
A Mathematical Programming Approach for Calendar
Generation

Lavinia Amorosia,∗, Paolo Dell’Olmoa, Giovanni Luca Giaccob

aDipartimento di Scienze Statistiche, University of Rome Sapienza, Italy
bDirezione Pianificazione Industriale, Trenitalia, Rome, Italy

Abstract

This paper describes a new method for automatically generating a text to cus-

tomers in a concise and clear way with a calendar represented by a boolean

vector as its input. Our attention is focused on problems arising from cal-

endars in the transportation field, in particular railway services. The aim is

to verify if it is possible to optimize the quality of outcomes in terms of in-

telligibility with a mathematical programming approach. Two mathematical

formulations for this challenging task have been proposed. The first one con-

sists in using a specific set covering model with embedded generation of sets out

of the ground set (integrated model). The second one combines a set covering

model with a parallel vector generation algorithm. A Mixed Integer Program-

ming solver is adopted to solve the two models, while a parallel algorithm for

the vector generation problem is designed in the second approach. Both models

have been tested on several real railway timetables, always obtaining optimal

solutions which compare favorably with those produced using current practices.

Moreover, an enhanced formulation for the integrated model with better per-

formances is presented. Computational times show that both approaches are

applicable in practical contexts.

Keywords: Mathematical Models, Optimization, Transportation Services.

∗Corresponding author
Email addresses: lavinia.amorosi@uniroma1.it (Lavinia Amorosi),

paolo.dellolmo@uniroma1.it (Paolo Dell’Olmo), g.giacco@trenitalia.it (Giovanni Luca
Giacco)

Preprint submitted to DSS Sapienza July 5, 2016

1. Introduction

In many enterprise operational environments ICT systems adopt vectorial

representations of calendars (i.e. boolean vectors where entries mean availability

(1) or non availability (0) of a service in the day corresponding to a specific

index of the vector). On the other hand, people (in particular customers) need a5

textual description which is clear, simple and easy to understand and remember,

without redundancies. For this reason, railway undertakings and infrastructure

managers are making a big effort to improve the quality of their communication

with commuters, employees and travelers, especially in the frequent cases of path

modifications implying scattered calendars and even worse descriptions. Textual10

calendars currently appear in various outputs such as websites, mobile devices,

timetable boards, train transport diagrams and books. Therefore, producing a

textual representation starting from a boolean vector is a real business priority.

Indeed, the current state of the art on automation of organizational processes

has almost completely canceled the existence of ”readable” calendars and their15

manual management by the operators. Yet, there is the evident necessity of

representing, in particular to the customers, a good quality description of the

calendars related to the service offer as this is considered a substantial factor in

the perception of the service quality. Moreover, it is also desirable to present a

timetable in a compact way, showing how it usually operates or where and how20

it has changed. This complete format of communication is very often preferred

to an individual day representation, used only in the case of particular journeys

(leisure or business travel).

In general, a calendar can be textually represented in a variety of ways and

different formats, but we wish to achieve the goal of generating the ”best” rep-25

resentation by employing operations research methods. Despite its practical

relevance, as this specific problem is relatively new, it has been dealt with in

just one paper (see [1]) where an heuristic algorithm for producing readable text

has been proposed. To the best of our knowledge, the problem has never been

dealt with using a mathematical programming approach. For these reasons,30

2

we propose two mathematical models in order to get the ”optimal” quality of

outcomes in terms of intelligibility. The first one adopts a customized formula-

tion of a set covering model (see [2] for general set covering formulation) with

embedded and constrained generation of sub-sets (integrated model), while the

second one consists in combining a set covering formulation with a parallel vec-35

tor generation algorithm. The computational time of both models required to

reach the optimal solutions is, to our knowledge, compatible with the practical

requirements. A proof of concept for this approach has been presented in [3],

while in this paper, we describe the problem in details, give a formal assess-

ment of the hypothesis underling the mathematical models, explain, by means40

of a complete example, how the sentences are created from the model solutions,

produce an extensive computational analysis on a large set of difficult instances

