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Abstract

Green ETFs have experienced a large increase in volumes and returns in the last years. How-

ever, financial agents ask themselves whether these assets are truly green. The large amount

of currently available environmental metrics are widely considered as unreliable and their dis-

crepancies generate confusion. The evaluation of the most capitalized green ETFs according

to two of the most popular environmental metrics, namely the E Score and the carbon in-

tensity, shows poor green performances of the sampled funds. Adopting a screening process

based on the exclusion of the worst-in-class companies, we build synthetic low-carbon funds

choosing among the 2021 holdings of these green funds. The synthetic assets show similar,

and sometimes better, financial and environmental outcome than the listed ETFs. However,

evidences exhibit significative differences in the companies environmental classification, green

or brown, according to the two metrics.
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1 Introduction

Among the large variety of low carbon green financial assets, the environmental, social, and gov-

ernance (ESG) exchange-traded funds (ETFs) boomed in popularity passing from a total value of

6 billion USD in 2013 to 25 in 2019, with an annual growth rate that hit 45% in 2018 and has

exceeded 200% over 2020.1 Moreover, projections on the growth of this market see two out of three

ETFs expected to be low-carbon by 2030, according to a 2018 report by Morningstar (2018).

However, the lack of transparency and consistency within these assets raises the question of

whether they are really green or simply the result of marketing initiatives (greenwashing). For

instance, albeit the large part of the ESG ETFs adopts screening processes based on the exclusion

of the sins industries (e.g., tobacco and weapons), they include also companies that are directly

involved in fossil fuels business.2 The way environmental performances of the green funds are

evaluated remains unclear. The large set of currently available metrics often presents large contra-

dictions, generating confusion in investors, especially among those retailers. Low-carbon ETFs are

solely evaluated using licensed environmental scores defined by the issuers of the same assets, that

declare as green their products without providing exhaustive information on the funds’ selection

strategies.

In this paper, we analyze a sample of the ten most capitalized global green ETFs quoted from

1/1/2006 to 21/10/2021 retrieving financial and environmental information relative to all the com-

panies included in the ETFs in 2021. We create a unique dataset of 246 firms listed on global

exchanges. We evaluate the environmental performance of each company according to two of the

most popular metrics, namely the Environmental (E) pillar of the ESG Score and the carbon inten-

sity, which is a factor proportional to the total net CO2 emissions. We screen the sample through

a stock-picking process based on the two metrics to build equally weighted and global minimum

variance synthetic funds considering: (i) only the best-in-class green companies, (ii) exclusively the

best half of the sample, and (iii) all the firms except the most polluting ones, that belong to the

last quantile of the environmental metrics (EMs) distributions. The resulting synthetic funds are

statistically compared with each other and the sample of the ten listed green ETFs, both evaluating

their environmental and financial performances. Furthermore, we test the resilience of synthetic

funds during periods of market distress.

Our findings are as follows. The E Score and the carbon intensity show large discrepancies,

with companies that are considered as green according to a metric and brown for the other. This

evidence determines differences in the synthetic funds over the years and, from a financial point

1https://unctad.org/system/files/official-document/diae2020d1_en.pdf
2https://www.weforum.org/agenda/2021/07/esg-exchange-traded-funds-not-as-green-as-you-think/
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of view, significant discrepancies that emerge between the best-in-class equally weighted funds.

The comparison between the synthetic and the market securities highlights poor environmental

performances of the sample of green ETFs compared to those of the synthetic green funds which

also show similar, and sometimes higher Sharpe Ratios. Moreover, the Paris Agreement (December

12, 2015), which is widely considered as a signal of the increase in the investors’ environmental

concerns, does not entail a variation in the environmental metrics discrepancies.

The paper is organized as follows. Section 2 reviews the literature. Section 3 describes the

methodology and reports the results of the empirical analysis and Section 4 concludes. Additional

tables and figures are included in the Appendix ??.

2 Literature Review

The definition of green investments appears blurred and often ambiguous, also considering a large

number of environmental metrics available for the large part of public companies along with their

dissimilarities and the difficulties in making a comparison among them (Angelakoglou and Gaida-

jis (2015), Morioka and de Carvalho (2016), and Thomä et al. (2018)). In fact, the divergences

among empirical results on the relationship between company environmental performance (CEP)

and company financial performances (CFP) are primarily due to the lack of a unique and clear

environmental metric (Capelle-Blancard and Monjon (2012), Diaz-Rainey et al. (2017), van Dijk-de

Groot and Nijhof (2015)).

Popescu et al. (2021) propose a classification of the most popular environmental metrics, pro-

viding an evaluation method based on several factors including coverage, reliability, fungibility, and

transparency. Others, like Cabello et al. (2014), Petrillo et al. (2016), and Bender et al. (2019), de-

fine their environmental measures based on quantitative and qualitative factors. In June 2020, the

European Commission (2020) (EUC) begin the process of the definition of a sustainable investment

metric, called EU Taxonomy, aiming to be the gold standard for green finance worldwide. However,

a recent report of the European Securities and Markets Authority (2021) (ESMA) shows that only

1-2% of the existing financial assets can be labeled as green according to the new EU Taxonomy.

In the last years, several rating agencies provide their licensed ESG Scores, which became popular

because they are easy to use and cover a large part of public companies. Each ESG Score is the

result of the aggregation of three different company responsibility disclosures based on the relative

environmental (E), social (S), and governance (G) performances. However, the existing ESG Scores

have been largely criticized in literature, for the lack of intertemporal coherence, transparency, and

the inconsistency among the different rating agencies’ methodologies (Avramov et al. (2021), Berg
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et al. (2019), Brandon et al. (2019), Escrig-Olmedo et al. (2019)). Chapter ?? reports an exhaustive

literature review on the ESG scores features and issues.

Alternatively, the companies’ total CO2 emissions are widely used as a proxy to estimate the

CEP (Coeslier et al. (2016), Garvey et al. (2018), Huang et al. (2021)). This metric is largely

influenced by the company dimension, the industrial sector analyzed and suffers from the ambiguity

in the international definitions of the greenhouse gases (GHG) (Jeswiet and Nava (2009), Johnson

(2009), Watkins and Durning (2012)). Agents overcome the first issue by using the carbon intensity,

evaluating the CEP in terms of the quantity of net CO2 emissions necessary to produce one dollar

of revenues.

Researchers still disagree on the relationship between CFP and CEP. On that note, several au-

thors like Statman and Glushkov (2009), Friede et al. (2015), and Busch and Lewandowski (2016),

indicate this association as positive, while Halbritter and Dorfleitner (2015), for instance, excluding

any sort of relations, stressing the dependence of results on the time frame considered for the anal-

ysis. Others, like Delmas et al. (2015), show a decline in the CFP after a CEP improvement in the

short run, but a potential growth in the long term. Differently, Busch et al. (2020) show companies

as financially unable to reduce their carbon footprint without the support of the regulators.

