the dendrogram) accurately reflects the distances or similarities between
the original data points. To this end, we consider different well-known measures of quality that are: (i)
the Cophenetic Correlation Coefficient and (ii) the Goodman-Kruskal’s gamma. The Cophenetic Correlation
Coefficient is a statistical measure used to evaluate the quality of a hierarchical clustering algorithm (Sokal
and Rohlf (1962)) and is defined via the following formula:

IC =

∑
t∈T

∑
i,i′∈N :i<i′(dii′ − d)(dtii′y

t
ii′ − dt)√∑

i,i′∈N :i<i′(dii′ − d)2
∑

t∈T

∑
i,i′∈N :i<i′(d

t
ii′y

t
ii′ − dt)2

,

where d̄ is the average initial distance between pairs of individuals in the dataset, dtii′y
t
ii′ (i, i′ ∈ N and t ∈ T )

is the cophenetic distance between individuals i and i′ (height of the level t at which those two observations
are first joined) and dt is the average cophenetic distance associated with the dendrogram. It quantifies the
correlation between the original distances of data points in the dataset and the cophenetic distances (heights
of the dendrogram at which each pair of clusters is first joined in the same cluster). Thus, it is a measure of
how faithfully the tree represents the dissimilarities among observations. It ranges between -1 and 1, with 1
indicating perfect preservation of the original distances and values closer to 0 indicating poor preservation.
The Goodman-Kruskal’s gamma is another measure of association that can be used to evaluate how well a
dendrogram preserves the relationships between objects in the original data. Specifically, it is computed as
follows:

IGK =
s+ − s−

s+ + s−
,

where s+ represents the number of concordant pairs of clusters and s− represents the number of discordant
pairs of clusters. We define two pairs of clusters concordant if the relation between their original distances is
preserved by the cophenetic distances and discordant otherwise.

As for the Cophenetic Correlation Coefficient, its value ranges between -1 and 1. A value equal to 1
indicates that the dendrogram perfectly preserves the original order of distances. A value equal to 0 means
that the dendrogram does not provide a meaningful representation of the original relationships. A value
equal to -1 shows that the dendrogram completely misrepresents the original relationships.

Table 5 reports the main results related to the artificial datasets obtained by comparing the matheuristic
algorithm (ODL-1) and (ODL-2), based on the two general formulations presented in Section 4, and the
greedy algorithm (greedy). For each level of separation between clusters (variance), for each value of the
weight α and for each solution strategy, we report the average and standard deviation of, respectively, the
computational time, the Cophenetic Correlation Coefficient and the Goodman-Kruskal’s gamma. We always
distinguish between the two different objective functions (D and Dtotal). Note that we report aggregated
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data, with respect to the number of clusters and number of data points, because we observed that they do
not have a significant impact on the behaviour of the different solution strategies. This can be seen, for
example, in Figure 3. It shows the boxplots of the running time for each solution strategy and number of
clusters distinguishing between the two objective functions. From them we can observe that the relations
between the solution strategies do not change when the number of clusters. The greedy is, as expected, the
fastest one, followed by the matheuristic based on the second general formulation and the matheuristic based
on the first general formulation.
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Figure 3: Boxplots of the computational time for artificial datasets

From both Table 5 and Figure 3 we can observe that the adoption of the second general formulation
significantly improves the matheuristic running time for both objective functions. For the formulation where
the overall distance is minimised (Dtotal) the decrease in running time is even more significant with a maxi-
mum saving in average running time, with respect to the matheuristic based on the first formulation, equal
to 83.6%. As regards the two measures of quality adopted to evaluate the dendrograms associated with
the solutions, we can see that, although the differences are not huge, the average values of the Cophenetic
Correlation Coefficient associated with the matheuristic algorithm is always better than the one associated
with the greedy algorithm, with only few exceptions. In particular, we can observe that the adoption of the
matheuristic approach based on the second general formulation (ODL-2) and the first objective function (D)
produces the best results in terms of the average values of this quality measure. This can also be better seen
from Figure 4 showing the boxplots of the Cophenetic Correlation Coefficient for the different values of the
weight α and for the two objective functions (D and Dtotal) distinguishing between the different solution
approaches: the greedy algorithm and the matheuristic algorithm based on the two general formulations
proposed (ODL-1) and (ODL-2). The same observations can be made for the Goodman-Kruskal’s gamma in
Table 5 and Figure 5. This permits us to conclude that, relying on the results obtained from the artificial in-
stances, the proposed matheuristic algorithm based on the second formulation represents a good compromise
between running time and quality of the solution obtained. In addition, the reader may observe in Figures
4 and 5 that, in general, the values of IC and IGK are higher for intermediate values of α. All these results
justify the definition of the model detailed in Section 4.