and perform also sensitivity analysis on some resolution parameters. Moreover,

we introduce also a third model improving significantly the performance of the

integrated one and compare the three models on all the problem instances.45

The rest of the paper is organized as follows. Section 2 describes the problem

and introduces the proposed methodology. Section 3 contains notation and

the first mathematical formulation, while in Section 4 the second model and

the external parallel vector generation algorithm are illustrated. A detailed

example of how a readable text can be generated from the set covering solution50

is described in Section 5. Solution methods and the first computational results

are reported in Section 6. Finally, in Section 7 we give an enhancement of the

first model which improves significantly the performances of this approach and

makes it competitive in several instances with the second model characterized

by the external sub-vectors generation.55

2. Problem Description and Methodology

Given a train calendar containing operating and non-operating days (see the

example in Figure 1) we want to generate a text capable of describing, in a

concise manner, when the train service will be provided.

3

Figure 1: Example of train calendar

The time window in this example starts in November and ends in December.60

The days when the service is provided are colored in green, those in which it is

not in red. As said before within the ICT systems this calendar is represented

by a binary vector in which the zeros correspond to the days when the service

is not provided (in red) and the ones to the days when the service is provided

(in green), as shown in Figure 2.65

Figure 2: The binary vector corresponding to the example

The binary vector associated with the time window under consideration is

called periodicity. From the periodicity we want to obtain the clearest and

most concise text description of the corresponding calendar. A possible textual

description for this example is the one below:

”The service is active on weekends from 5 November to 3 December”.70

In general, one can adopt different ways of representing the given calendar.

In this case and throughout the paper, the positive way is used (based on op-

erating days), but one could also use a negative way (based on non-operating

days) or a mixed one (combination of positive and negative ways).

The solution idea, underlying the presented method, is to decompose the75

periodicity on the basis of 46 standard binary vectors, named clusters, each one

of them referring to a particular sub-set of the calendar (see the 46 clusters

represented in Table 5 in the Appendix). After chosing a family of sub-vectors

resulting from the standard binary vectors, one has to find the best combination

4

out of this family to describe the given train calendar.80

In more detail, this family can be obtained by decomposing the 46 clusters

in subsequences having a minimum length and a given percentage of ones. Each

of these sub-vectors can be associated to:

• a ”quality”, describing the type of extracted vector (Mondays, Tuesdays,

holidays, etc.);85

• a start date (date k if the first vector element is in position k);

• a final date (date h if the last vector element is in position h).

A detailed example describing how the text is obtained from a sub-vector

solution is given in Section 5.

3. The First Approach90

Following the reasoning of the previous section, we can formalize the problem

of finding the minimum set of sub-vectors covering (i.e. representing) the whole

periodicity, taking into account the necessity of using sub-vectors with ”nice”

characteristics (like the percentage of ones over a given threshold and with length

larger than a given minimum). Since it is possible that a standard cluster (or95

its sub-vector) is used in a solution several times (e.g. the service is provided

on Sundays from 1/1 to 1/31, from 3/15 to 7/25 and from 11/1 to 12/10, where

the vector Sunday is used three times), we have to consider as an input data a

predetermined number of copies of each standard cluster. This set of copies is

related to the maximum number of times that it could be required to enter into100

a solution. The performed experiments show that the copies used in a solution

are less than 10. For these reasons it was decided to copy each cluster 10 times.

3.1. Notation and Mathematical Formulation

We consider the following input data:

D = vector of dates associated with the periodicity;105

C = set of clusters;

5

Cc,k = k-th copy of the cluster c ∈ C;

mc,k = size of the copy Cc,k;

d∗d,c,k = (position of the date d in Cc,k) + 1;

l = minimum length that the sub-vectors must have to be feasible;110

Tot = cardinality of the periodicity;

α = minimum percentage of ones that the sub-vectors must have to be

feasible;

M = big integer.

We define the following integer variables:115

Y I
c,k integer indicating the starting position of the sub-vector extracted from

the k-th copy Cc,k of the cluster c;

Y F
c,k integer indicating the final position of the sub-vector extracted from

the k-th copy Cc,k of the cluster c.

To ensure that every date d ∈ D is covered, we need to know whether d120

is contained a given cluster, included in the indices proposed by the previous

variables Y I
c,k and Y F

c,k. We then define three types of binary variables:

KPd,c,k =

 1 if Y I
c,k ≤ d∗d,c,k

0 otherwise
125

This variable represents whether the position index of the date d matches,

or it is successive to the start index of the k-th copy Cc,k of the cluster c.