Matsumura et al. (2014) using a dataset of S&P500 firms involved in the Carbon Disclosure

Project between 2006 and 2008 show an inverse relation between tons of carbon emissions produced

and firms’ values.3 Using a larger and more recent data sample, Bolton and Kacperczyk (2021) find

a relation between emissions reduction and stocks returns, which turns out to be not significant

using the carbon intensity, instead. Moreover, Andersson et al. (2016) propose a long-term passive

investing strategy to hedge the climate risk by building a low-carbon index, which reduces by

50% the total investment carbon footprint and successfully tracks the target index performance.4

Similarly, Capasso et al. (2020) measuring the effect on credit risk show that the distance to default

decreases for companies characterized by low emissions intensity, with the effect that increases in

mean after policymakers interventions.

The literature on the green ETFs performance is scarce, offering several possible research in-

sights. Several works study the profitability of the energy ETFs sector overall, showing trading

strategies that lead to good financial performances (Papailias and Thomakos (2013), Thomakos

and Papailias (2013)). Moreover, Alexopoulos and Thomakos (2016) highlight the risk mitigation

effect of the energy ETFs for the US market sector, which is solely characterized by high volatility.

Malinda and Hui (2016) show the energy ETFs as characterized by long-term volatility and nega-

tive asymmetry volatility. Marszk (2019) studies the growth of the green ETFs during the period

3https://www.cdp.net/en
4The authors also denote the fact that in this way investors effectively get a ”free option” on carbon.
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2006-2017, observing the EU market became larger than that US only at the end of 2017. The

inflow of capital and the consequent increase in the profitability of the green ETFs rose after the

Paris Agreement (Fahmy (2021), Fahmy (2022), Lantushenko et al. (2021)). Alexopoulos (2018)

exhibits how an energy ETFs portfolio outperforms both fossil fuels and clean energy ETFs based

portfolios, because of its larger diversification. Furthermore, in line with Dutta et al. (2020), the

clean energy funds are shown as more affected by periods of market uncertainty than those fossil

fuels, having suffered more the 2008 global financial crisis. Similarly, Henriques et al. (2022) build

an efficient portfolio choosing among 60 mixed energy ETFs observed from 2014 to 2018. Results

reveal the natural gas and oil-based funds as the most represented assets in the optimal portfolios,

while the renewable energy ETFs are often excluded from the holdings.

3 Data and methodology

We select a sample of the ten most capitalized green ETFs worldwide as representative of their

market sector. The list of the sampled ETFs is reported in Table 1. The descriptive analysis of

these financial assets is reported in the Chapter ?? of this thesis.

ETF Ticker Sector Area ESG

Lyxor New Energy (DR) UCITS ETF ENER Clean Energy Global AA

Invesco MSCI Sustainable Future ETF ERTH Low Carbon Firms Global BBB

First Trust Global Wind Energy ETF FAN Wind Energy Global AA

First Trust NASDAQ Clean Edge Smart Grid Infrastructure Index ETF GRID Smart Grid USA AA

iShares Global Clean Energy ETF INRG Clean Energy Global A

Invesco Global Clean Energy ETF PBD Clean Energy Global A

Invesco WilderHill Clean Energy ETF PBW Clean Energy USA A

First Trust NASDAQ Clean Edge Green Energy Index ETF QCLN Clean Energy USA A

VanEck Vectors Low Carbon Energy ETF SMOG Clean Energy Global A

Invesco Solar ETF TAN Solar Energy Global A

Table 1: Description of the green ETFs comprised in the final sample of analysis observed from

January 2006 to October 2021.

We collect data from January 2006 to October 2021 regarding all the companies comprised in

these funds according to their holdings reports available in 2021: (i) the financial summary which

contains the company fundamentals (e.g., gross profits, revenues), (ii) the ESG statement view that

contains all the statistics on the CEP, and (iii) the daily market adjusted-closing prices of these

firms. Data are retrieved from the Refinitiv workspace.
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Table 2 shows some features of these ETFs. Some companies comprised in the green ETFs

holdings show missing environmental or financial information for all the sample period on the

Refinitiv data source. However, we do not find any systematic reason for the missing data (e.g.,

specific country or sector), and then we consider these deficiencies as completely at random. For this

reason, we decide to exclude companies characterized by missing data from the sample. Nevertheless,

the proportions of holdings analyzed for each ETF are considered sufficient to represent the entire

fund composition. In particular, the proportion of companies for which we obtain information over

the total funds’ composition swings between 59,90% (PBW) and 97,90% (GRID).5 The amount

of sampled companies belonging to each ETF spans between 24 (TAN) and 91 (ERTH), while the

funds Refinitiv ESG scores are comprised between BBB (ERTH) and AA (ENER, FAN, and GRID).

We observe several differences in the companies included in the green ETFs. In particular,

they belong to different sectors, according to The Refinitiv Bussiness Classification (TRBC), and

are listed on exchanges all over the world, as Figure 1 and Figure 2 show. Among the most

chosen business, we find the ”Electric Utilities & IPPs”, the ”Machinery, Tools, Heavy Vehicles,

Trains & Ships” and the ”Renewable Energy” sectors. The ”Aerospace & Defense”, the ”Collective

Investments”, the ”Electronic Equipment & Parts”, the ”Natural Gas Utilities”, and the ”Transport

Infrastructure” sectors are among the less present business sectors among the ETFs holdings. A

large part of the companies is US-based. The small, albeit significant, amount of firms belonging

to the emerging markets, such as the Asians and the Australian, makes the sample representative

of the entire global exchanges. Moreover, a consistent number of companies has been founded, or

at least listed, less than twenty years ago.

5The negligible amount of cash owned in different currencies is not considered in the computation of proportions.
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ETF Prop Cov # Comp ESG rating

ENER 91.00% 32 AA

ERTH 86.60% 91 BBB

FAN 89.90% 40 AA

GRID 97.90% 62 AA

INRG 92.60% 63 A

PBD 61.20% 76 A

PBW 59.90% 41 A

QCLN 76.90% 41 A

SMOG 95.10% 65 A

TAN 77.90% 24 A

Table 2: Summary of the data on ETFs concerning the period January 2006 - October 2021: Prop

Cov, the proportion of the sampled companies over the total ETFs holdings, # Comp, the number

of these companies, and the ESG rating provided by Refinitiv.

Figure 1: Distribution of companies by industrial sector (TRBC) over the period January 2006 -

October 2021. Legend: AAP = ”Automobiles & Auto Parts”, CEN = ”Construction & Engineer-

ing”, CHE = ”Chemicals”, EUI = ”Electric Utilities & IPPs”, MTHTS = ”Machinery, Tools, Heavy

Vehicles, Trains & Ships”, RCREIT = ”Residential & Commercial REITs”, REN = ”Renewable

Energy”, SSE = ”Semiconductors & Semiconductor Equipment”, while Others contains the least

represented sectors.
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Figure 2: Distribution of sampled companies all over the world between January 2006 and October

2021.

3.1 Metrics comparison

In this paper, we analyze the environmental performance of the green ETFs holding using two of the

most popular metrics, namely the E Score (ES) and the carbon intensity (CO2S). The reasons to

use these metrics are: (i) their large coverage of public companies, (ii) their ease of understanding,

and (iii) their popularity, which allows us to compare the outcome of this analysis with the results

of a wide range of financial papers.

