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Abstract In the unsupervised classification field, the unknown number of clusters
and the lack of assessment and interpretability of the final partition by means of
inferential tools, denote important limitations that could negatively influence the
reliability of the final results. In this work, we propose to combine unsupervised
classification with supervised methods in order to enhance the assessment and inter-
pretation of the obtained partition. In particular, the approach consists in combining
of the clustering method k-means (KM) with logistic regression (LR) modeling to
have an algorithm that allows an evaluation of the partition identified through KM,
to assess the correct number of clusters, and to verify the selection of the most im-
portant variables. An application on real data is presented to better clarify the utility
of the proposed approach.
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1 Introduction

In unsupervised classification techniques, clusters of homogeneous objects are de-
tected by means of a set of features measured (observed) on a set of objects with-
out knowing the membership of objects to clusters. In these applications, the aim
is to discover the heterogeneous structure of the data. In unsupervised classifi-
cation models, the principal approaches of cluster analysis [6] are: connectivity-
based clustering better known as hierarchical clustering, centroid-based clustering,
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distribution-based clustering, density-based clustering, and many other parametric
and non-parametric techniques [7].

Conversely, supervised classification is based on the idea of forecasting the mem-
bership of new objects (output) based on a set of features (inputs) measured on a
training set of objects for which the membership to clusters is known. Therefore,
in these applications, the aim is to generalize a function or mapping from inputs to
outputs which can then be used speculatively to generate an output for previously
unseen inputs [4] [8]. Usually, a subsample (training), which is representative of
specific groups, is selected and then this model is used as reference for the classi-
fication of new (unobserved) other objects. Training sets are selected based on the
knowledge of the user. In supervised classification models we have artificial neural
networks, naive Bayes classifiers, nearest neighbor algorithm naive, decision trees,
logistic regression, generalized linear models, and many other parametric and non-
parametric techniques.

In unsupervised classification, we have important issues that could drastically
influence results: (i) an unknown number of clusters, (ii) an absence of variable
selection that most contribute to clustering, and (iii) a final assessment of clusters
[3]. In other words, all the decisions taken to address the study can lead to different
results and each single decision becomes crucial for the aim of our study and needs
to be tested.

In this work, we propose an algorithm based on the use of supervised classifica-
tion modeling. In particular, our approach consists in the simultaneous application
of k-means (KM) [9] and logistic regression (LR) [1] modeling. We will prove that,
by using LR, we have effective inferential tools for choosing the number of clusters,
selecting the most important variables for the clustering, and assessing the quality
of clusters.

The paper is structured as follows: in section 2 we present our proposal for the
simultaneous application of unsupervised and supervised classification modeling, in
section 3 we show an application on real data and finally, in section 4 we try to give
some suggestions and concluding remarks on the work.

2 Proposal

In unsupervised classification modeling, we are not interested in prediction because
we do not have an associated response variable y like in supervised classification
modeling. Therefore, this paper proposes to simultaneously apply unsupervised (i.e.,
KM) and supervised classification (i.e., LR) approaches, where the latter aims to
evaluate and to improve the former with the additional data structure information.
We will call this approach k-means-logistic regression (KM-LR). In particular, KM-
LR is composed of the following principal steps:
Given the n×J data matrix X, for K = 2, . . . , Kmax, where Kmax is the maximum
number of clusters the researcher thinks the data might have, the algorithm works
as follows:
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Algorithm 1 KM-LR algorithm
1: for k = 2 to Kmax do

2: K-means step

3: Randomly initialize the membership matrix U;
4: Compute the centroids matrix by X̄ = (UT U)−1UT X;
5: Minimize the objective function

∥∥X−UX̄
∥∥2 with respect to the membership matrix U;

6: Update the centroids matrix X̄n = (Un
T Un)

−1Un
T X given the new assignment matrix Un;

7: if
∥∥X−UnX̄n

∥∥2
> ω;

X̄ = X̄n, U = Un, repeat steps 5-6;
else
exit loop; obtain the gk categorical cluster vector;

8: end if

9: Multinomial logistic regression step

10: LR is estimated on gk , with explanatory variables X, for estimating the probabilities for its k − 1 response
categories πk (x), and to estimate the probabilities for its baseline category π0 (x);

11: if some LR estimated coefficient is not 5% statistically significant;
remove the corresponding variables from the matrix X;
repeat steps 2-10;

