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Abstract

In this paper, we focus our attention on the most relevant non-market risk
in insurance, that is, lapse risk. It is basically linked to the behavior of poli-
cyholders facing various situations such as aging, actual economic condition,
contract features, and so on. At the same time, policyholder’s retention di-
rectly impacts the profitability of the product itself, thus the profitability of
the company as a whole.
Through the first part of our analysis, we will recognize some relevant lapse
risk factors from a specific dataset including a number of explanatory vari-
ables. More importantly, the predictive results from the traditional logistic
regression will be compared to those of a bagging classification tree, in order
to select the most powerful model.
Furthermore, the goal of the second part of the analysis is the valuation of
the impact on the profitability of a specific insurance product based on the
predicted lapse rates. We will observe how significant the policyholder be-
havior can be as soon as it is introduced within the profit valuation in a
dynamic fashion.
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1. Introduction

Following Solvency II implementation, the traditional actuarial methods
are being replaced, little by little, by more complex and structured models to
estimate the economic value (in his several forms) of insurance companies. So
far, most effort focused on market risks, which represent the largest compo-
nent of the capital requirement for life insurers under Solvency II. However,
as specified by the Directive itself, non-market risks should be evaluated and
monitored as well, especially the so-called policyholder behavior. Typically,
policyholders are given a number of embedded options within their insurance
contracts, and predicting the exercise’s likelihood is crucial to forecast the
portfolio profitability.
Indeed, policyholder behavior refers to the policyholder’s tendency to exer-
cise any of the options embedded in its insurance contract. They include
surrender option, guaranteed annuity option (GAO), dynamic premium in-
crease option, product switching option, fund switching option, paid-up op-
tion, and so on. For several reasons, the surrender option leads the greatest
impact in the portfolio. Effectively, it is embedded in almost all the insur-
ance products. To some extent, it guarantees the fairness of the contract by
allowing the policyholder to receive back its reserve (net of some penalty).
As opposed to other aforementioned options, the surrender option can be
generally exercised at any time prior to the maturity, just like an American
option, so that the insurer is exposed on a continuous basis.
As a result, Solvency II recognizes that policyholder behavior is a relevant
source of risk. Specifically

Assumptions about the likelihood that policyholders will exercise
contractual options should be based on analysis of past policy-
holder behavior. The analysis should take into account the fol-
lowing:

a) how beneficial the exercise of the options was or would have
been to the policyholders under past circumstances (whether
the option is out of or barely in the money or is in the
money),

b) the influence of past economic conditions,

c) the impact of past management actions,

d) where relevant, how past projections compared to the actual
outcome,
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e) any other circumstances that are likely to influence a deci-
sion whether to exercise the option.

Solvency II introduces the lapse risk valuation in the Standard Formula as
well as in any internal model. The paragraph SCR.7.44 in [9] gives a simple
definition of such a risk:

Lapse risk is the risk of loss or change in liabilities due to a change
in the expected exercise rates of policyholder options.

In this paper, we will focus on the possible risk of loss due to unanticipated
policyholder behavior for full (i.e. not partial) surrender. The adjective
“unanticipated” refers to the exclusion of any dynamic policyholder behavior
assumption from both pricing and reserving, just like it is still common in
the actuarial practice. However, as pointed out at the paragraph TP.2.4 in
[9] about the valuation technique of the best estimate of liabilities,

Cash-flow characteristics that should, in principle and where rel-
evant, be taken into consideration in the application of the valu-
ation technique include the following:

a) Uncertainty in the timing, frequency and severity of claim
events.

b) Uncertainty in claims amounts and the period needed to set-
tle claims.

c) Uncertainty in the amount of expenses.

d) Uncertainty in the value of an index/market values used to
determine claim amounts.

e) Uncertainty in both entity and portfolio-specific factors such
as legal, social, or economic environmental factors, where
practicable. [. . .]

f) Uncertainty in policyholder behavior.

g) Path dependency. [. . .]

h) Interdependency between two or more causes of uncertainty.
[. . .]

3



Anyway, we assume that the insurance company will allocate reserve based on
the traditional actuarial criteria, which also exclude lapse rate. Thus, while
dynamic policyholder behavior will be introduced in the profit valuation of a
typical insurance product, we will consider neither surrender cash-flows nor
policyholder behavior within the reserve calculation.
After a broad review of the past studies about policyholder behavior’s risk
factors in Section 2, we will start our analysis. We can distinguish three
steps:

1. data preparation (Section 6)

2. lapse rate prediction (Sections 3, 4, and 6)

3. profit analysis (Sections 5-7).

So in short, we will firstly predict lapse rates in a dynamical way (that is,
different lapse rates in different scenario simulations), and then use them as
a contingency in a typical profit test for a specific insurance contract. No-
tice that policyholder behavior occurs after economic scenario simulation,
because the former depends on the latter. In other terms, policyholder be-
havior will be treated as a deterministic function - represented by the machine
learning algorithm - of the scenario simulation, among others. All in all, we
will not build a stochastic model for the policyholder behavior, so that no
further computational burden will be caused beyond that coming from the
economic scenario simulation.

2. Drivers of the policyholder behavior

Because surrender activity can be so damaging to a single company or
to the life insurance industry if it occurs en masse, research on widespread
surrender activity and its possible determinants is especially important. In
the last century, several researches and papers have been published about
the very sources of the policyholder behavior. They referred on the financial
and insurance market of various countries worldwide. Although this paper
does not aim to detect the global sources of policyholder behavior, it is worth
recalling the most relevant results about them, covering almost one century.
This will provide us with good foundations to start analyzing a lapse rate
database of an insurance company.
An extensive description of the lapse rate research’s early stage can be found
in [22], which focuses on North American markets. By earlier twenties, almost
one hundred years ago, some results had already demonstrated correlation
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between lapse rate and economic conditions, curiously right before the great
depression after 1929. Nonetheless, researchers were well aware that market
variables could not completely explain the effective duration of any product.
As a consequence, several studies started focusing on policyholder-related
variables, finding out that lapse could be correlated to income, occupation,
sex, age, family, premium frequency and amount, and others. Another rel-
evant finding of those years regards the effects of global economic distress
on lapse rates. Briefly, each policyholder seems to have a sort of tolerance
threshold depending on its risk-propensity. It can be largely irrational, but it
is also related to the actual economic condition: in time of economic distress,
it is likely that most of policyholders feel beyond their threshold, which leads
them to close their contracts. In other terms, lapse rate cannot be repre-
sented as a regular function of a global index market.
Without a doubt, three of the most comprehensive studies in that period
were [5], [16], and [17]. Among others, they suggest that an insurance com-
pany can limit lapse from contract’s inception by selecting quality business,
recognizable from some objective indications of good persistency, especially
age at issue, premium frequency, and plan. Surprisingly, the author of [5]
concludes that the agent’s ability in picking quality business can be even
more crucial than the actual economic condition itself.
Later, in the 1960s and 1970s, a couple of interesting empirical contributions
have been produced by the Institute and Faculty of Actuaries. Both [7] and
[20] are based on Scottish data, and the first one is a sort of update of the
second one. To some extent, we can say that [20] is based on data of 1960s as
well as [7] is based on data of 1970s (this is the reason why both of them have
been published at the end of the respective decade). As the titles suggest,
such studies are exploratory in nature, but consider some of the variables
which, on the base of the aforementioned sources, can drive surrender de-
cisions. Sex, age at entry, occupation, purpose of assurance, calendar year
(as a representation of variable economic conditions), sum assured, premium
paying term, and premium payment frequency, distribution channel, policy
duration - all of them have been included in the analysis, but only duration
and age at entry showed a significant correlation with the lapse rate.
All in all, by the end of the 1970s, lapse rates were fairly steady, with in-
creases occurring during recessions, and decreases occurring during expan-
sions. However, in the late 1970s, some important aspects started chang-
ing. Markets began to experience the highest increase in interest rates and
volatility ever, while new, more complex insurance products were introduced.
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The contemporary improvement in financial literacy among policyholders led
many of them to surrender their policies for more rational reasons such as in-
terest rate arbitrage, preference for pure financial products, awareness about
their own risk-propensity, and so on. Surrender was no longer the natural,
though irrational, response to the need of money during time of distress (the
so-called Emergency Fund Hypothesis, for instance, in [23]). In some cases,
it turned to be the result of a precise, financial-oriented decision of the pol-
icyholder (the so-called Interest Rate Hypothesis, for instance, in [23]). Of
course, it could only worsen the position of intermediaries. Insurers were
forced to liquidate bonds to meet surrender requests at precisely the time
when the values of bond portfolios were depressed by high interest rates.
The increased volatility in economic conditions and financial markets made
the correlation between policyholder behavior and macroeconomic variables
much more interesting than policy features. A number of studies published
in the last thirty years focuses on the macroeconomic determinants of global
lapse rates in various countries. Most of them succeed in proving the Emer-
gency Fund Hypothesis, but not the Interest Rate Hypothesis. The authors
of [8] explored the relationships between variables like interest rates and un-
employment rate with surrender activity in the UK endowment life insurance
market from the period 1952-1985. Something similar has been analyzed by
the author of [19] using US and Canadian data of whole life policies from the
period 1955-1979. In this study, the unemployment rate has a significantly
positive effect on lapse rate, while policyholder’s income has a significantly
negative effect, while no significant relationship with interest rates was found.
Further, the author of [10] concludes that the unemployment rate is the most
significant variable in predicting surrender activity for universal life policies
in US from the period 1982-1986. The authors of [15] used a dataset provided
by the American Council of Life Insurance (ACLI) from the period 1951-1998
to confirm the strong correlation of the surrender activity with the unem-
ployment rate. Nonetheless, they find a strong impact of the interest rate
as well. In other words, [15] supports both the Emergency Fund Hypothesis
and Interest Rate Hypothesis.
In more recent years, other researchers focused on some European and Asian
countries, both for empirical study and regression-based prediction of lapse
rates. The Italian insurance market of savings products has been analyzed
in [6] by using surrender experience data of a large Italian bancassurer from
the period 1991-2007. Explanatory variables included product type, calendar
year, duration, and inception year. In [14], the author used logistic regres-
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sion to model lapse rate of Korean interest indexed annuities. Explanatory
variables included the difference between reference market rates and product
crediting rates, policy duration, unemployment rate, economy growth rate,
and some seasonal effects. One of the most comprehensive surrender analy-
sis is represented by [13], which focuses on the German market. The study
distinguishes five product categories (traditional endowment policies, annu-
ities and long-term health contracts, term life insurance, group business, and
unit-linked contracts), and includes both macroeconomic explanatory vari-
ables (e.g. current market yield, DAX performance, gross domestic product,
and unemployment rate) and company-specific explanatory variables (e.g.
company ages, distribution channel, company legal form, and company size).
One of the most recent study is the working paper [11] on Taiwan data from
the decade 1999-2009. Just like in [13], the paper considers a number of
macroeconomic variables and company-specific variables, i.e. business line,
premium income, company age, return-on-asset, domestic/foreign company,
unemployment rate, home-ownership ratio, short-term interest rate, and eco-
nomic growth rate.
Beyond the huge amount of empirical studies on surrender rates (only par-
tially described so far in this section) trying to detect the most relevant
predictors, a remarkable number of studies about surrender option’s valua-
tion also exists. Such papers deal with the surrender activity of policyholders
as the exercise of an American option embedded in the insurance contract,
and valuate it as a stand-alone option by using either analytic or numeric
models. Given that our goal is not product pricing, the topic is beyond the
scope of this paper, and it will not be analyzed further.
Obviously, persistency is a crucial factor in the pure financial market as well.
For instance, the author of [25] values mortgage-backed securities in USA
assuming that part of the prepayment decision of mortgage holders is ratio-
nal and based on current economic conditions, while the remaining part is
interpreted as irrational. Again, this is beyond the scope of this paper, and
the topic will be not analyzed further.
To sum up, three categories of policyholder behavior’s drivers can be empir-
ically distinguished: macroeconomic factors, company-specific factors, and
policy-specific factors. Of course, other factors could relate to life insurance
surrender activity, although they might not have mentioned in past studies
yet. At the same time, the set of relevant explanatory variables could change
in time, for example, as target clients, product nature, or insurance purpose
change. As a consequence, looking for a unique, stable set of explanatory

