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Abstract. This paper is inspired by the work of Wüthrich, who introduced the use
of machine learning techniques in non-life claims reserving.
Machine Learning techniques, born to channel data complexity and able to deal with
highly non-linear dependencies, are presently expected to provide a valid alternative
to traditional reserving techniques. Moreover, in a framework where insurance un-
dertakings are collecting an increasing amount of data on policyholders and claims,
it seems natural investigating the potentialities of these algorithms.
We focused on salary-backed loan insurance, a peculiar branch of credit insurance
providing coverage for the outstanding debts in case of policyholder’s unemployment.
A particular feature of these contracts is that they are characterised by a claim fre-
quency very sensitive to credit cycle trends, with strong variability in time.
The aim of this work is to investigate whether machine learning techniques can deal
efficiently with such variability, exploiting information of macro-economic indices.
We offer a comparison of three different statistical techniques: Generalized Linear
Models (GLM), which represent the benchmark of the analysis, Artificial Neural
Networks (ANN), whose popularity is spreading in actuarial sciences, and Support
Vector Machines (SVM), that are known for their good generalisation capabilities
but are new in this field.

Key words: Individual claims reserving, granular reserving, machine learning, GLM,
Artificial Neural Networks, Support Vector Machines, credit insurance

Introduction

Claims reserving is one of the main issues for non-life actuaries, founding its roots in loss
development triangles such as Chain Ladder. Despite their effectiveness depends on the
hypothesis of claim homogeneity, which is rarely met in reality, their use is mainly motivated
by computational efficiency. The broadening of computational limits in recent times and the
increasing amount of information collected by insurance companies have however encouraged
researchers in exploring the use of new techniques that could exploit these achievements and
improve the reserving process by including individual information on claims.
In this direction, many authors like Zhou [21] and Taylor [16] have proposed the use of
GLMs, which are now considered standard actuarial tools, while Wüthrich [19], [20] showed
the benefits of machine learning techniques, opening a new line of research. Support Vector
Machines, introduced by Vapnik [3], represent our main proposal in this context, as they
represent a fairly new technique in actuarial sciences which has mainly been proposed for
fraud detection, see e.g. Kirlidog [8].
Following this new path, we hence explored the use of machine learning in a peculiar branch
of credit insurance, namely insurance covers linked to Cessione del quinto (CQ for short),
which is a form of salary-backed loan unique to Italy. Being known the cyclic nature of credit
insurance, we used these techniques to consider during the reserve estimation process, in
addition to individual claim information, macro-economical variables such as GDP.
This work is organised in 7 main sections: in the first part we explain the peculiarities of
salary-backed loan insurance, providing then a quick review of claims evolution process.
In Section 3 we recall the claim reservation principles and we show how we declined the
estimation process. In Section 4 we show the essentials of the methodologies applied in the

damiano.ticconi@uniroma1.it


2 Damiano Ticconi

case study and then we dedicate two sections to the results of the case study. The work
closes with a section concerning computational issues, followed by our conclusions.

1 Salary-backed loan insurance

A salary-backed loan is a peculiar type of employee individual loan, unique to Italy and
fitting among consumer’s credit operations.
Their distinctive characteristic consists in the payment of the mortgage through a direct
transfer of a percentage, up to a fifth, of the worker wage/salary.
This determines a strong decrease in terms of insolvency rate with respect to the market
average but, nonetheless, the Italian Regulator requires an additional assurance on these
operations which is to be given by means of an insurance contract.
This contract is dual in nature, covering the outstanding debt in both the cases of death
or unemployment of the Transferee. Due to this duality, it has to be distinguished in two
different risks, referring respectively to Term Life insurance and Non-Life insurance, the
latter being the main interest of this work.

We hence identify four different actors on the operation:

1. A Transferor, granting the loan, underwriter and beneficiary of the insurance coverage;
2. A Transferee, requesting the loan and insured one;
3. The Insurance Company, providing coverage on the loan;
4. The Transferee’s Employer, withholding a part of the Transferee’s salary, used to cover

each mortgage rate.

