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Abstract

The Cube Sampling method is the most used technique for selecting

balanced samples. It is composed of two phases: the flight phase, which

can be performed efficiently, and the landing phase, which may require the

solution of a Linear Programming problem with an exponential number

of variables.

In this paper some variants of the landing phase of the Cube method

are proposed with the aim of reducing the dimension of the Linear Pro-

gramming problem to be solved and then improving on the total execution

time.

The algorithmic efficiency of the proposed techniques is thoroughly

evaluated via an experimental study.
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1 Introduction

The efficiency of sampling strategies, i.e. of a pairs (Sampling design, estima-

tors) depends in a crucial way on the criteria used to construct the sampling

design and to choose the estimator of the parameter of interest. In particular,

the sampling design is constructed on the basis of the available prior informa-

tion, that is frequently represent by auxiliary variables (usually correlated with

the variable of interest) having known values for all population units. Among

the plethora of sample designs, a special role is played by the balanced sam-

pling, which is based on a simple, powerful idea: the estimates of the means of

the auxiliary characters should coincide with the corresponding means for the

whole population. Of course, the construction of the balanced design requires

to solve formidable computational problems. The main algorithm to draw a

sample according to balanced sampling design is the Cube Sampling Algorithm.

It is composed by two phases: the flight phase and the landing phase. In the

present paper we will be mainly concerned with the landing phase. In particular

new techniques for the landing phase will be proposed, and their algorithmic

efficiency will be thoroughly evaluated via an experimental study.

2 Definitions and Notation

Let us consider a finite population U = {u1, ..., uN} of N identifiable units, such

that each of them can be uniquely labelled by an integer 1, 2, ..., N. Without

loss of generality, in the sequel each unit will be identified by the corresponding

label.

Let Y be the variable of interest and let X1, ..., Xp be p auxiliary variables,

whose values are known for all units of the population. Denote by xik the value

that the variable Xk assumes for unit i, (i = 1, ..., N and k = 1, ..., p). The

population means of the variables X1, ..., Xp are equal to

µxk
=

1

N

N∑
i=1

xik, k = 1, ..., p.
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The idea behind a sampling strategy based on a balanced sample design is to

use the information known a priori on the auxiliary variables, for the selection

of a balanced sample.

As already said, the purpose of a sampling strategy so structured is the

selection of a sample in which the estimates of the means of auxiliary variables

are equal to the actual average of the variables themselves. If in addition, with

the aim of completing the sampling strategy, the Horvitz-Thompson estimator

is used, a requirement that must be verified by a balanced design is to satisfy

the following balancing equations

1

N

∑
i∈s

1

πi
xik = µxk

, k = 1, ..., p

for each sample s belonging to the sample space S. The balancing equations are

assumed linearly indipendent. They define an affine subspace Q in RN of size

N − p, which is called balancing hyperplane.

For each population unit, let

sk =

1, if unit k is in the sample

0, otherwise

and let s be the N − dimensional vector of components s1, ..., sN . The sample

size is then s1 + ...+ sN . Clearly, s is a vertex of the hypercube [0, 1]N .

A sample design is a probability distribution on the set of possible values of

s = (s1, ..., sN ), i.e. a probability distribution on the vertices of [0, 1]N . The

inclusion probability of unit k is πk = E[sk], k = 1, ..., N.

The balanced sampling design is constructed in such a way to satisfy two

basic requirements.

1. E(s) =
∑

s∈S sp(s) = π, where π = (π1, ..., πN ) is the N -dimensional

vector of the inclusion probabilities of the first order of each unit of the

population.

2. The balancing equations below, are met, “as far as possible”

1

N

∑
i∈s

1

πi
xik = µxk

, k = 1, . . . , N. (1)
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A first way to find a balanced sampling design, widely used in the literature,

consists in defining a cost function Cost(s) for all possible samples of S, that

provides a measure of how the sample is distant from the balancing plane. The

selection of the cost function is an arbitrary decision that depends on who make

the survey. The cost must be such that

• Cost(s) ≥ 0, for all s ∈ S,

• Cost(s) = 0, if s is balanced.

In this paper we consider a simple cost function, already used by Deville and

Tillé in [8], defined as

Cost(s) = (s− π)′A′(AA′)−1A(s− π)

where A = (x1

π1
, ..., xi

πi
, ..., xN

πN
).

The choice of a so structured function has a natural interpretation as an

Euclidean distance in RN .

At this point, a sample can be then selected by solving the linear program-

ming problem

min
p(s)

∑
s∈S

p(s)Cost(s)

satisfying the constraints∑
s∈S

p(s) = 1,∑
s∈S

sp(s) = π,

p(s) ≥ 0, s ∈ S.

