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Abstract

Recently, the introduction of Environmental, Social, and Governance (ESG) scores has become
crucial for investment decisions and in minimizing portfolio risk. This study aims to understand
the relationship between ESG scores and Value-at-Risk (VaR), computed by using a Vine
copula-GARCH based approach, chosen for its reliability in detecting interdependencies among
multiple stocks. In fact, one of the main challenges in estimating VaR for a stock portfolio is
capturing the dependence structure among a large number of assets. The dataset consists of
16 companies listed on the FTSE100 index. The corresponding ESG scores were collected over
a comprehensive period of five years, from 2018 to 2022, covering both normal and stressed
market conditions. Additionally, a focused analysis was conducted for the period from 2020 to
2022 to isolate the specific effects of the COVID crisis. The results indicate that an increase
in assets with the highest ESG scores reduces potential losses in the portfolio. This finding
underscores the importance of integrating high-level ESG scores into portfolios to mitigate
market risk. Additionally, during periods characterized by stressed market conditions, the
impact of ESG scores on VaR is even more pronounced, demonstrating that sustainable assets
are more resilient in times of crisis.
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1 Introduction

In recent years, dependence patterns among various stocks have become increasingly complex,
particularly following the global financial crisis. Numerous methodologies have been developed
to capture this complexity with increased flexibility. A significant body of literature has focused
on multivariate copulas as models for capturing dependence due to their ability to offer flexibility
in selecting marginal distributions. According to Sklar [28], any multivariate distribution can be
decomposed into its marginal distributions and a copula that models the dependence structure.
This foundational result allows copulas to model complex dependence structures separately
from the marginal behavior of individual assets, making them powerful tools in finance and risk
management. This is especially valuable in the financial context, where assets often exhibit
asymmetric and tail-dependent behavior that standard correlation measures fail to capture.

Despite their advantages, traditional multivariate copulas, including both elliptical copulas
(such as Gaussian and Student’s t copulas) and Archimedean copulas, have limitations. They
often imply uniform dependence structures across all pairs of variables, which does not always
align with the intricacies of financial markets. This uniformity can result in an inadequate
representation of symmetry and tail dependence in multivariate data. Additionally, while
there is a vast selection of bivariate copulas, the set of available higher-dimensional copulas
is relatively limited, restricting the ability to model more complex dependencies in multivariate
settings.

To address these limitations, Vine copulas have been proposed. Regular Vines, initially
constructed by Joe [16] using mixtures of conditional distribution functions, were later given a
graphical structure by Bedford and Cooke [1] to better understand the sequence of conditioning
variables. Czado and Nagler [7] discuss how Vine copulas offer a flexible approach to modeling
multivariate dependencies by constructing higher-dimensional copulas from bivariate building
blocks. In fact, Vine copulas allow for the combination of copulas from different families, such
as the t-copula (elliptical) and the Clayton copula (Archimedean), each of which is particularly
suited for modeling specific aspects of dependency between financial variables. This allows for a
more accurate representation of the dependencies between variables, particularly in cases where
pairwise dependencies vary significantly.

Elliptical copulas, like the t-copula, are effective in capturing symmetric dependencies and
handling heavy tails, i.e., situations with extreme events that have low probabilities but signif-
icant impacts. This is crucial in the context of Value-at-Risk (VaR), where accurately consid-
ering the possibility of extreme losses is essential. On the other hand, Archimedean copulas,
such as the Clayton copula, provide excellent representation of asymmetric dependencies, es-
pecially useful in scenarios with unidirectional heavy tails. This allows for modeling situations
where the dependence between variables is stronger in one tail compared to the other. The
integration of these heterogeneous copulas within vine structures enables the construction of
highly customized models that better reflect the reality of complex dependence structures.

There are two main types of Vine copulas: Regular Vine (R-Vine) and Canonical Vine
(C-Vine). R-Vine copulas offer the most flexibility, allowing for the specification of complex
dependence structures through a sequence of linked trees, as discussed by Joe [17] and further
developed by Kurowicka and Cooke [19]. Each tree level corresponds to conditional dependen-
cies, enabling the model to capture intricate interactions between variables. C-Vine copulas, on
the other hand, are more structured, with one central variable at each level of the Vine acting
as a hub that connects to other variables. This structure is useful when one variable is expected
to have a dominant influence over the others, but may be less flexible in other scenarios. Czado
[6] provides a step-by-step introduction to Vines, serving as a practical guide.

1



Given the increasing complexity of stock return dependencies, integrating copulas with
GARCH models has become a popular approach. GARCH models are widely used to model
the conditional heteroskedasticity of financial time series, capturing the dynamic nature of
volatility over time. By integrating GARCH models with Vine copulas, one can account for
both the time-varying volatility of individual assets and the complex, potentially non-linear
dependencies between them. This integration provides a more comprehensive framework for
risk management, particularly for the estimation of risk measures such as VaR.