Table 3 shows the descriptive statistics of the ES and the CO2S, over the sample period.6 While

the ES ranges between 0 and 1 and represents a pure number, the CO2 is expressed in total net

CO2 emissions over million of revenue in USD. The minima of the ES range from 0.08 (2013) to

3.27 (2015), while for the CO2S it ranges from 21.60 (2008) to 0.01 (2018). Similarly, we do observe

an increase in the yearly average value of the E Score, as well as the relative median, but this trend

flattens around 55 after a couple of years of observation. The two distributions heavily differ in

shape. While the ES distribution shows slight negative skewness (the mean is moderately lower

than the median) we observe a large positive skewness in the CO2S, with the average value which

is definitively influenced by the high values in the right tail of the distribution. In this regard, a

distribution characterized by fat tails is considered useful to pursue a screening process that excludes

the most polluting firms from the portfolio. The yearly averages of the CO2S measure do not show

a clear trend along the years, with values that span between 15955.73 (2007) and 67338.10 (2010),

while the medians range from 577.76 (2008) to 1172.38 (2017). The highest values, respectively for

6Refinitiv computes the carbon intensity as the ratio between the total net CO2 emissions and the revenues

expressed in million USD.
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the E Score and the CO2S, are reached in 2020 (99.02) and 2010 (1617924.13), assuming values

remarkably different from the rest of the distribution. However, the maxima distribution over the

years relative to the carbon intensity fluctuates more than that relative to the ES. The distributions

of the two metrics are graphically summarized in Figure 3a and Figure 3b, where the box plots

indicate the yearly ES distribution as fairly symmetric and characterized by the absence of outliers,

which conversely are conspicuous in that of the CO2S.

Figure 4 shows the correlations obtained by comparing yearly the two environmental scores

distributions of firms over the period analyzed as:

(1) Cor(ESt, CO2S) =
E[(ESi,t − ĒSt)(CO2Si,t − ¯CO2St)]

σES,tσCO2S,t

,

where for each year t Nt is the number of companies available, ĒSt and ¯CO2St are the two EMs

annual sample averages, and σES,t and σCO2S,t the relative standard deviations. The magnitude of

the association ranges between -0.17 (2007) to 0.05 (2010), assuming values close to zero all over

the time horizon considered. This evidence indicates the lack of coherence between the ES and the

CO2S and consequent dependence on the environmental metric in the evaluation of the CEPs. While

this yearly comparison is considered as informative to exhibit the green features of the sample, we

denote two main related issues: (i) the sample of companies changes each year, and (ii) the ES lacks

also intertemporal coherence, with aggregating techniques and the set of environmental variables

considered that has varied over the past years.

(a) (b)

Figure 3: ES (3a) and CO2S (3b) distribution by year (January 2006 - October 2021). Points

indicate outliers.
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E Score CO2S

Year Min Mean Med Max SD NComp Min Mean Med Max SD NComp

2006 0.61 39.08 39.19 95.09 24.98 64 20.95 23351.46 1000.82 268082.48 58894.63 36

2007 0.29 48.76 51.98 93.08 24.77 74 18.93 15955.73 793.89 198589.67 41979.94 42

2008 3.21 53.43 58.45 96.75 27.01 84 21.60 48175.25 577.76 1146486.56 175359.78 50

2009 0.19 53.33 59.62 98.17 28.50 93 9.57 50455.47 687.37 1129884.97 170938.17 58

2010 0.63 55.66 58.42 95.85 27.13 101 10.90 67338.10 624.22 1617924.13 230855.99 64

2011 2.51 56.05 59.64 97.47 27.35 106 4.60 62891.85 660.33 1537196.70 208640.18 67

2012 1.23 55.38 59.89 95.93 27.37 108 1.78 55366.55 864.79 1204602.97 172036.54 71

2013 0.08 55.38 57.98 96.47 26.33 112 5.11 50764.13 889.81 942360.65 141686.04 73

2014 2.96 54.34 58.12 98.25 26.93 118 7.18 46983.01 917.15 975236.24 140551.02 81

2015 3.27 52.48 55.97 97.67 27.81 139 0.26 50260.54 892.03 1057566.16 142245.18 90

2016 0.57 51.37 56.03 97.97 28.20 153 0.22 53760.80 995.77 888971.32 139836.59 94

2017 1.70 53.34 59.93 98.39 27.57 167 6.42 50845.85 1172.38 850251.44 136712.38 107

2018 2.29 53.88 57.53 98.16 27.31 192 0.01 45062.39 1045.88 770481.68 123818.45 118

2019 0.45 54.38 56.55 97.18 27.04 224 1.81 42609.42 1099.87 716296.63 119528.95 139

2020 1.65 55.16 57.70 99.02 26.18 242 0.38 39002.99 875.19 776970.15 112858.19 152

Table 3: Descriptive statistics relative to the ES and the CO2S metrics observed in the sample

between January 2006 and October 2021.

Figure 4: Time varying correlation between the two environmental metrics (January 2006 - October

2021).
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3.2 The screening process for a synthetic green fund

We exploit the ES and the CO2S to discriminate companies in the sample of green ETFs and build

two synthetic green funds (SGFs) accordingly. The screening process consists of the exclusion of all

the firms which exceed a fixed threshold, used to discriminate between green and brown companies.

In particular, we choose as cut-off values the first, the second, and the third quantiles of the EMs

distributions, which allows us to conduct a sensitivity analysis, as well. For instance, the best-in-

class subset is chosen by selecting only the companies that show ES (CO2S) values greater (lower)

than the third (first) quantile of the distribution. Alternatively, choosing the median as a threshold,

we emulate an investment strategy that considers only the best half of the sample. Finally, choosing

the first and the third quantile of the distribution, respectively for the ES and the CO2S, we screen

the sample by excluding only the most polluting firms. The first method allows us to obtain a subset

that includes only the greenest companies, but its limited number of assets could be a drawback,

with the second and the third subsets which permit a selection over a larger sample of companies

that potentially offers greater financial performances for the synthetic funds.

We calibrate the weights of the funds only considering the environmental performances relative

to the previous financial year. In other words, for each year t, the feasible sample is composed of

companies that show the best CEP relative to the year t− 1. The composition of funds is decided

at the beginning of each financial year and the weights remain constant for the entire period.7

As shown in Equation (2), the holdings of each fund F in the year t are chosen according to the

environmental metric (EM) and the quantile q as follows:

FEMq,t =θ(BEMq,t−1,t)

BEMq ,t ={Ci,t|EMCi,t−1
≤ EMq,t−1}, i = 1, 2, . . . , st ≤ Nt

(2)

where θ is a portfolio selection function, BEMq ,t−1 is the set of Nt companies, Ci,t−1, defined as

”green” in the previous year t− 1 according to the EM and the quantile q, with i = 1, .., st.

We choose θ among popular funds selection strategies: (i) equally weighted funds (EWF), and

(ii) global minimum variance funds (GMVF), which assigns portfolio weights for the year t according

to the covariance matrix Σt−1 estimated at time t − 1. Each portfolio weight ωi,t relative to the

asset i at time t according to the EWP strategy is chosen as:

(3) ωi,t = 1/st, i = 1, 2, . . . , st,

7The funds’ holdings are dynamically update once in a year because of the annual frequency of the environmental

data.
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while for the GMVF ωi,t represents the solution of the following minimization problem:

min
ωt

1

2
ω′tΣt−1ωt

s.t. ω′t1n =1;

ωt ≥0.

