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Abstract

In this article we consider sample size determination (SSD) for experiments in

which estimation and design are performed by multiple parties. This problem has

relevant applications in contexts involving adversarial decision makers, such as con-

trol theory, marketing and drug testing. Specifically, we adopt a decision-theoretic

perspective and we assume that a decision on an unknown parameter of a statistical

model involves two actors, Ee and Eo, who share the same data and loss function but

not the same prior beliefs on the parameter. We also suppose that Ee has to use Eo’s

optimal action and we finally assume that the experiment is planned by a third party,

Pd. In this framework we aim at determining an appropriate sample size so that the

posterior expected loss incurred by Ee in taking the optimal action of Eo is sufficiently

small. We develop general results for the one-parameter exponential family under

quadratic loss and analyze the interactive impact of the prior beliefs of the three dif-

ferent parties on the resulting sample sizes. Relationships with other SSD criteria are

explored.

Keywords: Bayesian inference, Experimental design, Exponential family, Predictive

analysis, Sample size determination, Statistical decision theory.

1 Introduction

Let us consider a decision problem on an unknown parameter of a statistical model and

assume that Ee and Eo are two decision makers, who share the same data and loss function

but not the same prior information/opinions on the parameter. Assume that πe and πo are

the prior distributions elicited by Ee and Eo and let ae and ao be their optimal decisions, i.e.

the actions that minimize the two posterior expected losses. Suppose also that, for some

reasons, the decision maker Ee has to use the action ao. Ee measures the performance of

ao using the posterior expected loss under πe, which is larger than the posterior expected

loss of ae. Finally, assume that the planner of the experiment is a third actor, Pd, who
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performs preposterior sample size calculations using a predictive distribution of the data

based on a prior πd that is, in general, different from both πo and πe. The goal of the

present article is the determination of an appropriate sample size so that the loss incurred

by Ee in taking the action ao instead of ae is sufficiently small.

To motivate this decisional framework, consider an industrial (pharmacological) exper-

iment whose goal is to show that the effect of a drug (the location parameter θ of a model)

is larger than a given threshold. The experiment involves three parties: a very optimistic

planner Pd, a moderately optimistic data-analyst (or decision maker) Ee and a skeptical

final user Eo. In order to convince Eo, with skeptical prior πo, Ee has to use ao but s/he

evaluates this action with the expected posterior loss based on her/his moderately enthu-

sistic prior πe. The optimism of Pd is formalized by πd, used for preposterior calculations.

The question is: how large the sample size must be so that the predictive expected value

of the posterior expected loss of ao, evaluated by Ee, can be sufficiently small?

A special relevant case is obtained from the above set-up by assuming that πe expresses

the personal beliefs or information of Ee whereas πo is a prior that leads to a conventional

frequentist inferential procedure. For instance, in point estimation, πo may be a noninfor-

mative prior distribution and ao the usual maximum likelihood estimate (MLE) of θ. In

this case, we look for the minimal sample size that guarantees - under the design scenario

modeled by Pd - a sufficiently small loss incurred by the Bayesian decision maker Ee when

the MLE ao is used in the place of the Bayes estimator ae.

The topic sketched above has been previously analyzed by several authors. In most of

the articles we are aware of, however, the planner Pd coincides with Ee and preposterior

evaluation of the performance of ao - needed for sample size calculations - is made using

the predictive distribution of the data induced by the prior distribution πe. Kadane and

Saidenfeld (1989) [17], for instance, consider the example of the proponent of a new medical

treatment (Ee) who has to design a trial to convince a skeptical expert or a regulatory

agency (Eo) that the new treatment is more effective than the standard. Similarly, in the

context of quality control, Lindley and Singpurwalla (1991) [19] consider a manufacturer

(Ee) trying to sell a product to a consumer (Eo) who accepts or rejects the product on the

basis of the evidence produced by the manifacturer. Similar scenarios are considered, in

Etzioni and Kadane (1993) [11], Spiegelhalter and Freedman (1988) [28], Kadane (1990)
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[16].

The distinction between Pd, Ee and Eo - i.e. between the three priors πd, πe and πo -

has been recently considered by Brutti et al. (2014) [5] in a related context that, however,

is not formalized as a decision problem. The authors consider point estimation, assume

that πo is a noninformative prior and measures the discrepancy between the MLE ao and

the Bayes estimator ae in terms of their squared difference. Explicit evaluation of using ao

in the place of the Bayes action ae is not however possible without a decisional framework.

This aspect is explored here in Section 3.

The present article has a double goal. On the one hand, it is as an extension of

the Etzioni-Kadane’s approach, the generalization consisting in: (a) introducing a design

prior πd not necessarily coincident with the prior of the two decision makers; and (b)

providing general results for the one-parameter exponential family with conjugate priors.