12: end if
13: end for

At the end, we obtain Kmax− 1 identified partitions (with a different number
of clusters k), together with a reduced set of statistically significant variables and a
set of inferential tools to assess the quality of the partition. The best partition (with
the optimal number of clusters k) is identified in correspondence of the largest in-
crease of a χ2-test computed on the partitions obtained by KM and LR. In this way,
through the analysis of the LR results (e.g., explained variance, parameters signif-
icance, residual variance), we have an evaluation of the partition obtained by KM.
In fact, a good performance of the LR model on the response variable derived by
the KM outcome means that the variables included in the model provide a good ex-
planation for the group structure in the data. Moreover, through the LR coefficients
analysis, we can see which variables contribute the most to identifying the group
structure and to what extent they do so (by analyzing statistical significance, value
estimates, and signs of coefficients).
Note that the algorithm monotonically decreases the loss function, or at least does
not increase it. However, it does not guarantee to stop at the global minimum of the
loss function. For this reason, it is recommended to use of a large number of ran-
domly started runs to find the best solution. The predictive accuracy of the method-
ology can be assessed by cross-validation to give an insight into how the model will
generalize to an independent dataset. In a following paper we will include a cross-
validation procedure and a simulation study to assess the predictive accuracy and
evaluate the performances of the algorithm.
In the next section, an application on real data is presented.
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3 Application on real data

In this section a real data application of KM-LR is presented. The data set is named
Wine Data [5]. It is the result of a chemical analysis of wines grown in an Italian
region, derived from three different cultivars.

The 13 constituents were measured on 178 types of wine from the three cultivars:
59, 71 and 48 instances are in class one, two and three, respectively. The 13 chemical
continuous attributes of the wine data set are: 1. Alcohol (Alc), 2. Malic acid (Mal),
3. Ash (Ash), 4. Alkalinity of ash (AAsh), 5. Magnesium (Mg), 6. Total phenols
(Phe), 7. Flavonoids (Fla), 8. Nonflavanoid phenols (NPhe), 9. Proanthocyanins
(ProA), 10. Color intensity (Col), 11. Hue (Hue), 12. OD280-OD315 of diluted
wines (ROD), and 13. Proline (Pro).

In the analysis, we have tried to select the optimal number of clusters without
considering the a priori information that K = 3, and using the KM-LR algorithm,
i.e., through the maximization of the increase of the χ2-test computed on the par-
titions obtained by KM and LR. For comparison purposes, two other approaches
have been used. The procedure has been randomly repeated 50 times from 2 to 10
clusters using a single random start. In Table 1, the results obtained by KM-LR (first
column), the sequential application of KM followed by the Gap-method proposed
by Tibshirani [12] (second column), and the sequential application of KM followed
by Calinski and Harabasz’s [2] criterion (third column) have been reported.

Table 1 Optimal K selection from 2 to 10 clusters on the 50 random repeat using a single random
start

KM-LR KM –> Gap-method KM –> Calinski-Harabasz
K Count Percent Count Percent Count Percent
2 0 0.00 0 0.00 0 0.00
3 36 72.00 5 10.00 22 44.00
4 10 20.00 0 0.00 5 10.00
5 2 4.00 0 0.00 3 6.00
6 2 4.00 0 0.00 3 6.00
7 0 0.00 2 4.00 0 0.00
8 0 0.00 1 2.00 0 0.00
9 0 0.00 15 30.00 6 12.00
10 0 0.00 27 54.00 11 22.00
Total 50 100.00 50 100.00 50 100.00

The best performance has been obtained by the KM-LR approach, where the opti-
mal number of clusters has been captured 36 times out of 50 (72%) runs. In contrast,
the KM-Gap-method obtained the worst performance, since the optimal number of
clusters was captured only 5 times (10%). Thus, the KM-LR approach seems to re-
duce the effect of the local minima problem of the KM algorithm, and this is even
more relevant in the case no modification of the KM partition as proposed by the
KM –> Gap-method and KM –> Calinski-Harabasz method.
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In Table 2 we show the estimation results of LR applied to the group labels
identified through the KM model as a response variable and include only variables
with significant coefficients as predictors.

Table 2 Estimation results obtained by logistic regression applied to the KM partition including
only predictors with a 5% significant coefficient

Estimate SE t-stat p-value
Const. 2.0169 0.0296 68.2200 2.66E-122
Alc -0.2306 0.0465 -4.9579 1.76E-06
Mal -0.0865 0.0382 -2.2674 2.47E-02
Mg -0.1264 0.0353 -3.5808 4.51E-04
Fla -0.2012 0.0786 -2.5597 1.14E-02
Col -0.0806 0.0516 -1.5634 1.20E-02
Hue 0.0970 0.0474 2.0492 4.20E-02
Pro -0.3627 0.0498 -7.2806 1.31E-11
178 observations, 164 error degrees of freedom
Dispersion: 0.138, AICc=160.34, BIC=185.95
R-squared-adj.=0.8135
F-statistic: 93.70, p-value=5.19E-55

From Table 2 we can note that the model shows good performance and about
80% of the total deviance is explained (i.e., R2

adj = 0.81). The variables Ash, Alkalin-
ity of Ash, Total phenols, Nonflavanoid phenols, Proanthocyanins, and the OD280-
OD315 of diluted wines have been excluded because these were not statistically
significant at the 5% level. In Figure 1 the partitions identified by KM-LR (high-
lighted with different symbols) on the 7 included variables have been represented.