(4)

For each metric, we build six synthetic funds as the combinations of the three subsets indi-

viduated by the three quantiles of the EMs distributions chosen as cut-off values (Q25, Q50, and

Q75) and the two portfolio selection strategies, the EWF and the GMVF. We compare the SGFs

with each other measuring the effect on the financial performance entailed by a more (less) severe

screening process and from the choice of alternatives EMs. Then, we operate a comparison between

the synthetic green funds and the listed green ETFs, in terms of composition, and environmental

and financial performances.

3.3 Empirical results

We identify the SGFs by the metric used (S and C, respectively for the ES and the CO2S), the

quantile chosen (25, 50, and 75, respectively for the third (first), the second, and the first (third)

quantile of the ES (CO2S) distribution) and the portfolio selection strategy (E and G, for the EWF

and the GMVF). For instance, ESGF
C
25 refers to the fund built using the CO2S environmental

metric (C), selecting only the companies belonging to the first quantile of the distribution (25),

with weights chosen according to the EWP technique (E).

Year ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20

ES

B25 16 19 21 23 25 27 27 28 30 35 38 42 48 56 61

B50 32 37 42 46 50 53 54 56 59 69 76 83 96 112 121

B75 48 55 63 69 75 79 81 84 88 104 114 125 144 168 181

CO2P

B25 9 11 13 15 16 17 18 18 20 23 24 27 30 35 38

B50 18 21 25 29 32 33 35 36 40 45 47 53 59 69 76

B75 27 31 37 43 48 50 53 54 60 67 70 80 88 104 114

Table 4: Number of companies included into each subset Bq,t for each year t and quantile q divided

by the two metrics, ES and CO2P (January 2006 - October 2021).
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Table 4shows the number of companies selected for each year according to the quantile criteria.

The increasing number of companies observed over the sample period is related to the lack of

environmental data in the first years of observations for some of the green ETFs holdings. The

sample contains companies that have been founded, or at least quoted, in recent years, and hence

it is impossible to retrieve any kind of data relative to these firms in the early 2000s. Moreover, the

coverage of the two environmental metrics largely increased in the last years, with that of the ES

which results larger than the other all over the sample period.

Figure 6, Figure 7, and Figure 8 in the Appendix ?? show the Venn diagrams of the subsets

of companies selected for each quantile based on the two environmental metrics by year. The two

subsamples of best-in-class companies are strongly different with just a bunch of companies that are

considered to be green according to both the ES and the CO2S metrics. Differently, the holdings

of the ·SGF
·
50 and the ·SGF

·
75 synthetic funds are more similar to each other, because of the less

severe screening processes adopted that reduces the divergences in the EMs.

Figure 5 shows that both the ·SGF
C
25 funds exhibit the largest cumulative returns and the

discrepancies between the SGFs built according to the two metrics gradually narrow considering

the ·SGF
·
50 and ·SGF

·
75 funds, because of their similar compositions. These results point out

the importance of the screening process in determining the funds’ financial performances. The

differences between the two environmental metrics arise exclusively considering the best-in-class

companies. While the ·SGF
C
25 funds outperform all the others in terms of cumulative returns,

highlighting a clear relation between CEP and CFP, they almost double their ES peers, ·SGF
S
25, in

the last period of observation, indicating also a dependence on the environmental metric chosen.

The four ·SGF
·
25 are subjected to the same fluctuations along the years, showing similar patterns

and variations. Comparing the two best-in-class SGFs by portfolio selection technique, the GMVF

profits are larger (lower) than those of its EWF peer for the CO2S (ES) metric for almost the entire

sample period. Moreover, in the last year of analysis, the ESGF
C
25 exhibits the largest cumulative

returns, outperforming all the SGFs after the COVID-19 global crisis. The ESGF
S
25 shows slight

profits only in the first and in the last periods of analysis, while the ESGF
S
25 financial outcome

remains negative. This result highlights the difficulties of these two SGFs in recovering the losses

faced during the 2008 global financial crisis, with the ESGF
S
50 and ESGF

S
75 that show positive

financial outcomes, in terms of cumulative returns, determined by a greater diversification.

Table 5 shows the results of the tests conducted on the differences between the ES and CO2S

SGFs returns. We test the differences in average returns (t-test), volatilities (F-test), and Sharpe

Ratios (SRs) as shown in Section ??. Results point out significant differences in the financial

performances exclusively for the SGFs built according to the most strict screening processes, with
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(a) (b)

(c)

Figure 5: Comparison among the cumulative returns of the SGFs estimated according to the two

selection criteria (EW and GMV) over the period Jan 2007 - Oct 2021 divided by quantile: ·SGF
·
25

in (5a); ·SGF
·
50 in (5b) and ·SGF

·
75 in (5c).

the ESGF
C
25 that shows a SR greater than its ES peer. Moreover, all the CO2 SGFs exhibit

volatilities that are statistically larger than those relative to the ES funds, except the GSGF
C
50,

which suggests a significative impact on the financial performances depending on the chosen EM.

We study whether the growth in the investors’ sensitivity to environmental themes observed in

the last years entails possible variations in the way companies are environmentally evaluated and the

relative impact on the financial outcome. In other words, conscious of the temporal incoherence of

some EMs, we are searching for potential discrepancies generated by the demand for a more accurate
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SGF t-test F-test HAC-test

ESGF
·
25

0.0001 0.8756 *** -0.013 **

(0.000) (–) (0.006)

ESGF
·
50

0.0001 0.9390 * -0.001

(0.000) (–) (0.004)

ESGF
·
75

0.0001 0.9098 *** 0.002

(0.000) (–) (0.003)

GSGF
·
25

-0.0005 0.7976 *** -0.021

(0.000) (–) (0.015)

GSGF
·
50

0.0000 0.9694 -0.014

(0.000) (–) (0.012)

GSGF
·
75

0.0000 0.8475 *** 0.002

(0.000) (–) (0.008)

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 5: Results of the tests, statistics and relative standard errors (in brackets), conducted on the

differences in financial performances between each couple of SGFs built according the two EMs and

the same subset of companies over the period Jan 2007 - Oct 2021.

evaluation of the company’s carbon footprint. In particular, we study if after the Paris Agreement

the divergences between the two metrics have increased, along with the financial performances

of the SGFs built accordingly. Table 7 exhibits the results of the tests conducted exclusively

on the subset of data after December 12, 2015. The findings are as follows. The EW SGFs show

significative discrepancies in the average returns, the ·SGF
·
25 reject the hypothesis of null differences

in volatilities, while all the SRs tests result not statistically significative. These mixed results are

too weak to conclude through a significant impact of the Paris Agreement on the EM discrepancies.

We investigate the dependence between the SGFs financial outcomes and the EMs during differ-

ent phases of the market. Table 8, Table 9, and Table 10 show the comparison between each pair of

SGFs, ES and CO2S, separated by year. Results suggest that the EMs discrepancies largely emerge

for almost all the SGFs during phases of tumultuous markets, as during the GFC years (2008-2009),

and in periods of market expansion, as in 2019 where the green ETFs experienced a large growth in

volumes inflows and returns. However, only the GSGF
·
25 and the GSGF

·
50 show differences in SRs

during these periods, where the CO2S funds outperform the others. Therefore, the relation between

the way we evaluate the CEP and the variation in the CFP is more evident during phases of large
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fluctuations of the market, highlighting the role of the environmental screening process as a tool to

ensure price stability and resilience to green financial assets.