The work of Rockinger and Jondeau [26] first introduced copula-based GARCH modeling,
and Lee and Long [20] highlighted the benefits of using these models over dynamic conditional
correlation models. The univariate GARCH model can filter the univariate serial dependence
in each marginal time series, while the Vine copula model captures the cross-sectional depen-
dence across residuals. This combined approach was used by Brechmann and Czado [3] in risk
management and further explored by Min and Czado [21] for non-parametric estimation of the
marginal residual distribution. In the context of sustainable finance, Czado et al. [8] studied
the dependence between Environmental, Social, and Governance (ESG) indices and the market,
marking a significant application of Vine copulas in the ESG context.

This integration of advanced modeling techniques, such as copula-based GARCH models,
with ESG considerations highlights the increasing need for holistic risk management frameworks
that account not only for financial dependencies but also for sustainability factors. ESG criteria
enable investors to assess both the financial and non-financial risks associated with companies by
evaluating their long-term impact on ESG practices [14]. Companies with strong ESG profiles
tend to demonstrate greater resilience during periods of financial stress [30]. Such developments
gained significant momentum as regulatory bodies, particularly within the European Union,
have introduced frameworks like the Sustainable Finance Disclosure Regulation (SFDR) [12]
to enhance transparency and consistency in ESG disclosures, promoting a more comprehensive
risk management approach.

Building on this literature, this paper aims to investigate the use of the Vine copula approach
for estimating the one-year VaR of a stock portfolio, focusing on the relationship between VaR
and ESG scores. By applying the model to the daily log-returns of multiple stocks in the London
financial market, we seek to detect interdependencies among them. Specifically, the VaR is
computed for an equal-weighted portfolio and compared with results obtained by increasing
the proportion of the best ESG stocks while reducing the proportion of the worst ESG stocks.

Preliminary results indicate that increasing the proportion of top-performing ESG stocks in
a portfolio can lead to a reduction in overall market risk, particularly during periods of market
stress. This suggests that sustainable investments not only align with ethical considerations
but also contribute to enhanced portfolio stability and risk mitigation. In particular, the
VaR is calibrated over a one-year period with a confidence level of 99.5%, in accordance with
the Solvency II Directive. This research can serve as a basis for future works, considering the
GARCH-Vine copula as a possible internal model to calculate the Solvency Capital Requirement
(SCR) for equity risk.

The structure of this article is organized as follows: Section 2 explains the methodology,
Section 3 presents the numerical application and finally Section 4 provides a brief conclusion.

2 Research Methods

This study focuses on VaR as a measure of the total risk to which a stock portfolio is exposed.
For a given portfolio, VaR is defined as the maximum loss that is likely to occur over a given
period with a specified confidence level of (1− α). In other words, there is a probability equal
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to α of experiencing losses greater than the VaR prediction. Formally, the one-step-ahead VaR
at the α level is expressed as:

Pr(rt ≤ V aRα,t|Ft−1) = α, (1)

where rt represents the one-period return from time t−1 to time t, α denotes the quantile level,
and Ft is the information set at time t. Thus, VaR can be interpreted as the α− th quantile of
the conditional distribution of returns.

The VaR forecasting can be enhanced using a copula approach, which captures the com-
plex dependencies among assets and provides more accurate VaR estimates than traditional
methods. While it is established that copulas generally outperform conventional methods, our
approach employs Vine copulas to further refine this accuracy. Vine copulas offer superior
flexibility and precision by enabling the combination of copulas from different families, which
improves both the prediction and calculation of VaR beyond the capabilities of standard mul-
tivariate copulas.

This approach not only improves the accuracy of VaR estimates but also enhances the
overall robustness of risk predictions, overcoming the limitations of multivariate copulas and
providing more reliable financial risk management [22]. Specifically, Vine copula models are
widely employed in finance to capture cross-sectional dependence among residuals obtained
from applying univariate time series models to financial returns, as will be detailed in the
following sections.

2.1 GARCH Model Estimation and Standardization of Residuals

A significant body of literature has established the effectiveness of GARCH models in capturing
volatility dynamics in financial markets. Engle [11] introduced the ARCH model, which Boller-
slev [2] extended to the GARCH framework, allowing for more flexible modeling of time-varying
volatility. These models have become fundamental in the analysis of return series and the fore-
casting of conditional volatility, playing a crucial role in risk management and the estimation
of VaR [18, 15].

Further applications of GARCH models have been explored in various contexts, including
portfolio optimization [29], asset pricing [5], and the assessment of market risk [10]. These
models have proven particularly effective in capturing the volatility clustering and heavy-tailed
behavior often observed in financial time series.