On the other hand, it provides a decision-theoretic foundation to the analysis of the conflict

between alternative inferential procedures considered in Brutti et al (2014) [5]. We limit

the analysis to the point estimation problem with quadratic loss, which yields closed-form

results, but it can be extended to other decision problems and loss functions as well as to

other models and priors.

The central topic of the article is sample size determination (SSD) from a Bayesian

perspective, whose literature has substantially increased in the last decades. From a

decision-theoretic point of view, the main readings for this topics are Raiffa and Schlaifer

(1961) [23], Berger (1985) [2], Bernardo (1997) [3], Pham-Gia (1997) [22], Lindley (1997)

[18], Parmigiani and Inoue (2009) [25]. The literature on non-decision theoretic meth-

ods (the so-called performance-based approaches) is quite large, including, among others,

Spiegelhalter and Freedman (1986) [27], Adcock (1997) [1], Joseph and Belisle (1997) [13],

Joseph et al. (1997) [14], Joseph & Wolfson (1997) [15] Spiegelhalter et al (2004) [29],

Weiss (1996) [33].

In the present article we support the idea of using multiple priors for SSD, and we

extend the so-called two-priors approach in Bayesian SSD. As far as we know, the earliest

reference releted to the use of two distinct priors for design and inference is Tsutukawa

(1972) [30]. Recently this approach has been followed, among others, by O’Hagan and

Stevens (2001) [21], Wang and Gelfand (2002) [31], De Santis (2006) [10], Sahu and Smith
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(2006) [24], M’Lan et al (2006) [20], Sambucini (2010) [26], Brutti et al (2014) [6] and

Cellamare and Sambucini (2014) [8]. The topic of the article is also related to the wider

area of agreement/consensus in Bayesian decision theory and to adversarial risk analysis.

For references see, among others, Burt (1990) [7], Jackson et al. (1980) [12], Weerahandi

and Zidek (1981) [32].

The outline of the article is as follows. In Section 2 we formalize the proposed method-

ology for a generic statistical decision problem. In Section 3 the focus is restricted to point

estimation, using a quadratic loss. Explicit results are given for the exponential family

with conjugate priors. We also comment on the relationships with predictive analysis of

the conflict between alternative estimators of Brutti et al (2014) [5] and with the approach

in Etzioni and Kadane (1993) [11]. As special cases we consider the normal and the expo-

nential models. Numerical results are presented and discussed in Sections 3.1.1 and 3.1.2.

Section 4 contains a final discussion.

2 Methodology

Assume that X1, X2, . . . , Xn is a sample from fn(·|θ), where θ is an unknown parameter

and Θ is the parameter space. Let a denote a generic action for a decision problem

regarding g(θ), a function of interest of the parameter, A the action space and L(a, g(θ))

the loss of a when the true parameter value is θ. Following the Bayesian inferential

approach, we assume that θ is a random variable and that two competing priors are

available, πo and πe. Given an observed sample xn = (x1, x2, . . . , xn), let

πj(θ|xn) =
fn(xn|θ)πj(θ)∫

Θ fn(xn|θ)πj(θ)dθ

be the posterior distribution of θ from prior πj , and

ρ(xn, a;πj) = Eπj
[
L(a, g(θ))|xn

]
=

∫
Θ

L(a, g(θ))πj(θ|xn)dθ

be the posterior expected loss of an action a, for j = o, e. Let

aj = aj(xn) = arg min
a∈A

ρ(xn, a;πj)
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denote the optimal action with respect to πj(θ|xn). The performance of the action ao

(optimal under πo) when the expected loss is evaluated with respect to πe(θ|xn) is then

ρ(xn, ao;πe) = Eπe
[
L(ao, g(θ))|xn

]
.

Small values of ρ(xn, ao;πe) - close to ρ(xn, ae;πe) - show that the non-optimal action

ao performs well even under the prior assumptions represented by πe. Before observing

the data, ρ(Xn, ao;πe) is a random variable. We are interested in selecting the smallest

sample size such that its expected value is smaller than a selected threshold γ:

n? = min{n ∈ N : en ≤ γ}, (1)

where

en = Emd

[
ρ(Xn, ao;πe)

]
(2)

and where Emd
[·] denotes the expected value with respect to the sample data distribution,

md. Following the predictive Bayesian approach, we consider

md(xn) =

∫
Θ
f(xn|θ)πd(θ)dθ,

where πd is the design prior. Therefore the optimal sample size n? depends on three priors

(πd, πe, πo). In the most general case, πd is different from both πe and πo. If πd coincides

with πe, we retrieve the approach of Etzioni and Kadane (1993) [11]. Moreover, if πd

is a point-mass prior on a design value θd, then md is the sampling distribution f(·|θd),

yielding a conditional Bayes approach to SSD [6].

3 Results for point estimation under quadratic loss

In this section we provide explicit results for point estimation of g(θ), where θ ∈ Θ ⊂ R.