KNd,c,k =

 1 if Y F
c,k ≥ d∗d,c,k

0 otherwise
130

The previous variable represents whether the position index of the date d

matches, or precedes the final index of the k-th copy Cc,k of the cluster c.

Kd,c,k =

 1 if the date d is covered by the k-th copy Cc,k of the cluster c

0 otherwise
135

By means of this variable we indicate if the position index of the date d is

6

contained in the sub-vector extracted from the k-th copy Cc,k of the cluster c

and showing a start position Y I
c,k and final position Y F

c,k. Finally, we introduce

the binary variable allowing us to specify which copies and which clusters are

chosen as solutions:140

xc,k =

 1 if the k-th copy Cc,k of the cluster c is chosen in the solution

0 otherwise

Through these decisional variables we can formulate the following integer

linear programming model:145

min
∑

c∈C,k

xc,k (1)

subject to

∑
d∈D

Kd,c,k ≥ α ∗ (xc,k + Y F
c,k − Y I

c,k) ∀c ∈ C ∀k (2)

Y F
c,k ≤ mc,k ∗ xc,k ∀c ∈ C ∀k (3)

Y I
c,k ≤ Y F

c,k − (l − 1) ∗ xc,k ∀c ∈ C ∀k (4)

Y I
c,k ≥ xc,k ∀c ∈ C ∀k (5)

KPd,c,k ≥
(d∗d,c,k − Y I

c,k) + 1

(Tot+ 1)
∀d ∈ D ∀c ∈ C ∀k (6)

KPd,c,k ≤ 1 +
(d∗d,c,k − Y I

c,k)

(Tot+ 1)
∀d ∈ D ∀c ∈ C ∀k (7)

KNd,c,k ≥
(Y F

c,k − d∗d,c,k) + 1

(Tot+ 1)
∀d ∈ D ∀c ∈ C ∀k (8)

KNd,c,k ≤ 1 +
(Y F

c,k − d∗d,c,k)

(Tot+ 1)
∀d ∈ D ∀c ∈ C ∀k (9)

7

Kd,c,k ≥ 1− (1−KPd,c,k) ∗M − (1−KNd,c,k) ∗M

∀d ∈ D ∀c ∈ C ∀k (10)

Kd,c,k ≤ KPd,c,k ∀d ∈ D ∀c ∈ C ∀k (11)

Kd,c,k ≤ KNd,c,k ∀d ∈ D ∀c ∈ C ∀k (12)

∑
c∈C,k

Kd,c,k ≥ 1 ∀d ∈ D (13)

The objective function minimizes the number of clusters required to describe

the total periodicity. Constraint (2) ensures that the sub-vectors extracted have

at least the predetermined percentage of ones represented by α. Constraints (3),150

(4) and (5) ensure that each sub-vector extracted from a cluster has the start and

end indices included in the cluster’s size and that its length is at least equal to

the fixed minimum length l. Constraints (6) and (7) guarantee that the variable

KPd,c,k assumes the value 1 if the position index of the date d matches, or it

is successive to the start index of the sub-vector extracted from the k-th copy155

Cc,k of the cluster c. Constraints (8) and (9) ensure that the variable KNd,c,k

takes the value 1 if the position index of the date d matches, or precedes the

final index of the sub-vector extracted from the k-th copy Cc,k of the cluster

c. Finally, constraints (10), (11) and (12) guarantee that the variable Kd,c,k

takes the value 1 if the corresponding KPd,c,k and KNd,c,k are both equal to160

1. Consequently, if the variable assumes value 1, the index position of the date

d belongs to the sub-vector extracted from the k-th copy Cc,k of the cluster c,

which has as start index Y I
c,k and as final index Y F

c,k. Constraint (13) ensures

that any given operating date is covered by at least one sub-vector of a cluster

containing that date.165

8

4. The Second Approach

As previously mentioned, the second approach proposed in this paper con-

sists in using a set covering model with a parallel preprocessing algorithm for

generating all feasible sub-vectors.