2 Claim timeline

We now provide a quick summary of the evolution timeline for a CQ unemployment claim,
as shown in Figure 1, to allow a better understanding of the claim reservation process.

Underwriting

Accident Reporting

Reporting delay

Closing

Closing delay

Re-opening

Fig. 1: Example of claim timeline.

– A claim takes place when the Transferee becomes unemployed, either for resignation or
termination, causing the inability of the Employer to pay mortgage rates by withdrawing
from the worker’s salary. This moment is usually called accident date and will be referred
to as a in the following.
In this phase only the Transferor has knowledge on the accident and has to execute
standard recovery procedures, such as monitoring whether the insured one can find a new
job.

– If recovery is impossible, the loan is defaulted and the Transferor involves the Insurance
Company, marking the reporting date and a consequent reporting delay, which we denote
as r, i.e. the time gap between accident and reporting dates.
It has to be noticed that it is not rare to observe relevant reporting delays, even larger
than a year, because of the nature of the monitoring procedure and a prescription period
equal to two years. This phenomenon is quite significant for a sound management of risks,
as it translates in a higher percentage of late reporting claims than standard insurance
branches.
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– At this point, the Company gathers all information necessary to file the claim on its sys-
tems, to open a case reserve and to operate additional verifications on the claim’s validity.
If the outcome of these procedures is positive, the Insurer dispenses a reimbursement to
the Transferor, otherwise the claim is closed with no follow-up. In both cases, this marks
the closing date and a resulting closing delay, denoted as c.

– Though rare in practice for these kind of contracts, it is possible for any counterparty
to request a re-opening of the claim, setting a re-opening date and the start of a second
verification procedure which will result once again in a payment or in a closure with no
follow-up.

3 Claims Reserve

Solvency II Regulation [4] requires the set up of Technical Provisions on a market-consistent
basis, splitting the total amount for non hedgeable risks in the sum of Best Estimate and
Risk Margin. The calculation of Claims Best Estimate is often based on the local Claim
Reserve, given by

EP
[
Xt,R

∣∣∣Ft], (1)

where t denotes the evaluation date, R the maximum admissible reporting delay according
to empirical observation, P the natural probability measure, Ft the information available
in t and Xt,R the total liabilities for claims outstanding in t.
Excluding both the possibilities for claims to be settled with more than one payment and
to be re-opened once they are closed, due to scarce materiality of these phenomena, we can
further expand

Xt,R =

t∑
a=0

R∑
r=0

Xa,r(c), (2)

where Xa,r(c) is the outstanding liability for a claim occurred in a, varying from the birth
of the Company to the evaluation date, having reporting delay r and that will be settled in
a+ r + c.
Furthermore, the total local reserve can be divided in two main components that need
separate evaluation because, as we can see in Fig. 2, each claim can be in one of two
different states at a certain time t:

1. Reported But Not Settled, or RBNS, if the claim has been reported to the Insurer, but
has not been closed yet (with or without follow-up);

2. Incurred But Not Reported, or IBNR, if the claim has already taken place but is yet to
be reported to the Insurer.

RBNS Claim

0 a
r

a+ r + c

t

IBNR Claim

0 a

r

a+ r a+ r + c

Fig. 2: Two different states for claims at a generic evaluation date t.

We can hence expand (1) as

EP
[
Xt,R

∣∣∣Ft] = t∑
a=0

EP
[
1[a<t,a+r≤t]Xa,r(c)

∣∣∣Ft]︸ ︷︷ ︸
RBNS

+

+

N∑
n=0

EP
[
1[n, r≤R, a<t, a+r>t]Xn,r(c)

∣∣∣Ft]︸ ︷︷ ︸
IBNR

,

(3)
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where the two addendums represent RBNS and IBNR claims respectively, identified by the
indicator functions accordingly to Fig. 2.
It can be noticed that IBNR liabilities Xn,r(c) have a different subscripts from (2) as they
need to be evaluated for every contract in force n = 1, . . . , N at the evaluation date.