7



variables seems to be the wrong way to go ahead. Therefore, we will fo-
cus on the dataset provided by a single insurance company, where most of
the explanatory variables are policy-specific, while only one macroeconomic
variable is included (obviously, there is no reason to include company-specific
variables, given that data come from the same company).

3. A traditional approach: logistic regression (LR)

Regression-based models are by far the most used tools to fit and predict
probabilities, including the surrender rates of the aforementioned papers.
[6], [13], and [14] are only some examples. Among such models, the most
commonly used is logistic regression, so we will start our analysis from it. To
give a short, theoretical explanation to the model, we can simply start from
the linear regression equation:

y = α +
n∑
k=1

βkxk =: xβT (1)

where xk denotes the kth risk factor and βk the related parameter. When
it comes with predicting probabilities, that is, values in the interval (0, 1),
the (1) faces its major drawback: it returns values in the entire domain R.
The solution is represented by the choice of a proper link function that takes
values in R and returns values in (0, 1). For example

g : R −→ (0, 1) (2)

z −→ 1

1 + e−z
(3)

which is the so-called logistic function. Also, the requirement of a non-
decreasing function for cumulative distribution function is satisfied. As a
consequence, the predicted probability equals

p = g(y) = g(xβT) =
1

1 + e−xβT =
1

1 + e−(α+
∑n
k=1 βkxk)

(4)

or equivalently

xβT = ln

(
p

1− p

)
=: logit(p). (5)

The choice of the logistic function comes from the best practice, but other
link functions are available.
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The framework is quite similar to the linear regression case, but it is not
exactly the same. This is the reason why we cannot use the ordinary least
square method to estimate the model parameters β1, . . . , βn. Rather, we
should use the maximum likelihood estimation. By definition, the likelihood
function for N observations is

L(X, β) =
N∏
i=1

g(xiβ
T)yi [1− g(xiβ

T)]1−yi (6)

so the log-likelihood function is

l(X, β) := lnL(X, β) =
N∑
i=1

{
yi ln[g(xiβ

T )] + (1− yi) ln[1− g(xiβ
T )]
}

=

=
N∑
i=1

{
yi ln

[
1

1 + e−xiβT

]
+ (1− yi) ln

[
1− 1

1 + e−xiβT

]}
=

=
N∑
i=1

{
yi(xiβ

T)− ln[1 + exiβ
T

]
}
. (7)

The maximum likelihood estimation for the vector of parameters β results
from the maximization of l(X, β), or equivalently from the solution of the
following system of equations:

∂l

∂βi
= 0, ∀i = 1, . . . , n. (8)

Such a solution is indeed the estimation β̂, which can be used to estimate p:

p̂i := g(xiβ̂
T) =

1

1 + e−xiβ̂T
=

1

1 + e−(α+
∑n
k=1 β̂kxik)

. (9)

At the beginning of the section, we implicitly assumed to know the explana-
tory variables x1, . . . , xn. Of course, we know the explanatory variables in
the dataset, but how should we select them as x1, . . . , xn? Because of multi-
collinearity among potential explanatory variables, we cannot simply run the
logistic regression on all of them, and then select only the most significant
ones based on their p-values. Rather, we should somehow select different sets
of explanatory variables and run the related logistic regressions: the model
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with the highest R2 will be selected. The different sets of explanatory vari-
ables depend on the algorithm used to select them. There are mainly three
popular iterative search algorithms.
In forward selection, we start with no predictors, and then add them one by
one. Each added predictor is that (among all predictors) that has the larges
contribution to R2 on top of the predictors that are already in it. The algo-
rithm stops when the contribution of additional predictors is not statistically
significant.
In backward selection, we start with all predictors, and then eliminate the
least useful one at each step according to statistical significance. The algo-
rithm stops when all the remaining predictors have significant contributions.
Finally, stepwise selection is like forward selection except that at each step
we consider dropping predictors that are not statistically significant, as in
backward selection. As we will discuss in Section 6, our data will be regressed
through stepwise selection.

4. A machine learning approach: bagging classification tree (BCT)

Decision trees were used as a machine learning tool in [3] for the first
time to segment a population by splitting up the dataset through binary
rules. The algorithm is now referred to as “classification and regression tree”
(CART). Since our goal is the binary classification lapse vs. non-lapse, we
will need the classification tree’s version of the algorithm (by contrast, if the
independent variable were numeric, we would consider regression trees).
The classification tree ’s algorithm is based on recursive partitioning. It di-
vides up the multidimensional space (that is, the dataset) of the explanatory
variables into non-overlapping multidimensional rectangles. This division is
accomplished recursively, i.e. operating on the results of the prior divisions.
First, one of the explanatory variables is selected, say xk (the first node of
the tree, so-called root), and a value of xk, say sk, is chosen to split the
n-dimensional space into two parts: one part contains all the points with
xk ≤ sk, while the other with all the points with xk > sk. Let’s consider on
of the two sub-datasets: it could be either pure (i.e. it contains only records
sharing the same value of the independent variable) or impure. In the first
case, no further split is possible, so the sub-dataset will represent a leaf of
the tree. In second case, other splits are possible, so the sub-datasets will
represent another node of the tree. Unless both of the sub-datasets generated
by the root node are pure, one of them (at least) will be divided in a similar
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manner by choosing a variable again (it could be xk or another variable) and
a split value for the variable. For example, if both of the sub-datasets are
impure, the initial dataset is partitioned in four regions. Again, each of them
will turn to be a leaf or a new node, and so on. This process is continued so
that we get smaller and smaller rectangular regions. Sooner or later, we will
have divided the whole space up into pure rectangles (of course, this is not
always possible, as there may be records that belong to different classes but
have exactly the same values for everyone of the predictor variables). In our
case, the dataset will be partitioned into sub-datasets which contain either
lapsed policyholders or retained policyholders. In fact, the classification tree
resulting from recursive partitioning is a pure tree: lapses and non-lapses are
perfectly separated (see Figure 9 for an example of classification tree on our
dataset).
The main problem of recursive partitioning is the choice of the splitting rule
node by node, that is, the choice of xk and sk at each step of the algorithm.
Assume to define an impurity function i(A) as an impurity measure of some
rectangle A, or its related node. A specific splitting rule on A results in two
sub-rectangles AL and AR, which are generally impure, that is, i(AL) and
i(AR) are both nonzero. Intuitively, we want to choose the splitting rule in
order to minimize some combination of i(AL) and i(AR). The most natural
choice is the function