Under the quadratic loss L(a, g(θ)) = (g(θ)− a)2, it is easy to check that

ρ(xn, ao;πe) = Eπe
[
L(ao, g(θ))|xn

]
= Eπe

[
(g(θ)± ae − ao)2|xn

]
= ρ(xn, ae;πe) +De,o(xn), (3)
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where

ρ(xn, ae;πe) = Vπe
[
g(θ)|xn

]
and

De,o(xn) =
(
ao − ae

)2
=
(
Eπe
[
g(θ)|xn

]
− Eπo

[
g(θ)|xn

])2
.

Thus, as noted in Etzioni and Kadane (1993) [11], the posterior expected loss of ao under

πe, is equal to the minimal expected loss under πe plus the penalizing term De,o(xn),

which measures the discrepancy between ao and ae. Note that if πo is a noninformative

prior distribution, the optimal action ao is typically the frequentist MLE and De,o(xn)

becomes the measure of the conflict between the MLE and the Bayesian estimate based

on πe, considered in Brutti et al (2014) [5]. From (2) and (3) it follows that

en = Emd

[
ρ(Xn, ao;πe)

]
= Emd

[
ρ(Xn, ae;πe)

]
+ Emd

[
De,o(Xn)

]
. (4)

In the following section we consider the one-parameter exponential family and provide an

explicit general expression for De,o(xn) and its predictive expected value. Conversely, the

expression of Vπe
(
g(θ)|xn

)
is model-specific and is given in Sections 3.1.1 and 3.1.2 for

the normal and the exponential models.

3.1 Canonical Exponential Family

Let θ be the natural parameter of the canonical exponential family with probability dis-

tribution

f(x|θ) = h(x) · exp {xθ − b(θ)} . (5)

Suppose that we are interested in g(θ) = Ef
[
X
]

= b′(θ). As prior distribution πj for θ let

us consider the natural conjugate prior distribution, that is

πj(θ) = c(nj , µj) · exp {njµjθ − njb(θ)} , j = e, d, o (6)

where µj = Eπj
[
b′(θ)

]
. If we consider a random sample xn, standard calculations (see, for

instance, Bernardo & Smith, 1994 [4]) yield

πj(θ|xn) ∝ exp
{

(nj + n)
[
µj(xn)θ − b(θ)

]}
(7)

where

µj(xn) = Eπj
[
b′(θ)|xn

]
= wj,nµj + (1− wj,n)x̄n,
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with wj,n =
nj

n+nj
. In this setup, aj = µj(xn) and Equation (3) becomes

ρ(xn, ao;πe) = Vπe
[
b′(θ)|xn

]
+De,o(xn), (8)

where Vπe [b′(θ)|xn] has to be specified according to the specific member of the exponential

family under consideration, and De,o(xn) is

De,o(xn) =
(
ae − ao

)2
=
(
µe(xn)− µo(xn)

)2
=
(
Anx̄n −Bn

)2
, (9)

where

An = (wo,n − we,n) and Bn = (wo,nµo − we,nµe). (10)

Hence, from Equation (4), en is

en = Emd

[
Vπe

[
b′(θ)|Xn

] ]
+ Emd

[
De,o(Xn)

]
, (11)

and an explicit expression for its second term can be found as follows

Emd

[
De,o(Xn)

]
= Emd

[
A2
nX̄

2
n +B2

n − 2X̄nAnBn
]

=
(
Vmd

[
X̄n

]
+ µ2

d

)
A2
n +B2

n − 2µdAnBn

= A2
nVmd

[
X̄n

]
+ [Anµd −Bn]2 , (12)

where, recalling that Ef (X) = b′(θ) and Vf (X) = b′′(θ), for the variance decomposition

formula we have that

Vmd

[
X̄n

]
=

1

n
Eπd

[
b′′(θ)

]
+ Vπd

[
b′(θ)

]
. (13)

Remarks

a) It is easy to show that (i) Emd

[
Vπe [b′(θ)|Xn]

]
= o(n−1) and (ii) Emd

[
De,o(Xn)

]
=

o(n−2). Hence, from (11), en = o(n−1).

(i) Although a general explicit expression for Vπe [b′(θ)|xn] is not available, it is

possible to determine the rate of convergence of Emd

[
Vπe [b′(θ)|Xn]

]
to zero as n

increases. For i.i.d. observations, under the usual exponential family regularity

conditions, we have that, for large n,

Vπe
[
b′(θ)|xn

]
' 1

n
b′′(θ̂)2 · I−1

1 (θ̂) =
1

n
· h(xn)
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where θ̂ is the MLE and I1(·) is the Fisher information for a single observation.

Assuming existence and finiteness of b′′(θ) and of I−1
1 (·), ∀θ ∈ Θ, then h(·) is a

bounded function. Hence, for the Dominated Convergence Theorem, Emd

[
h(Xn)

]
=

O(1) and Emd

[
Vπe [b′(θ)|Xn]

]
= o(n−1).