We conclude this study by evaluating the ten ETFs sampled both in terms of environmental and

financial performances, comparing them with those of the SGFs. Figure 9 shows how the holdings

of the best-in-class SGFs in 2021 massively differ from those of the green ETFs considered. For

instance, we have only one company that is included in both the ·SGF
·
25 and in the PBW, while

the ERTH and the PBD holdings have only eight companies in common with those of the best-in-

class SGFs, with which constitute the largest intersections in the sample. The huge discrepancies

observed in the SGFs and in the listed funds compositions suggest that green ETFs managers use

different EMs to evaluate the CEP and make investment decisions accordingly. On the other hand,

one can think that green ETFs issuers follow a set of criteria in their financial choices, including

that environment. However, this hypothetical strategy would exclude the large part of the best-in-

class green companies according to two of the most popular EMs, raising doubts on the real carbon

footprint of these green ETFs.

The environmental performance of the ten green ETFs and the SGFs are estimated by computing

the weighted average of each EM relative to companies comprised in each of them. In other words,

for the fund f and the year t, the optimal weight ω fixed for the company i is multiplied by the

respective EM (ES or CO2S) value as follows:

(5) EMf,t =
st∑
i=1

ωi,t · EMi,t.

Table 6 reports the results of the comparison relative to the year 2021. The highest ES among

the ETFs is 70.72, relative to the FAN, but this value is close to that of the ESGF
S
75, which is the

lowest ES rated among the synthetic funds (67.06). The comparison between the ES values relative

to the two ·SGF
S
25, respectively 86.10 (EW) and 84.41 (GMV), with those of the PBW and the

QCLN, respectively 33.81 and 33.98, increases the doubts on whether the green ETFs are green.

Moreover, the carbon intensities of the ETFs are definitively greater than those of the SGFs. In

particular, the FAN and the SMOG show values that exceed 63000, while the highest value among

the SGFs is slightly over 1000 (ESGF
C
75) and the minimum is just 37.82 (GSGF

C
25). The results

of this comparison suggest that the green ETFs are necessarily built according to (one or more)

different environmental metrics or, as we conclude before, their managers do not consider the CEP

as the first investment decision criteria.

Several contradictions emerge by the evaluation of the ETFs according to the two EMs studied.

For instance, the FAN ETF shows the highest values for both the EMs, while the PBW shows the

second-lowest score of ES and the minimum value of CO2S. This evidence raises the question of
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why an environmental rating like the ES does not penalize (reward) assets characterized by a high

(low) carbon intensity.

ETF ES CO2S

ENER 59.90 6464.61

ERTH 58.52 4335.39

FAN 70.72 66109.28

GRID 68.11 21634.90

INRG 52.22 44146.08

PBD 51.81 3311.34

PBW 33.98 1641.19

QCLN 33.81 22471.11

SMOG 64.35 63137.71

TAN 54.55 12509.53

SGFs ES CO2S

ESGF
·
25 86.10 53.04

ESGF
·
50 77.16 209.32

ESGF
·
75 67.06 1018.91

GSGF
·
25 84.41 37.82

GSGF
·
50 75.73 245.64

GSGF
·
75 69.46 715.68

Table 6: Environmental performances relative to the 2021 compositions of the ten ETFs sampled

and the SGFs evaluated through the ES and the CO2S metrics.

Table 11, Table 12, Table 13, Table 14, Table 15, and Table 16 present the results of the tests

conducted on the average returns, the volatilities, and the SRs to evaluate the differences between

the green ETFs and the SGFs from a financial perspective. A large part of the t-tests is not

significant to assess differences in the returns of the ETFs and the synthetic funds. Interestingly,

only the SGFs built according to the CO2S metric exceed the ETFs performances in terms of SR.

In particular: (i) the ESGF
C
25 statistically outperforms the FAN, the INRG, the ENER, and the

TAN; (ii) the ESGF
C
50 beats the PBW, the FAN, the INRG, the PBD, and the TAN; while both (iii)

the GSGF
C
25 and (iv) the ESGF

C
75 show SRs statistically greater than the INRG. Conversely, the

ESGF
E
25 is the only SGF that shows a SR statistically lower than an ETF (the ERTH). This evidence

highlights the importance of the metric used to evaluate the CEP. Moreover, all the volatilities of

the green ETFs result significative larger than those of the SGFs. However, this result is strongly

influenced by the large growth of this class of assets in the period 2019-2020. The greater financial

and environmental performances of these synthetic green funds compared to the listed green ETFs

exhibit clear evidence of an existing relationship between CEP and CFP.
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4 Conclusion

The last decade has been characterized by the large expansion of the green ETFs market, also

influenced by the increase in the investors’ environmental concerns. These ETFs show good financial

performances and represent a valid alternative to green stocks for ethical investors. However, the

lack of transparency in the way managers select the funds’ holdings and in the environmental

screening methodologies adopted begs the question of whether these financial assets are truly green.

In this paper, we analyze the environmental performance of 246 companies, which represent the

2021 holdings of the ten most capitalized green ETFs, according to two of the most popular environ-

mental metrics, namely the E Score and the carbon intensity. We operate a yearly screening process

based on the quantiles of the EMs distributions obtaining three different subsets that contain: (i)

only the most environmentally sustainable companies, (ii) the best half of the sample, and (iii) all

the firms except the worst-in-class. Given these subsets, we build a list of synthetic funds adopting

an annual holdings recalibration on the bases of the previous year’s environmental performances of

the firms and two different portfolio selection criteria: (i) equally weighted and (ii) global minimum

variance. Then, we compare the environmental and financial performances of the SGFs with the ten

ETFs sampled to assess: (i) whether the green ETFs are really green according to the two metrics

used, and (ii) if choosing companies exclusively according to their environmental features affects

the funds’ financial outcome. Moreover, we evaluate the potential discrepancies generated by the

use of alternative EMs to determine the SGFs compositions and how it consequently impacts the

financial result, also analyzing different phases of the market.

The analysis highlights poor environmental performances of all the green ETFs considered,

according to both the metrics studied. For instance, the QCLN exhibits the lowest ES, albeit it is

A-rated according to the ESG score. It shows an estimated ES value of 33.81/100 in 2021, which

makes this ETF far to can be considered green. Overall, the highest estimated ES value among the

ETFs is 70.72 (FAN) which is close to the minimum value within the SGFs (67.06 of the ESGF
·
75)

and definitively lower than the relative maximum, that peaks at 86.10 (ESGF
·
25). On the same

line, the SGFs show CO2S massively lower than the green ETFs, with values that amount to just

a couple of dozens and several thousand in the two groups, respectively. This result confirms the

large difference in terms of environmental performances between the listed funds and the synthetic

assets built with the only purpose of being green.