For our purposes we supposed that historical data x(t) collected by the Company contains
all available information in t, even when we drop the index for simplicity, and that this is
sufficient to give a proper evaluation of claim amounts.
Concerning RBNS component, we need an estimation of the closing delay for every claim,
because of its strong influence on the final claim amount. It is in fact plausible presuming
that an onerous claim will be subjected to additional verifications and, viceversa, a claim
needing exceptional procedures will be more likely to result in a higher liability.
We hence need a proper classification model to esteem probabilities for the random variable
closing delay c of each opened claim

P̂
(
c = c∗

∣∣Ft) = P̂
(
c = c∗

∣∣x(t)). (4)

Once this model is tuned we can provide an estimation of the vector of closing delays c,
selecting for every claim the c∗ value with higher estimated probability, completing the
information x̃(t) = {x(t), c∗}.
At this point we have everything we need to calibrate a statistical learning tool capable
of approximating the relationship described by observed data between final payments and
claim characteristics. We will use this as a regression function to provide an estimation of
outstanding liabilities for RBNS claims

X̂a,r(c) = f1

(
x̃(t)

)
. (5)

For IBNR appraisal, where we dispose of less information as we could not observe claim
characteristics, we opted for a frequency-severity approach, where we discern among in force
contracts the ones that are more likely to produce an IBNR claim and then we produce an
estimation of the outstanding liability for each of these.
For the first task, we used a classification tool predicting the probabilities that each existing
risk will cause a late reporting claim in a fixed time interval r∗

P̂
(
1[n, r≤r∗, a<t, a+r>t]

∣∣∣Ft) = P̂
(
1[n, r≤r∗, a<t, a+r>t]

∣∣∣xn(t)) = p1
(
xn(t)

)
. (6)

Selecting a proper cut-off value k, we discerned IBNR claims from the rest of the portfolio
according to the probability estimates produced by (6)

1[n, r≤r∗, a<t, a+r>t] =

1 if p1
(
xn(t)

)
≥ k

0 if p1
(
xn(t)

)
< k

. (7)

We were hence able to provide an estimation of the outstanding liabilities for each risk
marked as IBNR by means of a second regression function, similar to (5) but ignoring
information on the claim

X̂a,r = f2

(
xn(t)

∣∣∣1[n, r≤r∗, a<t, a+r>t]

)
. (8)

4 Statistical learning tools

In this section we provide a review of the statistical models used in this paper: Generalised
Linear Models (GLM), Artificial Neural Networks (ANN) and Support Vector Machines
(SVM).

4.1 Generalised Linear Models

GLMs can be considered a standard tool for actuaries, as they are commonly used and have
already been proposed for granular reservation processes, see e.g. Zhou [21] and Taylor [16],
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hence they can represent a valid benchmark for the analysis.
The main reasons for the popularity of GLMs are their effectiveness and simplicity in mod-
eling different kinds of relationships underlying data.

Their essential idea consists in explaining the variability of data through a generalisation
of the linear regression model as follows

Y = g−1(Xβ) + ε = g−1(η) + ε (9)

where ε is an error term and g(·) a link function, linking the response variable Y to the linear
predictor η = Xβ, while β represents the vector of regression parameters to be estimated.

It is known that GLMs are based on two main assumptions:

1. Y1, . . . , Yn are i.i.d. and their distribution function belongs to exponential family, i.e. it
can be expressed as

f(y, θ, λ) = d(y, λ) exp

[
yθ − b(θ)

λ

]
,

where y, θ, λ ∈ R and b(·), c(·) are real-valued functions;

2. E(ε) = 0 and V(ε) = σ2I, implying that

g(E(Y)) = g(µ) = Xβ = η.

When using these techniques, our main concern is choosing a proper distribution function
for Y and a link function g(·), as they shape the kind of relationship that will be captured
by the model.
As for the link function, it is common to opt for a logarithmic link, because it induces
convenient transformations on data, or for the canonical link, which assumes a known form
for every distribution of the exponential family and benefits useful properties.
Regarding the distribution, the choice depends on the kind of problem we need to solve and
the characteristics of the response variable. For our purposes, as reported in Table 1, we
relied on Binomial distribution for classification problems and Gamma or Inverse Gaussian
distributions for cost-regression problems.