(ii) For the second term, since Vmd

[
X̄n

]
, An and Bn are all o(n−1), from Equation

(12) if follows that Emd

[
De,o(Xn)

]
= o(n−2).

b) Existence of the marginal distribution md(·) requires that πd is a proper prior, i.e.

nd > 0. Furthermore, for any given n, when nd → +∞, md reduces to the sampling

distribution f(·|θd).

c) When nj → 0 (for j = e or j = o), πj becomes noninformative and aj coincides

with the MLE. In particular, when πo is a noninformative prior, the measure of

discrepancy of Brutti et al (2014) [5] is retrieved as a special case of De,o(xn).

d) If πe = πd, the planner Pd coincides with the decision maker Ee, as in Etzioni and

Kadane (1993) [11]. Note that, in this case, ne = nd > 0.

3.1.1 Normal-Normal model

Assume that X1, X2, . . . , Xn is a random sample from a N(λ, σ2) distribution with known

variance. The density function of X can be written in the form (5) by setting

h(x) =
1√
2πσ

exp

{
− x2

2σ2

}
, θ =

λ

σ2
, b(θ) =

λ2

2σ2
.

Hence, b(θ) = θ2σ2

2 , b′(θ) = σ2θ = λ = Ef (X) and b′′(θ) = σ2 = Vf (X). The conjugate

prior for λ = b′(θ) is obtained from (6) by taking c(nj , µj) =
√
njσ√
2π

exp
{
− 1

2σ2njµ
2
j

}
and

it is straightforward to check that

µj = Eπj
[
b′(θ)

]
= Eπj [λ] , σ2

j = Vπj
[
b′(θ)

]
=
σ2

nj
.

From (7), it follows that

µj(xn) = Eπj
[
b′(θ)|xn

]
=
njµj + nx̄n
nj + n

, σ2
j (xn) = Vπj

[
b′(θ)|xn

]
=

σ2

nj + n
,

and, from (8), the expected loss of ao w.r.t. πe is

ρ(xn, ao;πe) =
σ2

ne + n
+
[
µe(xn)− µo(xn)

]2
.
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Noting that Eπd [b′′(θ)] = σ2, Vπd [b′(θ)] = σ2

nd
and therefore that Vmd

[
X̄n

]
= σ2

(
1
n + 1

nd

)
,

from Equations (12) and (13) we obtain that

Emd

[
De,o(Xn)

]
= A2

nσ
2

(
1

n
+

1

nd

)
+ [Anµd −Bn]2 ,

and finally that

en =
σ2

ne + n
+A2

nσ
2

(
1

n
+

1

nd

)
+
[
Anµd −Bn

]2
, (14)

where An and Bn are defined in (10).

Remarks

a) If we assume that πd = πe, the expression of en given by Etzioni and Kadane (1993)

[11] is found by replacing (µd, nd) with (µe, ne) in (14).

b) If πo is the noninformative prior (no = 0), then An = −we,n, Bn = −we,nµe and

en = σ2

ne+n + w2
e,n

[
σ2
(

1
n + 1

nd

)
+
(
µe − µd

)2]
, where the second member of the sum

coincides with the predictive expected discrepancy between the MLE X̄n and the

Bayesian estimator µe(Xn) given in Brutti et al (2014) [5].

c) Extending these results to the unknown variance case is in principle straightforward

by using the standard Normal-InvertedGamma model for (λ, σ2) but we do not

consider it here.

Numerical examples

Let us illustrate some numerical examples related to the Normal case results. Normal

assumption for an experimental outcome X is quite common in clinical trials applications,

for instance in phase II efficacy trials, where the mean λ denotes treatment effect (e.g. a

continuous measure of tumour reduction in oncology studies). However, the same basic

model provides an approximation that can be used, for instance, for binary data - with λ

denoting a log-odds ratio - and for survival data - with λ denoting a log-hazard function,

as described in details in Spiegelhalter et al (2004) [29].

Let us first recall a typical experimental situation in which our proposed methodology

can be conveniently used. For example, a pharmaceutical company - that in this case
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plays the role of Ee - wants to promote an innovative treatment by convincing a skeptical

regulatory agency - Eo - of the superiority of its product with respect to the standard

therapy available on the market. Hence, the goal of the experiment is to show that the

effect of the new treatment is larger than a given threshold. In the following examples

we need to elicit the parameters of the priors related to the three parties involved in this

experiment, bearing in mind their respective attitude towards the trial success. Basically,

we assume that planner Pd has a very enthusiastic opinion on the parameter of interest, Ee

is slightly more optimistic than the final user Eo, who may adopt either a noninformative

or a skeptical prior. This underlying structure of relationships between the three actors is

translated into a convenient choice of prior means – in general µd � µe > µo – and prior

sample sizes – typically nd � ne ≥ no.