I(AL, AR) :=
|AL|
|A|

i(AL) +
|AR|
|A|

i(AR) (10)

which is the average of the two impurity measures, weighted by the number
of observations in each rectangle. By comparing the reduction in I(AL, AR)
across all possible splits in all possible predictors, the next split is chosen.
What about the impurity function i? In our application and in most of them,
one uses the Gini index (as defined in [24]):

i(A) := 1− p2L(A)− p2nL(A) (11)

where pL (respectively: pnL) is the proportion of records in rectangle A that
did lapse (respectively: did not lapse). However, other impurity measures
are also widely used, for example the entropy index (as defined in [24]):

E(A) := −pL(A) log2(pL)− pnL(A) log2(pnL). (12)

All in all, so far the algorithm is quite intuitive as well as its application in
classifying new records. For instance a new observation, whose explanatory
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values are known, will be dropped down the tree until it reaches a leaf.
Since the tree is pure, the leaf will include either lapses or non-lapses, so the
new observation will be simply classified on the base of the specific leaf’s
classification.
To evaluate the predictive performance of a classification method, whether
classification tree or logistic regression, we generally use three measures:

sensitivity :=
TP

FN + TP
(13)

specificity :=
TN

FP + TN
(14)

misclassification error :=
FN + FP

n
(15)

where, in our case, TP (true positives) is the number of lapses correctly
classified as lapses, FN (false negatives) is the number of lapses incorrectly
classified as non-lapses, TN (true negatives) is the number of non-lapses
correctly classified as non-lapses, FP (false positives) is the number of non-
lapses incorrectly classified as lapses, and n is the total number of records
in the dataset (i.e. TP + FN + TN + FP ). Sensitivity and specificity are
especially used to build the Receiver operating characteristic curve (or ROC
curve), while the misclassification error is an overall measure of the predic-
tive performance (both of them will be used in Section 6 to select the best
algorithm between logistic regression and bagging classification tree).
By definition, recursive partitioning produces trees which classify the records
without errors, i.e. zero misclassification error). Actually, we used a dataset
to train the classification tree, which perfectly predict lapses on that dataset.
This is the reason why we call it training dataset. But what if we use the same
tree on a new dataset, say a validation dataset? In general, the predicted val-
ues on the validation dataset will result in a positive misclassification error,
which is obvious. The misclassification error cannot be zero on datasets other
than the training dataset itself. However, there is a major drawback of our
classification tree. In fact, a possible comparison between misclassification
error in the training dataset and in the validation dataset using the full tree
is shown in Figure 1. As it usually happens through the first splits on the val-
idation dataset, the full tree can still guarantee comparable misclassification
errors on the two datasets. However, as the number of splits increases, the
full tree starts overfitting the validation data: since it fully reflects the train-
ing dataset without distinguishing between “signal” and “noise”, the noisy
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Figure 1: Training Misclassification Error vs. Validation Misclassification Error

component cause too high misclassification error in the validation dataset.
Indeed, the typical consequence of overfitting is that, after some number of
splits, the misclassification error on the validation dataset stops decreasing
and starts increasing (in Figure 1, it occurs after ten splits). In the first ten
splits both the training and validation misclassification errors decrease, but
thereafter the full tree overfits the validation data.
Overfitting prevent us from using the full tree for predicting purposes, so we
need to choose another tree. The most natural choice is suggested in Figure
1 itself, i.e. the classification tree built by the first n splits that do not induce
overfitting (n = 10 in Figure 1). In other word, we choose the full tree’s sub-
tree leading to the lowest validation misclassification error: it is called best
pruned tree. If we have new observations to classify, they will be dropped
down the best pruned tree until they reach a leaf. So the full tree is useless
for classification purposes, rather it is simply the formal result of recursive
partitioning. What is really useful for classification is the best pruned tree
only (or any other subtree built to somehow minimize some error measure
on validation data).
So far we described the fundamentals of CARTs. One of the reasons for their
popularity is that they are adaptable to a wide variety of applications, and
have been successfully used in many situations. In particular, if there is a
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highly non-linear and complex relationship to describe, decision trees may
outperform regression models. Furthermore, CARTs do not require massive
data preparation, that is, they can handle non-standardized data, categorical
data, missing data, outliers, and so on. By contrast, we should standardize
the variables and take the natural logarithm of some numerical variables
before running the logistic regression. Finally, trees provide easily under-
standable classification rules (at least if they are not too large), even easier
than in regression.
An important advantage of CARTs is that no further selection algorithm is
necessary. As opposed to logistic regression (see Section 3), the process itself
selects the most relevant explanatory variables. We simply let the machine
learning tool run on the whole dataset, and the resulting tree will include
only some of the explanatory variables, which are the most significant on the
base of the impurity measure used to split the dataset.
Unfortunately, CARTs do not have the same level of predictive accuracy and
robustness as regression models. While the latter are characterized by low
variance, decision trees tend to be relatively unstable, in the sense that little
changes in the dataset may lead to completely different trees. Moreover, the
goodness of each split is extremely dependent on the goodness of the previous
splits. In fact, even if the algorithm picks the best split at each level, such
a split is the less impure on that level, but we will never known whether a
more impure split would have resulted in better predictions on the validation
dataset.
Nonetheless, the predictive performance of CARTs can be dramatically im-
proved by aggregating many decision trees from the same dataset. If we
had n training datasets, we would use them to build n different classifica-
tion trees, use them to predict the same validation dataset, and finally take
the average of the n predictions. This approach would certainly reduce the
variance of the estimation, but we do not have access to multiple training
datasets. Instead, we can bootstrap by taking repeated samples from the
single training dataset. The prediction f̂ of a validation record x will be
simply

f̂(x) :=
1

n

n∑
k=1

f̂k(x) (16)

where f̂k(x) represents the prediction returned by the kth classification tree
(built on the kth training sample) for the validation record x. This is called
bagging. Notice that the n classification trees are all full tree, i.e. share very
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high variance, but also very low bias. Nonetheless, this is not relevant since
the bagging process will reduce the variance. From a certain perspective, a
bagging classification tree is an example of ensamble, that is, a machine learn-
ing tool resulting from the combination of several simpler machine learning
methods.
While one of the main advantages of decision trees is interpretability, this
feature is lost after bagging a high number of trees, because representing the
prediction path on a single tree is no longer possible. However, an overall
summary of the importance of each predictor is provided by the Gini index,
as we will see in Section 6.

5. Segregated fund modeling and parametrization

In this section, we will build the whole actuarial model to test our lapse
prediction, both asset and liability side. This section is based on [1].
The most difficult aspect of Italian segregated fund modeling is the simula-
tion of the credited rate. In our case, it is not only used to reevaluate the
sum assured (and the reserve), but even to predict the lapse rates themselves
through the independent variable delta return. For the economic scenario
generation, We will use a Gaussian two-factor model (like in [21] and [1]),
which guarantees a number of useful properties. First, it embeds an in-
stantaneous linear correlation between rates at different maturities, while
single-factor models (e.g. CIR, Vasicek, etc.) implicitly assume correlation 1
(see [4]): effectively, each simulation leads to a rigid movement of the interest
rate curve. Another reason relates to the fitting of the actual interest curve:
while single-factor models, indeed, fit it, two-factor models like the Gaussian
one can adapt to it perfectly.
The short rate under the Gaussian model is defined by the following equation:

it := Xt + Yt + φ(t) (17)

where

dXt = −µxXtdt+ σxdZ
x
t (18)

dYt = −µyYtdt+ σydZ
y
t (19)

and initial conditions X0 = 0 e Y0 = 0. The instantaneous linear correlation
between X and Y is represented by the parameter ρ:

dZx
t dZ

y
t = ρdt. (20)
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The parameters in the equations (18), (19), and (20) are the same as in [21]
and [1], based on the market data at 25/11/2016.
Assuming that the actual ZCB-price curve is interpolated by some poly-
nomial function Π(T ), it can be proved (see [4]) that, if f(T ) denotes the
instantaneous forward rate in T , that is,

f(T ) := −d ln Π(T )

dT
(21)

then the deterministic function φ(T ) defined by

φ(T ) := f(T ) +
σ2
x

2µ2
x

(1− e−µxT )2 +
σ2
y

2µ2
y

(1− e−µyT )2 +

+
ρσxσy
µxµy

(1− e−µxT )(1− e−µyT ) (22)

guarantees a perfect fitting of the actual interest rate curve. However, notice
that the choice of the polynomial function still affects the results. An example
is given in [1]:

f(T ) := α + β1e
− T
τ1 + β2e

− T
τ2 + γ1

T

τ1
e
− T
τ1 + γ2

T

τ2
e
− T
τ2 . (23)

which is calibrated on the Eurirs curve available at 25/11/2016. The related
parameters are α = 1.203, β1 = −2.733, β2 = 1.594, γ1 = −1.529, γ2 =
−4.093, τ1 = 1.059 e τ2 = 3.267, which lead to the curve in Figure 2. The
stochastic processes Xt and Y are defined by the parameters available in [21],
i.e. µx = 40.1%, µy = 17.8%, σx = 3.78%, σy = 3.72%, and ρ = −99.6%.
What really makes us prefer the Gaussian model with respect to others,
more complex two-factor models is its analytical tractability, just like much
simpler models such as the Vasicek model. For example, the authors of [4]
prove that, at time t, the price of a ZCB maturing in T > t is equal to

