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Abstract Different initial and boundary value problems for the equation of vibra-
tions of rods (also called Fresnel equation) are solved by exploiting the connection
with Brownian motion and the heat equation. The analysis of the fractional version
(of order ν) of the Fresnel equation is also performed and, in detail, some specific
cases, like ν = 1/2, 1/3, 2/3, are analyzed. By means of the fundamental solution
of the Fresnel equation, a pseudo-process F (t), t > 0 with real sign-varying density
is constructed and some of its properties examined. The equation of vibrations
of plates is considered and the case of circular vibrating disks CR is investigated
by applying the methods of planar orthogonally reflecting Brownian motion within
CR. The composition of F with reflecting Brownian motion B yields the law of
biquadratic heat equation while the composition of F with the first passage time Tt

of B produces a genuine probability law strictly connected with the Cauchy process.

Keywords: Schrödinger equation, higher-order heat equations, Brownian motion, Mittag-
Leffler function, Fresnel function, Wright function, inversion radius, elastic Brownian motions,
fractional diffusions, vibrations of plates.

1 Introduction

One of the most important equations of mathematical physics is that of the vibrations of rods (or
equivalently of beams and shafts) which can be written as

∂2u

∂t2
= −κ2 ∂4u

∂x4
, x ∈ R, t > 0. (1.1)

The constant κ appearing in (1.1) is related to the physical structure of the vibrating rod and will
be considered below as equal to κ = 1/2 for reasons which will appear clearly further in the text.
For the derivation of (1.1) consult [8, pages 112 - 114] or the classical book by Courant and Hilbert
[5, pages 244 - 246] where, also the derivation of the equation of the vibrations of plates (pages
250 - 252)

∂2u

∂t2
= −ρ

[
∂2

∂x2
+

∂2

∂y2

]2
u (1.2)

is presented (ρ is a physical constant assumed below equal to ρ = 1/22). The equation (1.1) can
be written as (

∂

∂t
+

i

2
∂2

∂x2

)(
∂

∂t
− i

2
∂2

∂x2

)
u = 0 (1.3)

and this shows a strict connection with the Schrödinger equation and therefore with the heat
equation. In effect

∂u

∂t
= ± i

2
∂2u

∂x2
(1.4)

∗Corresponding author
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can be easily reduced by means of a time change t′ = ±it to the classical homogeneous heat
equation. This connection entails that initial-boundary value problems concerning equation (1.1)
have solutions which can be constructed by means of related solutions of problems concerning the
heat equation and therefore are related to the standard Brownian motion B. In particular, the
fundamental solution of (1.1) can be obtained by means of the rule

u(x, t)dx =
1
2

[
Pr{B(s) ∈ dx}

∣∣∣
s=it

+ Pr{B(s) ∈ dx}
∣∣∣
s=−it

]
=

1
2

[µ{dx, t}+ µ{dx,−it}]

=
dx

2

[
e−

x2
2it−i π

4

√
2πt

+
e−

x2
−2it +i π

4

√
2πt

]
=

dx√
2πt

cos
(

x2

2t
− π

4

)
. (1.5)

The measure µ appearing in (1.5) must be understood in the sense that

µ{dx,±it} = Pr{B(s) ∈ dx}
∣∣∣
s=±it

.

The idea underlying (1.5) is that at time t = 0 a Brownian motion is started off from x = 0 either
with increasing or decreasing imaginary time. The choice of time direction is made once only and
cannot be changed. This process can be regarded as the limit of a random walk with symmetric
real-valued steps separated by imaginary time intervals. Each term in (1.5) is therefore connected
with a sort of Brownian motion where time takes imaginary values. This approach permits us
to exploit the panoplie of mathematical results and instruments of Brownian motion to obtain
solutions of all possible types of problems for vibrations of infinite, semi infinite and finite rods.
Furthermore, the finite, signed density of the measure (1.5) suggests the construction of pseudo-
processes (called Fresnel pseudo-process and denoted by F (t), t > 0) whose finite-dimensional
distributions can be constructed according to the rule

u(x1, t1 . . . , xn, tn)
n∏

j=1

dxj =
1
2

[
Pr{B(s1) ∈ dx1, . . . , B(sn) ∈ dxn}

∣∣∣
sj=itj

+Pr{B(s1) ∈ dx1, . . . , B(sn) ∈ dxn}
∣∣∣
sj=−itj

]
(1.6)

j = 1, 2, . . . , n. The construction of Wiener-type measures for higher-order heat-type equations

∂u

∂t
= ±∂nu

∂xn
(1.7)

has been realized by different authors since the beginning of the Sixties (see Krylov [12], Ladokhin
[16]). Much work on pseudo-processes connected with (1.7) has recently been done by Lachal
[13, 14], Cammarota and Lachal [15], where by different means and techniques, various types of
functionals of these pseudo-processes have been investigated.

The fractional version of the equation of vibrations of rods

∂2νu

∂t2ν
= − 1

22

∂4u

∂x4
, 0 < ν ≤ 1 (1.8)

is also examined. The Fourier transform of the solution of (1.8), equipped with the necessary
initial conditions, takes the form

U2ν(β, t) =
∫ +∞

−∞
eiβxu2ν(x, t)dx =

1
2

[
Eν,1

(
i
β2tν

2

)
+ Eν,1

(
−i

β2tν

2

)]
= E2ν,1

(
β4t2ν

22

)
where

Eν,1(x) =
∞∑

k=0

xk

Γ(νk + 1)

is the Mittag-Leffler function. We are able to invert the Fourier transform above and obtain an
explicit solution of the fractional equation (1.8) in the form

u2ν(x, t) =
1

π
√

2tν

∞∑
m=0

1
m!

(
−
√

2
|x|√
tν

)m

cos
(

m + 1
4

π

)
sin
(

m + 1
2

πν

)
Γ
(

m + 1
2

ν

)
. (1.9)
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From (1.9) for ν = 1 we obtain the fundamental solution (1.5) while for ν = 1/2 we get one
alternative expression for the solution of the biquadratic heat equation. This permits us to give a
sketch of the function u1(x, t), x ∈ R, t > 0 which looks like the normal bell-shaped density in the
neighborhood of the origin (see figure 6). In great detail we examine the function u4/3 (ν = 2/3)
and prove that it is possible to reduce it to the superposition of Airy functions. Also, the case
ν = 1/3 is analyzed and we prove that it can be expressed in terms of (1.5) and the Airy function.

The analysis of Section 3 shows that the profile of the vibrating rod has a peak near the origin
where the initial disturbance is originated and symmetric damping waves which rapidely decrease in
size. In our opinion this accords with what happens with real vibrations where friction dissipates
the original energy and therefore fractional equations of vibrations of rods better describe the
phenomenon under investigation, see figure 8.

Section 5 is devoted to the multidimensional version of the equation (1.1) which governs the
vibrations of plates. Its general form is

∂2u

∂t2
= − 1

22

 d∑
j=1

∂2

∂x2
j

u (1.10)

and possesses the fundamental solution of the form

u(x1, . . . , xd, t) =
1(√
2πt
)d cos

 d∑
j=1

x2
j

2t
− d

π

4

 . (1.11)

In the plane we study the vibrations of a circular plate CR with the Neumann boundary condition
on the edge ∂CR. We solve this problem by applying an approach based on the inversion with
respect to the circle which parallels the construction of the reflecting planar Brownian motion
inside a disk. This is useful to describe the oscillations of thin vibrating structures, started off by
a concentrated central initial disturbance.

Finally, we show that the composition of the Fresnel pseudo-process F (t), t > 0 with reflecting
Brownian motion |B(t)| produces a subordinated process F (|B(t)|) whose one-dimensional law
coincides with the fundamental solution to{

∂u
∂t = − 1

23
∂4u
∂x4 ,

u(x, 0) = δ(x).
(1.12)

Instead, the composition of F with Tt = inf{s ≥ 0 : B(s) = t} yields the following interesting
genuine probability law

Pr{F (Tt) ∈ dx}/dx =
t

π
√

2
t2 + x2

t4 + x4
, x ∈ R, t > 0 (1.13)

which solves the fourth-order equation

∂4u

∂t4
+

∂4u

∂x4
= 0 (1.14)

The distribution (1.13) has two maxima which move in opposite directions as time passes and dis-
play a structure similar to the solutions of fractional diffusion equations for a degree of fractionality
varying in 1 < ν < 2 (see [9], [21]). Finally the successive compositions of Fresnel pseudo-processes
and the law of

Fn(t) = F1(|F2(| . . . Fn+1(t) . . . |)|), t > 0 (1.15)

is shown to be governed by the higher-order equation

∂2u

∂t2
(x, t) = −2−2(2n+1−1) ∂

2n+2
u

∂x2n+2 (x, t). (1.16)

This is clearly related to what happens with the n-th order iterated Brownian motion as shown in
Orsingher and Beghin [21], or also by Baeumer et al. [1] for fractional equations. For higher-order
equations, see also D’Ovidio and Orsingher [7].
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1.1 Notations

• u(x, t) = 1√
2πt

cos
(

x2

2t −
π
4

)
: fundamental solution of the one-dimensional Fresnel equation,

• U(β, t) =
∫ +∞
−∞ eiβxu(x, t)dx,

• ua is the solution to the Fresnel equation with absorbing conditions,

• ur is the solution to the Fresnel equation with reflecting conditions,

• uel is the solution to the Fresnel equation with elastic boundary conditions,

• pel is density of the elastic Brownian motion,

• q is the fundamental solution to the biquadratic equation.