Distribution Canonical Link Mean function

Binomial η = ln
(

µ
1−µ

)
µ = (1 + exp(−η))−1

Gamma η = −µ−1 µ = −η−1

Inverse Gaussian η = 1
µ2 µ = η−

1
2

Table 1: Distribution choices and related canonical links.

4.2 Neural Networks

Though the fascinating biological inspiration, Artificial Neural Networks (ANN) are com-
plex algorithms offering a valid alternative for problems where GLM hypothesis could be
too restrictive.
Despite harder intepretation, their popularity is probably due to the universal approxima-
tion theorem [6], stating that a well-structured, feed-forward neural network can always
approximate to any degree of accuracy any continuous function, even though it does not
provide a way to find the best network configuration.
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The elementary unit of an ANN is the neuron, or node, transforming an input x =

x1, . . . , xJ to an output φ(A) as follows

x1

xj

xJ

x0

A =
J∑
j=0

wjxj

w
0w

1

wj

wJ

φ(A)

...

...

Fig. 3: Schema of a neuron.

1. Calculate the entity of each input xj · wj , ∀j,
considering a bias unit x0 = −1;

2. Calculate the Activation as the sum of each input
A =

∑J
j=0 wjxj ;

3. Transform A through activation function φ(·);
4. Transmits the output φ(A) to following neuron.

A neural network is the result of the combination of several neurons in multiple layers.
Usually all of the units on a layer are assigned with the same activation function, but it is
possible choosing different functions for each layer. The assortment for φ(·) is more than
vast, being possibile to use any kind of function but, to speed up the calibration procedure,
it is recommended selecting a function whose derivative is simple to compute. Some common
choices are reported in Table 2.

Type Function

Sigmoid φ(A) = 1
1+e−kA

Tanh φ(A) = 2
1+e−kA − 1

ReLu φ(A) = max[0, A]

Softplus φ(A) = ln(1 + eA)

Table 2: Common choices for activation functions.

Special considerations are necessary for the output layer, whose activation function de-
termines the shape of the final result of the net: for example, in a classification problem
a Sigmoid output unit is desirable, as it produces results in [0,1], while for a regression
problem admitting values in R a linear output unit could be preferred.

We have restricted our analysis to three-layered, feed-forward networks, as shown in Fig.
4, where information flows from input layer towards output layer with no possibility for
recurrent connections.
The choice of such configuration is motivated for both the strength of universal approxima-
tion theorem and simplicity, as empirical evidence shows that such configuration is sufficient
to solve most problems.

It has to be noticed that, while the numbers of input and output nodes J and O al-
ways equal the number of explicating and response variables respectively, choosing a proper
amount of hidden units H is crucial for a good fitting.
Furthermore, we denoted as h = 0 and o = 0 two bias units, commonly set equal to −1
to help containing over-fitting and, indicating with φ1(·) and φ2(·) the activation functions
chosen for hidden and output layers respectively, the final result of the net is given by

o(x,w, H) = φ2

 H∑
h=0

whφ1

 J∑
j=0

whjxj

 (10)

where whj denotes the weight connecting j-th input node and h-th hidden node, while wh
the weights between h-th hidden neuron and the output one.
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j = 1

j = 2

j = ...

j = J

Input layer

h = 0

h = 1

h = ...

h = H

Hidden layer

o = 0

o = 1

Output layer

Fig. 4: Example of three-layered, feed-forward ANN.

Now, through supervised learning algorithms, we can teach the network to replicate a
phenomenon according to a set of observations xn, n = 1, . . . , N where the correct response
yn, n = 1, . . . , N is known.
This is accomplished by gradually correcting the weight vector w until the one that min-
imises a chosen loss function L is found. A common choice is a quadratic loss considering
an L2 regularisation term, governed in its intensity by a parameter α, i.e.

min
w,H,φ(·),α

L =

N∑
n=1

(on(w, H,xn)− yn)2 +
1

2
α||w||2. (11)

The first learning algorithm taylored for ANN’s learning is Back-propagation [12], a gradient
descent method proposing to correct weights of the hidden layer proportionally to their
contribution to the final output, but numerous improved variants have been introduced in
time, e.g. Quick-prop [5] or Resilient-prop [11].