Fig. 1 The 3 clusters identi-
fied by KM-LR represented
on the variables included in
the model
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The partition seems well represented on most pairs of variables, this because it
is represented by the statistically most significant variables. Moreover, the partition
found by the KM-LR approach better identifies the real data partition identified by
the three different cultivars.

Table 3 shows (i) the confusion matrix between the real data partition and the
KM partition (i.e., KM applied to the complete data) and (ii) the confusion matrix
between the real data partition and the KM-LR partition.

Table 3 Confusion matrix between: (i) real data partition and KM partition; (ii) real data partition
and KM-LR partition

K-means K-means - LR
Real C1 C2 C3 Total Real C1 C2 C3 Total
C1 32 5 22 59 C1 51 3 5 59
C2 9 61 1 71 C2 3 66 2 71
C3 2 27 19 48 C3 0 12 36 48
Total 43 93 42 178 Total 54 81 43 178

The misclassification rate and the adjusted Rand index (ARI) [11] applied on
the left table (i.e., the real partition versus the KM partition) are equal to 0.3708
and 0.2977, respectively; these same indices applied to the right table (i.e., the real
partition versus the KM-LR partition) are equal to 0.1818 and 0.5465, respectively.
We recall that ARI has a value between 0 and 1, with 0 indicating that the two
data clusterings do not agree on any pair of points and 1 indicating that the data
clusterings are identical.

Moreover, by applying LR to the real data partition we obtain the following con-
fusion matrix between the real partition and the one fitted by LR (Table 4).

Table 4 Confusion matrix between real data partition and LR partition

Logistic regression
Real C1 C2 C3 Total
C1 15 44 0 59
C2 6 62 3 71
C3 2 38 8 48
Total 23 144 11 178

The performance of KM-LR is also better. In fact, the misclassification rate and
ARI applied to Table 4 are equal to 0.5225 and 0.0247, respectively. In Table 5,
the performances obtained by both LR applied to the real partition and KM-LR are
shown. We note that the diagnostic indices obtained by KM-LR are much than those
obtained by the LR application on the real data partition. Furthermore, in the appli-
cation of LR on the real data partition, only the variable Color intensity has obtained
a statistically significant coefficient and then, only this variable has been included
in the model.
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Table 5 Comparison between LR and KM-LR

LR KM-LR
F-Statistic 14.5000 93.7000
p-value 0.0002 5.19E-55
R-squared-adj. 0.0710 0.8135
AICc 403.3673 160.3400
BIC 409.6623 185.9500

Finally, to obtain a quality measure of the clusters, a MANOVA model [10] on
the real data partition and on that obtained by the KM and KM-LR models has been
applied (Table 6).

Table 6 MANOVA results obtained on the real data partition and on that obtained by k-means and
k-means - logistic regression

Wilk’s
Lambda

Chi-Squared
approxima-
tion

Degrees
Freedom
Chi-square

p-value Partition

Const. 0.2052 267.6509 26 0.00E+00 Real
Group 0.7904 39.7581 12 7.89E-05
Const. 0.2043 268.3793 26 0.00E+00 KM
Group 0.7609 44.3934 12 1.31E-05
Const. 0.2303 248.1821 26 0.00E+00 KM-LR
Group 0.8063 36.3558 12 2.80E-06

The null hypothesis is rejected in each of the three cases, i.e., the means of each
group are not the same j-dimensional multivariate vector, and any difference ob-
served in the sample is not due to random chance. However, we can note that the
most significant value of λ is derived in the KM-LR partition. In Figure 2, the dis-
tributions of the three KM-LR clusters on the reduced set of variables are shown.

Fig. 2 Boxplots of the three
KM-LR cluster distributions
represented on the variables
included in the model
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4 Concluding remarks

In the unsupervised classification approaches, the unknown number of clusters and
the lack of assessment of the final partition are crucial issues that could negatively
affect the reliability of the results. In this work we proposed an algorithm that com-
bines KM and the LR modeling to evaluate the partition identified through KM, to
assess the correct number of clusters, and to verify the selection of the most impor-
tant variables. We did this by using well-known inferential tools that allowed us to
statistically confirm the obtained results.

The application on real data shows that this methodology obtains better perfor-
mance than the usual KM approach, reducing the effect of local minima. Moreover,
KM-LR represents a useful tool to identify the variables that better contribute to
defining the group structure in the data and removing the statistically non-significant
variables from the model. In this way, we have a parsimonious set of variables that
define the best partition of the data. Thus, the methodology seems promising. How-
ever, in a following work, we wish to better assess, using an extensive simulation
study, the performance of the proposed methodology.
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