• pref (r, t) is the probability density of the reflecting Brownian motion in a disk CR (qref is
its kernel),

• p̄ref is the law of a vibrating plate of radius R with Neumann condition on the border ∂CR

(q̄ref is its kernel),

• u2ν is the fundamental solution of the fractional Fresnel equation (1.8),

• vν is the fundamental solution to the fractional diffusion equation (3.17).

The general unknown functions of the equations appearing in the paper (also the fractional equa-
tions) are indicated by u while the solutions of the boundary Cauchy problems are denoted by ua,
uel, etc.. The solutions of the initial-value problems for fractional Fresnel equations are denoted
by u2ν and for the fractional diffusion equation by vν .

• u(x1, . . . , xd, t) = 1
(
√

2πt)d
cos
(∑d

j=1

x2
j

2t − dπ
4

)
: fundamental solution of the n-dimensional

Fresnel equation,

• U(β1, . . . , βd, t) =
∫ +∞
−∞ dx1 . . .

∫ +∞
−∞ dxde

iβ
Pd

j=1 βjxj u(x1, . . . , xd, t),

•

u(x1, t1; . . . xn, tn) =
(2π)−n/2∏n

j=1

√
tj − tj−1

cos

 n∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− n

π

4


is the n-dimensional measure density of the Fresnel pseudo-process F (t), t > 0,

• B(t), t > 0 is a standard Brownian motion,

• F (t), t > 0 is the Fresnel pseudo-process,

• Tt = inf{s ≥ 0 : B(s) = t}.

2 Vibrations of rods and Brownian motion

The equation of vibrations of a thin, flexible rod has the following form

∂2u

∂t2
= − 1

22

∂4u

∂x4
, x ∈ R, t > 0. (2.1)

Vibrations of rods differ substantially from vibrations of strings (and membranes in dimension 2)
because strings propagate with infinite velocity as heat does. Furthermore, the heat diffusion and
the vibrations of rods have strict connections which inspire much of the work of this section.

Since (2.1) can be written as(
∂

∂t
+

i

2
∂2

∂x2

)(
∂

∂t
− i

2
∂2

∂x2

)
u = 0 (2.2)
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we can decouple the original equation into two Schrödinger equations (each of which can be reduced
to heat equations by a suitable change of variable, t′ = ±it). The fundamental solution to (2.1)
can be obtained by suitably combining the solutions to(

∂

∂t
+

i

2
∂2

∂x2

)
v1 = 0, (2.3)

(
∂

∂t
− i

2
∂2

∂x2

)
v2 = 0. (2.4)

The fundamental solutions to (2.3) and (2.4) can be written as v1(x, t) = e−i π
4√

2πt

[
cos x2

2t + i sin x2

2t

]
v2(x, t) = ei π

4√
2πt

[
cos x2

2t − i sin x2

2t

] (2.5)

and thus

u(x, t) =
1
2

[
v1(x, t) + v2(x, t)

]
=

1√
4πt

[
cos

x2

2t
+ sin

x2

2t

]
=

1√
2πt

cos
(

x2

2t
− π

4

)
. (2.6)

We call (2.6) Fresnel function and can easily check that∫
R

u(x, t)dx = 1

because ∫ ∞

0

cos x2dx =
∫ ∞

0

sinx2dx =
1
2

√
π

2
. (2.7)

The function (2.6) is the solution to the Cauchy problem
∂2u
∂t2 = − 1

22
∂4u
∂x4

u(x, 0) = δ(x)
ut(x, 0) = 0

(2.8)

and its Fourier transform reads

U(β, t) =
∫ +∞

−∞
eiβxu(x, t)dx = cos

β2t

2
. (2.9)

This can be proved by writing

1√
2πt

∫ +∞

−∞
eiβx cos

(
x2

2t
− π

4

)
dx =

1
2
e−i π

4−i β2t
2

∫ +∞

−∞

ei
(x+β)2

2t

√
2πt

dx

+
1
2
ei π

4 +i β2t
2

∫ +∞

−∞

e−i
(x+β)2

2t

√
2πt

dx

=
2
√

2√
π

cos
β2t

2

∫ ∞

0

cos y2 dy = cos
β2t

2
.

Result (2.9) can be also obtained by solving the Fourier transform of problem (2.8), that is
∂2U
∂t2 = −β4

22 U(β, t),
U(β, 0) = 1,
Ut(β, 0) = 0.

(2.10)

The structure of the function (2.6) is illustrated in figure 1, and it represents the profile of the
vibrating rod at different times. It shows that the deformation instantaneously propagates along
the x axis and the oscillations decay as time passes. The measure density (2.6) is a sign-varying
function and plays an important role in the theory of optical diffraction. By studying diffusion
processes with an alternating time direction (forward or backwards) an equation similar to (2.2)
was obtained and its solutions investigated in Orsingher [20].
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−20 −10 0 10 20

Figure 1: The Fresnel function (1.5) represents the propagation of vibrations along an infinite rod
at time t = 1, 20, 40, 60.

Remark 2.1. The area between two successive roots αk, αk+1 of the Fresnel function (1.5) tends
to zero as k →∞. This can be shown by observing that∣∣∣∣∣ 1√

2πt

∫ αk+1

αk

cos
(

x2

2t
− π

4

)
dx

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
αk

√
t

2π

∫ αk+1

αk

x

t
cos
(

x2

2t
− π

4

)
dx

∣∣∣∣∣
≤ 1

αk

√
t

2π

∣∣∣∣∣ sin
(

α2
k

2t
− π

4

)
− sin

(
α2

k+1

2t
− π

4

) ∣∣∣∣∣
where αk =

√
2π
√

3/2 + k.

By exploiting the ideas outlined above it is possible to study the vibrations of semiinifinite rods
with different types of boundary conditions. We start by taking into account the vibrations with
an absorbing condition at the free end point x = 0. The rod is assumed to be clamped at infinity.
We arrive now at our first Theorem.

Theorem 2.1. The solution to the boundary-value problem
∂2u
∂t2 (x, t) = − 1

22
∂4u
∂x2 (x, t), x > 0, t > 0

u(x, 0) = δ(x− y)
u(0, t) = 0
ut(0, t) = 0

(2.11)

is given by

ua(x, t; y, 0) =
1√
2πt

[
cos
(

(x− y)2

2t
− π

4

)
− cos

(
(x + y)2

2t
− π

4

)]
. (2.12)

Proof. Our scheme consists in considering two absorbing Brownian motions, one with imaginary
increasing time and one with imaginary decreasing time. Thus, we can write

ua(x, t; y, 0) =
1
2

[p(x, it; y, 0) + p(x,−it; y, 0)] (2.13)
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where p(x, s; y, 0) is the transition function of a standard Brownian motion. Each component of
(2.13) solves the boundary-value problem for the Schrödinger equation

∂u

∂t
= ±i

∂2u

∂x2
.

From (2.13) some calculations lead to (2.12).

We can observe that (2.12) solves the equation of vibrations of rods and the boundary conditions
can be checked by setting x = 0. In the same spirit we can solve much more complicated boundary-
value problems such as those involving the elastic condition at the free end point of the vibrating
rod. Elastic Brownian motion was studied by Itô-McKean [18]. The fractional extension of elastic
Brownian motion was investigated by Beghin and Orsingher [2]. Our result is in the next Theorem.

Theorem 2.2. The solution to the elastic boundary-value problem
∂2u
∂t2 (x, t) = − 1

22
∂4u
∂x4 (x, t), x > 0, t > 0

u(x, 0) = δ(x− y)
ut(x, 0) = 0
ux − αu|x=0 = 0, α > 0

(2.14)

is given by

uel(x, t; y, 0) =
1√
2πt

[
cos
(

(x− y)2

2t
− π

4

)
− cos

(
(x + y)2

2t
− π

4

)]
+ 2eα(x+y)

∫ +∞

x+y

w e−αw

√
2πt3

cos
(

w2

2t
− 3π

4

)
dw (2.15)

=
1√
2πt

[
cos
(

(x− y)2

2t
− π

4

)
+ cos

(
(x + y)2

2t
− π

4

)]
− 2αeα(x+y)

√
2πt

∫ ∞

x+y

e−αw cos
(

w2

2t
− π

4

)
dw. (2.16)

Proof. The solution to (2.14) can be written as

uel(x, t; y, 0) =
1
2
[
pel(x, it; y, 0) + pel(x,−it; y, 0)

]
(2.17)

where pel(x, s; y, 0) is the solution to the heat equation with the elastic condition at x = 0 which
can be written as

pel(x, s; y, 0) =
e−

(x−y)2

2t

√
2πt

− e−
(x+y)2

2t

√
2πt

+ 2eα(x+y)

∫ ∞

x+y

we−αw e−
w2
2t

√
2πt3

dw (2.18)

=
e−

(x−y)2

2t

√
2πt

+
e−

(x+y)2

2t

√
2πt

− 2αeα(x+y)

∫ ∞

x+y

e−αw e−
w2
2t

√
2πt

dw (2.19)

By considering (2.18) and (2.19) we arrive at the explicit solution of problem (2.14) which coincides
with (2.15) (or alternatively with (2.16)).