4.3 Support Vector Machines

Introduced by Vapnik [3], Support Vector Machines (SVM) represent a solid alternative to
common machine learning tools.
The idea underlying this technique is to find, among all possible linear solutions to the
problem, the one being the farthest from observed data, as it should be more resilient
against noise. In Fig. 5 we can see how this is translated in a linearly separable, binary
classification problem.

x2

x1

C1

C0

(a) Smallest margin

x2

x1

C1

C0

(b) Largest margin

Fig. 5: Optimal solution for SVM.

In such illustrative case, our objective is to find a linear decision boundary dn maximising
the so-called margin, i.e. the "tube" between observed data, shaped in Fig. 5 by two dotted
lines.
Given two classes C0, C1, a convenient choice is dn = sign(wTxn + b), implying thatdn = +1 if xn ∈ C1 ⇔ yn = +1

dn = −1 if xn ∈ C0 ⇔ yn = −1
. (12)
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It can be shown that the margin equals M = 2
||w|| , hence maximising the margin equals

minimising

min
1

2
wTw

sub yn[wTxn + b] ≥ 1 ∀n = 1, . . . , N
(13)

which is a quadratic optimum problem with n convex constraints - requiring that each data
point is correctly classified - that admits a global optimum.
Problem (13) can be solved by means of Lagrange multipliers approach, which in dual space
assumes the following form

max
λ,w,b

L =

N∑
n=1

λn −
1

2

N∑
n,m=1

ynymλnλmxTnxm

sub λn ≥ 0 ∀n = 1, . . . , N

N∑
n=1

λnyn = 0

(14)

where λn are the multipliers and whose solution is given by

w∗ =
N∑
n=1

λ∗n yn xn

b∗ =
1

NSV
·
NSV∑
k=1

(
yk − xTkw∗

)
.

(15)

Equation (15) gives the name to the algorithm: the support vectors are the only input vec-
tors whose multiplier is different from 0, hence contributing to the final solution.
It is worth noticing that, while for ANN one has to choose ex-ante a proper configuration
for the network and then optimise it, when using SVM the optimal configuration is auto-
matically derived during learning procedure.
Furthermore, (14) only depends on the dot product of couples of input vectors (xnxm) and
this can provide insight on both how inputs contribute to final solution and how to deal
with more complex problems. It can be in fact shown that, if we transformed data through
a function φ(·), the Lagrangian in (14) would depend only on φ(xn)φ(xm). This could prove
useful because a non-linear problem could result linearly separable in a transformed space,
as we can glimpse in Fig. 6.

Fig. 6: Example of linear separability in a transformed space

This transformation can then be optimised by means of the so-called kernel trick, i.e.
employing in equation (14) kernel functions K((xn,xm)) = φ(xn)φ(xm), that allow the
quantification of vector similarity in transformed spaces without computing dot products.
Common kernel choices are reported in Table 3 and, even though it is impossible to detect
ex-ante the best kernel transformation, radial kernel has shown empirically the best perfor-
mances overall.
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Kernel Function

Linear K(xn,xm) = (xTnxm)

Polynomial K(xn,xm) = [(xTnxm) + 1]k

Sigmoid K(xn,xm) = tanh[(xTnxm) + b]

Gaussian RBF K(xn,xm) = exp
[
||xn−xm||2

2σ2

]
Table 3: List of most common kernel functions.

Generalisation for non perfectly-separable problems, that are more common in practice,
is easily made by introducing a parameter C to delimit the influence of misclassified training
points. Adopting a radial kernel, this translates (14) into

max
w,b,C,σ2

L =

N∑
n=1

λn −
1

2

N∑
n,m=1

λnλmynym exp

[
||xn − xm||2

2σ2

]
sub 0 ≤ λn ≤ C ∀n = 1, . . . , N

N∑
n=1

λnyn = 0

(16)

For further insight and for regression-SVM we refer to Kecman [7].