P (t, T ) = e
−

∫ T
t φ(τ)dτ− 1−e−µx(T−t)

µx
Xt− 1−e−µy(T−t)

µy
Yt+V (t,T )

(24)

where
V (t, T ) = Vx(t, T ) + Vy(t, T ) + Vxy(t, T ) (25)

Vx(t, T ) :=
σ2
x

2µ2
x

[
T − t+

2e−µx(T−t)

µx
− e−2µx(T−t)

2µx
− 3

2µx

]
(26)
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Vy(t, T ) :=
σ2
y

2µ2
y

[
T − t+

2e−µy(T−t)

µy
− e−2µy(T−t)

2µy
− 3

2µy

]
(27)

Vxy(t, T ) :=
ρσxσy
µxµy

[
T−t+ e−µx(T−t) − 1

µx
+
e−µy(T−t) − 1

µy
− e

−(µx+µy)(T−t) − 1

µx + µy

]
.

(28)
The equation (24) is extremely important since it provides us with a straight-
forward way to calculate stochastic deflators as a function of X and Y .
The short rate defined by the (17) should be calibrated from the actual risk-
free curve. However, we also need a stochastic model for the future bond
yields since the segregated fund invests in risky bonds.
Therefore, we adjust the (22) as follows:

φ∗(T ) := f(T ) +

(
σ2
x

2µ2
x

+ dx

)
(1− e−µxT )2 +

(
σ2
y

2µ2
y

+ dy

)
(1− e−µyT )2 +

+
ρσxσy
µxµy

(1− e−µxT )(1− e−µyT ) (29)

by using two deterministic factors which tends to the parameters dx and dy
over time. In other words, the bond yield is simulated by the stochastic
process

rt := it + dx(1− e−µxt)2 + dy(1− e−µyt)2 (30)

or equivalently

X∗
t := Xt + dx(1− e−µxt)2 (31)

Y ∗
t := Yt + dy(1− e−µyt)2. (32)

The parameters dx e dy, which represent the spread between the bonds in the
segregated fund and the Eurirs curve, have been already calibrated in [1], in
order to match an average 10-year spread approximately equal to the actual
10-year spread, i.e. 141 bps at 25/11/2016. Specifically, dx = dy = 1.34%.
Generally, a minor part of the segregated fund is equity-based, so we need
a stochastic model for it as well, for example a classical geometric Brownian
motion defined by the risk-free component rt, the risk premium parameter
µS, and the non-systematic risk parameter σS:

St = S0e

∫ t
0 rτdτ+

(
µS−

σ2S
2

)
t+σSZ

S
t

(33)
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Market Index µS σS
FTSE MIB -1.96% 20.22%
EURO STOXX 50 2.46% 12.15%
S&P 500 9.35% 10.83%

Table 1: Parameters of the equity component from the period 2010-2016

Figure 2: Polynomial function f(T ) interpolating Eurirs curve

where ZS
t is uncorrelated with both Zx

t and Zy
t . For our application, we will

consider three types of equity securities, calibrated on the performances from
the last seven years. Assume that the segregated fund invests b% asset in n
held-to-maturity coupon bonds bought at par and 1− b% in equity. In t = 0,
when a new insurance contract is underwritten, each bond in portfolio has a
different maturity, say t1, . . . , tn. In other words, the ith bond pays a known
coupon ci for the next ti years. Since each bond is bought at par, its annual
yield equals the coupon rate itself. More specifically, if Fi denotes the face
value of the ith bond, its contribution to the segregated fund’s credited rate
is

Ci :=
ciFi∑n
k=1 Fk

. (34)
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In fact, as long as t ≤ min{t1, . . . , tn}, that is, no bond has matured yet, the
average yield of the bond component is

RC :=
n∑
i=1

Ci ≡
n∑
i=1

ciFi∑n
k=1 Fk

, ∀t ≤ min{t1, . . . , tn} (35)

which is known in t = 0 and constant. As soon as the ith bond matures after
Ti years, it will be probably replaced by a comparable security, say a new
coupon bond with same maturity in Ti years (for practical reasons, assume
that Ti is greater than the duration of the insurance contract, in order to
replace each bond at most one time). The new par bond yields exactly the
stochastic forward rate f(ti + 1, Ti). Using the dummy function χt≤ti , the
contribution of the ith bonds to the segregated fund credited rate in t can
be written as follows:

Ci(t) :=
[χt≤tici + (1− χt≤ti)f(ti + 1, Ti)]Fi∑n

k=1 Fk
(36)

and finally the stochastic return of the whole bond component in the segre-
gated fund:

RC(t) :=
n∑
i=1

Ci(t) =
n∑
i=1

[χt≤tici + (1− χt≤ti)f(ti + 1, Ti)]Fi∑n
k=1 Fk

, ∀t. (37)

Further, the (33) provides the return of the equity component:

RS(t) :=
St
St−1

− 1 = e
rτ−1+

(
µS−

σ2S
2

)
+σSZ − 1 (38)

where Z denotes a standard normal distribution.
Given the yield contributions RC(t) and RS(t) for the bond and equity con-
tributions respectively, the segregated fund stochastic credited rate is equal
to

g(t) := bRC(t) + (1− b)RS(t). (39)

Nonetheless, sum assured and reserve reevaluation takes into account other
contract parameters such as profit sharing η, minimum guaranteed rate Rmin,
and minimum management fee k. Therefore, the stochastic revaluation rate
is

R(t) := max{min{ηg(t), g(t)− k}, Rmin} (40)
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weight coupon duration in force maturity
BTP1 33.3% 1.0% 0 years 10 years
BTP2 33.3% 3.0% 10 years 15 years
BTP3 33.3% 5.0% 23 years 30 years

Table 2: Initial bond component of the segregated fund

assuming no technical rate (which is common in Italian insurance contracts
including a minimum rate guarantee).
To define g(t) and hence R(t), we still need to set the weight b and the initial
bond portfolio. Given that the equity component of an Italian segregated
fund is generally residual, we set b = 90%. Moreover, the initial bond com-
ponent will be represented by three BTPs, that is, Italian coupon bonds, as
shown in the Table 2: Therefore, BTP1 has been just bought, BTP2 was
bought 10 years ago, and BTP3 was bought 23 years ago. As soon as one
of them matures, it will be replaced by a new bond with same maturity and
yield equal to the related forward rate from the stochastic scenario.
The insurance contract we will analyze is a 20-year deferred capital without
death benefit and terminal bonus at maturity. In the traditional case, we
will assume that an average lapse rate of λ = 5.61% (as calculated from
our dataset) is applied from the fourth policy year into the profit valuation,
together with the mortality rate from the SIM2001. As a consequence, the
average policy number in t is

Nt =


1 t = 0
Nt−1(1− qx+t) ∀t = 1, 2, 3
Nt−1(1− qx+t)(1− λ) ∀t = 4, . . . , n− 1
Nn−1(1− qx+n) t = n

(41)

where x = 30, and n = 20.
The annual premium P is fixed and affected by predetermined alpha cost α
(2% per year entirely paid in at inception as a percentage of the premium),
beta cost β (yearly 3% as a percentage of the premium), and gamma cost γ
(yearly 0.5% as a percentage of the premium). Since P is also increased by
a loading l = 15%, the premium paid by the policyholder is

P =
PF (1 + l)

1− α− β − γ
(42)
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where PF is the theoretical fair premium.
The mathematical reserve in t is calculated in the following, straightforward
way:

Vt = Vt−1[1 +R(t)] + PF ∀t = 1, . . . , n (43)

where V0 = PF .
The initial sum assured S0 is function of PF :

S0 = PF
äx:n

nEx
(44)

using the unloaded mortality rate from the SIM2001. For any t > 0, the sum
assured is affected by the increase in reserve due to R(t):

St =
Vt−1 + PF ät+x:n−t

n−tEx+t
∀t = 1, . . . , n. (45)

As a consequence, the rate credited to the sum assured is not R(t), but a
much lower rate.
The aforementioned costs are assumed to offset the related expenses gener-
ated by the maintenance of the contract, so the initial expense is

E0 = αP (46)

while the expense in any subsequent t is

Et = (β + γ)P ∀t = 1, . . . , n. (47)