The comparison between the funds’ ES and the respective carbon intensities points towards a

lack of coherence between the two metrics analyzed. The FAN ETF presents the highest values

for both two measures, highlighting a contradiction between them and a strong dependence on the

environmental metric used to evaluate the environmental performances.
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The construction of the SGFs through a severe green screening process of companies assures

high environmental scores according to the two metrics. However, we denote large dissimilarities

in the composition of the ES and the CO2S based funds, especially in those comprised of the best-

in-class green companies. In particular, the large range of values assumed along with the fat tails

that characterized the carbon intensity distribution allows us to individuate more adequately the

low-carbon companies. On the contrary, the high concentration around the average value that

characterizes the ES distribution represents an issue in discriminating green and brown firms.

From a financial perspective, we observe that the performances of the SGFs roughly coincide

with, and sometimes exceed, those of the listed green ETFs. For instance, the ESGF
C
25 shows a

SR statistically greater than four out of ten ETFs (namely the FAN, the INRG, the ENER, and

the TAN). Comparing the ES and the CO2S funds we observe a significative difference in terms of

SR only relatively to those most screened equally weighted funds, due to the discrepancies in the

composition of these SGFs. In this case, the EW fund built according to the CO2S metric assures

also greater financial performances than its ES peer.

The results on the relation between the effect of the Paris Agreement on the SGFs returns and

the environmental metric used to individuate the green companies results inconsistent, with no

statistical differences found in the performance of the SGFs built according to the two EMs after 12

December 2015. Differently, some significative dissimilarities emerge from the yearly juxtapositions

of the ES and the CO2S funds during phases of tumultuous markets (e.g., 2008, 2009, and 2019),

revealing a dependence of the well-known resilience of green assets on the environmental metric

used.

The lack of transparency in the way companies are selected into the green ETFs raises the ques-

tion of to what extent the ETFs managers consider the firms’ environmental footprints as a decision

criterion. The analysis has shown that the green performances of these funds are inadequate ac-

cording to two of the most popular metrics currently available. However, the discrepancies detected

between the ES and the CO2S increase the confusion on how agents should measure the CEP. The

evaluation of the environmental performances of the green ETFs according to the forthcoming EU

Taxonomy rules and the definition of a more accurate, transparent, and granular green metric will

be the object of future analysis.
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5 Appendix

5.1 Venn diagrams to compare the funds holdings.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6: Venn diagrams per year of companies selected in the Q25 subsets according to the two

environmental metrics from 2006 (6a) to 2020 (6o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7: Venn diagrams per year of companies selected in the Q50 subsets according to the two

environmental metrics from 2006 (7a) to 2020 (7o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 8: Venn diagrams per year of companies selected in the Q75 subsets according to the two

environmental metrics from 2006 (8a) to 2020 (8o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 9: Venn diagrams of companies belonging to the first quantile of the ES and CO2S distribu-

tions relatively to the year 2021 compared to the ETFs holdings.
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5.2 Synthetic funds financial performances comparison after the Paris

Agreement.

SGF t-test F-test HAC-test

ESGF
·
25

0.00053 ** 0.87299 *** -0.012

(0) (–) (0.012)

ESGF
·
50

0.00044 ** 0.9965 0.003

(0) (–) (0.007)

ESGF
·
75

0.00045 ** 0.97932 0.001

(0) (–) (0.006)

GSGF
·
25

0.00036 0.77505 *** 0.002

(0) (–) (0.034)

GSGF
·
50

0.00033 1.11441 -0.003

(0) (–) (0.022)

GSGF
·
75

0.00014 0.92626 0.011

(0) (–) (0.015)

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 7: Results of the tests, statistics and standard errors (in brackets), conducted on the dif-

ferences in financial performances between the SGFs built according the two EMs after the Paris

Agreement (December 12, 2015 - October 21, 2021).

5.3 Synthetic funds financial performances comparison by year.
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EW GMV

Year t-test F-test HAC-test t-test F-test HAC-test

2007 0.00105 ** 0.84278 -0.015 0.0004 0.87652 -0.065

(0.001) (–) (0.026) (0) (–) (0.06)

2008 -0.00231 * 0.79769 * -0.009 -0.00373 *** 0.73599 ** -0.051 *

(0.001) (–) (0.015) (0.001) (–) (0.028)

2009 0.00081 0.91813 -0.017 0.00063 1.09691 -0.051

(0.001) (–) (0.029) (0.001) (–) (0.058)

2010 -0.00014 0.96169 0.015 0.0005 0.76748 * -0.042

(0.001) (–) (0.019) (0) (–) (0.053)

2011 -0.00103 1.01729 -0.003 -0.00045 0.78323 * -0.031

(0.001) (–) (0.016) (0.001) (–) (0.048)

2012 0.00021 0.86092 -0.001 -0.00007 0.74959 ** -0.019

(0.001) (–) (0.028) (0) (–) (0.079)

2013 0.0007 * 0.80914 * -0.057 ** 0.00001 0.64736 *** 0.015

(0) (–) (0.029) (0) (–) (0.065)

2014 0.00001 0.73601 ** -0.056 ** 0.00036 0.64901 *** 0.035

(0) (–) (0.028) (0) (–) (0.065)

2015 -0.0004 0.9895 -0.042 0.00003 0.83479 -0.071

(0) (–) (0.027) (0) (–) (0.051)

2016 0.0004 1.08313 -0.021 0.00173 *** 0.86056 0.02

(0) (–) (0.023) (0) (–) (0.063)

2017 0.00082 *** 0.80282 * -0.008 0.0003 1.02925 -0.153 *

(0) (–) (0.034) (0) (–) (0.087)

2018 -0.00038 0.79679 * 0.002 -0.00044 0.67462 ** 0.002

(0) (–) (0.029) (0) (–) (0.067)

2019 0.00109 *** 0.67737 *** -0.024 0.0011 *** 0.72678 ** -0.01

(0) (–) (0.038) (0) (–) (0.07)

2020 0.00108 1.0604 -0.029 -0.0006 0.72091 * 0.039

(0.001) (–) (0.022) (0.001) (–) (0.065)

2021 0.00003 0.39523 *** 0.034 -0.00016 1.24495 0.012

(0.001) (–) (0.037) (0) (–) (0.077)

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 8: Results of the tests, statistics and standard errors (in brackets), conducted yearly on

the differences in financial performances between the ·SGF
S
25 and the ·SGF

C
25, separated by fund

selection strategy (January 2007 - October 2021).
26



EW GMV

Year t-test F-test HAC-test t-test F-test HAC-test

2007 0.00088 * 0.82775 -0.005 0.0008 ** 0.84326 -0.027

(0) (–) (0.025) (0) (–) (0.046)

2008 -0.00232 ** 0.87461 0.001 -0.00317 *** 0.84931 -0.026

(0.001) (–) (0.011) (0.001) (–) (0.034)

2009 0.00089 0.94857 -0.003 0.00035 1.29895 * -0.169 ***

(0.001) (–) (0.012) (0.001) (–) (0.057)

2010 -0.00004 0.99184 0.000 0.00064 0.67444 *** 0.062

(0.001) (–) (0.012) (0) (–) (0.038)

2011 -0.00086 0.98026 0.006 -0.00049 1.08937 0.017

(0.001) (–) (0.009) (0.001) (–) (0.038)