(2)

3 The Cube Sampling Algorithm

In 2004 Deville and Tillé proposed a first implementation of the Cube Method,

the main algorithm for selecting a sample with balanced design, composed of

two phases: the flight phase and the landing phase.
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The flight phase consists of a random walk that starts at the vector of the

inclusion probabilities π and remains in the intersection of the cube and the

affine subspace Q. In other words, using the balancing equations defined in the

theoretical formulation of the problem (1) and the first order inclusion proba-

bilities, the algorithm performs a random walk in the intersection between the

balancing plane and the hypercube until it reaches a vertex of the subspace

K = [0, 1]N ∩Q. The fast implementation of the flight phase presented in

Chauvet and Tillé [4] requires a O(Np2) execution time.

If at the end of the flight phase, the obtained vector π∗ of inclusion proba-

bilities is a vertex of the hypercube, we obtain the desired sample. Otherwise

π∗ is not integral and it is easy to prove that the number q of fractional compo-

nents is at most equal to the number of balancing variables p. In this case the

algorithm would enter the landing phase. The aim of this phase is to solve the

linear programming problem (2) in a reduced form, that is inherent only to the

fractional components of vector π∗. The number of variables of this problem is

equal to 2q, that is the number of vertices of the q-dimensional unit cube and

then, depending on value of q, finding an optimal solution could be impossible

from a computational viewpoint.

With the aim of studying how to improve the efficiency of the landing phase,

we have proposed some alternative methodologies for the selection of a balanced

sample. Our specific goal is to try to change, without incurring in excessive loss

of information, the criteria to be considered when one has to handle a non

integral vector π∗ obtained at the end of the flight phase.

Of course, we do not claim that our study is complete and we are aware that

further depth work will be required in the case of broader populations and with

a number of balancing variables greater than those used in our experimental

study.
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4 Some Variants of the Landing Phase of the

Cube Method and Experimental Results

The aim of this section is to introduce the alternative procedures of the landing

phase of the Cube Method considered in this paper and to describe the results

obtained in the experimentations realized in order to prove their efficiency.

We propose two classes of procedures: the first class consists in rounding two

or more units of the vector of fractional components obtained at the end of the

flight phase, considering their numerical relevance; the second class consists in

trying to reduce the number of vectors to be analyzed in the optimization step

of the Cube sampling algorithm, generating at random a subset of the vertices

of the q-dimensional hypercube and solving a Goal programming problem.

The experimental analysis was carried out through the use of the free soft-

ware R, using the package “sampling”, first implemented by Tillé and Matei in

2007 [17].

The dataset used for the experimentation is “MU284”, which refers to a

population of 284 Swedish municipalities (Särndal et al; 1992).

The dataset, in its original form, contains 284 units, each corresponding

to a Swedish municipality, and 11 different variables of which we give a brief

description:

• LABEL, which represents the identification number of the variable;

• P85, which represents the amount of the population in 1985 in thou-

sandths;

• P75, which represents the amount of the population in 1975 in thou-

sandths;

• RMT85, which represents the income related to municipal taxation in

1985, in millions of Swedish kronor (SEK);

• CS82, which shows the number of seats in the municipal council of the

Conservative Party;
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• SS82, which shows the number of seats in the municipal council of the

Social Democratic Party;

• S82, which represents the total number of seats in the municipal council;

• ME84, which represents the number of municipal employees in 1984;

• REV84, which represents the real estate values, based on an assessment

of 1984, in millions of Swedish kronor (SEK);

• REG, which represents the code associated with the corresponding region

of the unit we are considering;

• CL, a Cluster indicator, in which with cluster we refer to a set of adjacent

municipalities.

Let us consider as the reference population the totality of the Swedish Mu-

nicipalities in 1985, taking as a variable of interest the incomes related to the

1985 municipal taxation expressed in million SEK and considering as balancing

variables P75, CS82, SS82, ME84 and REV84.

As far as the notation used in the above sections is concerned, the following

symbols have been used:

• Xj , populations total for each variable j;

• X̂i
j,HT , estimated value of the variable j of the population by the Horvitz-

Thompson estimator, in sample ith.

Moreover, let us create the vector of the inclusion probabilities of the first

order as

πi =
n · P85∑284
i=1 P85i

.

The experimental results related to the proposed methodologies are obtained

by replicating the selection algorithms 1000 times for three different sample sizes

(n = 20, n = 30, n = 50).