4.1. Notation and Mathematical Formulation170

We consider the following sets:

D = set of dates associated with the periodicity;

O = set of operating days (in which the service is provided);

S = set of the feasible sub-vectors generated with the parallel algorithm

from the periodicity.175

Let us define a matrix whose entry ts,d ∀s ∈ S ∀d ∈ D, is 1 if the date d

is included in the set s and 0 otherwise. Now, we can introduce the following

binary variable:

xs =

 1 if the set s is chosen in the solution

0 otherwise
180

The problem formulation is given by the following set covering model:

min
∑
s∈S

xs (14)

subject to

∑
s∈S

ts,d ∗ xs ≥ 1 ∀d ∈ O (15)

xs ∈ {0, 1} ∀s ∈ S (16)

By solving the above model we determine the minimum number of sub-

vectors to describe the periodicity. Constraint (15) ensures that each operating185

day is included in at least one of the vectors that belong to the solution. In this

approach a parallel vector generation algorithm creates all possible feasible sets.

9

More precisely, from each standard cluster, all the sub-vectors which satisfy the

following two properties are extracted:

• length at least equal to l;190

• percentage of ones greater or equal to α.

The extraction takes place through a parallel algorithm which is composed

of two simple steps: the first one leads to the building of a vector in which each

entry represents the cumulative number of ones found in the original vector from

the first to the current index; the second one considers only sub-vectors of the195

cumulative vector with length at least equal to l. On the vectors obtained in

this way the condition of the percentage α must be verified. The final output

is a list of pairs of integers representing the first and last index required to

identify each feasible sub-vector. The sub-vectors are then used as variables

of the set covering model. By requiring that the sub-vectors length is at least200

equal to a given length l, we guarantee that the periodicity is described through

sub-vectors without being excessively fragmented. By requiring also that a sub-

vector is feasible only if it contains a certain percentage of ones equal to α, we

ensure that the periodicity is reconstructed through sets that can be expressed

in a simple and clear way, with few exceptions.205

5. Illustrative example

In this section it is shown how the proposed approaches work on a complete

practical example. For this purpose we present the calendar in Figure 3.

In accordance with the previous notation, the service is provided for the days

colored in green and is not provided for those colored in red. The periodicity is210

10

Figure 3: Illustrative example

from 13 December 2015 to 10 December 2016 and its dimension is of 364 entries.

As we can observe, the service is provided in the holidays with one exception

(the date 3/28/2016). Through the current system used for calendar generation,

because of this exception, the corresponding string in natural language would

be as follows:215

"The service is provided on Sundays

and on the dates 12/25/2015, 12/26/2015,

1/1/2016, 1/6/2016, 4/25/2016, 6/2/2016,

8/15/2016, 11/1/2016 and 12/8/2016"

220

It is evident that this string is not optimal and could be expressed in a more

clear and concise way. For this purpose, let us apply one of the two previous

models. The solution obtained is as follows:

Optimal objective value = 1225

Optimal variable values:

x[<44 1 362>]=1

107

It can be seen that the whole periodicity is covered by only one sub-vector230

with one exception. That is, a sub-vector extracted from cluster 44 (holidays,

including Sundays) which has a start index corresponding to the first date of the

11

periodicity and a final index corresponding to the 362nd date of the periodicity.

The exception is represented by the integer number 107 which, in this example,

corresponds to the date 3/28/2016. Therefore, from this solution it is possible235

to form the sentence that describes in natural language the whole periodicity:

"The service is provided on holidays

from 12/13/2015 to 12/8/2016

with the exception of 3/28/2016"

240

As we can observe, the string built from the solution provided by the model

is more concise and intelligible than the one produced by the current procedure.

6. Solution Methods and Computational Results

We solved the models by means of a Mixed Integer Programming solver, i.e.,

CPLEX. We recall that there is a major difference in the two formulations pro-245

posed, as in the second one we have to generate sub-vectors before launching the

solver. Therefore, to solve the model presented in the second solution approach,

a parallel vector generation algorithm has been designed to create all possible

feasible sets. As the possible number of vectors is very large, we adopted a par-

allel solution method that turns out to be quite effective for large combinatorial250

optimization problems. The reader interested in parallel computation can refer,

for instance, to the book of Bisseling [4]. In general, parallel computing implies

the simultaneous use of more processes to solve a single computational problem.