In Figure 1, the posterior expected loss en, as defined in Equation (14), is plotted with

respect to the sample size n. The contributions to en of the expected posterior variance

and of the expected discrepancy are highlighted in two different colors. Consistently

with the convergence properties shown in Section 3.1 for the canonical exponential family

(see Remark a), en decreases to 0 as the sample size n increases, for all the considered

configurations of the other parameters. The comparison of the different panels from left

to right allows us to evaluate the impact of the prior sample size ne: a more concentrated

optimistic prior for Ee yields uniformly lower values of en (panels (a)-(c)-(e) with respect

to panels (b)-(d)-(f)). Moreover, looking at each column of the plots, for any fixed value of

µo, larger and larger values of µe imply a more relevant weight of the expected discrepancy

in en (darker area) that, however, quickly reduces as the sample size increases. Similar

considerations arise from Figure 2, where we consider a noninformative prior πo (no = 0).

With respect to the previous case (no = 10), for small values of n, the noninformative

prior implies a larger contribution of the expected discrepancy to en but, for larger sample

sizes this contribution tends to disappear more rapidly than it is observed in Figure 1.

When a point mass prior is assumed for πd (see Section 3.1 Remark b), the situation

is substantially unchanged and we omit the corresponding plots.

In Figure 3 we consider a reverted point of view: for a fixed value of the sample size,

n = 25, we let en vary as a function of the prior sample size ne for several choices of the

design prior mean µd (see different line types in each panel) and for increasing values of no

10



0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(a)

n

e
n

en

expected posterior variance

expected discrepancy

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(b)

n

e
n

en

expected posterior variance

expected discrepancy

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(c)

n

e
n

en

expected posterior variance

expected discrepancy

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(d)

n

e
n

en

expected posterior variance

expected discrepancy

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(e)

n

e
n

en

expected posterior variance

expected discrepancy

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(f)

n

e
n

en

expected posterior variance

expected discrepancy

Figure 1: Behavior of en as a function of n, for several values of prior parameters (a) µe = 0.1, ne =

10; (b) µe = 0.1, ne = 5; (c) µe = 0.5, ne = 10; (d) µe = 0.5, ne = 5; (e) µe = 0.8, ne = 10; (f)

µe = 0.8, ne = 5; when σ2 = 1, nd = 20, µd = 1, no = 10, µo = 0.
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Figure 2: Behavior of en as a function of n, for several values of prior parameters (a) µe = 0.1, ne =

10; (b) µe = 0.1, ne = 5; (c) µe = 0.5, ne = 10; (d) µe = 0.5, ne = 5; (e) µe = 0.8, ne = 10; (d)

µe = 0.8, ne = 5; when σ2 = 1, nd = 20, µd = 1, no = 0, µo = 0 (noninformative πo).
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(moving from panel (a) to panel (f)). Let us first focus on panel (a). Being πe moderately

optimistic, as expected, en gets larger and larger values as its prior weight ne increases

and the growth is more rapid and more pronounced for increasing values of µd. In the

remaining panels this monotonic behaviour does not hold anymore: the effect of assuming

a more and more concentrated prior πo (moving from panel (a) to panel (f)) is that of

inducing a first reduction of en up to a minimum value, approximately in correspondence

of ne ≈ no, followed by a new increase of en with respect to ne.
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Figure 3: Behavior of en as a function of ne, given a fixed sample size n = 25, for several values of

µd, when µe = 0.1, µo = 0; σ2 = 1, (a) no = 0; (b) no = 10; (c) no = 20; (d) no = 30; (e) no = 40;

(f) no = 50.

Finally, Table 1(a) contains the values of the optimal sample sizes based on criterion

(1) for several choices of the prior parameters. As a consequence of the behaviour of en

with respect to n, if we focus on each block of the table we notice that increasingly larger
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(a) nd = 10

µd 0.1 0.5 1

ne ne ne

no 0 10 20 0 10 20 0 10 20

0 20 20 25 20 27 39 20 45 77

10 26 11 5 34 11 3 51 11 2

20 34 15 4 51 21 4 88 37 4

30 40 19 5 67 35 8 125 72 19

40 47 24 6 84 51 17 162 108 54

50 53 28 7 100 67 31 198 145 90

(b) nd =∞
µd 0.1 0.5 1

ne ne ne

no 0 10 20 0 10 20 0 10 20

0 20 16 16 20 23 31 20 43 72

10 23 11 5 31 11 3 49 11 2

20 25 13 4 44 20 4 84 35 4

30 28 15 5 57 30 7 118 68 18

40 29 17 5 70 42 14 153 102 50

50 31 18 6 82 54 23 188 137 85

Table 1: Optimal sample sizes based on criterion 1 for several choices of the prior parameters,

given µe = 0.1 and µo = 0, with a threshold γ = 0.05.