To implement the GARCH-Vine approach, the first step is to fit a GARCH(p, q) model to the
return series of each asset, estimating the parameters using Maximum Likelihood Estimation.
The GARCH(p, q) model for asset i is defined as:

ri,t = µi + ϵi,t

ϵi,t = σi,t · zi,t (2)

σ2
i,t = α0 +

q∑
j=1

αjϵ
2
i,t−j +

p∑
k=1

βkσ
2
i,t−k,

where σ2
i,t denotes the conditional variance of asset i’s return at time t, with ri,t representing

the return , ϵi,t denoting the residual and zi,t is a realization of an independent and identically
distributed (i.i.d.) random variable with mean zero and unit variance, often assumed to follow
a standard normal or t-Student distribution. The process is weakly stationary if and only if
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∑q
j=1 αj +

∑p
k=1 βk < 1. Specifically, in this study, we will utilize the GARCH(1,1) model in

the numerical application, as it is particularly effective for capturing the volatility clustering
commonly observed in financial time series data, while also ensuring that we do not complicate
the model beyond what is necessary for our analysis.

Once the GARCH model is estimated, the next step involves standardizing the residuals of
the univariate return series by dividing the residuals by the estimated conditional volatilities:

zi,t =
ϵi,t
σi,t

, (3)

where ϵi,t represents the residual of asset i at time t, and σi,t is the estimated conditional
volatility at time t.

Subsequently, these standardized residuals are transformed into a series of univariate pseudo
copula values using the Probability Integral Transform (PIT) [13]. This step is crucial, as (Vine-
)copula models require variables to be uniformly distributed to effectively model and analyze
dependencies among multiple assets, in accordance with Sklar [28], which will be explained
further below. The PIT is a fundamental concept in probability theory and statistics that
ensures the uniformity of transformed variables. Specifically, if X is a continuous random
variable with cumulative distribution function (CDF) FX , the transformation U = FX(X)
results in U being uniformly distributed on the interval [0,1]. This result is due to the fact that
the CDF maps values of X to probabilities, which are uniformly distributed over the interval
[0,1].

In our context, the standardized residuals zi,t (3) are transformed into uniform variables
using their empirical CDF Fi, such that:

ui,t = Fi(zi,t). (4)

Here, ui,t represents the pseudo copula values. However, if there is a justified reason to
believe that the residuals follow a specific theoretical distribution, it is possible to use a non-
empirical CDF, such as that of the standard normal distribution or another distribution chosen
based on the characteristics of the data. As we will discuss further below, by converting the
standardized residuals into uniformly distributed variables, we ensure that the dependency
structure between the assets can be captured and analyzed effectively using copula models.

2.2 Vine Copula and Dependency Modeling

The strength of copulas comes from Sklar’s theorem, which demonstrates that the structure of
a multivariate distribution is independent of the univariate marginals, with this structure being
defined by the copula function. Specifically, the theorem states that:

[Sklar’s Theorem] Let F be the CDF of the vector X = (X1, . . . , Xd), and let Fi be the
marginal CDFs for i ∈ {1, . . . , d}. Then, there exists a copula C such that for all xi ∈ R:

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , (5)

with the associated density:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd), (6)
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for some d-dimensional copula C with copula density c. If the marginals Fi are continuous, then
C is the unique copula associated with F . Conversely, if C is a copula and Fi are univariate
distribution functions, then F is the joint distribution function for X.

Sklar’s theorem states that any multivariate distribution can be expressed in terms of its
marginals and a copula that captures the dependency structure between the variables. The
proof of Sklar’s theorem can be found in Nelsen [24] (pages 45-60).

To understand how copulas capture these dependencies, it is essential to understand Kendall’s
τ and its interpretation. Given two pairs (X11, X21) and (X12, X22) drawn from a random vector
(X1, X2), Kendall’s τ is defined as:

τ(X1, X2) = Pr[(X11 −X12)(X21 −X22) > 0]− Pr[(X11 −X12)(X21 −X22) < 0]. (7)

Here, Pr[(X11−X12)(X21−X22) > 0] denotes the probability of concordance, while Pr[(X11−
X12)(X21 −X22) < 0] denotes the probability of discordance. Therefore, Kendall’s τ measures
the relative difference between the probability of concordance and discordance, providing in-
sights into the strength and direction of the association between the variables.

However, while there is a wide range of parametric copula families, they tend to lack flex-
ibility as the dimensionality of the vector X increases. Moreover, they do not allow for differ-
ent dependence structures between subgroups of random variables. In order to overcome the
limitations of traditional multivariate copulas, Vine Copulas extend the concept of capturing
dependencies in multivariate distributions by offering flexibility through a sequence of linked
bivariate copulas arranged in a tree structure.