Remark 2.2. For α → ∞ from (2.18) we extract the absorbing solution (2.11). For α = 0 we
obtain the reflecting solution, that is the reflecting solution to the equation of vibrations of rods
with the Neumann condition at x = 0. We can extract from (2.18) the second expression (2.19)
by means of an integration by parts. In order to check that the solutions (2.15) and (2.16) satisfy
the equation of vibrations of rods it is convenient to rewrite the third term of (2.16) as

2α

∫ ∞

0

e−αw

√
2πt

cos
(

((x + y) + w)2

2t
− π

4

)
dw.
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Remark 2.3. We note that the boundary conditions

u(0, t) = 0

and
∂2u

∂x2
(x, t)

∣∣∣∣∣
x=0

= 0 (2.20)

lead to the solution (2.12). The condition (2.20) means that the bending moment at the free end
point x = 0 vanishes. The ”reflecting conditions”

∂u

∂x
(x, t)

∣∣∣
x=0

= 0

and
∂3u

∂x3
(x, t)

∣∣∣
x=0

= 0

both lead to the solution

ur(x, t; y, 0) =
1√
2πt

[
cos
(

(x− y)2

2t
− π

4

)
+ cos

(
(x + y)2

2t
− π

4

)]
.

Remark 2.4. We now evaluate the ”survival measures” of the elastic, reflecting and absorbing
kernels obtained so far. We restrict ourselves to the elastic case since the other two follow without
effort.∫ ∞

0

uel(x, t; y, 0)dx =
1√
2πt

[∫ ∞

0

[
cos
(

(x− y)2

2t
− π

4

)
+ cos

(
(x + y)2

2t
− π

4

)]
dx

− 2α

∫ ∞

0

eα(x+y)dx

∫ ∞

x+y

e−αw cos
(

w2

2t
− π

4

)
dw

]

=
1√
2πt

[∫ ∞

−y

cos
(

w2

2t
− π

4

)
dw +

∫ ∞

y

cos
(

w2

2t
− π

4

)
dw

− 2α

∫ ∞

y

e−αw cos
(

w2

2t
− π

4

)
dw

∫ w−y

0

eα(x+y)dx

]

=
1√
2πt

[∫ y

−y

cos
(

w2

2t
− π

4

)
dw + 2eαy

∫ ∞

y

eαw cos
(

w2

2t
− π

4

)
dw

]
. (2.21)

For α = 0 we have the reflecting case and the integral above equals one while for α → ∞ the
second term in (2.21) goes to zero and we retrieve the ”survival measures” of the absorbing case.

For rods of finite length we can get explicit solutions by resorting again to the decomposition
of equation (2.1) on considering the solution of the corresponding Schrödinger equation. We have
that

Theorem 2.3. For the rod of finite length L we have that the solution of
∂2u
∂t2 (x, t) = − 1

22
∂4u
∂x4 (x, t), 0 < x < L, t > 0

u(x, 0) = δ(x− y)
ut(x, 0) = 0
ux|x=0 = ux|x=L = 0

(2.22)

is given by

ur(x, t; y, 0) =
1√
2πt

+∞∑
k=−∞

[
cos
(

(x− y + 2kL)2

2t
− π

4

)
+ cos

(
(x + y + 2kL)2

2t
− π

4

)]
. (2.23)
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Proof. The solution can be written as

ur(x, t; y, 0) =
1
2

[u(x, it; y, 0) + u(x,−it; y, 0)]

where u(x, t; y, 0) is the well-known solution of the Cauchy problem of the heat equation
∂u
∂t (x, t) = 1

2
∂2u
∂x2 (x, t), 0 < x < L, t > 0

u(x, 0) = δ(x− y)
ut(x, 0) = 0
ux|x=0 = ux|x=L = 0.

(2.24)

3 Fractional equations of vibrations of rods and fractional
diffusions

3.1 General results

In this section we consider the fractional version of the equation of vibrations of rods

∂2νu

∂t2ν
= − 1

22

∂4u

∂x4
, 0 < ν ≤ 1, x ∈ R, t > 0 (3.1)

subject to the initial conditions

u(x, 0) = δ(x), 0 < ν ≤ 1 (3.2)

and also
ut(x, 0) = 0 for 1/2 < ν ≤ 1 (3.3)

The differential operator appearing in (3.1) must be understood in the sense of Dzhrbashyan-
Caputo, that is (for information on this derivative consult Podlubny [24])

∂νu

∂tν
(x, t) =

1
Γ(m− ν)

∫ t

0

∂mu
∂tm (x, s)

(t− s)ν+1−m
ds, for m− 1 < ν < m, m ∈ N.

For ν = 1 equation (3.1) coincides with the equation of vibration of rods and beams while for
ν = 1/2 it gives the biquadratic heat equation. The latter equation has been investigated by many
researchers since the Sixties and even a stochastic calculus related to it has been worked out (see
for example Krylov [12], Hochberg [10], Nikitin and Orsingher [22], Lachal [13, 14]).

Our first result concerns the Fourier transform of the solution to (3.1) (with initial conditions
(3.2) and (3.3)).

Theorem 3.1. The Fourier transform

Uν(ξ, t) =
∫ +∞

−∞
eiβxuν(x, t)dx (3.4)

of the solution to the Cauchy problem
∂2νu
∂t2ν = − 1

22
∂4u
∂x4 , 0 < ν ≤ 1, x ∈ R, t > 0

u(x, 0) = δ(x)
ut(x, 0) = 0

(3.5)

reads

Uν(ξ, t) =
1
2

[
Eν,1

(
i
β2tν

2

)
+ Eν,1

(
−i

β2tν

2

)]
= E2ν,1

(
β4t2ν

22

)
(3.6)

where

Eν,1(z) =
∑
k≥0

zk

Γ(νk + 1)
(3.7)

is the Mittag-Leffler function.
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Proof. The Laplace transform of the solution to (3.5) reads∫ ∞

0

e−µt

∫ +∞

−∞
eiβxu2ν(x, t) dx dt =

1
2

[
µν−1

µν + iβ2/2
+

µν−1

µν − iβ2/2

]
=

µ2ν−1

µ2ν + β4/22
. (3.8)

The inverse Laplace transform of (3.8) yields (3.6).

For the evaluation of the inverse Fourier transform the first expression of (3.6) is particularly
convenient. This is because each term in (3.6) represents the Fourier transform of the solution to
the fractional diffusion equation

∂νu
∂tν = λ2 ∂2u

∂x2 , 0 < ν ≤ 1, x ∈ R, t > 0
u(x, 0) = δ(x)
ut(x, 0) = 0.

(3.9)

The solution to (3.9) can be written down in terms of Wright functions

Wα,β(z) =
∑
k≥0

zk

k!Γ(αk + β)
, α > −1, β > 0.

We now arrive at the next result, concerning the inverse Fourier transform of (3.6).

Theorem 3.2. The solution to (3.9) is given by

u2ν(x, t) =
1

π
√

2tν

∞∑
m=0

1
m!

(
−
√

2
|x|√
tν

)m

cos
(

m + 1
4

π

)
sin
(

m + 1
2

πν

)
Γ
(

m + 1
2

ν

)
(3.10)

=
1√
2tν

∞∑
m=0

1
m!

(
−
√

2
|x|√
tν

)m cos
(

m+1
4 π

)
Γ
(
1− m+1

2 ν
) (3.11)

for x ∈ R, t > 0 and 0 < ν ≤ 1.

Proof. For the fractional diffusion equation (3.9) the solution reads

vν(x, t) =
1

2λ
√

tν
W− ν

2 ,1− ν
2

(
− |x|

λ
√

tν

)
(3.12)

and has Fourier transform ∫
R

eiβxvν(x, t)dx = Eν,1

(
−λ2β2tν

)
.

Therefore, in view of (3.6) we have that

u2ν(x, t) =
1√
23tν

[
1√
−i

W− ν
2 ,1− ν

2

(
−
√
−2

i

|x|√
tν

)
+

1√
i
W− ν

2 ,1− ν
2

(
−
√

2
i

|x|√
tν

)]

=
1√
23tν

[
ei π

4 W− ν
2 ,1− ν

2

(
−
√

2
|x|√
tν

ei π
2

)
+ e−i π

4 W− ν
2 ,1− ν

2

(
−
√

2
|x|√
tν

e−i π
4

)]
=

1√
23tν

∞∑
m=0

[
ei π

4

(
−
√

2
|x|ei π

4

√
tν

)m

+ e−i π
4

(
−
√

2
|x|e−i π

4

√
tν

)m] 1
m!Γ

(
−νm

2 + 1− ν
2

)
=

1√
23tν

∞∑
m=0

(
−
√

2
|x|√
tν

)m
ei π

4 +i π
4 m + e−i π

4−i π
4 m

m!Γ
(
−νm

2 + 1− ν
2

)
=

1√
2tν

∞∑
m=0

(
−
√

2
|x|√
tν

)m cos
(

m+1
4 π

)
m!Γ

(
−νm

2 + 1− ν
2

)
=

1
π
√

2tν

∞∑
m=0

1
m!

(
−
√

2
|x|√
tν

)m

cos
(

m + 1
4

π

)
sin
(

m + 1
2

πν

)
Γ
(

m + 1
2

ν

)
. (3.13)

10



In the last step we applied the reflection formula

Γ(z)Γ(1− z) =
π

sinπz
.