2012 0.00012 0.87831 -0.008 0.00021 0.82585 -0.058

(0) (–) (0.016) (0) (–) (0.07)

2013 0.00078 ** 0.86785 -0.037 * 0.00058 0.65579 *** 0.001

(0) (–) (0.022) (0) (–) (0.062)

2014 -0.00009 0.8773 0.009 0.00066 ** 0.99758 0.084

(0) (–) (0.02) (0) (–) (0.065)

2015 -0.00034 1.05331 -0.018 -0.00019 1.00745 0.02

(0) (–) (0.016) (0) (–) (0.038)

2016 0.00041 1.03132 0.011 0.00157 *** 0.88856 0.022

(0) (–) (0.017) (0) (–) (0.064)

2017 0.00081 *** 0.88596 0.032 0.00089 *** 0.86344 0.019

(0) (–) (0.024) (0) (–) (0.082)

2018 -0.00053 0.91843 -0.006 -0.00042 1.17905 -0.046

(0) (–) (0.021) (0) (–) (0.055)

2019 0.00094 *** 0.81081 * -0.01 0.00093 *** 0.91835 -0.123 *

(0) (–) (0.02) (0) (–) (0.064)

2020 0.00101 1.06766 0.001 -0.00113 1.1936 0.046

(0.001) (–) (0.011) (0.001) (–) (0.041)

2021 -0.00015 0.91547 0.017 -0.00003 1.16607 0.004

(0.001) (–) (0.017) (0) (–) (0.062)

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 9: Results of the tests, statistics and standard errors (in brackets), conducted yearly on

the differences in financial performances between the ·SGF
S
50 and the ·SGF

C
50, separated by fund

selection strategy (January 2007 - October 2021).
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EW GMV

Year t-test F-test HAC-test t-test F-test HAC-test

2007 0.00071 * 0.84047 -0.01 0.00037 0.8877 -0.018

(0) (–) (0.017) (0) (–) (0.046)

2008 -0.00217 ** 0.84311 -0.001 -0.00286 *** 0.82577 -0.006

(0.001) (–) (0.009) (0.001) (–) (0.023)

2009 0.00092 0.96431 0.004 0.00025 0.67506 ** -0.024

(0.001) (–) (0.01) (0.001) (–) (0.038)

2010 0.00003 0.90946 0.007 0.00055 0.74022 * 0.007

(0.001) (–) (0.007) (0) (–) (0.031)

2011 -0.00088 0.88522 0.013 * -0.0005 0.9029 0.011

(0.001) (–) (0.007) (0.001) (–) (0.023)

2012 0.00014 0.82924 -0.001 0.00031 0.86459 -0.015

(0) (–) (0.012) (0) (–) (0.044)

2013 0.00076 ** 0.85684 -0.011 0.0003 0.72205 ** 0.058

(0) (–) (0.013) (0) (–) (0.045)

2014 -0.00022 0.85434 0.012 0.00059 ** 0.98391 0.01

(0) (–) (0.011) (0) (–) (0.024)

2015 -0.00029 1.00995 -0.015 -0.00013 0.96796 -0.004

(0) (–) (0.01) (0) (–) (0.031)

2016 0.00028 0.97749 0.01 0.00137 *** 0.95486 0.006

(0) (–) (0.01) (0) (–) (0.059)

2017 0.00092 *** 0.84166 0.009 0.00086 *** 1.11099 0.023

(0) (–) (0.019) (0) (–) (0.047)

2018 -0.0006 0.91323 0.002 -0.00048 1.22883 -0.017

(0) (–) (0.015) (0) (–) (0.033)

2019 0.00091 *** 0.76328 ** 0.007 0.00102 *** 0.91424 -0.039

(0) (–) (0.018) (0) (–) (0.047)

2020 0.00106 1.08844 -0.005 -0.00209 * 0.88142 0.015

(0.001) (–) (0.009) (0.001) (–) (0.03)

2021 0 0.8135 0.005 -0.00035 0.95446 0.066

(0.001) (–) (0.018) (0) (–) (0.075)

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 10: Results of the tests, statistics and standard errors (in brackets), conducted yearly on

the differences in financial performances between the ·SGF
S
75 and the ·SGF

C
75, separated by fund

selection strategy (January 2007 - October 2021).
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5.4 Results of the comparison between the financial performances of

the ETFs and the synthetic funds.
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ESGF
·
25

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW 0.00001 2.86698 *** -0.003 0.0004 2.51079 *** -0.016

(0) (–) (0.012) (0) (–) (0.011)

ERTH 0.00016 1.60026 *** 0.014 * 0.00025 1.40051 *** 0.000

(0) (–) (0.008) (0) (–) (0.008)

FAN -0.00006 1.73174 *** -0.005 0.00002 1.51603 *** -0.017 **

(0) (–) (0.009) (0) (–) (0.008)

GRID 0.00015 1.64374 *** 0.014 0.00023 1.48297 *** 0.002

(0) (–) (0.01) (0) (–) (0.01)

INRG -0.00013 2.51176 *** -0.009 -0.00003 2.21149 *** -0.023 **

(0) (–) (0.011) (0) (–) (0.01)

ENER -0.00009 1.741 *** -0.001 0.00001 1.52839 *** -0.014 *

(0) (–) (0.01) (0) (–) (0.009)

PBD 0.00002 2.03559 *** 0.003 0.00012 1.78387 *** -0.011

(0) (–) (0.009) (0) (–) (0.008)

QCLN 0.00019 2.60386 *** 0.014 0.00029 2.28446 *** 0.001

(0) (–) (0.012) (0) (–) (0.011)

SMOG 0.00004 2.52371 *** 0.004 0.00014 2.21171 *** -0.009

(0) (–) (0.01) (0) (–) (0.009)

TAN -0.00015 4.70746 *** -0.011 -0.00007 4.11853 *** -0.023 *

(0) (–) (0.014) (0) (–) (0.013)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 11: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the ESGF
·
25 (January 2007 -

October 2021).
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ESGF
·
50

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW
-0.00013 4.78522 *** 0.004 -0.00004 3.91692 *** -0.030 *

(0) (–) (0.017) (0) (–) (0.016)

ERTH
0.00002 2.72605 *** 0.020 0.00002 2.23341 *** -0.007

(0) (–) (0.014) (0) (–) (0.014)

FAN
-0.00022 2.94499 *** -0.010 -0.00008 2.46806 *** -0.031 **

(0) (–) (0.016) (0) (–) (0.015)

GRID
0.00017 2.77829 *** 0.01700 0.0002 2.17782 *** 0.000

(0) (–) (0.018) (0) (–) (0.018)

INRG
-0.00042 * 4.21750 *** -0.018 -0.00013 3.53615 *** -0.035 **

(0) (–) (0.017) (0) (–) (0.016)

ENER
-0.00025 2.86791 *** -0.006 0.00003 2.39006 *** -0.019

(0) (–) (0.016) (0) (–) (0.015)

PBD
-0.00017 3.45776 *** 0.002 0.00003 2.85369 *** -0.025 *

(0) (–) (0.015) (0) (–) (0.014)

QCLN
0.00002 4.29810 *** 0.017 0.00018 3.56411 *** -0.012

(0) (–) (0.017) (0) (–) (0.016)