14



values of ne (see table rows), which means a more concentrated optimistic prior for Ee,

imply smaller and smaller optimal sample sizes. Notice that this behavior holds with

the exception of the case no = 0: when πo is noninformative, the expected discrepancy

between ao and ae is more and more relevant as ne increases. Conversely, looking at the

table columns, when no increases, being Eo more and more skeptical about the parameter,

the corresponding optimal sample sizes are uniformly larger. In other words, since the

opinions of Ee and Eo progressively diverge, a higher number of experimental observations

is required to bring a consensus between the two decision makers. By comparing the

three blocks in each table, we also notice that larger values of µd yield an increase in the

optimal sample size, which simply follows from expression in (14). This can be interpreted

as a consequence of the impact of the extremely optimistic attitude of the planner Pd that

makes it harder (in terms of required number of observations) to solve the conflict between

the two adversaries. Similar considerations also apply to Table 1(b), where a point mass

design prior (nd = ∞) is considered. Notice that, as a consequence of the use of the

conditional approach - which does not take into account uncertainty on the design value

- the optimal sample sizes in Table 1(b) are uniformly smaller than those in Table 1(a).

SSD criterion

en Emd

[
Vπe [λ]

]
Emd

[
De,o(Xn)

]
ne n0 = 0 n0 = 30 n0 = 0 n0 = 30 n0 = 0 n0 = 30

0 20 62 20 20 1 47

10 22 38 10 10 12 1

30 36 9 1 1 27 1

Table 2: Optimal sample sizes obtained using the three different criteria based on en,

Emd

[
De,o(Xn)

]
and Emd

[
Vπe [λ]

]
respectively, for different choices of ne and no, given

µo = 0, µe = 0.2, µd = 0.5 and nd = 20 with a threshold γ = 0.05.

In Table 2 we compare the optimal sample sizes based on criterion (1) to those obtained

using analogous criteria based either on the expected posterior variance Emd

[
Vπe [λ]

]
–

which ignores the opinion of Eo – or on the expected discrepancy Emd

[
De,o(Xn)

]
– which

corresponds to the non decisional criterion introduced in Brutti et al (2014) [5]. From

the general decomposition of en under the quadratic loss, given in Equation (4), it easily
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follows that both Emd

[
De,o(Xn)

]
and Emd

[
Vπe [λ]

]
assume smaller values than en for any

given n. As a consequence, the corresponding optimal sample sizes are smaller for any

chosen configuration of the prior parameters. Notice that, when the expected posterior

variance is used alone (see the third and the fourth columns), the optimal sample sizes

are not affected by the choice of no because they only depend on πe’s prior parameters.

Conversely, when examining the first and the fifth columns, we realize that, as the prior

opinions of Ee and Eo diverge (i.e. πo remains noninformative, while πe is taken to be more

and more concentrated on a slighlty enthusiastic mean µe), both criteria based on en and

on Emd

[
De,o(Xn)

]
yield increasing values of optimal sample sizes.

3.1.2 Exponential-Inverted Gamma case model

Assume now that X1, X2, . . . , Xn is a random sample from an Exp(λ) distribution. The

density function of X can be written in the form (5) by setting

h(x) = 1, θ = − 1

λ
, b(θ) = − ln

1

λ
.

Hence, b(θ) = − ln(−θ), b′(θ) = −1
θ = λ = Ef (X), and b′′(θ) = 1

θ2
= λ2 = Vf (X). The

conjugate prior for λ = b′(θ), obtained from (6) by taking c(nj , µj) =
(njµj)nj+1

Γ(nj+1) , is an

Inverted Gamma density of parameters (nj + 1, njµj) with

µj = Eπj
[
b′(θ)

]
= Eπj [λ] , σ2

j = Vπj
(
b′(θ)

)
= Vπj (λ) =

n2
jµ

2
j

n2
j (nj − 1)

=
µ2
j

nj − 1
.

Similarly, the posterior distribution (7) is an Inverted Gamma with updated parameters

[n+ nj + 1, (n+ nj)µj ] and

µj(xn) = Eπj
[
b′(θ)|xn

]
=
njµj + nx̄n
nj + n

, σ2
j (xn) = Vπj

[
b′(θ)|xn

]
=

(µj(xn))2

n+ nj − 1
.

From (8) the expected loss of ao w.r.t. πe is

ρ(xn, ao;πe) =
[µe(xn)]2

n+ ne − 1
+
[
µe(xn)− µo(xn)

]2
. (15)

In order to find the predictive expectation of ρ(Xn, ao;πe) notice that, since

Vmd

[
X̄n

]
=

1

n
Eπd
[
b′′(θ)

]
+ Vπd

[
b′(θ)

]
= µ2

d

[
n+ nd
n(nd − 1)

]
,
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it follows that

Emd

[
µj(xn)2

]
= Emd

[(
(1− we,n)2X̄2

n + 2we,n(1− we,n)µeX̄n + w2
e,nµ

2
e

)]
= (1− we,n)2

[
Vmd

[
X̄n

]
+ Emd

[
X̄n

]2]
+ 2we,n(1− we,n)µeEmd

[
X̄n

]
+ w2

e,nµ
2
e

= (1− we,n)2µ2
d

[
n+ nd
n(nd − 1)

]
+ [(1− we,n)µd + we,nµe]

2 , (16)

and that

Emd

[(
µe(xn)− µo(xn)

)2]
= A2

nµ
2
d

[
n+ nd
n(nd − 1)

]
+
(
Anµd −Bn

)2
, (17)

where An and Bn are defined in (10). In summary, simple algebra yields

en = µ2
d

[
n+ nd
n(nd − 1)

] [
(1− we,n)2

n+ ne − 1
+A2

n

]
+

[(1− we,n)µd + we,nµe]
2

n+ ne − 1
+ (Anµd −Bn)2 .