Remark 3.1. We give now the Laplace transform of (3.10). Since∫ ∞

0

e−µtt−
ν
2 m− ν

2 dt = µ
ν
2 m+ ν

2−1Γ
(
1− ν

2
m− ν

2

)
and

Γ
(
1− ν

2
m− ν

2

)
Γ
(ν

2
m +

ν

2

)
=

π

sin m+1
2 ν

we extract from (3.10) that∫ ∞

0

e−µtu2ν(x, t)dt =
1√
2

∞∑
m=0

1
m!

(
−
√

2|x|
)m

µ
ν
2 m+ ν

2−1 cos
(

m + 1
2

π

)

=
µν/2−1

2
√

2

∞∑
m=0

1
m!

(
−
√

2|x|µν/2
)m (

ei π
4 +i mπ

4 + e−i π
4−i mπ

4
)

=
µν/2−1

2
√

2

(
ei π

4−
√

2|x|ei π
4 µν/2

+ e−i π
4−
√

2|x|e−i π
4 µν/2

)
=

µν/2−1e−|x|µ
ν/2

2
√

2

(
ei π

4−i|x|µν/2
+ e−i π

4−i|x|µν/2
)

=
µν/2−1e−|x|µ

ν/2

√
2

cos
(
|x|µν/2 − π

4

)
. (3.14)

We now take the Fourier transform of (3.14)

µ
ν
2−1

2
√

2

[
ei π

4

∫ −∞

+∞
eiβxe−|x|µ

ν/2ei π
4
√

2 + e−i π
4

∫ −∞

+∞
eiβxe−|x|µ

ν/2e−i π
4
√

2

]
=µ

ν
2−1

[
ei π

2 µν/2

β2 + 2µνei π
2

+
e−i π

2 µν/2

β2 + 2µνe−i π
2

]
=µ

ν
2−1

[
i(β2 − 2iµν)− i(β2 + 2iµν)

22µ2ν + β4

]
=

µ2ν−1

µ2ν + β4

22

and this confirms result (3.8). For a further check we evaluate the inverse Fourier transform of
(3.8).

µ2ν−1

2π

∫ +∞

−∞

e−iβx dβ

µ2ν + β2

22

=
µν−1

2π

[∫ +∞

−∞

e−iβx dβ

µν + iβ2

2

+
∫ +∞

−∞

e−iβx dβ

µν − iβ2

2

]

=
µν−1

22π

[∫ +∞

−∞
e−iβx

(
2e−i π

2 µν)1/2(
2e−i π

2 µν
)

+ β2

2
ei π

2

dβ

(2e−i π
2 µν )1/2

+
∫ +∞

−∞
e−iβx

(
2ei π

2 µν)1/2(
2ei π

2 µν
)

+ β2

2
e−i π

2

dβ

(2ei π
2 µν )1/2

]

=
µν−1

2
√

2

[
e−|x|(2ei π

2 µν)1/2+i π
2

(2ei π
2 µν)1/2

+
e−|x|(2e−i π

2 µν)1/2−i π
2

(2e−i π
2 µν)1/2

]

=
µ

ν
2−1

2
√

2

[
e−|x|(1−i)µν/2−i π

4 + e−|x|(1+i)µν/2+i π
4

]
=

µ
ν
2−1e−|x|µ

ν/2

√
2

1
2

[
ei|x|µν/2−i π

4 + e−i|x|µν/2+i π
4

]
11



=
µ

ν
2−1e−|x|µ

ν/2

√
2

cos
(
|x|µν/2 − π

4

)
.

Theorem 3.3. The solution to the fractional equation of vibrations of rods
∂2νu
∂t2ν = −λ2

22
∂4u
∂x4 , x ∈ R, t > 0

u(x, 0) = δ(x), 0 < ν ≤ 1
ut(x, 0) = 0, 1/2 < ν ≤ 1

(3.15)

coincides with

u2ν(x, t) =
∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
v2ν(s, t) ds (3.16)

where v2ν is the folded solution of the fractional diffusion equation

∂2νu

∂t2ν
= λ2 ∂2u

∂x2
(3.17)

subject to the initial conditions

u(x, 0) = δ(x), 0 < ν ≤ 1,
ut(x, 0) = 0, 1/2 < ν ≤ 1.

(3.18)

Proof. The fractional derivative of order 2ν of (3.16) yields

∂2νu2ν

∂t2ν
=
∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
∂2νv2ν

∂t2ν
(s, t) ds

=[by (3.18)] = λ2

∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
∂2v2ν

∂s2
(s, t) ds

=λ2

∫ ∞

0

∂2

∂s2

[
1√
2πs

cos
(

x2

2s
− π

4

)]
v2ν(s, t) ds = [by (2.1)] = −λ2

22

∂4u2ν

∂x4
.

We note that ∫
R

eiβxu2ν(x, t)dx = [by (3.16)] =
∫ ∞

0

cos
β2s

2
v2ν(s, t) ds

=
∫

R
ei β2s

2 v2ν(s, t) ds = E2ν,1

(
λ2β4

22
t

)
.

Remark 3.2. Theorem 3.3 is the counterpart of result (2.2) for fractional diffusions treated in [21]
where the role of the Gaussian density is here played by the Fresnel function (1.5). In some cases
this is extremely fruitful because it permits writing down the fundamental solution explicitely. For
ν = 1/3, from (3.15) we obtain that

u2/3(x, t) =
∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
v2/3(s, t)ds (3.19)

=
∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
3
λ

1
3
√

3t
Ai

(
s

λ 3
√

3t

)
ds.

In the intermediate step of (3.19) we employ the result{
∂2/3u
∂t2/3 = λ2 ∂2u

∂x2 , x ∈ R, t > 0
u(x, 0) = δ(x)

(3.20)

whose solution is (see [21, formula (4.2)])

v2/3(x, t) =
3
2λ

1
3
√

3t
Ai

(
|x|

λ 3
√

3t

)
, x ∈ R, t > 0.

Formula (3.19) is an integral version of (3.10) for ν = 1/3. The relationship (3.16) relates the
solutions of the fractional equation of rods (3.15) with the fractional diffusion equation (3.17) of
which a vast literature exists.
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Figure 2: The fundamental solution u2/3 of the time-fractional Fresnel equation.

3.2 Special cases

We now examine some special cases.

Remark 3.3. For ν = 1, we are able to extract from (3.10) the fundamental solution (1.5). For
n ∈ N, we consider in (3.10) the cases m = 2n+1 (for which the series is equal to zero) and m = 2n
for which we have that

u2(x, t) =
1

π
√

2t

∞∑
m=0

1
m!

(
−
√

2
|x|
t1/2

)m

cos
(

m + 1
4

π

)
sin
(

m + 1
2

π

)
Γ
(

m + 1
2

)

=
1

π
√

2t

∞∑
n=0

1
(2n)!

(
2
|x|2

t

)n

cos
(

2n + 1
4

π

)
sin
(

2n + 1
2

π

)
Γ
(

2n + 1
2

)

=
1

π
√

2t

∞∑
n=0

(−1)n

(2n)!

(
2
|x|2

t

)n

cos
(

2n + 1
4

π

)
Γ
(

n +
1
2

)

=
2√
2πt

∞∑
n=0

(−1)n

(2n)!

(
|x|2

2t

)n

cos
(n

2
π +

π

4

) Γ(2n)
Γ(n)

=
1√
2πt

∞∑
n=0

(−1)n

n!

(
|x|2

2t

)n 1
2
(
ei n

2 π+i π
4 + e−i n

2 π−i π
4
)

=
1

2
√

2πt

∞∑
n=0

1
n!

[(
−i
|x|2

2t

)n

ei π
4 +

(
i
|x|2

2t

)n

e−i π
4

]
=

1
2
√

2πt

(
e−i

|x|2
2t +i π

4 + e+i
|x|2
2t −i π

4

)
=

1√
2πt

cos
(

x2

2t
− π

4

)
.

Remark 3.4. Another important case is ν = 1/2 and in this case we easily arrive at

u1(x, t) =
1
2π

∫ +∞

−∞
e−

y4t

22 cos (xy) dy (3.21)
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=
1

2π
√

2t1/2

∞∑
k=0

1
(2k)!

(
−
√

2|x|
t1/4

)2k

(−1)kΓ
(

k

2
+

1
4

)
.

The integral (3.21) had been studied by Bernstein [4] and its connection with the fundamental
solution of the biquadratic heat equation is well-known. By applying the multiplication formula of
the Gamma function

Γ(z)Γ
(

z +
1
m

)
Γ
(

z +
2
m

)
. . .Γ

(
z +

m− 1
m

)
= (2π)

m−1
2 m

1
2−mzΓ(mz).

for m = 4 and z = k/2, we have that

Γ
(

k
2 + 1

4

)
Γ (2k + 1)

=
π2

1
2−3k

k! Γ
(

k
2 + 3

4

) .
This leads to the alternative form

u1(x, t) =
1

2 4
√

t

∞∑
k=0

(
|x|
2 4
√

t

)2k (−1)k

k! Γ
(

k
2 + 3

4

) . (3.22)

Particular attention is drawn to the case ν = 2/3 for which we produce different alternative
expressions of the solution in terms of Airy functions.