Fundamentally, the concept underlying Vine copulas is the Pair Copula Construction intro-
duced by Joe [16] which allows for the factorization of the multivariate density using bivariate
copulas. Specifically, this approach begins with the decomposition of the multivariate density
into conditional densities:

f(x1, . . . , xd) = fd(xd) · fd−1|d(xd−1 | xd) ·
fd−2|d−1,d(xd−2 | xd−1, xd) · · · f1|2,...,d(x1 | x2, . . . , xd). (8)

For the bivariate case, the previous equation simplifies to:

f(x1, x2) = f2(x2) · f1|2(x1 | x2). (9)

The second factor of the equation above can be further expressed by applying the definition
of conditional density in conjunction with equation (6):

f1|2(x1 | x2) =
f(x1, x2)

f2(x2)

=
c12(F1(x1), F2(x2))f1(x1)f2(x2)

f2(x2)

= c12(F1(x1), F2(x2)) · f1(x1),

(10)

where c12 is the pair-copula density. This leads to the formulation of the joint density in terms
of pair-copulas and marginal densities:

f(x1, x2) = c12(F1(x1), F2(x2)) · f1(x1) · f2(x2). (11)

Next, we consider the case where d = 3, to better understand how to decompose more
complex joint density within the multivariate framework. The trivariate joint density is given
by:
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f(x1, x2, x3) = f3|1,2(x3 | x1, x2) · f2|1(x2 | x1) · f1(x1). (12)

We factorize this formula by considering each part separately. In particular, the conditional
density f2|1(x2 | x1) follows the structure of equation (10) presented earlier:

f2|1(x2 | x1) = c12(F1(x1), F2(x2)) · f2(x2). (13)

Additionally, the factor f3|1,2(x3 | x1, x2) is the conditional density of X3 given that X1 = x1

and X2 = x2 and it can be expressed as:

f3|1,2(x3 | x1, x2) = c13|2(F1|2(x1 | x2), F3|2(x3 | x2)) · f3|2(x3 | x2)

= c13|2(F1|2(x1 | x2), F3|2(x3 | x2)) · c23(F2(x2), F3(x3)) · f3(x3),
(14)

which results from a recursive process (see [6]).
Thus, the joint density function (12) can be expressed in terms of bivariate copulas as

follows:

f(x1, x2, x3) = f3(x3) · f2(x2) · f1(x1)·
c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3))·
c13|2(F1|2(x1 | x2), F3|2(x3 | x2)).

(15)

However, this decomposition is not unique. There are two other possible copula construc-
tions in three dimensions by changing the order of the variables. For a large number of variables,
the decomposition can become intricate and challenging to interpret. For this reason, Bedford
and Cooke [1] extended Joe’s work [16] by representing these decompositions as interconnected
tree structures within the context of graph theory, providing a more comprehensible under-
standing.

Following Bedford and Cooke [1], we define a parametric R-Vine distribution as follows:

Definition 1 (Parametric R-Vine distribution). A parametric R-Vine distributionR(V , C,θ)
for a random vector X consists of three main components:

1. Tree Structure: A set of linked trees Vj, where j ranges from 1 to d− 1, that is defined
as V = {V1, V2, . . . , Vd−1}.

2. Parametric Bivariate Copulas: A set of bivariate copulas C = C(V) assigned to each
edge in the tree structure. These copulas, known as pair copulas, model the pairwise
dependencies between the variables connected by the respective edges.

3. Corresponding Parameters: The parameters θ=θ(C(V)) associated with the corre-
sponding copulas in C. These parameters define the specific dependency structure cap-
tured by each copula.

The density of an R-Vine for a random vector X is given by:

f(x) =

(
d∏

i=1

fi(xi)

)
·

d−1∏
k=1

∏
(i,j)∈Ek

cij;D
(
Fi|D(xi | xD), Fj|D(xj | xD)

) , (16)

where fi(xi) is the marginal density; cij;D is the bivariate copulas modeling the dependence
between the variables xi and xj conditionally on a set D; Fi|D and Fj|D represent the conditional
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distribution functions of the variables xi and xj, respectively, conditioned on the set D; Ek is
the set of pairs (i, j) corresponding to the edges in the k-th tree of the R-Vine structure.

Building on this foundation, the selection of the R-Vine model involves three key choices:
determining the structure of all its trees, selecting the copula family for each of the d(d−1)

2
pair

copulas, and specifying the parameters for each pair copula. The selection strategy employed
here is heuristic and bottom-up. For further details, please refer to the paper by Dißmann et
al. [9].

However, the generality of R-Vines can make them complex to specify and interpret, espe-
cially as the number of variables increases. To address this complexity, more structured Vine
copulas, such as the C-Vine, have been introduced to simplify the specification of the depen-
dency structure. The C-Vine imposes a specific structure where, at each level, there is a central
variable. This structure reduces complexity and facilitates the interpretation of dependencies,
particularly when some variables are thought to play a more significant role in determining the
overall dependence. Graphically, as illustrated in the Figure 1 for the case d = 4, each tree in
the C-Vine has a unique node that is connected to d− j edges, where j denotes the level of the
tree.