Since no Zillmer reserve reduction for acquisition costs is permitted, and no
timing gap between maintenance costs and premium payments occurs, no
expense reserve will be allocated.
We can now calculate the annual profit generated by the contract. In t = 0,
the company receives the first premium and immediately pays the acquisition
costs. After that, the company still receives premiums and the related reserve
begins to credit the rate g(t); however, maintenance expenses and surrender
benefits (from the fourth year) are paid. In the last policy year, the company
receives the last return from the reserve, but pays the sum assured. In
formulas

P&Lt =


P − E0 t = 0
P t−1 + V t−1R(t)− Et − (V t − V t−1) ∀t = 1, 2, 3
P t−1 + V t−1R(t)− Et − (V t − V t−1)− λV t ∀t = 4, . . . , n− 1
V n−1R(n)− En − (Sn − V n−1) t = n

(48)
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Figure 3: Lapse predictions from simulation 1

where P t := NtP , V t := NtVt, Et := NtEt, and St := NtSt. Therefore, the
total discounted profit is

Dn :=
n∑
t=1

P&LtP (0, t) (49)

where P (0, t) denotes the stochastic deflator from (24).
So far we described the mathematics behind a typical profit testing of a sim-
ple insurance contract with a constant lapse rate. However, as soon as we
introduce our lapse predictions, such a lapse rate loses meaning, given that
the bagging classification tree predicts the exact lapse year. For example,
the first interest rate scenario leads to the predictions in Figure 3. First, we
assumed lapse is not permitted during the first three years, so predictions
are needed from the fourth year. Similarly, no lapse is assumed to occur in
the last policy year. In the specific case shown in Figure 3, the policyholder
should lapse from the eighth policy year, but there are still a couple of fu-
ture years - the sixteenth and the eighteenth - where non-lapse is predicted.
Anyway, assuming that the policyholder will lapse in this scenario seems to
be reasonable. In the simplest case, we can let him lapse in the first year
with a lapse prediction (the eighth year for the simulation 1), but we can
also assume that he/she will lapse at the second year with a lapse prediction,
or even at the third year, and so on.
In this framework, λ should be set to zero, so that

Nt =

{
1 t = 0
Nt−1(1− qx+t) ∀t = 1, . . . , n.

(50)
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and

P&Lt =


P − E0 t = 0
P t−1 + V t−1R(t)− Et − (V t − V t−1) ∀t = 1, . . . , n− 1
V n−1R(n)− En − (Sn − V n−1) t = n.

(51)
Correspondingly, assuming that the policyholder will lapse at time T in some
specific scenario, the total discounted profit is

D∗
T :=

T∑
t=1

P&L∗
tP (0, t). (52)

The following results will be based on Dn and D∗
T as well as other relevant

measures derived from them. In particular, we will consider Dn as calculated
in the certainty equivalent scenario, which is a sort of best estimate scenario
including the traditional average lapse and the actual economic scenario:

DCE :=
n∑
t=1

P&LCE,tPCE(0, t) (53)

where PCE denotes the deterministic deflator derived from the actual interest
rate curve. Nonetheless, we will also consider Dn as the random variable in
(49), which is function of the simulation k:

Dk,n :=
n∑
t=1

P&Lk,tPk(0, t). (54)

For the same reason, D∗
T is also function of the simulation k:

D∗
k,Tk

:=

Tk∑
t=1

P&L∗
k,tPk(0, t). (55)

In conclusion, K simulations will provide us with the average λ-based total
profit:

Dn := E[Dk,n] =
1

K

K∑
k=1

Dk,n (56)

and the average T -based total profit:

DT := E[D∗
k,Tk

] =
1

K

K∑
k=1

D∗
k,Tk

. (57)
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Although the average total profit - whether DCE, Dn, or DT - is unquestion-
ably the reference measure to value an insurance contract, there are other
relevant measures as well. In particular, we will also consider the so-called
time value of options and guarantees (TVOG).
When it comes with profit valuation, TVOG represents the fundamental dif-
ference between the traditional embedded value (TEV) framework and the
more recent market consistent embedded value (MCEV). While the former
is based on the mere certainty equivalent profit valuation (DCE), the latter
is based on the stochastic profit valuation (either Dn or DT ). This means
that MCEV is generally lower than TEV since

DCE > Dn and DCE > DT (58)

should hold because of the embedded option represented by the minimum
guaranteed rate. The results in Section 6 will also show that

DCE > Dn > DT (59)

although we cannot prove it always holds.
Notice that both TEV and MCEV are affected by other portfolio items be-
yond profit, so their reduction to the sole profit has no relevance in the
actuarial practice, but it is still a useful and acceptable simplification for our
purposes.
In the MCEV regulation, companies should not report the single stochastic
profit, rather its split between certainty equivalent profit and TVOG:

Dn = DCE − (DCE −Dn) =: DCE − TV OGn (60)

or
DT = DCE − (DCE −DT ) =: DCE − TV OGT . (61)

TVOG is crucial because it measures the value of any options and guarantees
embedded in the contract. In our case, DCE is a favorable scenario where
the minimum guaranteed rate plays no relevant role. This is the reason why
DCE is very stable or even constant in most of the plots of Section 6. The
full effect of the guarantee is only evident in the stochastic profit, that is, in
the TVOG component.
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6. Data preparation, lapse prediction, and impact analysis

The results we will show are based on the surrender data provided by
a large Italian insurer from the period 2005-2015 for its endowment busi-
ness. The whole dataset has been standardized, and each variable expressed
in currency (i.e. premium amount, sum assured, mathematical reserve, and
terminal bonus) has been replaced by its natural logarithm. It will make
the related distributions comparable to a standard normal one, in particular
with approximately zero asymmetry and kurtosis.
A large number of policy-specific features were available, while only one
macroeconomic variable has been added, i.e. the difference between a refer-
ence market rate and the product crediting rate, just like in several published
studies (for example, see [14]) and in the common actuarial practice. Nat-
urally, we could add other relevant macroeconomic variables among those
aforementioned in Section 2 (e.g. unemployment rate and gross domestic
product), but such variables typically change very smoothly, in relation to
the actual economic condition. Given that our analysis focuses on data of a
specific company, and the historical horizon is not so long, we excluded any
pure macroeconomic variable from the analysis.
Policy-specific explanatory variables include

• policyholder-related variables, i.e. sex and age

• contract-related variables, i.e. maturity, premium payment period, pre-
mium amount, premium loadings (alpha costs, beta costs, and gamma
costs), and guaranteed rate

• path-dependent variables, i.e. sum assured, mathematical reserve, and
terminal bonus.

The distinction between contract-related variables and path-dependent vari-
ables is fundamental to understand how the dataset has been structured. As
confirmed in several empirical studies (for example, see [25]), surrender activ-
ity of a single policyholder - whether rational or irrational - tends to depend
on a limited period of time. In other words, it is unlikely that policyholders
will base their decisions on what has happened many years ago, or what is
going to happen in many years. This is mainly the reason why any policy
maturing in n years has been converted to n single-year policies. This leads
to a policyholder behavior depending on the current year’s condition only
(i.e. current age, current number of premium payments, current duration,
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current reserve, current sum assured, and difference between the current ref-
erence market rate and the current crediting rate). Such “new” policies still
share some common features, i.e. sex, premium amount, premium loadings,
and technical rate. Among the n “new” policies, at most one can show sur-
render activity, i.e. we consider only surrender of the whole policy.
In data mining, datasets are usually partitioned in two sub-datasets, that
is, a training dataset and a validation dataset (sometimes, a test dataset is
also used, but it is not necessary for our purposes). The former “trains” the
model, that is, the algorithm learns from its records and is tailored on them.
By contrast, the latter is used to check how close the independent variable’s
predicted values are to its actual values by using such an algorithm on data
that was NOT used to built it. Hopefully, the error on the validation dataset
(“unknown” to the algorithm) will be as close as possible to the error on the
training dataset (“known” to the algorithm).
Nonetheless, we will partition a dataset including few lapse occurrences. As
a consequence, if we partition it randomly, the machine learning algorithm
will be trained on few lapse occurrences. On the other term, it has little
chance to get relevant information from such few records. This is the reason
why oversampling is common practice in data mining: we build the train-
ing dataset in such a way that lapse occurrences are as likely as non-lapse
occurrences (both 50%), and let the validation dataset include all the other
records. Obviously, we will have fewer lapse occurrences to validate the al-
gorithm, which is however trained on much more relevant information.
Using this dataset coupled with a proper prediction algorithm and a simpli-
fied ALM model (see Section 5), we will be able to predict which single-year
policy of an hypothetical new contract will lapse, that is, the surrender year.
Notice that more than one can show surrender activity (it is new data, so it
is possible), but we assume that the policyholder lapses in the first possible
surrender year.
We do not intend to generalize our absolute results. They are specific for one
particular portfolio, whereas they may turn to be completely different for
other portfolios. Nonetheless, we discussed how heterogeneous explanatory
variables may be, varying by country, business line, or even policyholder. Af-
ter a so huge number of empirical studies, we do not intend to discuss further
the fundamental sources of policyholder behavior. By contrast, we will focus
our attention on the impact that unanticipated surrender activity can have
on the profit of a product. About that, much less has been written, espe-
cially because of the difficulties in embedding a comprehensive policyholder
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ρ
Maturity -4.43%
Sex -2.27%
Age 5.37%
Premium Period -4.08%
Premium Amount 11.63%
Alpha Cost 1.86%
Beta Cost 7.48%
Gamma Cost 1.51%
Reserve 9.54%
Sum Assured 9.28%
Terminal Bonus 8.13%
Guarantee 1.48%
Delta Return 8.75%

Table 3: Correlations with surrender activity

behavior model into profit valuation.