Remarks

a) The case πd = πe is obtained from the above expression of en by simply replacing

(µd, nd) with (µe, ne).

b) The noninformative case for πo is obtained by setting µo = 0 and no + 1 = 0.

Numerical examples

In this section we provide some numerical results for the Exponential case and we discuss

the impact of parameters values on the quantity en and, consequently, on the optimal

sample sizes choice. A relevant context of application of this model is industrial and quality

control, where the Exponential assumption is often made in order to model time-to-events

data as, for example, completion time for a given process or lifetime of a specific device.

For instance, Lindley and Singpurwalla (1991) [19] describe an experimental context in

which a manufacturer (Ee) aims at selling a product to a consumer (Eo) who accepts or

rejects the product on the basis of the evidence produced by the manifacturer. Again, in

our setup the design is planned by an optimistic planner Pd.

Under this framework, we consider the behaviour of en as a function of n for some

interesting configurations of the parameters. Figure 4 allows us to compare the impact

on en of different choices for the parameters of πe. For µo = 0.1, a larger (namely, more
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optimistic) prior mean µe has a remarkable impact on en, especially on the expected

discrepancy term (darker area). In Figure 5 similar plots are drawn under the assumption

of a noninformative πo. Notice that, for small sample sizes, the expected discrepancy has

a dramatic impact on en, which substantially overwhelms the expected posterior variance.

However, as n increases the discrepancy tends to 0, more and more rapidly when the prior

sample size ne is smaller and when the prior mean µe gets closer to the design prior mean

µd = 1.
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Figure 4: Behavior of en as a function of n, for several values of prior parameters (a)

µe = 0.3, ne = 10; (b) µe = 0.3, ne = 5; (c) µe = 0.5, ne = 10; (d) µe = 0.5, ne = 5; (e)

µe = 0.8, ne = 10; (d) µe = 0.8, ne = 5; when nd = 20, µd = 1, no = 10, µo = 0.1.

Finally, in Table 3 the optimal sample sizes are reported for different choices of µd and

nd, letting the two prior sample sizes ne and no vary. In each subtable, when ne takes

larger and larger values, a smaller number of units is required. The opposite behaviour is

18



observed when πo is noninformative, since, as discussed in the previous section, for no = 0

the expected discrepancy term is more and more relevant as ne increases. In general,

increasing values of no yields larger and larger sample sizes.

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(a)

n

e
n

en

expected posterior variance

expected discrepancy

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(b)

n

e
n

en

expected posterior variance

expected discrepancy

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(c)

n

e
n

en

expected posterior variance

expected discrepancy

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(d)

n

e
n

en

expected posterior variance

expected discrepancy

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(e)

n

e
n

en

expected posterior variance

expected discrepancy

10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

(f)

n

e
n

en

expected posterior variance

expected discrepancy

Figure 5: Behavior of en as a function of n, for several values of prior parameters (a)

µe = 0.3, ne = 10; (b) µe = 0.3, ne = 5; (c) µe = 0.5, ne = 10; (d) µe = 0.5, ne = 5;

(e) µe = 0.8, ne = 10; (d) µe = 0.8, ne = 5; when nd = 20, µd = 1, no + 1 = 0, µo = 0

(noninformative πo).

Moreover, looking at each block in the tables we notice again that, for larger values of

µd, the optimal sample sizes increase: the values in Table 3(b) are slightly, but uniformly

smaller than the values in Table 3(a), due to the choice of a point mass design prior

(nd =∞) which eliminates the uncertainty in the elicitation of the prior from Pd.

Finally, Table 4 is reported for the sake of completeness, but the comments related to

Table 2 for the normal model perfectly apply to the exponential case as well.
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4 Conclusions

The main goal of this article is to show some aspects of the complexity of the sample size

problem. The most relevant features of our approach are the following.

1. We adopt of a complete decisional framework, in which the sample size criterion

is based on the predictive behavior of the posterior expected loss of the chosen

decision, rather than on the predictive features of the action itself as it is the case

in the performance-based criteria. See, for instance, Brutti et. al (2014b) [6] for

discussion.