1

2

3

4

12
13

14

Tree 1

12
13

14

23—1
24—1Tree 2

23|1 24—1
34—12

Tree 3

Figure 1: Example of C-Vine structures for d = 4.

2.3 Forecasting and VaR Calculation

With the dependency structure in place, the next stage involves forecasting returns and com-
puting the VaR for the portfolio over the chosen time horizon. This process can be broken
down into key steps:
1) The first step involves fitting the R-Vine copula to the standardized residuals obtained from
the GARCH model. Before fitting the copula, the residuals are standardized and then trans-
formed into uniform pseudo copula values using the chosen CDF, which can be either empirical
or theoretical, as discussed above. This fitting process is crucial for accurately capturing the
dependency structure among the assets.
2) Using the fitted R-Vine model, we generate a random sample of pseudo copula values
ut+1, ut+2, . . ., simulating joint realizations over the chosen time horizon to estimate the cu-
mulative returns.
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3) The simulated pseudo copula values are then transformed into standardized residuals by
applying the inverse CDFs of the residual series. This step ensures that the simulated values
match the distributional properties (e.g., t-distribution) of the original residuals. Mathemati-
cally, for each asset, this transformation is expressed as:

ẑi,t+1 = F−1
i (ui,t+1), (17)

where F−1
i is the inverse CDF corresponding to the distribution of the standardized residuals

in the context of one-step-ahead forecasting.
4) After transforming the pseudo copula values into standardized residuals, the estimated
GARCH model is employed to forecast the returns for each asset. The return forecast for
asset i is given by:

ri,t+1 = µi + σi,t+1 · ẑi,t+1, (18)

where σi,t+1 is the forecasted conditional volatility from the GARCH model. The model simu-
lates a number of time steps based on the chosen time horizon.
5) The cumulative return of the portfolio is then derived from the simulated returns for each
component. This simulation process is repeated multiple times, producing a distribution of
potential portfolio returns over the specified time horizon. From this distribution, the VaR is
calculated, representing the maximum expected loss over the chosen period at a given confidence
level.

3 Numerical application

In this section, the previously described methodology is applied to an empirical dataset. The
aim is to compute the one-year VaR for different compositions of the porfolio by using the
GARCH-Vine copula model. The R-Vine model is implemented using the VineCopula package
developed by by Schepsmeier et al. [27]. The forecasted conditional volatility is derived from
the GARCH(1,1) model, and the simulation process is executed over 252 steps to estimate
cumulative returns for the one-year time horizon. By generating 10,000 simulations, we obtain
a distribution of simulated one-year cumulative returns. From this distribution, the VaR is
calculated with a confidence level of (1 − α) = 99.5%, in linee with the requirements of the
Solvency II framework for determining the SCR for equity risk.

3.1 Data and Descriptive Statistics

The analysis is conducted on close-to-close daily log-returns of sixteen companies listed on
the London Stock Exchange. Raw stock data was sourced from finance.yahoo.com website for
the period spanning from January 1, 2018, to December 31, 2022. Relative ESG scores were
obtained from Bloomberg to select the top eight companies and the bottom eight companies
based on their average ESG scores over the five-year period considered.

Table 1 presents the ESG scores and sector classifications of the portfolio’s components.
The data reveals a diverse range of industries, from Beverages and Real Estate Investment
Trusts to Oil & Gas Producers and Mining. Notably, companies like Diageo (7.20) and British
Land Company (7.10) exhibit high ESG scores, indicating strong sustainability practices. In
contrast, companies such as Frasers Group (1.96) and Howden Joinery Group (2.45) have lower
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scores, reflecting more significant ESG challenges. In addition, it is worth noting that the
Financial Services sector exhibits a wide range of ESG scores, reflecting diverse approaches
to sustainability within the industry. For example, the London Stock Exchange Group, with
an ESG score of 6.38, demonstrates a strong commitment to ESG practices. In contrast,
Beazley Group, with a significantly lower ESG score of 2.58, highlights the sector’s variability
and suggests that some companies may have more significant ESG-related challenges. Overall,
Table 1 underscores the significant variability in ESG scores across different industries, offering
valuable insights for investors and stakeholders interested in sector-specific ESG practices.

To complement this analysis, Table 2 reports the descriptive statistics for all return series
associated with the portfolio.

Table 1: Companies included in our dataset and the corresponding ESG scores.