At the end of each iteration, for each implemented method, the software

provides an output describing the quality of balancing, which includes for each

considered variable (variable of interest and balancing variables):
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• the population totals;

• the estimated total by the Horvitz-Thompson estimator;

• the relative deviation in percentage defined by

σj = 100 · | X̂
i
j,HT −Xj |
Xj

.

Once the entire process finished, that is after 1000 consecutive applications

of all the proposed methods for each sample size, we analyze the experimental

results with the aid of the following indices of goodness:

• the true value of the population total;

• the mean of estimated population, defined as

1000∑
i=1

X̂i
j,HT ;

• the relative deviation between the mean of estimated population and the

mean of the total population;

• the quality of the estimator, evaluated in terms of efficiency (variance),

computed as ∑1000
i=1

(
X̂i

j,HT − E
(
X̂i

j,HT

))2
1000

;

• the bias of the estimator, computed as

E
(
X̂i

j,HT

)
−Xj ;

• the mean square error, computed as

1000∑
i=1

(
X̂i

j,HT −Xj

)2
;

• the absolute value of the maximum distance between the estimates ob-

tained through the Horvitz-Thompson estimator and the true value of the

variables;
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• the absolute value of the maximum variation of the inclusion probabilities;

• the number of vertices generated on average;

• the actual sample size mean;

• the number of the variables pushed to zero on average (only for the meth-

ods based on the thresholds);

• the execution time of the algorithm.

The results of out experimental study we are shown in Tables 1, 2 and 3.

All the experiments were performed on a PC equipped with an INTEL IN-

SIDE Core i7 Dual-core, with 4 GB of RAM and the operating system Windows

8.

4.1 Landing Phase by pushing to 0 or 1 some Inclusion

Probabilities

Let us now consider the output vector of the flight phase.

As known, there are at most q ≤ p non-integral components; let us take into

account only these components and put them into a new vector π∗, which will

have size q.

At this point, we can think to use the numerical relevance assumed by each

element of the new vector to force some of the components to 0 or 1, respec-

tively, depending on whether they are smaller or larger than a certain numerical

threshold, to which we refer as α and β. We set these thresholds at α = 0.2 and

β = 0.8, respectively, and then we push those components that assume a value

smaller than 0.2 to 0, and those that assume a value greater than 0.8 to 1. What

we are doing is nothing more than considering the value of each component of

the vector as the probability of each element to be equal to 1, and depending on

the probabilistic information contained in any fractional unit, pushing, respect-

ing the established thresholds, each value to the integer (0 or 1) closer to that

probability. For those components that, at the end of this rounding process,
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are proved to be not yet an integer, we will just adopt the same procedure used

by Deville and Tillé. That is, we will consider again a new vector π∗ whose

components are the elements still different from 0 and 1 and we will compute

the sum of these components. Then we will generate all binary vectors having

a number of 1’s less than or equal to this sum; these vectors will form our new

sample space. Finally, we will determine the probabilities of each sample in the

selected sample space by solving the resulting linear programming problem (2)

reduced in size.

The results of the experimentation inherent to this first alternative, show

an underestimation of the variable of interest associated to a good reduction

of the execution time of the algorithm. This behavior can be attributed to the

fact that in vector π∗, the number of components close to 0, i.e. smaller than

the lower threshold, is much higher than the number of elements close to 1,

i.e. greater than the upper threshold. Realizing this, we tried to intervene on

the idea previously expressed, refining the method of selection of the rounding

thresholds in order to try to reduce the bias between the true value of the

population mean with regard to the variable of interest and the estimated value

thereof. So we have tried to improve the implementation in three different ways.

Let us consider the vector π∗ of the non-integral components obtained at the

end of the flight phase. At this point, for a predetermined value α ∈ (0, 1), we

can think to push to 0 all those components smaller than the first α-quantile,

and push to 1 all those components greater than the last α-quantile. The first

variant is based on this idea and, since in our experimental study q ≤ 5, consists

in searching among the components of π∗, the minimum and the maximum

elements and push them to 0 and 1, respectively, so as to balance, at least in

quantity, the elements forced to the extreme values. In this case, we obtained

an overestimation of the mean of the population associated with the variable of

interest without obtaining an actual improvement. The reason for such behavior

can be attributed to the fact that the order of magnitude of the difference

between 1 and the maximum component of the vector π∗ is much bigger than

the order of magnitude of the minimum component of the same vector.
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We then performed a further refinement inherent to the method of selection

of the elements to be pushed to the extremes, in order to offset the probabil-

ities that they represent. The second variant consists in searching among the

fractional components the biggest one. Once selected, we will compute the dif-

ference between 1 and this component and we will use this distance to search

for the components to be set to 0, in such a way that their sum is as close as

possible, in order of size, to that difference. The results provided by this method

of selection are good. In fact, in addition to a decrease in the execution time

of the algorithm compared to the one already implemented in R by Deville and

Tillé, we obtained also a significant decrease in the bias of the estimator with

respect to all other methods analyzed in this work.