A problem is divided into discrete parts that can be solved concurrently through

multiple processes. This method allows the process to overcome the limitations255

of memory and speeds up the computational time. We can distinguish two main

different logics for developing parallel codes: the message-passing approach and

the multithreading approach. In the message-passing approach, the processes

cooperate by means of exchanging messages. In this case, each process has

access to its own memory for reading and writing data. If a process needs to260

12

access data present in the memory of another process or if more processes need

to synchronize the execution of a set of instructions, it is necessary to exchange

messages between the processes involved. An API (Application Programming

Interface) that allows us to implement this parallel computation method is MPI

(Message Passing Interface). This approach has some disadvantages. Each MPI265

process can only access its own local memory and the data to be shared must

be exchanged with explicit inter-process communications (messages). The com-

munications have a time cost and therefore for problems with a large amount

of data, is more efficient to write parallel applications with shared memory. In

this second approach, called multithreading, all processors may access the whole270

main memory. The process contains several concurrent execution flows (threads)

and the instructions executed by a thread can access the process global memory

(data) and the thread local stack (see the figure below).

Figure 4: Shared memory architectures

In our case we chose the .NET environment preferring a multithreading

approach compared to the MPI one. In such a way it is not necessary to transfer275

data as sharing memory among processes is more suitable. We set a number of

processes equal to the number of standard vectors (46) and managed the control

by means of a master procedure and the use of barriers to avoid asynchronous

behavior.

The two approaches were tested on 261 instances related to different time280

windows. The length of the time windows (expressed in number of days of in-

terest) is in the range [90, 365]. The minimum percentage of ones was set equal

13

to 80% and the minimum length of each sub-vector was fixed equal to 2. Many

of these instances were chosen based on two criteria: the high segmentation

of the corresponding periodicity and the difficulty of finding a concise way of285

translating the instances into natural language. All tests were performed on a

Windows computer with 4 Intel i7 2.3 GHz and 8 GB of RAM. As far as the

problem solver is concerned, CPLEX 12.4 has been chosen with a multithread

strategy solution. The second approach, with external vectors generation, per-

formed significantly better than the first one where the vectors generation is290

embedded in the formulation. For the second approach the average computa-

tional time over the 261 tests was 0.6 seconds with values ranging from 0.058 to

4.87 seconds, while for the first one we obtained over the same set of instances

with 0.89 seconds as an average value of the computational time with values

ranging from 0.075 to 10.6 seconds. The solution times are summarized in the295

Table 1 and in Figure 5. These include the preprocessing time, respectively

cluster processing and model writing for the first approach, and all possible

sub-vectors generation, through the parallel algorithm, as well as model writing

for the second approach.

Approach Min Max Average

First 75.0049 ms 10625.6706 ms 897.5859211 ms

Second 58.0041 ms 4875.1411 ms 611.3748065 ms

Table 1: Solution times of the two approaches

Figure 5: Solution times comparison between the two approaches

14

7. Enhanced First Model and Final Computational Results300

In this section we propose an enhanced version of the first integrated model,

which allows us to improve the efficiency of the first formulation. This en-

hancement is actually comparable, in terms of computational efficiency, with

the second model. The main improvement is obtained by means of a reduction

in the number of the binary variables.305

7.1. Notation and Mathematical Formulation

We consider the following input data:

D = set of dates associated with the periodicity;

C = set of clusters;

Cc,k = k-th copy of the cluster c ∈ C;310

mc,k = size of the copy Cc,k ;

d∗d,c,k = (position of the date d in Cc,k) + 1;

l = minimum length that the sub-vectors must have to be feasible;

α = minimum percentage ones that the sub-vectors must have to be feasible;

Tot = cardinality of the periodicity;315

M = big integer.

We define the following integer variables:

Y I
c,k integer indicating the starting position of the sub-vector extracted from

the k-th copy Cc,k of the cluster c;

Y F
c,k integer indicating the final position of the sub-vector extracted from320

the k-th copy Cc,k of the cluster c.