Company Sector ESG Score

Top 8 Companies by ESG Score

Diageo Beverages 7.20
British Land Company Real Estate Investment Trusts 7.10
Shell Oil & Gas Producers 6.80
London Stock Exchange Group Financial Services 6.38
Segro Real Estate Investment Trusts 6.12
Rio Tinto Group Mining 6.16
Scottish and Southern Energy Electricity 6.04
BP plc Oil & Gas Producers 6.03

Bottom 8 Companies by ESG Score

Hikma Pharmaceuticals Pharmaceuticals 2.70
Ocado Food Retailers 2.68
St James’s Place Life Insurance 2.61
Beazley Group Financial Services 2.58
JD Sports General Retailers 2.57
DCC plc Support Services 2.49
Howden Joinery Group Supplier Company 2.45
Frasers Group General Retailers 1.96
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Table 2: Summary statistics of the daily log-returns.

Mean SD Skewness Kurtosis J-B ADF Box-
Pierce

DGE 0.0003 0.0143 0.1267 6.7194 2350.8* -11.08** 567.71*
LAND -0.0004 0.0195 0.4340 10.7262 6017.7* -10.28** 50.79*
SHEL -0.0001 0.0218 -0.5397 13.9875 10225* -10.64** 269.34*
LSEG 0.0005 0.0181 -0.1246 10.4447 5672.2* -10.32** 69.51*
SGRO 0.0002 0.0159 -0.3711 7.6982 3109.2* -10.55** 229.77*
RIO 0.0003 0.0200 -0.1805 4.2049 926.84* -10.48** 127.79*
SSE 0.0003 0.0180 -0.6395 8.6053 3933.7* -10.43** 606.97*
BP -0.0001 0.0227 -0.2400 13.9384 10105* -11.27** 149.48*

HIK 0.0003 0.0209 0.3462 6.4563 2192.2* -10.26** 28.77*
OCDO 0.0006 0.0343 1.6759 20.1201 21610* -10.83** 5.50*
STJ 3.258e-05 0.0197 -0.2129 6.6809 2330.1* -10.24** 170.21*
BEZ 0.0002 0.0218 -0.1289 7.6376 3035.8* -10.70** 163.2*
JD 0.0007 0.0278 -0.1095 9.8970 5092.8* -10.56** 931.81*
DCC -0.0004 0.0172 -0.2778 6.9216 2506.8* -10.64** 299.63*
HWDN 0.0002 0.0190 0.0183 3.9096 795.62* -10.57** 361.97*
FRAS 0.0005 0.0279 0.2923 17.8594 16586* -8.96** 14.85*

Note: p-value less than 2.2e-16 *, p-value less than 0.01 **.

As depicted in Figure 2, it is evident that all close-to-close daily log-returns exhibit sufficient
stationarity, fluctuating around a common level.
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Figure 2: Daily log-returns.

Notably, significant return changes are followed by larger changes, while smaller changes are
followed by smaller ones, indicating volatility clustering, a characteristic captured by GARCH
models. In essence, the series display conditional heteroskedasticity.
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Moreover, Table 2 highlights heavy tails, high kurtosis, and serial correlation across the
series. The skewness values differ from zero, implying asymmetric distribution. Specifically,
many series exhibit negative skewness, suggesting longer left tails than right tails. The ex-
ceptionally high kurtosis values indicate leptokurtosis, signifying heavier tails compared to a
normal distribution. Consistent with these statistics, the high Jarque-Bera test statistics and
low p-values reject the null hypothesis of normality for all analyzed series.

Furthermore, considering the validity of the GARCH process with correlated squared resid-
uals, the Box-Pierce test on squared returns at lag 5 rejects the null hypothesis of no serial
autocorrelation due to very low p-values, indicating non-zero autocorrelations up to the tested
lags. Lastly, the Augmented Dickey-Fuller test confirms stationarity, rejecting the unit root
hypothesis and confirming no need for differentiation. In the next section, the serial corre-
lation identified in the previous test is modeled through the GARCH model, which assumes
autoregressive behavior in conditional variance.

3.2 Model Estimation and Results

Firstly, the optimal time series model needs to be identified and selected. A GARCH(1,1)
model is applied across all series due to the statistical significance of all coefficients, aiming to
maintain model simplicity. Consistent with earlier findings, the errors are assumed to follow a
t-distribution.

Following the calculation process, as described in Section 2.3, the GARCH model was cali-
brated in order to obtain standardized residuals, subsequently transformed into pseudo copula
values. Figure 3 shows the corresponding pairwise normalized contour plots for the sixteen
assets.
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Figure 3: Pairwise normalized contour plots.

The bivariate correlations are measured in terms of Kendall’s tau, which is a non-linear
measure of dependence that ranges between [-1,1]. The correlation among series is not very
strong, except for the correlation between Shell (SHEL) and Bp plc (BP), which is 0.71. This is
not surprising since they belong to the same sector of oil and gas. Most of the series do not hold
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independence but only an imperfect positive dependence. Additionally, bivariate distributions
tend to exhibit elliptical shapes with varying tail dependence structures and central symmetry,
underscoring the suitability of the t-copula in pair copula constructions.