The third variant implemented is simply the symmetrical process of the

previous one. It consists in searching for the smallest element of the output

vector of the flight phase only among the fractional components in it. This will

represent exactly the deviation from 0. At this point we will use this deviation

for the research of the components to be pushed to 1, in a similar way to the

previous case. In this respect, the results are not as good as those obtained for

the second variant. In fact we observe an overestimation of the population mean

in the variable of interest, probably due to the fact that the order of magnitude

of the probabilities close to 0, is on average much smaller than the order of

magnitude of the probabilities close to 1.

4.2 Landing Phase by generating a subset of the Hyper-

cube Vertex set

In this paper we have also implemented a method for generating a reduced set

of vertices differently from those generated by a total enumeration method used

by Deville and Tillé.

The alternative proposed is to limit the number of binary vectors to be

analyzed in the optimization step taking into account the probabilistic value of

the fractional components contained in π∗. The elements of the sample space
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are randomly generated using the values of the components of π∗ as probabilities

of pushing them to 1.

Finally, our goal is to solve the linear programming problem (2) defined on

the obtained sample space, in order to be able to determine a balanced sample.

However, unlike the generation via total enumeration, we are not sure it is

possible to get exactly

E(s) =
∑
s∈S

sp(s) = π,

and then to be able to get a feasible solution of problem (2).

For this reason we consider the following Goal Programming problem.

min
p(s), ε+, ε−

∑
s∈S

p (s)Cost (s) +M

(
q∑
i=1

ε+i +

q∑
i=1

ε−i

)
subject to∑

s∈S
p (s) = 1,∑

s∈S
sp (s)− ε+ + ε− = π,

ε+i ≥ 0, ∀ i = 1, . . . , q,

ε−i ≥ 0, ∀ i = 1, . . . , q,

p (s) ≥ 0, ∀ s ∈ S,

(3)

where M is a large penalty on the violation of the constraints
∑

s∈S sp (s) = π,

which will allow us to obtain an optimal solution to problem (2) if it is feasible,

or, if it is not the case, a solution that is as close as possible to the objectives

we are pursuing.

However, an algorithm so constructed, has not led us to any improvement,

neither from the point of view of execution time nor from the reduction of dis-

crepancy between the real value of the population total and the mean of the

estimated population total. Ultimately, we sought to refine this implementa-

tion, trying to create the hypothetical vertices totally at random. Even in this

second case we incurred in a overestimate of the variable of interest and in a

considerable increase of the execution time of the algorithm, without reaching
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any improvement.

5 Conclusions and future works

In conclusion, the methods we examined to produce optimal samples mainly

refer to two classes of procedures.

The first is a sort of rounding of two or more units of the vector of fractional

components, taking into account their numerical relevance. The second does

not consist in a total enumeration of all possible vertex of the N -dimensional

cube with the properties described above, but reduces the amount of vectors to

be analyzed in the optimization problem, using an algorithm based on a random

generation of the vertices of the hypercube and solving the Goal Programming

problem (3).

From the obtained results it is clear that the first class of methods, both for

the execution time and efficiency of the estimator, is better than the second one,

for which the results do not seem satisfactory at all. In particular, we have also

seen that an improvement is obtained, when we compared one of the variants of

the first alternative presented implementation with the landing phase proposed

by Deville and Tillé in the case of sample size n = 30, as shown in Table 2. The

idea behind this improvement is that, if in addition to balancing the number of

components pushed to 1 or 0, we can also consider the amount of rounding, we

observe a significant decrease in the running time of the algorithm and a marked

decrease of the generated samples to analyze. Also a considerable reduction of

the bias of the estimates associated with the variable of interest is obtained.

It should be kept in mind that the experimentation presented in this paper

was performed on a not particularly high population size and that the number

of balancing variables is small. These characteristics have limited the possible

refinement techniques to be proposed.
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[1] Ardilly, P., Tillé, Y., Sampling Methods, Springer, New York. (2006)

[2] Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University

Press. (1977)

[3] Charnes, A., Cooper, W. W., Goal programming and multiple objective

optimization, Part I, European Journal of Operational Research, 1, 3954.

(1977)
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