5 RBNS reserve estimation

We considered real data provided by an Italian company, considering 15 years of historical
information collected up to 31.12.2016. Explicating variables deduced from available infor-
mation can be divided in the first three of the following groups:

Policyholder

– Age in years
– Working seniority in years
– Type of administration
– Accrued severance pay
– Premium paid

Loan

– Duration in year
– Rate amount in euros
– Net annual percentage rate
– Number of mortgage rates paid
– Loan type

Claim

– Event type, such as resignation,
death, etc.

– Re-opening, a flag {0-1}
– Reporting delay in years

Macro-economic

– GDP value at underwriting
– Loan default rate at underwriting
– GDP value at accident date
– Loan default rate at accident date

We decided to include macro-economic variables to link claim information to economic
trends, known to have a significant influence on credit insurance. We considered for simplic-
ity only two indexes, namely Italian GDP and Italian loan default rates for consumer credit,
sourcing data respectively from ISTAT[1] and Bank of Italy [2], but presented methodologies
can easily be adapted to include additional information.

As general calibration settings, we opted for a 80%-20% train-test split, applying a 5-fold
cross validation strategy [9] on train set for parameter tuning, choosing a Sigmoid activa-
tion for hidden units of neural networks and a Gaussian RBF kernel for SVM, employing
respectively the set ups described in (11) and (16).
To avoid numerical dominance phoenomena, we standardised every numerical input to have
0 mean and unitary variance.
For RBNS estimation, as shown in Section 3, our first task is to complete the information
on claims by estimating closing delays. Because CQ insurance is characterised by quick liq-
uidation processes, we have very few observation whose closing delay is larger than 3 years,
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hence we considered for simplicity only annual time intervals, grouping all claims having
closing delay c ≥ 3, restricting hence the variable’s domain in C ∈ {0, 1, 2,≥ 3}.
This configures as a multi-classification procedure with unbalanced classes, so we opted for
mean per class error (MPCE ) as metric to tune and evaluate each of the three different algo-
rithms presented in Section 4. The final performances on the test set are reported in Table 4.

(a) GLM Performance
Predicted

A
ct

u
al

0 1 2 3+ error
0 75.5% 0.2% 0.3% 0.2% 0.9%
1 13.9% 0.4% 0.5% 0.3% 97.3%
2 4.7% 0.3% 0.6% 0.4% 89.8%
3+ 1.7% 0.1% 0.4% 0.6% 79.4%

MPCE = 66.85%

(b) ANN Performance
Predicted

A
ct

u
al

0 1 2 3+ error
0 74.5% 0.9% 0.4% 0.4% 2.3%
1 12.6% 1.7% 0.6% 0.2% 88.9%
2 3.7% 0.5% 1.4% 0.4% 76.5.%
3+ 1.3% 0.1% 0.2% 1.1% 60.1%

MPCE = 56.90%

(c) SVM Performance
Predicted

A
ct

u
al

0 1 2 3+ error
0 74.8% 1.0% 0.3% 0.1% 1.8%
1 13.7% 1.3% 0.0% 0.0% 91.6%
2 0.3% 0.0% 5.8% 0.0% 4.5%
3+ 0.1% 0.0% 0.0% 2.7% 3.0%

MPCE = 25.23%

Table 4: Confusion matrices on test set, expressed as percentage of total test claim number.

The selected models have hence been used to produce an estimation of closing delay for
every RBNS claim, which we used among other explicating variables to regress on claim
cost. Parameter tuning of (5) has been conducted using Root Mean Squared Error (RMSE )
as metric and we reported the final performances on the test set in Table 5, alongside with
the final estimation of RBNS reserve. It should be noticed that both RMSE and reserve
amounts are expressed in comparison with the actual RBNS reserve registered in the Com-
pany’s balance sheet at 31.12.2016.