The R-Vine model is used to describe the joint distribution among univariate residual time
series. Although our fitted model includes 15 estimated trees, we limit the presentation to the
first two because of space limitations. The initial trees are more representative as they describe
the strongest direct dependencies between the variables, capturing the primary relationships
within the system. In fact, the R-Vine model builds a hierarchy of dependencies, where the first
tree captures the fundamental relationships and the subsequent trees refine these connections
by adding conditional levels.

The estimation results of pairwise copula families for Tree 1 and Tree 2 are provided in
Table 3 and Table 4, respectively, while Figures 4 and 5 show the corresponding graphical
representations, along with the fitted Kendall’s tau.

In Table 3, the ”conditioned” column presents the variables directly involved in each copula
pair. For our portfolio stocks, the t-student copula consistently emerges as the optimal choice,
indicating symmetric dependency patterns within the British financial market. The ”parame-
ters” column provides the estimated coefficients, offering insights into the strength and nature
of these dependencies. The first coefficient represents the correlation parameter, while the sec-
ond corresponds to the degrees of freedom, which vary considerably, ranging from 4.06 to 14.29.
This wide range suggests diverse tail behaviors among the pairs, a variability that can not be
fully captured by a single t-student copula, which only allows for one parameter of degrees of
freedom.

In Figure 4, the St James’s Place (STJ) stock emerges as a significant node within the
dependence network. This observation is also supported by the C-Vine structure analysis,
which identifies STJ as the root node. It is important to note that the selection of the root
node is optimized to maximize the sum of pairwise dependencies. Therefore, STJ plays a crucial
role in driving the performance of our stock portfolio, which aligns with the prominent position
of the banking sector in the British economy. A comparison of Figure 1 with Figures 4 and 5
reveals the differences in the tree structures arising from the application of C-Vine and R-Vine
copulas.

Furthermore, Table 4 includes a ”conditioning” column, representing the variables acting
as conditioning factors within the Vine structure and appearing only from the second tree
onward. These variables have already established a relationship at the previous level of the
tree structure and are now conditioning the dependence between the ”conditioned” variables.
As shown in Table 4, Tree 2 includes non-elliptical pair copula families, yet the dependency
strength, as indicated by Kendall’s tau values, is relatively weak and diminishes further in
subsequent trees. Specifically, we observe Gaussian, Clayton, and Gumbel copulas, each of
which presents a single parameter value. For the Gaussian copula, this value represents the
correlation coefficient, which varies between [−1, 1], allowing it to capture a wide range of
dependence, from perfect negative correlation to perfect positive correlation. Similarly, for
the Clayton and Gumbel copulas, the single parameter reflects the dependence structure’s
specific characteristics: in the case of the Clayton copula, which has a parameter θ > 0, the
value indicates the degree of lower tail dependence. For the Gumbel copula, with a parameter
constrained to θ ≥ 1, it characterizes the upper tail dependence. Despite the presence of these
alternative copula families, even in the second tree, the t-student copula remains the most
frequently selected option across the conditional pairs, with corresponding degrees of freedom
reaching up to 24.83. In subsequent trees (j > 2), even larger estimated degrees of freedom are
observed, indicating a reduction in tail dependence for these conditional pairs.
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Table 3: Tree 1: Vine structure results.

conditioned copula’s family parameters θ Kendall’s tau loglik

5, 4 t-student 0.57, 6.30 0.3854 251.76
15, 9 t-student 0.29, 11.66 0.1863 52.82
11, 13 t-student 0.51, 7.65 0.3431 192.31
9, 13 t-student 0.48, 7.92 0.3212 164.49
13, 12 t-student 0.49, 11.10 0.3234 168.32
4, 12 t-student 0.49, 6.81 0.3262 183.81
8, 1 t-student 0.89, 4.06 0.7038 998.48
7, 1 t-student 0.51, 14.29 0.3414 187.09
1, 14 t-student 0.4, 10.1 0.2649 117.72
10, 12 t-student 0.38, 6.66 0.2464 101.06
14, 12 t-student 0.5, 7.5 0.3319 183.41
3, 12 t-student 0.39, 10.50 0.2585 102.64
12, 2 t-student 0.39, 4.00 0.2553 138.16
6, 2 t-student 0.38, 6.25 0.2516 105.83
2, 16 t-student 0.33, 8.15 0.2135 74.74

Note: SHEL=1, DGE=2, LSEG=3, LAND=4, SGRO=5, SSE=6, RIO=7, BP=8, HWDN=9, BEZ=10,
FRAS=11, STJ=12, JD=13, DCC=14, OCDO=15, HIK=16.
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Figure 4: The first tree structure of estimated R-Vine and Kendall’s tau values for each con-
nected pair of stocks.
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Table 4: Tree 2: Vine structure results.