Similarly, Table 6 and Table 7 report the main results related to real datasets. For each solution strategy,
the weight value α and the objective function (D or Dtotal), it shows the running time (Time) And the values
of the two measures of quality adopted: the Cophenetic Correlation Coefficient (IC) and the Goodman-
Kruskal’s gamma (IGK). We can observe that on real datasets the improvement in terms of running time
derived from the adoption of the matheuristic algorithm based on the second general formulation is even
more significant. In particular for the biggest size datasets Seeds and Thyroid, the decrease in running time
is by an order of magnitude. This is particularly evident by looking at Figure 6 which reports the boxplots
of the computational time for real datasets, always distinguishing between solutions strategies and objective
functions.

As regards the two measures of quality, different from the results obtained for the artificial datasets, they
show a more fluctuating behaviour both with respect to the objective function and the matheuristic version
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Table 5: Comparison between matheuristic and greedy algorithm on artificial datasets

Time IC IGK

objective mean std mean std mean std
Variance alpha algorithm D Dtotal D Dtotal D Dtotal D Dtotal D Dtotal D Dtotal

1

0
greedy 2.358 2.358 2.854 2.853 0.828 0.828 0.054 0.054 0.583 0.583 0.163 0.163
ODL-1 218.152 297.538 239.459 264.674 0.757 0.572 0.117 0.189 0.515 0.418 0.169 0.179
ODL-2 53.146 51.337 63.511 62.957 0.759 0.74 0.103 0.129 0.527 0.517 0.161 0.177

0.25
greedy 2.351 2.366 2.837 2.871 0.832 0.832 0.036 0.036 0.576 0.576 0.118 0.118
ODL-1 236.028 352.202 248.058 300.899 0.848 0.661 0.039 0.147 0.624 0.481 0.134 0.167
ODL-2 63.6 59.385 73.279 71.671 0.848 0.732 0.036 0.105 0.624 0.498 0.116 0.142

0.5
greedy 2.35 2.349 2.842 2.844 0.832 0.832 0.038 0.038 0.556 0.556 0.131 0.131
ODL-1 212.585 339.801 237.66 284.366 0.855 0.766 0.033 0.072 0.659 0.55 0.092 0.137
ODL-2 67.7 62.092 77.804 75.134 0.851 0.79 0.036 0.053 0.644 0.546 0.102 0.121

0.75
greedy 2.346 2.347 2.827 2.826 0.828 0.828 0.041 0.041 0.55 0.55 0.125 0.125
ODL-1 203.23 336.705 234.485 293.652 0.854 0.837 0.031 0.036 0.663 0.634 0.086 0.091
ODL-2 71.379 64.81 81.752 79 0.856 0.823 0.032 0.036 0.664 0.59 0.091 0.094

1
greedy 2.347 2.35 2.829 2.829 0.822 0.822 0.042 0.042 0.547 0.547 0.129 0.129
ODL-1 150.733 152.46 218.168 218.006 0.845 0.845 0.037 0.037 0.644 0.625 0.104 0.11
ODL-2 65.353 61.205 80.897 79.649 0.85 0.812 0.035 0.039 0.66 0.574 0.097 0.108

4

0
greedy 2.348 2.353 2.852 2.862 0.437 0.437 0.077 0.077 0.292 0.292 0.067 0.067
ODL-1 213.611 304.899 226.331 262.656 0.415 0.362 0.076 0.093 0.28 0.252 0.067 0.074
ODL-2 49.967 48.238 59.633 59.093 0.416 0.413 0.077 0.077 0.281 0.277 0.068 0.066