Model MPCE
(Closing delay)

RMSE
(Claim cost)

Reserve
(Amount)

Capacity
(Closed claims)

Internal NA NA 100% 148.4%

GLM (InvG) 66.85% 0.0617% 84.04% 104.3%

GLM (Gamma) 66.85% 0.0731% 98.07% 125.3%

ANN 56.90% 0.0619% 84.82% 118.3%

SVM 25.23% 0.0553% 86.40% 112.1%

Table 5: Estimation result for RBNS reserve, where reserve amounts and RMSE are ex-
pressed in comparison with the actual amount registered on the balance sheet.

In this table we can easily deduce that SVM shows the best performances both in terms
of MPCE and RMSE, and that all of the calibrated models suggest a slight decrease in
reserve amount with respect to the internal methodology, which proves to be the most pru-
dent.
Sufficiency to cover future actual payments has been checked in comparison with final pay-
ments for every claim that has been closed at 31.12.2017, expressing capacity as reserved
amounts on actual payments ratio.
For further inspection, we decided to conduct a back-testing to check the reliability of these
methodologies, repeating the same analysis for RBNS claims at 31.12.2015 and 31.12.2014,
comparing the results with actual paids at 31.12.2017 for every claim that has been closed
in this time lapse. The outcome of the back-testing, shown in Table 6, has proven positive
even for 2014, a particularly onerous year for the Company.
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(a) RBNS 2015

Model MPCE RMSE Capacity

Internal NA NA 148.6%

GLM (InvG) 68.79% 0.0589% 138.7%

GLM (Gamma) 68.79% 0.0804% 156.3%

ANN 59.23% 0.0586% 140.3%

SVM 24.94% 0.0533% 133.9%

(b) RBNS 2014

Model MPCE RMSE Capacity

Internal NA NA 123.4%

GLM (InvG) 71.44% 0.0615% 100.1%

GLM (Gamma) 71.44% 0.0919% 117.2%

ANN 64.97% 0.0634% 100.4%

SVM 25.77% 0.0555% 103.2%

Table 6: Summary of back-testing results.

6 IBNR reserve estimation

Concerning IBNR component, it is known that claim frequency in credit insurance is non-
stationary and highly volatile, hence the temporal dimension acquires fundamental value
for an accurate estimation of future liabilities.
As shown in Fig.7, the dataset used for calibration is composed by the aggregation of the
portfolios observed at the three most recent evaluation dates for which all of the IBNR
claims have been observed, considering a time cap for late reporting equal to r∗ = 3 years,
one year larger than the prescription limit for CQ claims.

31.12.201631.12.201531.12.201431.12.201331.12.201231.12.2011 31.12.2019

IBNR reserve

IBNR claims for 2011 ptf

IBNR claims for 2012 ptf

IBNR claims for 2013 ptf

Fig. 7: Dataset construction schema for IBNR reserving.

Referring to explanatory variables presented in Section 5, to calibrate tools described in
(6) and (8) we cannot rely on claim information, needing hence to concentrate on policy-
holder, loan and macroeconomic groups to explain the variability of IBNR claims.
Macroeconimic indices have been observed at each contract underwriting and each evalu-
ation date and, being the calibration unique for the three portfolios, they serve to outline
time trends in data.

Calibration settings are similar to RBNS component, applying an 80%-20% train-test
split and a 5-fold cross validation strategy on train set for parameter tuning.
Performance on test set and parameter tuning has been evaluated in terms of area under
curve (AUC ) described by Receiver Operating Characteristic (ROC ) for (6) and RMSE for
(8).
Concerning IBNR claims classification, due to strong class unbalance, we opted for a cut-off
value maximising F1 score [14], which is the result of an average between precision and recall.
The chosen cut-off values are reported in Table 7, alongside with the final performances on
test set.
For regression on claim cost, data used is the same from Section 5, excluding information
on claim characteristics. Final results of the reserve estimation for each IBNR-classified
contract are reported in Table 8 where we included Chain Ladder for comparison with
standard actuarial tools. As for RBNS estimation, we reported RMSE and IBNR reserve
amounts in comparison with the amount registered on the balance sheet at 31.12.2016 of
the Company, while the number of claims is always expressed proportionally to the number
estimated by means of the internal estimation technique, denoted as Nc.
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(a) ROC comparison (b) Cut-offs maximising F1 score

Model Cut-off AUC

GLM 0.03 0.7707
ANN 0.04 0.7884
SVM 0.04 0.7370

Table 7: Principal metrics for IBNR classification.