To ensure that every date d ∈ D is covered, we need to know whether d is

contained in a given cluster, defined by the indices proposed by the previous

variables Y I
c,k and Y F

c,k. We then define the following binary variable:

325

Kd,c,k =

 1 if the date d is covered by the k-th copy Cc,k of the cluster c

0 otherwise

15

Finally, we introduce the binary variable allowing us to specify which clus-

ters are chosen in the solution:

330

xc,k =

 1 if the k-th copy Cc,k of the cluster c is chosen in the solution

0 otherwise

Through these decisional variables we can formulate the following integer

linear programming model:

min
∑

c∈C,k

xc,k (17)

subject to335

∑
d∈D

Kd,c,k ≥ α ∗ (xc,k + Y F
c,k − Y I

c,k) ∀c ∈ C ∀k (18)

Y F
c,k ≥ d∗d,c,k ∗Kd,c,k ∀c ∈ C ∀k ∀d ∈ D (19)

Y I
c,k ≤ (1−M) ∗ d∗d,c,k ∗Kd,c,k + d∗d,c,k ∗M ∀c ∈ C ∀k ∀d ∈ D (20)

Y F
c,k − Y I

c,k ≥ (l − 1) ∗ xc,k ∀c ∈ C ∀k (21)

∑
c∈C,k

Kd,c,k ≥ 1 ∀d ∈ D (22)

xc,k ≥
∑

d∈DKd,c,k

Tot
∀c ∈ C ∀k (23)

As we can see, in this new formulation only the binary variable Kd,c,k is

associated with each date d ∈ D. That is, from the original version of the model,

the variables KPd,c,k and KNd,c,k have been eliminated. As a consequence,

also part of the constraints were changed. Constraint (18) ensures that the sub-

vectors extracted have at least the predetermined percentage of ones represented340

16

by α. Constraints (19) and (20) guarantee that ifKd,c,k is equal to 1 (d is covered

by a sub-vector extracted from the k-th copy Cc,k of the cluster c), then the

sub-vector extracted from Cc,k has to contain the date d. Constraints (21) and

(22), as in the original formulation, impose that the minimum length of each

sub-vector is at least equal to l and that each date d ∈ D is covered. Finally,345

constraint (23) ensures that if the variable Kd,c,k is equal to 1 for at least one

date d ∈ D, then the variable xc,k has to be equal to 1, that is the k-th copy

Cc,k of the cluster c has to be in the solution.

7.2. Final Computational Results

The enhanced model was tested on the same set of 261 instances used for350

the first computational results. In Table 2 and in Figure 6 we can see the

solution times of this formulation, including preprocessing and the comparison

with the previous version. As we can observe, the enhanced formulation of the

first approach is faster on average than the original formulation. In particular,

from the Figure 6 it is possible to see that, with the exception of the instance 22,355

the enhanched formulation tends to reduce the high time values of the original

model. Subsequently, Table 3 and Figure 7 show the comparison between the

enhanced formulation and the first and second approach.

Approach Min Max Average

First 75.0049 ms 10625.6706 ms 897.5859211 ms

First enhanced 144.9924 ms 13473.503 ms 672.6719084 ms

Table 2: Solution times of the two models for the first approach

Approach Min Max Average

First 75.0049 ms 10625.6706 ms 897.5859211 ms

First enhanced 144.9924 ms 13473.503 ms 672.6719084 ms

Second 58.0041 ms 4875.1411 ms 611.3748065 ms

Table 3: Solution times of the three models

17

Figure 6: Solution times comparison between the two models for the first approach

Figure 7: Solution times comparison between the three models

As previously mentioned, the solution time of the enhanced formulation is

comparable on average with that of the second approach. From Figure 7 we can360

see that the enhanced formulation also shows the best behavior on the instances

where the other two approaches show high time values, with the exception of

the instance 22. To better compare the performances of the two approaches,

we also analyzed their sensitivity to the parameter l (minimum length that the

sub-vectors must have to be feasible). We considered five instances by varying365

the value of l in the set {1, ..., 5} (the instance with minimum length equal to 2

is the instance number 22 of the original set on which the models were tested).

As we can see from Figure 8, the enhanced formulation is very sensitive to

the values of the parameter l. The latter is more variable than the set covering

of the second approach, to which it converges for values of l ≥ 3. Moreover, on370

the same five instances we applied a different tuning in CPLEX, through which

it is possible to further improve the performances of the enhanced formulation.