0.25
greedy 2.331 2.343 2.82 2.827 0.532 0.532 0.069 0.069 0.372 0.372 0.087 0.087
ODL-1 238.669 364.421 245.666 294.686 0.572 0.53 0.062 0.074 0.421 0.384 0.077 0.088
ODL-2 63.83 59.751 72.37 71.071 0.574 0.547 0.061 0.064 0.418 0.381 0.08 0.087

0.5
greedy 2.33 2.323 2.816 2.814 0.522 0.522 0.067 0.067 0.365 0.365 0.087 0.087
ODL-1 214.337 347.944 236.601 293.376 0.583 0.557 0.053 0.062 0.423 0.399 0.078 0.078
ODL-2 69.009 63.517 79.75 77.275 0.585 0.568 0.049 0.049 0.431 0.4 0.076 0.075

0.75
greedy 2.323 2.333 2.801 2.834 0.506 0.506 0.08 0.08 0.345 0.345 0.092 0.092
ODL-1 201.893 330.636 228.041 274.546 0.588 0.581 0.048 0.053 0.43 0.418 0.074 0.08
ODL-2 71.75 65.485 81.226 79.13 0.592 0.579 0.052 0.051 0.443 0.41 0.08 0.079

1
greedy 2.316 2.33 2.788 2.821 0.475 0.475 0.076 0.076 0.314 0.314 0.086 0.086
ODL-1 149.242 151.294 215.98 215.608 0.581 0.581 0.05 0.048 0.44 0.43 0.069 0.066
ODL-2 65.983 61.764 81.463 79.958 0.588 0.57 0.05 0.047 0.445 0.4 0.07 0.069

9

0
greedy 2.336 2.323 2.823 2.801 0.466 0.466 0.055 0.055 0.311 0.311 0.043 0.043
ODL-1 195.435 279.144 222.702 256.433 0.44 0.406 0.061 0.073 0.296 0.278 0.045 0.048
ODL-2 47.646 46.184 57.135 56.832 0.442 0.436 0.064 0.062 0.297 0.294 0.046 0.043

0.25
greedy 2.303 2.292 2.778 2.761 0.442 0.442 0.064 0.064 0.292 0.292 0.057 0.057
ODL-1 235.023 359.962 244.15 291.249 0.475 0.434 0.06 0.073 0.337 0.304 0.061 0.073
ODL-2 64.228 60.162 72.576 71.439 0.476 0.457 0.052 0.052 0.343 0.323 0.051 0.055

0.5
greedy 2.293 2.29 2.774 2.758 0.394 0.394 0.069 0.069 0.258 0.258 0.062 0.062
ODL-1 218.297 352.786 239.444 290.695 0.455 0.44 0.059 0.06 0.311 0.305 0.067 0.066
ODL-2 69.853 63.906 77.754 76.184 0.463 0.457 0.055 0.058 0.326 0.313 0.061 0.064

0.75
greedy 2.285 2.289 2.754 2.762 0.362 0.362 0.069 0.069 0.229 0.229 0.067 0.067
ODL-1 202.465 340.802 229.944 284.71 0.445 0.449 0.059 0.063 0.311 0.311 0.067 0.075
ODL-2 72.581 66.012 82.099 79.918 0.449 0.452 0.051 0.052 0.313 0.306 0.059 0.065

1
greedy 2.285 2.283 2.766 2.751 0.327 0.327 0.071 0.071 0.206 0.206 0.063 0.063
ODL-1 149.016 151.174 213.939 213.943 0.416 0.421 0.06 0.06 0.283 0.287 0.069 0.072
ODL-2 66.173 62.024 81.49 80.042 0.42 0.415 0.053 0.053 0.289 0.269 0.06 0.064
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Figure 4: Boxplots of the cophenetic correlation coefficient for artificial datasets
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Figure 5: Boxplots of the Goodman-Kruskal correlation coefficient for artificial datasets

adopted. However, focusing on the cases where the weight α = 1, that is on the complete linkage approach,
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Figure 6: Boxplots of the computational time for real datasets

we can observe that the value of at least one of the two measures associated with the proposed approach
is always better than the one associated with the greedy algorithm. In particular, we can see a significant
difference in both values of the Cophenetic Correlation Coefficient and Goodman-Kruskal’s gamma for the
Seed dataset and the Wine dataset. This can be better visualised from the boxplots reported in Figure 7
and Figure 8. From these preliminary results on real datasets, we can conclude that the proposed approach
represents a good alternative to the greedy algorithm to build dendrograms based on complete linkage.
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Figure 7: Boxplots of the cophenetic correlation coefficient for real datasets