6.1. LR versus BCT

Obviously, traditional linear correlations between the independent vari-
able and y and the explanatory variables x1, . . . , xn are formally useless in a
logistic regression. However, that is still based on a linear regression model.
To some extent, we can still assume that the higher the correlations between
explanatory variables and independent variable (in our case, a binary variable
equal to 1 in case of surrender), the better the fitting of a logistic regression
model. As just discussed, it is formally wrong, but linear correlations could
still provide us with a useful indication about dependencies. The Table 3
summarizes the correlations between surrender activity and each explana-
tory variable. Remember that our dataset has more than 11.000 records and
thus all correlations higher than about 4% can be considered significant.
Some of the relationships outlined in various empirical papers are somehow
confirmed. Maturity is inversely correlated, i.e. policyholders tend to lapse
in the first years, rather than in the last ones (the premium payment period
is often close to the maturity, so its correlation is similar). Premium amount
is significantly correlated, although it seems partially due to the loading com-
ponents, especially beta costs. Similarly, both sum assured and reserve are
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Table 4: Correlation matrix

positively correlated with the surrender activity (the two correlations are also
very close, given that the reserve is a function of the sum assured): policy-
holders lapses only when it is really worth it. Finally, policyholders seem to
be sensitive to the difference between what the financial market yields and
what their policy effectively returns. It is worth noting that the delta return
also embeds signals of a more volatile market as well as higher domestic fund-
ing cost: both of them stimulate surrender activity of policyholders, which
are typically quite risk-adverse.
Those are the most significant correlations, but some non-significant correla-
tions are interesting as well. For example, the technical rate guaranteed by
the insurer has no significant impact on the surrender activity: it indirectly
confirms the policyholder’s short-term sight, which ignores the future bene-
fits represented by a higher guaranteed rate.
However, we should now consider the first limitation of the regression-based
models, that is, we must reduce multicollinearity as much as possible, and,
while observing the nature of the variables, we already know that some of
them are correlated with each other very significantly. This is shown in the
correlation matrix (Table 4), where we have highlighted in bold font all the
correlations higher than 20% or lower than -20%. While some are well jus-
tifiable by the definition of the related variables (e.g. reserve, sum assured,
and terminal bonus are all very correlated with each other), others are less
expected. For example, the higher the guaranteed rate, the lower the gamma
loading.
Of course, we must exclude the most redundant variables, especially those
less correlated with the lapse variable. This variable reduction and the re-
maining correlations are shown in Table 5. Our goal was the exclusion of
any correlation greater than 50% or lower than -50%. Some very significant
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Table 5: Correlation matrix after variable reduction

Table 6: Results of the stepwise logistic regression

correlations are still there, but we have a chance that they will be automat-
ically excluded by the variable selection process during the regression.
Therefore, the stepwise logistic regression (see Section 3 for theoretical de-
tails) we run provided us with the results in Table 6, and the selection process
in Table 7. Such a table highlights in red the chosen model in the last row,
which is not so surprising since the stepwise regression has picked the most
significant variables up, as evident from the Table 6. Moreover, most of the
multicollinearity is now excluded from the model, as the final correlation
matrix in Table 8 shows.
However, the resulting logistic regression model is quite poor, which could

Table 7: Steps of the stepwise logistic regression
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Table 8: Correlation matrix after stepwise regression

be anticipated by the low correlations between the explanatory variables and
the independent variable. ROC curves on training dataset (Figure 4) and
validation dataset (Figure 5) provide us with a measure of the fitting and
predictive power. They represent an area under the curve (AUC) of 69% and
64% respectively.
Even if we wanted to use this model, one more issue should be considered.
A fundamental assumption of any logistic regression model is the normal
distribution of the Pearson residuals. This can be quite hard to meet, so it
is not obvious at all that we may use the logistic regression. In our analy-
sis, we can prove the normality of residuals through a simple QQ-plot like
in Figure 8. Unfortunately, such a plot emphasizes a remarkable problem
to the normality assumption. In the negative branch, the residuals are not
normally distributed at all, whereas we notice a relevant number of outliers
in the positive one. In fact, it prevents us from using the logistic regression
on this dataset, and it leads us to consider different models, say data-based
models, which may return more powerful prediction, still avoiding the typical
assumptions of a regression-based model.
So let’s draw attention to the bagging classification tree method described
in Section 4. Figure 9 describes one of the many possible classification trees
built on our dataset. The blue circles are nodes, i.e. they represent the
splitting rule within the dataset. For example, the first node bases its split-
ting rule on the sum assured, that is, the records with a sum assured lower
than 0.63 are separated from the records with a sum assured greater than
0.63 (remember that the data are standardized). The splitting generates two
sub-datasets: the first one includes 8082 records as represented by the left
node generated by the split, while the second one includes 2500 records as
represented by the right node generated by the split. The process is then
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Figure 4: LR Training ROC Figure 5: LR Validation ROC

Figure 6: LR Training Decile Figure 7: LR Validation Decile

Figure 8: QQ-Plot of LR Pearson Residuals
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Figure 9: An Example of Classification Tree

iterated by using the new sub-datasets generated by the last splitting rule.
When no more discrimination is possible, the records included in some sub-
dataset can be all classified as either lapse (1) or non-lapse (0). In Figure
9 it is represented by the green squares, i.e. the leaves of the tree. After
each step, the misclassification error is reduced since some more records are
correctly classified. When such a recursive partitioning process is over, i.e.
when no further split is possible, we have built the full tree: each record is
classified exactly as it should, and the misclassification error is zero.
As discussed in Section 4, the full tree is of scarce utility. Of course, it
guarantees no misclassification error in the dataset which generated it (i.e.
the training dataset), but it also leads to relevant misclassification error in
any other dataset, including the validation dataset. Using the bagging clas-
sification tree to predict lapses in our dataset (as already suggested in [18]
and [12]), we get the ROC curves in Figure 10 and Figure 11 for training
and validation respectively (the lighter curves refer to the logistic regression
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Figure 10: BCT Training ROC Figure 11: BCT Validation ROC

Figure 12: BCT Training Decile Figure 13: BCT Validation Decile

ROCs, the same as in Figure 4 and Figure 5). The corresponding AUCs are
85% and 72%, which indicate significant improvements with respect to 69%
and 64% from logistic regression. However, we should notice the increase in
overfitting when moving from a regression model to a machine learning tool:
the difference between the training AUC and the validation AUC has more
than doubled. In other word, the goodness-of-fit seems to improve much
more than the predictive power. This is a typical effect in machine learning.
What especially matters is the increase in validation AUC.
Figure 12 and Figure 13 show the training and validation decile histograms
(the lighter bars refer to the logistic regression decile histograms, the same
as in Figure 6 and Figure 7). Although they look different, they are basically
delivering the same information. Remember that the training dataset was
oversampled to 50% proportion of lapses, so the strong improvement in fit-
ting is visible in the first four deciles, where we still have lapses. By contrast,
in the validation dataset, lapses are all massed in the first decile, and the
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Figure 14: Bagging Classification Tree’s Variable Importance

difference in predictive power is marked especially there. This is certainly
the most important result: while the logistic regression predicts lapses about
2.3 times more often than a random method, the bagging regression tree
predicts lapses nearly 3.5 times more often than a random method.
As we anticipated before, the bagging classification tree also provides us with
a sort of variable importance. This is shown in the Figure 14. Unsurprisingly,
the most important variable is the premium amount, which is also the most
correlated one with the response (see Table 3). However, remember that it
was excluded by the stepwise logistic regression (see Table 7). Beyond pre-
mium amount, the reserve-related variables (i.e. terminal bonus, reserve, and
sum assured) are all quite important, which is understandable considering
that all of them are highly correlated with each other. Furthermore, delta
return seems to have a comparable importance as well. Less important vari-
ables include, for example, maturity, premium period, beta cost, and age.
One more time, consider how much this is in line with the correlations in
Table 3, even more in line than in the logistic regression model.
Finally, it is worth comparing the misclassification errors of logistic regression
and bagging regression tree, although it is basically a more practical way to
express the results of the ROC curves. Since we are more interested in the
predictive power of the two models, let’s focus our attention on the validation
misclassification errors. Obviously, both the models have been run with the
same cutoff probability, i.e. 50%. Overall, the misclassification error from
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Training Validation
Pred. 1 Pred. 0 Pred. 1 Pred. 0

Act. 1 397 197 374 220
Act. 0 230 364 4151 5837

Table 9: LR Training and Validation Classification Matrix

Training Validation
#Cases #Errors %Errors #Cases #Errors %Errors

1 594 197 33.2% 594 220 37.0%
0 594 230 38.7% 9988 4151 41.6%

Tot 1188 291 35.9% 10582 4371 41.3%

Table 10: LR Training and Validation Misclassification Error

Training Validation
Pred. 1 Pred. 0 Pred. 1 Pred. 0

Act. 1 432 162 381 213
Act. 0 129 465 3384 6604

Table 11: BCT Training and Validation Classification Matrix

Training Validation
#Cases #Errors %Errors #Cases #Errors %Errors

1 594 162 27.3% 594 213 35.8%
0 594 129 21.7% 9988 3384 33.9%

Tot 1188 291 24.5% 10582 3597 34.0%

Table 12: BCT Training and Validation Misclassification Error
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the logistic regression is 41.3% against 34.0% from the bagging classification
tree. In fact, the latter can predict about two outcomes out of three policy-
holders. The biggest difference between the two models does not regard lapse
prediction, rather non-lapse prediction. While they share a similar error on
the lapses (37.0% and 35.8%), the error on the non-lapses is significantly dif-
ferent: among about 10,000 non-lapses, bagging regression tree can predict
almost 800 non-lapses more than logistic regression. Of course, we are most
interested in lapses than non-lapses (false negatives), but too many false pos-
itives can impact the profitability of a portfolio in a remarkable way since,
generally, the more the lapses the lower the profit estimation.