Theorem 3.4. The solution to

∂4/3u

∂t4/3
= − 1

22

∂4u

∂x4
, x ∈ R, t > 0 (3.23)

with {
u(x, 0) = δ(x)
ut(x, 0) = 0 (3.24)

has the form

u4/3(x, t) =
3

23/2 3
√

3t

[
ei π

4 Ai

(√
2
|x|ei π

4

3
√

3t

)
+ e−i π

4 Ai

(√
2
|x|e−i π

4

3
√

3t

)]
(3.25)

where

Ai(x) =
1
π

∫ ∞

0

cos
(

αx +
α3

3

)
dα =

√
x

3

[
I− 1

3

(
2
3
x3/2

)
− I 1

3

(
2
3
x3/2

)]
(3.26)

is the Airy function (the second formula in (3.26) holds for x > 0).

Proof. For ν = 2/3, formula (3.10) yields

u4/3(x, t) =
1

π
√

2t2/3

∞∑
m=0

(
−
√

2 |x|3√t

)m

m!
cos
(

m + 1
4

π

)
sin
(

m + 1
3

π

)
Γ
(

m + 1
3

)
. (3.27)

We split the series (3.27) into the following three cases: m = 3k + 2,
m = 3k + 1,
m = 3k.

(3.28)

For our convenience we write
u4/3(x, t) = A2 + A1 + A0.

For m = 2k + 2 the series A2 equals to zero because

sin
(

m + 1
3

π

)
= sin ((k + 1)π) = 0
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for all integer values of k. For n = 3k + 1, formula (3.10) takes the form:

1
π
√

2 3
√

t

∞∑
k=0

1
(3k + 1)!

(
−
√

2
|x|
3
√

t

)3k+1

cos
(

3k + 2
4

π

)
sin
(

3k + 2
3

π

)
Γ
(

k +
2
3

)

=
1

π
√

2 3
√

t

∞∑
k=0

1
(3k + 1)!

(
−
√

2
|x|
3
√

t

)3k+1(
− sin

3k

4
π

)
(−1)k sin

2
3
π Γ
(

k +
2
3

)
. (3.29)

In view of the triplication formula (see [19, page 14])

Γ(z)Γ
(

z +
1
3

)
Γ
(

z +
2
3

)
=

2π

33z−1/2
Γ(3z)

we have that
Γ
(
k + 2

3

)
Γ (3k + 2)

=
1
32

2π

33k−1/2

1
Γ(k + 1)Γ

(
k + 1

3 + 1
) . (3.30)

The series (3.29), in force of (3.30), becomes

A1 =
2π sin 2π

3

π
√

2 3
√

t

1
32

∞∑
k=0

(√
2
|x|
3
√

t

)3k+1

sin
(

3k

4
π

)
1

33k−1/2

1
Γ(k + 1)Γ

(
k + 1

3 + 1
)

=
1√
2 3
√

t

∞∑
k=0

1
k!

(√
2
|x|
3 3
√

t

)3k+1 1
Γ
(
k + 1

3 + 1
) 1

2i

[
ei 3k

4 π − e−i 3k
4 π
]

=
1

2i
√

2 3
√

t

∞∑
k=0

[
e−i π

4

(√
2
|x|ei π

4

3 3
√

t

)3k+1

− ei π
4

(√
2
|x|e−i π

4

3 3
√

t

)3k+1
]

1
k!Γ

(
k + 1

3 + 1
)

=
1

2i
√

2 3
√

t

e−i π
4

(√
2
|x|ei π

4

3 3
√

t

)1/2 ∞∑
k=0

((√
2
|x|ei π

4

3 3
√

t

)3/2
)2k+ 1

3
1

k!Γ
(
k + 1

3 + 1
)

−ei π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2 ∞∑
k=0

((√
2
|x|e−i π

4

3 3
√

t

)3/2
)2k+ 1

3
1

k!Γ
(
k + 1

3 + 1
)


=
1

2i
√

2 3
√

t

[
e−i π

4

(√
2
|x|ei π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|ei π

4

3 3
√

t

)3/2
)

−ei π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)]

=
1

2
√

2 3
√

t

[
−ei π

4

(√
2
|x|ei π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|ei π

4

3 3
√

t

)3/2
)

−e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)]

. (3.31)

With similar calculation we evaluate A3k

A0 =
1

π
√

2 3
√

t

∞∑
k=0

1
(3k)!

(
−
√

2
|x|
3
√

t

)3k

cos
(

3k + 1
4

π

)
sin
(

3k + 1
3

π

)
Γ
(

3k + 1
3

)

=
31/2

π23/2 3
√

t

∞∑
k=0

1
(3k)!

(√
2
|x|
3
√

t

)3k

cos
(

3k + 1
4

π

)
Γ
(

k +
1
3

)

=
31/2

21/2 3
√

t

∞∑
k=0

1
k!

(√
2
|x|
3
√

t

)3k

cos
(

3k + 1
4

π

)
1

33k+1/2Γ
(
k − 1

3 + 1
)

=
1

23/2 3
√

t

∞∑
k=0

[
ei π

4

(√
2
|x|ei π

4

3 3
√

t

)3k

+ e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)3k
]

1
k!Γ

(
k − 1

3 + 1
)
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=
1

23/2 3
√

t

ei π
4

(√
2
|x|ei π

4

3 3
√

t

)1/2 ∞∑
k=0

((√
2
|x|ei π

4

3 3
√

t

)3/2
)2k− 1

3
1

k!Γ
(
k − 1

3 + 1
)

+ e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2 ∞∑
k=0

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)2k− 1

3
1

k!Γ
(
k − 1

3 + 1
)


=
1

23/2 3
√

t

[
ei π

4

(√
2
|x|ei π

4

3 3
√

t

)1/2

I−1/3

(
2
(√

2
|x|ei π

4

3 3
√

t

)3/2
)

+ e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2

I−1/3

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)]

. (3.32)

By summing up A3k+1 and A3k we have

u4/3(x, t) =
1

23/2 3
√

t

[
ei π

4

(√
2
|x|ei π

4

3 3
√

t

)1/2

I−1/3

(
2
(√

2
|x|ei π

4

3 3
√

t

)3/2
)

+ e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2

I−1/3

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)

− ei π
4

(√
2
|x|ei π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|ei π

4

3 3
√

t

)3/2
)

−e−i π
4

(√
2
|x|e−i π

4

3 3
√

t

)1/2

I1/3

(
2
(√

2
|x|e−i π

4

3 3
√

t

)3/2
)]

=
3

23/2 3
√

3t

[
ei π

4 Ai

(√
2
|x|ei π

4

3
√

3t

)
+ e−i π

4 Ai

(√
2
|x|e−i π

4

3
√

3t

)]
.

Remark 3.5. Result (3.25) shows that the solution to

∂4/3u

∂t4/3
= − 1

22

∂4u

∂x4
(3.33)

can be expressed as

u4/3(x, t) =
1
2
[
v2/3(x, tei π

4 ) + v2/3(x, te−i π
4 )
]

=
3

22 3
√

3t

[
1
λ1

Ai

(
|x|

λ1
3
√

3t

)
+

1
λ2

Ai

(
|x|

λ2
3
√

3t

)]
(3.34)

with

λ1 =
e−i π

4

√
2

=

√
− i

2
λ2 =

ei π
4

√
2

=

√
i

2

where

v2/3(x, t) =
3
2

1
λ 3
√

3t
Ai

(
|x|

λ 3
√

3t

)
(3.35)

is the solution to
∂2/3u

∂t2/3
= λ2 ∂2u

∂x2
, u(x, 0) = δ(x) (3.36)

(see formula (4.2) of [21]). Formula (3.34) shows that the solution to (3.33) can be viewed as the
superposition of solutions of fractional diffusion equations of order 2/3 with imaginary time running
in opposite directions. Result (3.34) can also be obtained by inverting the Fourier transform (3.6)
for ν = 2/3.
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Figure 3: u4/3 : the function (3.25)

Remark 3.6. By introducing the drift in the Schrödinger equations appearing in the equation of
vibrations of rods we get that

0 =
[

∂

∂t
− i

2

(
∂2

∂x2
− µ

∂

∂x

)][
∂

∂t
+

i

2

(
∂2

∂x2
− µ

∂

∂x

)]
u

=
∂2u

∂t2
+

1
22

(
∂2

∂x2
− µ

∂

∂x

)2

u. (3.37)

The fundamental solution to (3.37) takes the form

u(x, t) =
eµx

√
2πt

cos
(

x2

2t
− µ2t

2
− π

4

)
(3.38)

which slightly extends (2.12).

4 Pseudo-Processes related to the equation of vibrations of
rods

We introduce a pseudo-process associated to the fundamental solution of equation (2.1) as follows.
We can assume that at time t = 0 we choose randomly the direction of time (increasing with
probability 1/2) measuring with imaginary values. On each branch of the time axis we consider
a Brownian motion, that is a process with independent increments over non-overlapping time

intervals. To the vector
(

F (t1), . . . , F (tn)
)

with 0 < t1 < . . . < tj < . . . < tn we associate the

signed measure

µ{F (t1) ∈ dx1, . . . , F (tn) ∈ dxn} (4.1)

=
1
2

[
Pr{B(s1) ∈ dx1, . . . , B(sn) ∈ dxn}

∣∣∣
sj=itj

+ Pr{B(s1) ∈ dx1, . . . , B(sn) ∈ dxn}
∣∣∣
sj=−itj

]
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=
1
2

 n∏
j=1

e
−

(xj−xj−1)2

2i(tj−tj−1)√
2πi(tj − tj−1)

dxj +
n∏

j=1

e
−

(xj−xj−1)2

−2i(tj−tj−1)√
−2πi(tj − tj−1)

dxj


=

(2π)−n/2

2
∏n

j=1

√
tj − tj−1

[
e−i π

4 ne
−

Pn
j=1

(xj−xj−1)2

2i(tj−tj−1) + ei π
4 ne

−
(xj−xj−1)2

−2i(tj−tj−1)

]
n∏

j=1

dxj

=
(2π)−n/2∏n

j=1

√
tj − tj−1

cos

 n∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− n

π

4

 n∏
j=1

dxj .