7. Conclusions

In this study, we introduce a novel linkage method that combines the single and complete linkage methods
through a weighted linear combination of them. We propose two distinct mathematical programming for-
mulations to address the hierarchical clustering problem. The first formulation updates the distance matrix
between clusters iteratively, while the second one relies on a clique partitioning approach. These formula-
tions enable the exact solution of small-to-medium size datasets and serve as the foundation for matheuristic
solution procedures aimed at handling larger datasets.

The proposed solution strategies are evaluated using benchmark datasets from the literature. The com-
putational experiments demonstrate that the proposed approaches yield high-quality hierarchical clusterings,
as measured by the cophenetic and Goodman-Kruskal coefficients. Remarkably, the results confirm that it
is feasible to solve the Optimal Dunn Linkage model for small datasets using the Gurobi solver. For larger
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Table 6: Comparison between matheuristic and greedy algorithm on real datasets

objective Time IC IGK

dataset alpha algorithm D Dtotal D Dtotal D Dtotal

Coffee

0
greedy 0.058 0.058 0.874 0.874 0.686 0.686
ODL-1 66.294 96.675 0.852 0.854 0.652 0.659
ODL-2 2.706 2.191 0.851 0.867 0.647 0.656

0.25
greedy 0.058 0.057 0.88 0.88 0.767 0.767
ODL-1 15.404 47.711 0.866 0.862 0.714 0.709
ODL-2 9.917 6.039 0.874 0.866 0.742 0.653

0.5
greedy 0.057 0.058 0.884 0.884 0.772 0.772
ODL-1 46.11 146.291 0.863 0.813 0.68 0.68
ODL-2 5.592 3.554 0.862 0.876 0.737 0.749

0.75
greedy 0.057 0.057 0.831 0.831 0.742 0.742
ODL-1 50.401 116.429 0.815 0.657 0.655 0.633
ODL-2 2.567 2.057 0.836 0.862 0.736 0.696

1
greedy 0.058 0.057 0.807 0.807 0.708 0.708
ODL-1 3.133 4.111 0.812 0.812 0.659 0.657
ODL-2 1.842 1.225 0.811 0.804 0.627 0.625

Ruspini

0
greedy 0.381 0.367 0.848 0.848 0.736 0.736
ODL-1 23.218 60.621 0.845 0.764 0.734 0.546
ODL-2 9.519 8.345 0.848 0.848 0.731 0.733

0.25
greedy 0.351 0.363 0.839 0.839 0.614 0.614
ODL-1 87.613 213.026 0.865 0.6 0.748 0.337
ODL-2 20.569 16.087 0.811 0.692 0.513 0.426

0.5
greedy 0.354 0.357 0.84 0.84 0.611 0.611
ODL-1 42.072 137.844 0.855 0.655 0.63 0.364
ODL-2 20.24 14.952 0.875 0.805 0.752 0.713

0.75
greedy 0.362 0.363 0.845 0.845 0.613 0.613
ODL-1 51.367 112.739 0.863 0.863 0.717 0.715
ODL-2 19.301 13.799 0.86 0.762 0.716 0.531

1
greedy 0.354 0.363 0.849 0.849 0.612 0.612
ODL-1 16.056 18.798 0.843 0.844 0.712 0.713
ODL-2 12.862 7.705 0.843 0.745 0.711 0.5

Seeds

0
greedy 13.466 13.027 0.427 0.427 0.414 0.414
ODL-1 1321.545 1474.331 0.429 0.28 0.409 0.299
ODL-2 316.078 314.049 0.414 0.412 0.402 0.396

0.25
greedy 12.906 13.065 0.6 0.6 0.635 0.635
ODL-1 1236.58 1444.856 0.6 0.505 0.531 0.451
ODL-2 359.925 355.65 0.677 0.669 0.601 0.594