6.2. Profit and TVOG

A wide range of results can be analyzed by integrating the prediction of
the bagging classification tree and the liability model described in Section 5.
First, we should clarify that lapse activity impacts the profit calculation only,
that is, the data used for the lapse prediction (see Table 3) are completely
independent from the lapse activity itself. Although it could seem trivial, it
allows us for the following process split:

1. calculation of the independent variables from each scenario simulation

2. lapse prediction through bagging classification tree

3. calculation of the profit from each scenario simulation

which are indeed independent with each other.
Results come from some specific sets of parameters, and K = 1000 eco-
nomic scenarios based on the stochastic model in (17), together with the
related bond and equity scenarios. The initial set of parameters includes
the assumptions in Table 2 and Table 1 for the EURO STOXX 50, b = 90%
asset allocated in debt securities, profit share η = 90%, minimum guaranteed
Rmin = 1%, minimum management fee k = 0.2%, fair premium PF = 1000,
loading l = 15%, alpha costs α = 2%, beta costs β = 3%, and gamma costs
γ = 0.5%. No terminal bonus is assumed.
Of course, a relevant analysis should involve the policyholder reaction to an
increase in premium, which is the most important surrender risk factor ac-
cording to the Table 14. Remember that the reserve is proportional to the
sum assured, which is proportional to the premium, that is, an increase in
premium will really impact three of the five most important variables (termi-
nal bonus would be also impacted, if it were not zero) in Table 14. Figure
15 compares DCE, Dn, and DT when annual premium varies from the initial
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Figure 15: DCE , Dn, and DT varying by annual (fair) premium

Figure 16: TV OGn, and TV OGT varying by annual (fair) premium
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Figure 17: Average lapse year varying by annual (fair) premium

1000 to 3000. Take into account that the increase primarily affects the fair
premium, so the final impact on the annual premium payments, which are
impacted by loading and costs, is even greater. Also, the increase in fair pre-
mium leads a proportional increase in initial sum assured and thus reserve.
Basically, an increase in premium should increase profit, and this is ex-
actly what happens. However, while DCE and Dn are relatively closed
with each other (especially by low premiums) during their linear increment,
DT is strongly impacted by the dynamic policyholder behavior at any pre-
mium amount. Its growth is much more limited, and it even stops by the
highest premium amounts. Correspondingly, TV OGT grows much faster
than TV OGn, and its shape seems somewhat exponential for high premium
amounts.
In fact, these effects are well explained by Figure 17. Even in the basic sce-
nario with annual premium 1000, the average lapse year is approximately the
eleventh, and this is probably due to the actual market conditions. Unfortu-
nately, this is enough to reduce the average profit from about Dn = 3500 to
about DT = 2000. As long as the premium increase has almost no effect on
the average surrender activity - approximately by a premium of 2200 - DT

increases, but after that threshold the policyholder reaction is so immediate
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Figure 18: DCE , Dn, and DT varying by minimum guaranteed rate

to offset the profit of the contract. Probably, in case of better economic
conditions, the policyholder tolerance would be higher, or premium amount
would not be so important in lapse prediction, but in this particular case it
could really lead to surrender en masse.
Even if the minimum guaranteed rate does not seem to be an important ac-
cording to the Table 14, it may be worth noting how it can impact profit. It
is shown in Figure 18. Even at guaranteed rate 0%, the gap between Dn and
DT is very large, but it should be caused by the actual market conditions, as
we also discussed for the premium effect. Beyond this remark, Dn and DT

decrease somewhat parallelly as guaranteed rate increases, and this is also
reflected in TVOG ( 19). Nonetheless, this similar shape is due to different
reasons. While Dn solely decreases as a direct consequence of a higher rate
to guarantee yearly (even in disadvantageous scenarios), Dn partly decreases
because of profits lost from policyholder’s surrender.
Given the regularity of the decrease in DT , we expect a regular increase in
average lapse year. Looking at Figure 20, it approximately grows in a linear
fashion from about 9 years to about 12 years.
So far we focused our attention on contract-based variables, which cannot
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Figure 19: TV OGn and TV OGT varying by minimum guaranteed rate

Figure 20: Average lapse year varying by minimum guaranteed rate
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Figure 21: DCE , Dn, and DT varying by initial average coupon - FTSE MIB case

change during the life of the contract. However, the credited rate is especially
function of the fund performance. Given that the so-called ”delta return” is
among the most important variables according to the Table 14 in predicting
surrender activity, we will consider variations in the fund-related parameters,
in order to observe how lapse year is impacted via delta return.
On the base of the Table 2, the initial average performance of the bond com-
ponent is 3%, but now we let it change between 0% to 10% adjusting each
performance by ±1%. Notice that these parameters are used in the first pol-
icy years only, since new bonds will be bought as soon as the initial bonds
mature. And new bonds will return the new (stochastic) forward rate. As
a consequence, Figure 21, Figure 22, and Figure 23 all show an increase in
profit as the initial coupon rate increases. At the same time, both Dn and
DT tend to DCE, and this especially evident in Figure 23. In this case, the
minimum guaranteed rate has low impact on profit because of the higher
returns guaranteed by S&P 500 (see Table 1) as well as the growing initial
coupon rate. As we can see in Figure 26, the higher the initial coupon rate,
the later the policyholder’s lapse activity, and this also contributes to the
increase in DT towards DCE.
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Figure 22: DCE , Dn, and DT varying by initial average coupon - EURO STOXX 50 case

Figure 23: DCE , Dn, and DT varying by initial average coupon - S&P 500 case
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Figure 24: DT varying by initial average coupon and equity investment

Figure 25: TV OGT varying by initial average coupon and equity investment
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Figure 26: Average lapse year varying by initial average coupon and equity investment

However, Figure 26 reveals some difference between the average lapse year
among the three different equity investment. While the curves for EURO
STOXX 50 and S&P 500 appear approximately parallel, the curve for FTSE
MIB grows more irregularly. Effectively, it shares the same average lapse
year of the EURO STOXX 50 case when the coupon rate is zero, but the
gap steadily increases proportionally to the coupon rate. Indeed, when the
initial bond yield component is quite low, the policyholder lapses relatively
early, as soon as he/she can find higher yields on the market. And this espe-
cially happens for low-return equity investments like FTSE MIB and EURO
STOXX 50 (see Table 1) since bond yields have the major impact on the
fund performance.
The last set of parameters considered in our analysis involves the equity allo-
cation percentage of the fund. Since Italian segregated funds may incorporate
just a minor equity investment (and real estate, which we do not consider
here), typically upper-bounded at 20%-30%, we assume 1 − b ∈ [0%, 20%].
We also repeat the analysis for the three different equity index in Table 1.
A first, strange effect we should explain is well evident in Figure 27, Figure
28, and Figure 29. When the equity percentage is low, Dn is even greater
than DCE. Theoretically, this is not admissible at all because Dn is affected
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Figure 27: DCE , Dn, and DT varying by equity percentage - FTSE MIB case

Figure 28: DCE , Dn, and DT varying by equity percentage - EURO STOXX 50 case
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Figure 29: DCE , Dn, and DT varying by equity percentage - S&P 500 case

by the rate guarantee in the disadvantageous scenarios, while DCE is affected
by the certainty equivalent scenario only (this directly impact the TVOG, as
we will outline in Section 7). However, this anomalous gap is quite slight,
probably due to the frequent negative-rate scenarios, so we will accept it as
it is.
Without any equity component, the three profits are obviously equal (Figure
30), just greater than 3000. Notice that it is exactly equal to the total load-
ing from the contract, i.e. 1000× 15%× 20, since the credited rate matches
the deflator whereas no investment profit comes from any equity component.