We can verify that ∫
R

. . .

∫
R

µ{F (t1) ∈ dx1, . . . , F (tn) ∈ dxn} = 1

by writing (4.1) as

(2π)−n/2∏n
j=1

√
tj − tj−1

[
cos

n−1∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− (n− 1)

π

4

 cos
(

(xn − xn−1)2

2(tn − tn−1)
− π

4

)

− sin

n−1∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− (n− 1)

π

4

 sin
(

(xn − xn−1)2

2(tn − tn−1)
− π

4

)] n∏
j=1

dxj . (4.2)

By integrating (4.2) with respect to xn the second term vanishes while the first one by applying
the Fresnel integrals reduces to

(2π)−(n−1)/2∏n−1
j=1

√
tj − tj−1

cos

n−1∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− (n− 1)

π

4

 n−1∏
j=1

dxj . (4.3)

The density (4.3) is the marginal µ{∩n−1
j=1 F (tj) ∈ dxj} of the vector

(F (t1), . . . , F (tn−1)) .

The one- and two-dimensional densities of the Fresnel pseudo-process read

µ{F (t1) ∈ dx1} =
dx1√
2πt1

cos
(

x2
1

2t1
− π

4

)
(4.4)

and

µ{F (t1) ∈ dx1, F (t2) ∈ dx2} =
dx1dx2

2π
√

t1(t2 − t1)
sin
(

x2
1

2t1
+

(x2 − x1)2

2(t2 − t1)

)
. (4.5)

By means of (4.1) we can construct the signed measure of cylinder sets of the form

C =


n⋂

j=1

(aj ≤ xj ≤ bj)


in the following manner

µ{C} =
∫ b1

a1

. . .

∫ bn

an

µ{F (t1) ∈ dx1, . . . , F (tn) ∈ dxn} (4.6)

=
∫ b1

a1

. . .

∫ bn

an

(2π)−n/2∏n
j=1

√
tj − tj−1

cos

 n∑
j=1

(xj − xj−1)2

2(tj − tj−1)
− n

π

4

 n∏
j=1

dxj .

The construction of (4.6) follows the same line of the signed measures of pseudo-processes related
to higher-order heat equations (see for example, Krylov [12], Ladokhin [16, 17], Daletsky et al. [6],
Hochberg [10]). The signed measure is extended to the σ-algebra generated by the cylinder sets in
the usual way (see, for example [16]).
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Remark 4.1. The signed measure constructed above is not markovian since

µ{F (t1) ∈ dx1, F (t3) ∈ dx3

∣∣F (t2) = x2}
6= µ{F (t1) ∈ dx1

∣∣F (t2) = x2}µ{F (t3) ∈ dx3

∣∣F (t2) = x2}
(4.7)

with t1 < t2 < t3. From (4.1) we have that

µ{F (t1) ∈ dx1, F (t3) ∈ dx3

∣∣∣F (t2) = x2} =
µ{F (t1) ∈ dx1, F (t2) = x2, F (t3) ∈ dx3}

µ{F (t3) ∈ dx3}

=
√

t2
2π

cos
(

(x1−x0)
2

2|t1−t0| + (x2−x1)
2

2|t2−t1| + (x3−x2)
2

2|t3−t2| − 3π
4

)
√∏3

j=1(tj − tj−1) cos
(

x2
2

2t2
− π

4

) dx1 dx3.

Clearly

µ{F (t1) ∈ dx1

∣∣∣F (t2) = x2}µ{F (t3) ∈ dx3

∣∣∣F (t2) = x2}

=
√

t2
cos
(

x2
1

2t1
+ (x2−x1)

2

2|t2−t1| −
π
2

)
cos
(

x2
2

2t2
+ (x3−x2)

2

2|t3−t2| −
π
2

)
√

t1(t3 − t2)(t2 − t1) cos2
(

x2
2

2t2
− π

4

) dx1 dx3

and thus we conclude that the statement (4.7) holds.

4.1 Feynman-Kac formula

For a non-negative k ∈ C2(R), the Feynman-Kac functional

w(x, t) = E
[
e−

R t
0 k(F (s))ds

∣∣F (0) = x
]

(4.8)

must be understood in the sense that

lim
n→∞

∫
R

. . .

∫
R

exp

− n∑
j=1

k(xj)(tj − tj−1)

µ {F (t1) ∈ dx1, . . . , F (tn) ∈ dxn} (4.9)

where µ is the signed measure defined in (4.1) and provided that the limit exists. This is similar
to the definition of Feynman-Kac functional in Krylov [12], Lachal [13], Hochberg [10]. We now
show that the functional w solves the p.d.e.

∂2w

∂t2
(x, t) = −1

2

[
∂4w

∂x4
(x, t)− ∂2

∂x2

(
k(x)w(x, t)

)
− k(x)

∂2w

∂x2
(x, t)− k2(x)w(x, t)

]
. (4.10)

In order to prove (4.10) we consider that the measure µ appearing in (4.9) permits us to write
w(x, t) as

w(x, t) =
1
2

[ŵ(x, it) + ŵ(x,−it)]

where
ŵ(x, t) = E

[
e−

R t
0 k(B(s))ds

∣∣∣B(0) = x
]

(4.11)

is the classical Feynman-Kac function for Brownian motion. Since

∂ŵ

∂t
(x, t) =

1
2

∂2ŵ

∂x2
(x, t)− k(x)ŵ(x, t)

by deriving (4.10) with respect to t we have that

∂w

∂t
(x, t) =

i

2
∂2ŵ

∂x2
(x, it)− ik(x)ŵ(x, it)− i

2
∂2ŵ

∂x2
(x,−it) + ik(x)ŵ(x,−it). (4.12)
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One more time-derivative in (4.12) yields

∂2w

∂t2
(x, t) =

1
2

[
i

2

[
i

∂2

∂x2

(
1
2

∂2ŵ

∂x2
(x, it)− k(x)ŵ(x, it)

)
− ik(x)

(
1
2

∂2ŵ

∂x2
(x, it)− k(x)ŵ(x, it)

)

+ i
∂2

∂x2

(
1
2

∂2ŵ

∂x2
(x,−it)− k(x)ŵ(x,−it)

)
− ik(x)

(
1
2

∂2ŵ

∂x2
(x,−it)− k(x)ŵ(x,−it)

)]]
.

We observe that for equation (4.10) a decoupling similar to that applied before in Section 3 and 4
does not work because of the form of the first-order time derivative (4.12).

4.2 Superposition of vibrations

We now analyse the superposition of solutions of the equation (2.1). Our approach is based on
Fourier transforms and gives∫ +∞

−∞
. . .

∫ +∞

−∞
eiβ

Pn
j=1 xj

n∏
j=1

1√
2πt

cos

(
x2

j

2t
− π

4

)
dxj

=

[∫ +∞

−∞
eiβx 1√

2πt
cos
(

x2

2t
− π

4

)
dx

]n

= cosn β2t

2
=

(
ei β2t

2 + e−i β2t
2

)n

2n

=
1
2n

n∑
k=0

(
n

k

)
e−i β2t

2 (n−2k)

=
1

2n−1

[
ei β2t

2 n + e−i β2t
2 n

2
+

1
2

n−1∑
k=1

(
n

k

)
e−i β2t

2 (n−2k)

]

=
1

2n−1

[
ei β2t

2 n + e−i β2t
2 n

2
+
(

n

1

)
ei β2t

2 (n−2) + e−i β2t
2 (n−2)

2
+

1
2

n−2∑
k=2

(
n

k

)
e−i β2t

2 (n−2k)

]
.

For n ∈ 2N we obtain that

cosn β2t

2
=

1
2n−1

n/2−1∑
k=0

(
n

k

)
cos

β2t(n− 2k)
2

+
1
2n

(
n

n/2

)
(4.13)

whereas, for n ∈ 2N + 1 we have that

cosn β2t

2
=

1
2n−1

(n−1)/2∑
k=0

(
n

k

)
cos

β2t(n− 2k)
2

. (4.14)

Formula (4.13) shows that for n even the resulting superpositions of waves consists of components
of the form (1.5) plus a Dirac delta function.