0.5
greedy 13.074 13.089 0.511 0.511 0.362 0.362
ODL-1 1204.725 1387.036 0.642 0.649 0.612 0.604
ODL-2 380.322 370.476 0.589 0.598 0.536 0.535

0.75
greedy 12.823 12.794 0.62 0.62 0.496 0.496
ODL-1 1193.169 1515.758 0.713 0.714 0.67 0.671
ODL-2 388.083 371.005 0.692 0.643 0.678 0.587

1
greedy 12.839 13.333 0.482 0.482 0.343 0.343
ODL-1 1048.527 1056.598 0.643 0.634 0.574 0.557
ODL-2 387.568 380.59 0.713 0.702 0.678 0.641
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Table 7: Comparison between matheuristic and greedy algorithm on artificial datasets (continue)

objective Time IC IGK

dataset alpha algorithm D Dtotal D Dtotal D Dtotal

Thyroid

0
greedy 15.389 15.624 0.896 0.896 0.712 0.712
ODL-1 1199.864 1431.597 0.896 0.851 0.701 0.696
ODL-2 282.21 280.179 0.88 0.892 0.695 0.703

0.25
greedy 15.102 15.293 0.883 0.883 0.74 0.74
ODL-1 1251.463 1442.071 0.675 0.785 0.663 0.724
ODL-2 370.978 362.947 0.806 0.804 0.727 0.688

0.5
greedy 14.967 15.205 0.854 0.854 0.637 0.637
ODL-1 1269.044 1572.623 0.846 0.86 0.743 0.797
ODL-2 379.513 371.344 0.743 0.814 0.691 0.681

0.75
greedy 14.973 15.34 0.867 0.867 0.702 0.702
ODL-1 1205.633 1666.316 0.597 0.696 0.624 0.643
ODL-2 394.817 382.329 0.824 0.792 0.717 0.703

1
greedy 14.913 15.27 0.864 0.864 0.643 0.643
ODL-1 1140.848 1135.71 0.885 0.875 0.742 0.747
ODL-2 399.121 390.906 0.791 0.79 0.693 0.717

Wine

0
greedy 7.431 7.579 0.544 0.544 0.442 0.442
ODL-1 780.801 978.498 0.519 0.546 0.415 0.434
ODL-2 142.996 140.217 0.52 0.521 0.417 0.42

0.25
greedy 7.438 7.368 0.558 0.558 0.456 0.456
ODL-1 747.199 1032.87 0.739 0.719 0.641 0.621
ODL-2 184.037 174.83 0.668 0.597 0.582 0.55

0.5
greedy 7.208 7.626 0.633 0.633 0.465 0.465
ODL-1 704.659 989.004 0.639 0.596 0.449 0.391
ODL-2 197.141 184.595 0.614 0.583 0.537 0.424

0.75
greedy 7.646 7.352 0.553 0.553 0.396 0.396
ODL-1 608.345 821.564 0.699 0.694 0.587 0.586
ODL-2 204.234 192.849 0.647 0.618 0.531 0.494

1
greedy 7.612 7.418 0.437 0.437 0.287 0.287
ODL-1 520.319 517.202 0.602 0.569 0.437 0.319
ODL-2 202.889 195.048 0.592 0.565 0.423 0.413
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Figure 8: Boxplots of the Goodman-Kruskal correlation coefficient for real datasets

datasets, alternative strategies are required, but leveraging the mathematical programming formulations al-
lows for the development of algorithms that achieve high-quality solutions, often surpassing the performance
of traditional greedy methods. In particular, the matheuristic approach based on the clique partitioning
formulation proves highly effective for medium-sized datasets, achieving the best values for both cophenetic
and Goodman-Kruskal coefficients.

The formulations and algorithms presented in this work provide a foundational step toward more sophisti-
cated models of hierarchical clustering. Future research should focus on developing faster and more accurate
algorithms to tackle larger instances. Potential extensions of this work include the exploration of merging
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more than two clusters at each hierarchical level, enhancing the flexibility of dendrogram representations; the
development of new metrics to evaluate dendrogram quality; and the integration of multi-objective optimiza-
tion techniques to account for multiple evaluation criteria. These extensions represent promising directions
for future research and will be the focus of subsequent studies.
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