In particular, we can observe from Figure 9 that the latter formulation also

18

Figure 8: Solution times comparison with standard tuning

Figure 9: Solution times comparison with best tuning

performs significantly better with this tuning on the instance 22, for which the

computational time is almost halved in comparison with the original tuning.375

For each instance in Table 4, the following are reported: value of the parameter

l, the solution time of the enhanced first approach with the standard tuning, the

solution time of the enhanced first approach with the best tuning, the solution

time of the second approach (for which the best tuning does not have effect)

and the value of the objective function.380

From these results we can conclude that for instances in which the periodicity

19

l 1st En.Mod. Std Tuning 1st En.Mod. Best Tuning 2nd Mod. Obj

1 27267.7106 ms 8949.0066 ms 249.0142 ms 3

2 13473.503 ms 7314.0028 ms 592.9644 ms 3

3 2304.106 ms 1874.0032 ms 437.0467 ms 3

4 1755.0683 ms 1012.007 ms 651.0411 ms 3

5 217.0073 ms 129.0039 ms 147.0078 ms INF

Table 4: Sensitivity analysis

is fragmented, like many of the instances in the set used to test the models, the

first approach, even in its enhanced version, performs worse than the standard

set covering if the parameters are not set in a restrictive way. Otherwise, with

more restrictive value of parameter l, the enhanced formulation is competitive385

with the standard set covering model and it performs even better on many

instances on which the set covering shows high time values.

8. Conclusions

In this paper we presented a novel approach for train calendar textual gen-

eration. Two mathematical programming formulations have been introduced.390

The two approaches were tested on 261 different instances and the quality of

solutions always compared favorably with those used in the real practice in all

tests. The second approach (set covering model) performs better than the first

one (integrated model), although in the enhanced version the integrated model

has significantly improved performance and in a number of cases performs better395

than the set covering model. Successive researches will be dedicated to further

improving the integrated model and applying this methodology to other text

generation problems.

References

[1] M. Greiner, Algorithm for Generating Train Calendar Texts, Promet-400

Traffic&Transportation Vol. 25 (2013) 99–107.

20

[2] G. L. Nemhauser, L. A. Wolsey, Integer and Combinatorial Optimization,

J. Wiley and Sons, 1999.

[3] L. Amorosi, P. Dell’Olmo, G. Giacco, A New Approach for Train Calen-

dar Description Generation, in: Models and Technologies for Intelligent405

Transportation Systems (MT-ITS), Budapest, 3-5 June 2015, IEEE, 280–

286, 2015.

[4] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach

using BSP and MPI (PSC), Oxford University Press, 2004.

21

Appendix410

1. Monday (all Mondays in the periodicity) 24. Wednesday-Saturday

2. Tuesday 25. Thursday-Sunday

3. Wednesday 26. Friday-Monday

4. Thursday 27. Saturday-Tuesday

5. Friday 28. Sunday-Wednesday

6. Saturday 29. Monday-Friday (all sets of 5 days)

7. Sunday 30. Tuesday-Saturday

8. Monday-Tuesday (all sets of 2 days) 31. Wednesday-Sunday

9. Tuesday-Wednesday 32. Thursday-Monday

10. Wednesday-Thursday 33. Friday-Tuesday

11. Thursday-Friday 34. Saturday-Wednesday

12. Friday-Saturday 35. Sunday-Thursday

13. Saturday-Sunday (weekends) 36. Monday-Saturday (all sets of 6 days)

14. Sunday-Monday 37. Tuesday-Sunday

15. Monday-Wednesday (all set of 3 days) 38. Wednesday-Monday

16. Tuesday-Thursday 39. Thursday-Tuesday

17. Wednesday-Friday 40. Friday-Wednesday

18. Thursday-Saturday 41. Saturday-Thursday

19. Friday-Sunday 42. Sunday-Friday

20. Saturday-Monday 43. days before holidays, including Saturdays

(not holidays)

21. Sunday-Tuesday 44. holidays, including Sundays

22. Monday-Thursday (all sets of 4 days) 45. working days

23. Tuesday-Friday 46. all days

Table 5: Clusters

22

	Introduction
	Problem Description and Methodology
	The First Approach
	Notation and Mathematical Formulation

	The Second Approach
	Notation and Mathematical Formulation

	Illustrative example
	Solution Methods and Computational Results
	Enhanced First Model and Final Computational Results
	Notation and Mathematical Formulation
	Final Computational Results

	Conclusions