conditioned conditioning copula’s family parameters θ Kendall’s tau loglik

5, 12 4 t-student 0.25, 24.33 0.1632 40.28
15, 13 9 gaussian 0.17 0.1081 18.44
11, 12 13 gaussian 0.26 0.1694 44.92
9, 12 13 t-student 0.33, 7.28 0.2129 80.48
13, 4 12 t-student 0.21, 22.89 0.1355 29.05
4, 10 12 gaussian 0.20 0.1305 26.38
8, 7 1 clayton 0.13 0.0621 10.20
7, 14 1 t-student 0.19, 17.94 0.1245 24.48
1, 12 14 clayton 0.18 0.0813 13.21
10, 14 12 t-student 0.18, 16.99 0.1122 20.91
14, 3 12 t-student 0.20, 14.70 0.1273 26.08
3, 2 12 t-student 0.27, 12.41 0.1723 47.18
12, 6 2 t-student 0.21, 22.17 0.1319 27.09
6, 16 2 gumbel 1.1 0.0539 6.02
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Figure 5: The second tree structure of estimated R-Vine and Kendall’s tau values for each
connected pair of stocks.

The fitted R-vine model is then utilized to simulate cumulative returns in order to forecast
the one-year VaR for four different portfolio compositions, following the procedure outlined in
Section 2.3. The initial total value of the portfolio at the start of forecasting is assumed to be
£100 million. Portfolio 1 consists of an equal-weighted selection of 16 stocks: the top 8 and
bottom 8 companies ranked by ESG scores within the FTSE 100 (London Stock Exchange).
Portfolio 2 increases investments in stocks with the highest ESG scores by 10%, while decreasing
investments in stocks with the lowest ESG scores by 10%. Portfolio 3 follows the same strategy
but with a 20% adjustment, and Portfolio 4 with a 30% adjustment. In addition, the same
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procedure is computed for the sub-period that goes from January 31, 2020 to the end of 2022.
It allows to isolate the effects of the COVID crisis.

Table 5 shows the VaR values for the different portfolios, along with their respective per-
centage changes. The latter are computed using the VaR of Portfolio 1 as the baseline. As per
convention, VaR is reported as a positive value. It can be observed that an increase in green
assets, at the expense of those with a low ESG level, results in a reduction of the one-year VaR.
It is easy to see from the last column how, during periods of crisis, investors should direct their
choices towards sustainable investments, which are more resilient to market variations. In fact,
when the period is characterized by stressed market conditions, an increment in the portion of
the highest ESG assets implies a stronger reduction in the VaR compared to the period that
also includes normal market conditions (2018-2022). For example, by looking at Portfolio 2, an
increase of 10 % of the best ESG stocks (and a corresponding decrease in the share invested
in the worst ESG stocks) allows a decrease in the VaR of 3.16 % for the period from 2018 to
2022. The same change in the portfolio composition results in a reduction of 5.89% in the VaR
for the period from 2020 to 2022.

Table 5: VaR over a one-year horizon at a 99.5% confidence level for different portfolio compo-
sitions.

2018-2022
VaR

2018-2022
VaR changes

2020-2022
VaR

2020-2022 VaR changes

Portfolio 1 29.73 - 32.25 -
Portfolio 2 28.78 -3.16% 30.35 -5.89%
Portfolio 3 27.84 -8.24% 29.13 -9.67%
Portfolio 4 26.89 -9.55% 27.93 -13.4%

4 Conclusions

This study is intended to serve as a foundational exploration of the relationship between ESG
scores and VaR within a Vine copula framework. While numerous articles have demonstrated
the efficacy of the Vine model in predicting VaR, few have explored its potential for reducing
the latter through sustainable investments.

Specifically, this paper emphasizes that increasing investments in top-performing ESG stocks
can reduce overall portfolio market risk. This effect is particularly pronounced during periods
of market stress, when investors should consider sustainable options that enhance portfolio
resilience.

Moreover, the portfolio’s VaR is calibrated as required by the Solvency II Directive for the
calculation of the SCR. It paves the way for using the GARCH-Vine as an internal model and
anticipating the possible relationship between ESG scores and solvency.

In light of these results, future research could build on this study by incorporating a time-
varying covariate, enabling the use of a ”conditional copula” approach. This would introduce an
innovative dimension to the analysis, offering deeper insights into how dynamic factors influence
the relationship between ESG scores and VaR. Furthermore, expanding the analysis to include
a larger dataset of stocks or financial instruments would bolster the evidence supporting the
proposed thesis and provide a more comprehensive understanding of how ESG investments
impact portfolio risk management.
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