2. We consider the sample size problem in the presence of multiple parties. With respect

to Etzioni and Kadane (1993) [11], our main contribution here is the distinction

between Ee and Pd. As numerical examples show, the attitude of the planner Pd has

a remarkable impact on the optimal dimension of the experiment. In particular, when

the design prior πd is concentrated on extremely optimistic values of the parameter,

compared to the other two priors, namely µd � µe ≥ µo, then a larger number of

observations is required to let Ee and Eo come to an agreement.

3. The decisional approach followed in the paper sheds new light on the analysis of

the conflict between alternative procedures considered in Brutti et al. (2014)[5]:

the measure of conflict between the decisions ao and ae, De,o(xn), is found to

coincide with the difference between the corresponding posterior expected losses

ρ(xn, ao;πe) − ρ(xn, ae;πe), as previously noticed by Etzioni and Kadane (1993)

[11]. The numerical consequences of this fact have been discussed in the examples

of Section 3.1.1 and 3.1.2.

There are several potential extensions of the ideas contained in the present article. Here

is a non exhaustive list of possibilities.

1. Model and prior assumptions. In the article we limit our analysis to one-parameter

exponential families with conjugate priors, mainly because this choice allow us to

obtain closed-form expressions that can be easily studied and commented on. Other

choices are of course possible and the resulting SSD problems could be easily ad-
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dressed numerically, following the simulation-based approach discussed, for instance,

in [31].

2. Loss function and decision problems. We can consider loss functions and/or decision

problems different from quadratic loss and point estimation. One idea is to consider

the use of the logarithmic loss function for the choice of a probability distribution, as

in Etzioni and Kadane (1993) [11]. Another example is the set estimation problem.

In this case, if we consider the most widely used loss function for a set estimate S

of θ, that is the linear loss L(S, θ) = mis(S)− IS(θ), where mis(S) is the measure of

the set S and IS(·) its indicator function, then the posterior expected loss of the set

Co (optimal w.r.t. πo) is ρ(xn, Co;πe) = mis(Co)− Pπe(θ ∈ Co|xn).

3. Robustness 1. Instead of considering only one decision maker Ee we could extend

our approach by considering an entire class of decisioners, each with her/his own

prior πe belonging to a class of distributions Γ. In this case, we would be interested

in evaluating the worst loss of ao, when evaluated by the posterior expected losses

associated to the priors in Γ, that is supπe∈Γ ρ(xn, ao;πe). The sample size would

then be chosen by replacing en in with eΓ
n = Emd

[ρΓ(ao(Xn))] in expression (1).

4. Robustness 2. As a final remark note also that the quantities in (3) are related to the

the concept of ε-posterior robustness introduced in Berger (1985, p. 205) [2]. If we

assume a class Γ of prior distributions for Ee, an action ao is defined ε-posterior robust

with respect to Γ if, for all πe ∈ Γ, De,o(xn) = ρ(xn, ao;πe)− infa∈A ρ(xn, a;πe) ≤

ε. Therefore, a straightforward SSD criterion for making ao an ε-posterior robust

decision can be based on the predictive expected value Emd
[supπe∈ΓDe,o(xn)], which

is the robust version of the criterion proposed in Brutti et a. (2014) [5].

We plan to elaborate on these ideas and connections in future research.

21



(a) nd = 10

µd 0.5 0.8 1

ne ne ne

no + 1 0 10 20 0 10 20 0 10 20

0? 9 9 10 18 22 30 26 35 51

10 16 10 10 33 12 7 47 15 6

20 25 20 18 56 34 20 79 45 21

30 35 29 27 80 57 38 112 78 48

40 44 38 36 103 80 60 145 111 79

50 53 48 45 127 103 82 177 143 111

(b) nd =∞
µd 0.5 0.8 1

ne ne ne

no + 1 0 10 20 0 10 20 0 10 20

0? 10 11 13 16 19 25 23 30 42

10 16 11 10 31 12 7 43 14 6

20 25 20 18 52 32 19 73 43 21

30 34 29 27 73 54 37 103 73 46

40 42 38 36 95 75 57 133 103 75

50 50 46 44 116 96 78 163 133 105

Table 3: Optimal sample sizes based on criterion 1 for several choices of the prior parameters,

given µe = 0.5 and µo = 0.1 (? µo = 0 for the noninformative prior), with a threshold γ = 0.05.
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SSD criterion

en Emd

[
De,o(Xn)

]
Emd

[
Vπe [λ]

]
ne (µ0, n0 + 1)

(0, 0) (0.1, 30) (0, 0) (0.1, 30) (0, 0) (0.1, 30)

0 17 76 16 16 6 66

10 20 55 1 1 15 46

30 33 27 1 1 29 23

Table 4: Optimal sample sizes obtained using the three different criteria based on en,

Emd

[
De,o(Xn)

]
and Emd

[
Vπe [λ]

]
respectively, for different choices of ne µo and no, given

µe = 0.5, µd = 0.8 and nd = 20, with a threshold γ = 0.05.
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