SMOG
-0.00016 4.27044 *** 0.002 0.00003 3.54389 *** -0.023

(0) (–) (0.016) (0) (–) (0.015)

TAN
-0.00045 7.79430 *** -0.018 -0.00025 6.48360 *** -0.037 **

(0) (–) (0.02) (0) (–) (0.018)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 12: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the ESGF
·
50 (January 2007 -

October 2021).
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ESGF
·
75

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW
0.00004 3.07238 *** -0.008 0.00005 2.88511 *** -0.009

(0) (–) (0.011) (0) (–) (0.011)

ERTH
0.00019 1.71429 *** 0.009 0.0002 1.60937 *** 0.008

(0) (–) (0.008) (0) (–) (0.007)

FAN
-0.00003 1.84316 *** -0.01 -0.00003 1.74096 *** -0.01

(0) (–) (0.009) (0) (–) (0.009)

GRID
0.00019 1.80286 *** 0.009 0.00019 1.75783 *** 0.009

(0) (–) (0.01) (0) (–) (0.01)

INRG
-0.0001 2.69192 *** -0.014 -0.0001 2.53442 *** -0.014

(0) (–) (0.011) (0) (–) (0.011)

ENER
-0.00006 1.86238 *** -0.006 -0.00006 1.75433 *** -0.005

(0) (–) (0.009) (0) (–) (0.009)

PBD
0.00006 2.17904 *** -0.003 0.00006 2.04899 *** -0.003

(0) (–) (0.009) (0) (–) (0.008)

QCLN
0.00022 2.79132 *** 0.009 0.00023 2.62391 *** 0.009

(0) (–) (0.011) (0) (–) (0.011)

SMOG
0.00007 2.70106 *** -0.001 0.00008 2.54198 *** -0.002

(0) (–) (0.01) (0) (–) (0.009)

TAN
-0.00012 5.01692 *** -0.016 -0.00012 4.73632 *** -0.016

(0) (–) (0.014) (0) (–) (0.013)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 13: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the ESGF
·
75 (January 2007 -

October 2021).
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GSGF
·
25

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW
-0.00012 5.69834 *** -0.005 -0.00014 5.54478 *** -0.021

(0) (–) (0.017) (0) (–) (0.018)

ERTH
0.00008 3.17972 *** 0.014 0.00011 3.07941 *** 0.002

(0) (–) (0.014) (0) (–) (0.015)

FAN
-0.00018 3.45416 *** -0.011 -0.00013 3.467 *** -0.020

(0) (–) (0.016) (0) (–) (0.017)

GRID
0.00026 3.33185 *** -0.002 0.00010 3.37335 *** 0.006

(0) (–) (0.018) (0) (–) (0.019)

INRG
-0.00031 4.95652 *** -0.018 -0.00031 4.85546 *** -0.032 *

(0) (–) (0.016) (0) (–) (0.017)

ENER
-0.00017 3.34108 *** -0.005 -0.00012 3.24102 *** -0.016

(0) (–) (0.016) (0) (–) (0.017)

PBD
-0.00009 4.05401 *** -0.001 -0.00010 3.97973 *** -0.017

(0) (–) (0.015) (0) (–) (0.016)

QCLN
0.00003 5.11834 *** 0.007 0 4.92888 *** -0.010

(0) (–) (0.017) (0) (–) (0.018)

SMOG
-0.00009 5.01579 *** -0.001 -0.00009 4.87131 *** -0.015

(0) (–) (0.016) (0) (–) (0.017)

TAN
-0.00041 9.26281 *** -0.021 -0.00041 9.21505 *** -0.033

(0) (–) (0.021) (0) (–) (0.021)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 14: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the GSGF
·
25 (January 2007 -

October 2021).
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GSGF
·
50

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW
0.00005 3.31737 *** -0.010 0.00004 3.01829 *** -0.008

(0) (–) (0.011) (0) (–) (0.011)

ERTH
0.00020 1.85056 *** 0.007 0.00019 1.68365 *** 0.009

(0) (–) (0.007) (0) (–) (0.007)

FAN
-0.00001 1.98372 *** -0.013 -0.00003 1.81959 *** -0.010

(0) (–) (0.009) (0) (–) (0.009)

GRID
0.00020 1.8968 *** 0.006 0.00019 1.77012 *** 0.008

(0) (–) (0.01) (0) (–) (0.01)

INRG
-0.00008 2.90942 *** -0.016 -0.00011 2.65073 *** -0.012

(0) (–) (0.01) (0) (–) (0.01)

ENER
-0.00005 2.01027 *** -0.007 -0.00007 1.83134 *** -0.004

(0) (–) (0.009) (0) (–) (0.009)

PBD
0.00007 2.35077 *** -0.005 0.00005 2.14005 *** -0.002

(0) (–) (0.008) (0) (–) (0.008)

QCLN
0.00023 3.01329 *** 0.00700 0.00022 2.74293 *** 0.009

(0) (–) (0.011) (0) (–) (0.011)

SMOG
0.00009 2.91536 *** -0.003 0.00007 2.65523 *** -0.001

(0) (–) (0.009) (0) (–) (0.009)

TAN
-0.00011 5.40146 *** -0.019 -0.00012 4.951 *** -0.017

(0) (–) (0.013) (0) (–) (0.013)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 15: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the GSGF
·
50 (January 2007 -

October 2021).
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GSGF
·
75

ES CO2S

ETF t-test F-test HAC-test t-test F-test HAC-test

PBW
-0.00022 6.97544 *** -0.010 -0.00021 5.78297 *** -0.013

(0) (–) (0.019) (0) (–) (0.019)

ERTH
0.00003 3.81678 *** 0.014 0.00003 3.20919 *** 0.009

(0) (–) (0.016) (0) (–) (0.016)

FAN
-0.00024 4.36905 *** -0.015 -0.00022 3.61576 *** -0.015

(0) (–) (0.017) (0) (–) (0.017)

GRID
0.00006 4.12104 *** -0.003 0.00006 3.54349 *** 0.007

(0) (–) (0.02) (0) (–) (0.02)

INRG
-0.00046 * 6.24199 *** -0.027 -0.00046 * 5.16967 *** -0.031 *

(0) (–) (0.018) (0) (–) (0.018)

ENER
-0.00032 4.24211 *** -0.01800 -0.00022 3.44827 *** -0.013

(0) (–) (0.017) (0) (–) (0.017)

PBD
-0.00020 5.08525 *** -0.007 -2e-04 4.16974 *** -0.013

(0) (–) (0.017) (0) (–) (0.017)

QCLN
-0.00009 6.15477 *** 0.000 -0.00011 5.15119 *** -0.007

(0) (–) (0.019) (0) (–) (0.019)

SMOG
-0.00020 6.23022 *** -0.006 -0.00019 5.10844 *** -0.010

(0) (–) (0.017) (0) (–) (0.018)

TAN
-0.00051 11.54572 *** -0.026 -0.00055 9.42908 *** -0.031

(0) (–) (0.022) (0) (–) (0.022)

Note: α = 0.05, ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 16: Results of the tests, statistics and standard errors (in brackets), conducted on the differ-

ences in financial performances between the sampled green ETFs and the GSGF
·
75 (January 2007 -

October 2021).
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