Reasonably, the only average loss occurs when investing in FTSE MIB,
which yields a negative return on average (see Table 1). Nonetheless, aver-
age profit exponentially decreases as the equity percentage grows regardless
to the market index. The main reason is well represented by the Figure
32. Whereas the policyholder tends to lapse later during the life of the con-
tract if the equity component is residual, when it is approximately above 5%
the average lapse year stabilizes at about 10.5-11.5 years (depending on the
market index) since he/she starts profiting from high-yield equity scenarios,
while being protected by the guarantee in low-yield scenarios. And such as

46



Figure 30: DT varying by equity percentage and equity investment

Figure 31: TV OGT varying by equity percentage and equity investment
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Figure 32: Average lapse year varying by equity percentage and equity investment

persistence behavior seems worth more than the lapse itself if the equity com-
ponent is, indeed, not residual. Naturally, the policyholder’s persistence in
downward scenarios means a more and more significant loss for the company.

7. TVOG decomposition and policyholder behavior impact

A last result to mention regards the relative impact that an active poli-
cyholder behavior may have on an insurance contract. In effect, it could be
negligible in some situations, whereas it could require some pricing adjust-
ment in other situations.
Remember that TV OGn includes the effect of the guarantees, but not the
effect of a dynamic policyholder behavior, where the surrender option is re-
ally exercised at some point in time. By contrast, TV OGT includes both
the effects. This is basically the reason why we can assume that DT < Dn,
or equivalently TV OGT > TV OGn, and this is exactly what the plots in
Section 6 have shown.
The gap between TV OGT and TV OGn is hence explained by the sole policy-
holder behavior, and it is a sort of measure for the surrender option’s value,
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say VPHB. In formula

TV OGT = TV OGn + VPHB (62)

and it is interesting to study the impact of each component in several sce-
narios and parametrization, for example as a percentage of TV OGT :

1 =
TV OGn

TV OGT

+
VPHB
TV OGT

. (63)

This is represented in Figures 33-40 for each of the parametrization we have
already considered in Section 6.
First, the PHB component seems to be relatively stable as a percentage of
TV OGT if the annual premium increases (see Figure 33). Nonetheless is
about 80% at least. By minimum guaranteed rate 0%, the PHB impact is
nearly 100%, but it is not surprising at all since the guarantee effectively
plays no role in the TVOG determination (see Figure 34). And naturally,

Figure 33: PHB-guarantee impact
varying by annual (fair) premium -
EURO STOXX 50

Figure 34: PHB-guarantee impact
varying by min. guaranteed rate -
EURO STOXX 50

the greater the guaranteed rate, the more significant its impact on TVOG,
the less significant PHB impact on TVOG. By very high guarantees, the pol-
icyholder has much fewer reasons to lapse, and the TVOG will be entirely
function of the guarantee itself.
Figure 35, Figure 37, and Figure 39 look relatively similar. As the initial
average coupon from the bond in the segregated fund increases, the PHB
impact slightly grows in each of the three cases. This is not so easy to under-
stand. On a hand, higher coupons make the guarantee less significant, but
on the other hand it should convince the policyholder to keep the contract.
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Figure 35: PHB-guarantee impact
varying by initial average coupon -
FTSE MIB

Figure 36: PHB-guarantee impact
varying by equity percentage -
FTSE MIB

Figure 37: PHB-guarantee impact
varying by initial average coupon -
EURO STOXX 50

Figure 38: PHB-guarantee impact
varying by equity percentage -
EURO STOXX 50

Figure 39: PHB-guarantee impact
varying by initial average coupon -
S&P 500

Figure 40: PHB-guarantee impact
varying by equity percentage -
S&P 500
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However, the former seems to overcome the latter, that is, the policyholder
still has some other reasons to lapse - and this is plausible, given that mar-
ket conditions and fund performances do not represent the only PHB driver.
Furthermore, this is also the reason why the PHB impact grows when invest-
ing in more performing equity indexes (for example, compare Figure 35 and
Figure 39).
Figure 36, Figure 38, and Figure 40 look very similar as well. When the eq-
uity component is residual, TVOG solely comes from policyholder behavior,
but remember we used an initial average coupon of 3% against a minimum
guarantee rate of only 1%, that is, there is no impact from the guarantee
in the first policy years (almost) regardless the economic scenario. Then,
the introduction of a significant equity component increases the investment
risk of the fund, and anticipates surrender activity. In the hypothetical case
of 100% investment in equity, the policyholder has no motivation to lapse:
while he/she benefits from any upside in any equity scenario - more favorable
than the correspondent government bond scenario by definition - he/she is
also covered by the guarantee in any downside scenario.
The results reported so far were derived from the assumption that the pol-
icyholder lapses as soon as a policy year is predicted as a lapse year by the
bagging classification tree. However, this could be a too aggressive as-

Figure 41: PHB-guarantee impact
varying by annual (fair) premium -
EURO STOXX 50 and delayed lapse

Figure 42: PHB-guarantee impact
varying by min. guaranteed rate -
EURO STOXX 50 and delayed lapse

sumption. Indeed, remember that the machine learning algorithm succeeds
in predicting about two correct behaviors - whether lapse or no lapse - each
third. In other words, each lapse prediction is about 33% likely to be an
actual non-lapse. At the same time, it sounds reasonable to imagine that the
policyholder does not react immediately to concrete lapse conditions, rather
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Figure 43: PHB-guarantee impact
varying by initial average coupon -
FTSE MIB and delayed lapse

Figure 44: PHB-guarantee impact
varying by equity percentage -
FTSE MIB and delayed lapse

Figure 45: PHB-guarantee impact
varying by initial average coupon -
EURO STOXX 50 and delayed lapse

Figure 46: PHB-guarantee impact
varying by equity percentage -
EURO STOXX 50 and delayed lapse

Figure 47: PHB-guarantee impact
varying by initial average coupon -
S&P 500 and delayed lapse

Figure 48: PHB-guarantee impact
varying by equity percentage -
S&P 500 and delayed lapse
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he/she could delay the surrender.
For these reasons, we repeat the previous analysis while assuming that lapse
does not occur in correspondence to the first lapse year prediction, rather
in correspondence to the second one in each simulation. The Figures 41-48
refers to these new setting. As expected, the relative impact of the pol-
icyholder behavior slightly decreases for almost each parametrization, but
unfortunately it is a quite marginal effect.
All in all, even if we take a look at the smallest policyholder behavior’s ef-
fect on TVOG, i.e. in Figure 36 by 20% equity investment, it is above 10%,
which is not negligible at all. On the other hand, some scenarios reveal an
extremely great impact from surrender activity. In such cases, TVOG will
be small because of favorable market conditions, but no dynamic policy-
holder behavior modeling is practically meaning that our TVOG estimation
is zero since TVOG would come from guarantees only. And this cannot be
an acceptable simplification.

8. Limitations and conclusions

Although the whole paper is based on a specific, proprietary dataset, the
analysis provides us with a realistic idea of the relative impact of dynamic
policyholder behavior.
In Section 5, we referred to a sort of simplified ALM model, the same as
in [1]. Without a doubt, a real ALM model would be much more accurate
and somewhat less questionable, because it would allow (at least theoreti-
cally) for a correct calculation of the segregated fund return as the ratio of
revenue to average reserve. Actually, our model implicitly assumes that the
market-value-based asset total return coincides with the balance-sheet-based
segregated fund return: although it is a good proxy, they are not equiva-
lent at all. In particular, we do not account for available-for-sale securities
in portfolio, that is, all those securities (whether bonds or stocks) that the
company may trade at its own discretion to realize gains or losses. In fact,
we considered held-to-maturity securities only, although insurance compa-
nies generally hold available-for-sale securities as well. On the other hand,
segregated fund allocations tend to be quite stable among insurance compa-
nies, in order to guarantee stable returns. This is the reason why we can
accept our simplifications to the extent of this paper, avoiding a number of
complications that are beyond the scope of the research.
Even if we recognize that some important variables have not been included
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among the explanatory variables of the policyholder behavior (e.g. unem-
ployment rate and policyholder’s salary), our results are globally in line with
those of other similar studies. Our analysis has brought out some typical
risky profiles. Positive correlation between age and lapse tendency is con-
firmed: oldest people surrender more than younger people. At the same
time, higher premiums make policyholders more prone to lapse, which is
quite plausible. The performance of the contract plays an important role
as well. Indeed, when the contract cannot return a yield comparable to the
actual market yields, lapse is more likely. To some extent, it proves a sort
of rational behavior of the policyholders since higher market yields can be
either due to poor segregated fund returns (leading to an arbitrage-oriented
behavior) or higher bond spreads (leading to a crisis-oriented behavior).
In the second part of the paper, we focused on the effective impact of dynamic
policyholder behavior modeling on profit and TVOG estimation. In particu-
lar, the histograms in Section 7 reveal how significant the unique behavior of
a policyholder can be on the profit valuation. Most of the time, indeed, the
TVOG due to policyholder behavior covers the majority of the total TVOG.
In other terms, TVOG calculated without dynamic policyholder behavior
assumptions can extremely underestimate the total TVOG. And we should
be aware of the fact that it is due to current economic conditions as much
as intrinsic features of the specific policyholder. Both of them should be
taken into account for a comprehensive and prudential dynamic policyholder
behavior modeling.
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