Remark 4.2. For an even number of terms in the sum
∑n

j=1 Fj(t) we have delta components
in zero. This surprising fact can be also confirmed by considering the convolution of two Fresnel
waves as shown below.∫ +∞

−∞
u(w, t)u(x− w, t)dw

=
∫ +∞

−∞

1√
2πt

cos
(

w2

2t
− π

4

)
1√
2πt

cos
(

(x− w)2

2t
− π

4

)
dw

=
1

22πt

[∫ +∞

−∞
cos
(

(x− w)2

2t
− w2

2t

)
+ sin

(
(x− w)2

2t
+

w2

2t

)
dw

]

=
1

22πt

[∫ +∞

−∞
cos
(

x2

2t
− wx

t

)
+ sin

(
x2

2t
+

w2

t
− wx

t

)
dw

]
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=
1

4πt

[
cos

x2

2t

∫ +∞

−∞
cos

xw

t
dw + sin

(
(w − x)2

t
− x2

t
+

wx

t

)
dw

]

=
1
2
δ(x) cos

x2

2t
+

1
4πt

∫ +∞

−∞
sin
(

w2

t
− x2

2t
+

x(w + x)
t

)
dw

=
1
2
δ(x) +

1
4πt

∫ +∞

−∞
sin

(
x2

2t
+
(

w√
t

+
x√
t

)2

− x2

4t

)
dw

=
1
2
δ(x) +

1
4πt

∫ +∞

−∞

[
sin

x2

4t
cos
(

w + x/2√
t

)2

+ cos
x2

4t
sin
(

w + x/2√
t

)2 ]
dw

=
1
2
δ(x) +

1
4π
√

t

[
sin

x2

4t

∫ +∞

−∞
cos
(
w2
)
dw + cos

x2

4t

∫ +∞

−∞
sin
(
w2
)
dw

]

=
1
2
δ(x) +

1
4
√

πt

[
1√
2

sin
x2

4t
+

1√
2

cos
x2

4t

]

=
1
2
δ(x) +

1
2

1√
4πt

cos
(

x2

4t
− π

4

)
.

This result accords with (4.13) for n = 2 after an inversion of the Fourier transform.

5 Vibrations of plates

5.1 Vibrations of infinite plates

The d-dimensional version of equation (4.7) has the form

∂2u

∂t2
= − 1

22

(
∂2

∂x2
1

+ . . . +
∂2

∂x2
d

)2

u (5.1)

and emerges in the study of vibrations of rigid thin structures like plates. The solution to (5.1)
subject to the initial conditions {

u(x1, . . . , xd, 0) =
∏d

j=1 δ(xj)
ut(x1, . . . , xd, 0) = 0

(5.2)

has the form

u(x1, . . . , xd, t) =
1

(
√

2πt)d
cos

 d∑
j=1

x2
j

2t
− d

π

4

 . (5.3)

The equation of vibrating plates is examined in the book by Courant and Hilbert [5, page 307]
where the case of circular plates with Neumann boundary condition is outlined.

Theorem 5.1. The Fourier transform of (5.3) is

U(β1, . . . , βn, t) =
∫

Rd

ei
Pd

j=1 βj xj u(x1, . . . , xd, t) dx1 . . . dxd = cos

 d∑
j=1

β2
j t

2

 (5.4)

Proof. Let us write (5.4) as

1
(
√

2πt)d

[∫
Rd−1

ei
Pd−1

j=1 βjxj cos

(∑d−1
j=1 x2

j

2t
− (d− 1)

π

4

)
d−1∏
j=1

dxj

∫ +∞

−∞
eiβdxd cos

(
x2

d

2t
− π

4

)
dxd

−
∫

Rd−1
ei

Pd−1
j=1 βjxj sin

(∑d−1
j=1 x2

j

2t
− (d− 1)

π

4

)
d−1∏
j=1

dxj

∫ +∞

−∞
eiβdxd sin

(
x2

d

2t
− π

4

)
dxd

]
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=
1

(
√

2πt)d−1

∫
Rd−1

ei
Pd−1

j=1 βjxj cos

(∑d−1
j=1 x2

j

2t
− (d− 1)

π

4
+

β2
dt

2

)
d−1∏
j=1

dxj

because

1√
2πt

∫ +∞

−∞
eiβdxd cos

(
x2

d

2t
− π

4

)
dxd =cos

β2
dt

2
, (5.5)

1√
2πt

∫ +∞

−∞
eiβdxd sin

(
x2

d

2t
− π

4

)
dxd =sin

β2
dt

2
. (5.6)

After m integrations, at the (m + 1)-th step, we have that

1
(
√

2πt)d−m

[∫
Rd−m−1

ei
Pd−m−1

j=1 βjxj cos

∑d−m−1
j=1 x2

j

2t
− (d−m− 1)

π

4
+

d∑
j=d−m+1

β2
j t

2

 d−m−1∏
j=1

dxj

∫ +∞

−∞
eiβd−mxd−m cos

(
x2

d−m

2t
− π

4

)
dxd−m

−
∫

Rd−m−1
ei

Pd−m−1
j=1 βjxj sin

∑d−m−1
j=1 x2

j

2t
− (d−m− 1)

π

4
+

d∑
j=d−m+1

β2
j t

2

 d−m−1∏
j=1

dxj

∫ +∞

−∞
eiβd−mxd−m sin

(
x2

d−m

2t
− π

4

)
dxd−m

]

=
1

(
√

2πt)d−m−1

∫
Rd−m−1

ei
Pd−m−1

j=1 βjxj cos

∑d−m−1
j=1 x2

j

2t
− (d−m− 1)

π

4
+

d∑
j=d−m

β2
j t

2

 d−m−1∏
j=1

dxj .

By performing the d−m−1 remaining integrals with respect to x1, . . . , xd−m−1 we arrive at result
(5.4).

In particular, for β1 = . . . = βn = β, from (5.4) we have that

U(β, . . . , β, t) =
∫

Rd

eiβ
Pd

j=1 xj u(x1, . . . , xd, t) dx1 . . . dxd = cos
β2d t

2
(5.7)

which shows that the sum of the marginals of (5.3) has the same form of (1.5) at time td. For
d = 1 the equation (5.1) coincides with (2.1), (5.3) becomes (1.5) and (5.4) reduces to (2.9). For
d = 2 we obtain the interesting result

u(x1, x2, t) =
1

2πt
sin
(

x2
1 + x2

2

2t

)
(5.8)

and the corresponding structure is depicted in figure 4.
It is apparent from (5.8) that the bivariate signed measure does not factorize. We can check

that (5.8) (as well as (5.3)) integrates to unity∫ +∞

−∞

∫ +∞

−∞
u(x1, x2, t) dx1 dx2 =

1
2πt

∫ +∞

−∞

∫ +∞

−∞
sin
(

x2
1 + x2

2

2t

)
dx1 dx2

=
1

2πt

∫
R2

[
sin

x2
1

2t
cos

x2
2

2t
+ sin

x2
2

2t
cos

x2
1

2t

]
dx1 dx2

=
1
πt

(∫
R

sin
x2

2t
dx

)2

= 1.

It is worthwhile to note also that

u(x1, t)u(x2, t) 6= u(x1, x2, t)
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Figure 4: The vibrating surface (5.8) (within a sphere) at time t = 0

because

u(x1, t)u(x2, t) =
1

2πt
cos
(

x2
1

2t
− π

4

)
cos
(

x2
2

2t
− π

4

)
=

1
22πt

[
sin
(

x2
1 + x2

2

2t

)
+ cos

(
x2

1 − x2
2

2t

)]
=

1
2
u(x1, x2, t) +

1
22πt

cos
(

x2
1 − x2

2

2t

)
.

5.2 Vibrations of circular plates

For the analysis of the vibrations of circular plates we need the following results from the theory
of reflecting Brownian motion inside a circle CR. Since the problem has isotropic structure (the
circular invariance is due to the initial disturbance concentrated in the center starting off the
vibrations) we can restrict ourselves to the Cauchy problem for the heat equation

∂u

∂t
=

1
2

[
∂2

∂r2
+

1
2

∂

∂r

]
u, 0 < r < R, t > 0 (5.9)

with boundary and initial conditions {
u(r, 0) = δ(r)
∂u
∂n

∣∣∣
∂CR

= 0.
(5.10)

The solution of (5.9) with (5.10) is

qref (r, t) =
1
t

[
e−

r2
2t + e−

R4

2r2t

]
(5.11)

and is constructed by means of the inversion of radius. The probability law of the reflecting
Brownian motion in CR solves the adjoint equation

∂u

∂t
=

1
2

[
∂2

∂r2
− 1

r

∂

∂r
+

1
r2

]
u (5.12)

with initial and boundary conditions (5.10) and has the following explicit form

pref (r, t) =
r

t
e−

r2
2t +

R4

r3t
e−

R4

2r2t , R > r > 0, t > 0 (5.13)

and can be checked that it integrates to unity. The results above permit us to solve related
boundary value problems for the equation of vibrations of plates. We have the following result.
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Theorem 5.2. The Cauchy problem

∂2u

∂t2
= − 1

22

[
∂2

∂r2
+

1
r

∂

∂r

]2
u, 0 < r < R, t > 0 (5.14)

with initial and boundary conditions 
u(r, 0) = δ(r)
ut(x, 0) = 0
∂u
∂n

∣∣∣
∂CR

= 0
(5.15)

has solution

q̄ref (r, t) =
1
t

sin
r2

2t
+

1
t

sin
R4

2r2t
(5.16)

while the adjoint equation

∂2u

∂t2
= − 1

22

[
∂2

∂r2
− 1

r

∂

∂r
+

1
r2

]2
u, 0 < r < R, t > 0 (5.17)

with initial and boundary conditions (5.15) has solution

p̄ref (r, t) =
r

t
sin

r2

2t
+

R4

r3t
sin

R4

2r2t
. (5.18)

Proof. We give the proof of (5.18) since the same method easily leads to (5.16). The equation
appearing in (5.17) can be decoupled as[

∂

∂t
+

i

2

(
∂2

∂r2
− 1

r

∂

∂r
+

1
r2

)][
∂

∂t
− i

2

(
∂2

∂r2
− 1

r

∂

∂r
+

1
r2

)]
u = 0 (5.19)

and each Schrödinger-type equation is formally similar to (5.12) and we can thus write that

p̄ref (r, t) =
1
2
[
pref (r, it) + pref (r,−it)

]
=

1
2

[
r

it
e−

r2
2it +

R4

r3it
e−

R4

2r2it +
r

−it
e−

r2
−2it +

R4

−2r3it
e
− R4

−2r2it

]
=

r

t
sin

r2

2t
+

R4

r3t
sin

R4

2r2t
.