Test Performances Reserve Estimation

Model AUC
(Frequency)

RMSE
(Severity)

Claim
Number

Reserve Amount
(,000)

Internal NA NA Nc 100%

Chain Ladder NA NA 0.97·Nc 82.74%

GLM (InvG) 77.07% 0.0129% 1.07·Nc 119.54%

GLM (Gamma) 77.07% 0.0276% 1.07·Nc 121.56%

ANN 78.84% 0.0128% 0.77·Nc 94.90%

SVM 73.70% 0.0124% 1.10·Nc 81.48%

Table 8: IBNR estimation comparison.

7 Computational Effort

All of the analysis has been conducted via R software [10], using H2O [17] package for GLM,
nnet [18] package for neural networks, and liquidSVM [15] for SVM.
We chose nnet for its simplicity and quickness, as it implements only feed-forward networks
with sigmoidal activation functions for hidden neurons and a loss function with L2 regular-
isation which is solved by means of BFGS algorithm [13]. This translates in a simple grid
search over only 2 hyper-parameters: hidden neurons amount H and the intensity α of the
regularisation parameter.
As for liquidSVM, it provides one of the fastest SVM calibration tools but only implements
radial gaussian kernel. Because it solves the optimum problem in the dual space, the only
hyper-parameters to be tuned are the shape parameter of kernels σ2 and the C parameter
to delimit training error.
In Table 9 we report computational timings for IBNR parameter tuning, which requires the
heaviest computations. Timings are expressed in minutes and have been estimated using a
computer having Intel i7-8550U CPU, 2 GHz and 16 GB RAM. The grid for ANN tuning
in frequency classification has been reduced with respect to others to contain time expense.
Final models are described in Table 10, where their complexity is explained in terms of
number of weights and we report their respective computational timings.

Frequency Severity

Model Grid
size

Data size
(,000)

Total
timing

Average
timing

Grid
size

Data size
(,000)

Total
timing

Average
timing

ANN 55 854 391.37 7.12 130 55 90.55 0.70
SVM 64 854 247.37 3.87 64 55 19.58 0.31

Table 9: Timing summary for IBNR parameter tuning in minutes.
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Frequency Severity

Model Weights Timing Weights Timing

ANN 96 3.38 571 1.59
SVM 533 1.23 475 0.06

Table 10: Summary of calibration timing in minutes and complexity of selected models.

Conclusion and outlook

We have shown how machine learning techniques can exploit individual and macroeconomic
information for claims reserving in credit insurance, producing an estimation of both RBNS
and IBNR components of the local Claims Reserve.
GLMs have represented our benchmark, due to their proven effectiveness in several actuarial
problems. Though simple and easy to understand, they have several restrictions and are
heavily affected by outliers or collinearity in explicating variables.
Though harder to explain, Neural Networks could represent a valid alternative when the
structural hypothesis of GLMs are too restrictive, as they are able to detect even higly non-
linear relationships. Furthermore they can be arbitrarily complex, at the cost of increasing
over-fitting risk and computational timings.
On the other hand, SVMs can be easier to interpret, are granted with a structure more
stable and resilient, and do not require architecture designing. As downside, kernel matrix
computation can often be quite challenging for most calculators, resulting in heavy tuning
timings.
While all of the presented methodologies have achieved both comparable results and capacity
with respect to actual payments, SVMS seem to have shown the best training metrics overall.
However, to express a final preference for any of these estimators we need to explore their
variability, which will be object of further developments alongside with a sharpening of
tuning procedure. This further step will allow to appraise both the Best Estimate and Risk
Margin, necessary to the evaluation of Technical Provision in a Solvency II framework.
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