The isotropic structure of the solution permits us to write the form of the circular vibrating
plate as

p(r, θ, t) =
1
2π

p̄ref (r, t) =
1

2πt

[
r sin

r2

2t
+

R4

r3
sin

R4

2r2t

]
, 0 < r < R, 0 < θ < 2π. (5.20)

By considering the change of variable r′ = R2/r in the following integral we get∫
CR

p(r, θ, t) dr dθ =
1

2πt

∫ 2π

0

∫ R

0

[
r

t
sin

r2

2t
+

R4

r3t
sin

R4

2r2t

]
dr dθ

=
1

2πt

∫ 2π

0

[∫ R

0

r sin
r2

2t
dr +

∫ ∞

R

r sin
r2

2t
dr

]
dθ

=
1

2πt

∫ 2π

0

∫ ∞

0

r sin
r2

2t
drdθ =

1
2πt

∫
R2

sin
x2 + y2

2t
dxdy

=
2(
√

2t)2

2πt

(∫ +∞

−∞
cos y2 dy

)2

= 1.

24



Remark 5.1. The expression (5.20) in cartesian coordinates reads

p(x, y, t) =
1

2πt

[
sin

x2 + y2

2t
+

R4

(x2 + y2)4
sin

R4

2t(x2 + y2)2

]
, (x, y) ∈ CR, t > 0 (5.21)

while the expression of q(r, θ, t) = 1
2π q̄ref (r, t) in cartesian coordinates reads

q(x, y, t) =
1

2πt

1√
x2 + y2

[
sin

x2 + y2

2t
+ sin

R4

2t(x2 + y2)2

]
, (x, y) ∈ CR, t > 0. (5.22)
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Figure 5: The profile of the function (5.16) with 0 < r < R = 1 and t = 1, 50, 100.

The cross-section of the vibrating disk (formula (5.16)) is depicted in figure 5 in three different
instants. It shows that the vibrations initially extend to the whole plate and they fade off outside
a neighbourhood of the origin as time passes.

6 Subordination of the Fresnel pseudo-process with differ-
ent processes

The composition of the Fresnel process F (t), t > 0 with different processes produces interesting
results. The first one has been outlined in the previous sections and leads to the following statement
concerning pseudo-processes of fourth-order which have been dealt by several authors and from
different viewpoints (see Hochberg [10], Nikitin and Orsingher [22], Nishioka [23], Lachal [13, 14],
Benachour et al. [3]).

Theorem 6.1. The pseudo-process F (|B(t)|), t > 0 has measure density which satisfies the fourth-
order heat equation {

∂u
∂t = − 1

23
∂4u
∂x4 x ∈ R, t > 0

u(x, 0) = δ(x).
(6.1)

Proof. We write

q(x, t) = 2
∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
e−

s2
2t

√
2πt

ds. (6.2)

25



The Fourier transform of (6.2) reads∫
R

eiβxq(x, t)dx =
∫

R
eiβx

∫ ∞

0

 e−
x2

2(is)√
2π(is)

+
e−

x2
2(−is)√

2π(−is)

 e−
s2
2t

√
2πt

ds (6.3)

=
∫ ∞

0

[
e−i β2

2 s + ei β2

2 s

]
e−

s2
2t

√
2πt

ds =
∫ +∞

−∞
e−i β2

2 s e−
s2
2t

√
2πt

ds = exp
(
−β4

23
t

)
.

Clearly (6.3) satisfies the Fourier transform of the equation (6.1). Result (6.3) can also be obtained
by exploting (2.9) and thus∫

R
eiβxq(x, t)dx =2

∫ ∞

0

[∫
R

eiβx

√
2πs

cos
(

x2

2s
− π

4

)
dx

]
e−

s2
2t

√
2πt

ds

=2
∫ ∞

0

cos
β2s

2
e−

s2
2t

√
2πt

ds =
∫

R
eiβx e−

s2
2t

√
2πt

ds = exp
(
−β4t

23

)
.

If B(t), t > 0 has volatility equal to σ2 then the composition F (|B(t)|), t > 0, has Fourier
transform equal to ∫

R
eiβxq(x, t)dx = exp

(
−β4σ2t

23

)
and for σ2 = 2 leads to the pseudo-process with density (6.2).

Remark 6.1. This result has been obtained in different ways in [3, 11]. Result (6.2) shows that the
fundamental solution to the fourth-order equation (6.1) can be viewed as the profile of a vibrating
rod with a Gaussian weight which damps the oscillations, see figure 6.
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Figure 6: The solution to the fourth-order heat equation (6.1).

We examine here the composition of the Fresnel pseudo-process F (t), t > 0 with the first passage
time Tt, t > 0 (independent from F ) of a Brownian motion B. The composition F (Tt), t > 0 has
the relevant property that its one-dimensional distributions are true probability distributions as
the next Theorem shows.
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Theorem 6.2. The r.v. F (Tt) has density

Pr{F (Tt) ∈ dx}/dx =
t

π
√

2
t2 + x2

t4 + x4
, x ∈ R, t > 0 (6.4)

and (6.4) solves the fourth-order equation(
∂4

∂t4
+

∂4

∂x4

)
u = 0. (6.5)

Proof. We first of all prove that

Pr{F (Tt) ∈ dx} = dx

∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
te−

t2
2s

√
2πs3

ds (6.6)

satisfies equation (6.5). Since (
∂2

∂t2
− 2

∂

∂s

)
te−

t2
2s

√
2πs3

= 0

we have that

∂4

∂t4
Pr{F (Tt) ∈ dx}/dx =

∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
∂4

∂t4
te−

t2
2s

√
2πs3

ds

=
∫ ∞

0

22

√
2πs

cos
(

x2

2s
− π

4

)
∂2

∂s2

te−
t2
2s

√
2πs3

ds

=
∫ ∞

0

∂2

∂s2

[
22

√
2πs

cos
(

x2

2s
− π

4

)]
te−

t2
2s

√
2πs3

ds

=− ∂4

∂x4

∫ ∞

0

1√
2πs

cos
(

x2

2s
− π

4

)
te−

t2
2s

√
2πs3

ds.

We now prove result (6.4).

Pr{F (Tt) ∈ dx}/dx =
t

22π

∫ ∞

0

(
ei x2

2s−
t2
2s−i π

4 + e−i x2
2s−

t2
2s +i π

4

) ds

s2

=
t

2π

(
e−i π

4

t2 − ix2
+

ei π
4

t2 + ix2

)
=

t e−i π
4

2π

(
1

t2 − ix2
+

i

t2 + ix2

)
=

t e−i π
4

2π

(
(t2 + x2)(1 + ei π

2 )
t4 + x4

)
=

t

2π

(
(t2 + x2)(e−i π

4 + ei π
4 )

t4 + x4

)
=

t√
2π

t2 + x2

t4 + x4
.

Remark 6.2. We can confirm result (6.4) by means of a different approach. Since equation (6.5)
can be written as (

∂2

∂t2
+ ei π

4
∂2

∂x2

)(
∂2

∂t2
+ e−i π

4
∂2

∂x2

)
u = 0 (6.7)

each component of (6.7) can be reduced to a Laplace equation by means of the time transformation
t′ = e±

π
4 t. Therefore, the solution to (6.7) can be organized as

Pr{F (Tt) ∈ dx}/dx =
1
2π

[
tei π

4

(tei π
4 )2 + x2

+
te−i π

4

(te−i π
4 )2 + x2

]
=

t

π
√

2
t2 + x2

t4 + x4
. (6.8)

This is tantamount to considering a Cauchy process C whose time either flows on the positive or
negative imaginary axis. The direction of time is initially chosen with equal probability.
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Figure 7: The density of the double-Cauchy r.v. F (Tt).

Theorem 6.3. For the n-th order Fresnel iterated pseudo-process

Fn(t) = F1(|F2(| . . . Fn+1(t) . . . |)|), t > 0

the governing equation of the measure density

µ{Fn(t) ∈ dx}/dx = 2n

∫ ∞

0

. . .

∫ ∞

0

n∏
j=1

dsj+1√
2πsj+1

cos

(
s2

j

2sj+1
− π

4

)
dsj

(6.9)

with x = s1 and t = sn+1, satsfies the equation

∂2u

∂t2
(x, t) = −2−2(2n+1−1) ∂

2n+2
u

∂x2n+2 (x, t), x ∈ R, t > 0 (6.10)

subject to the initial conditions {
u(x, 0) = δ(x),
ut(x, 0) = 0.

(6.11)

Proof. One can prove the statement of the Theorem by evaluating the Fourier transform of (6.9)
by successively applying formula (2.9). The Fourier integral w.r.t. x yields

2n

∫ ∞

0

. . .

∫ ∞

0

cos
β2s1

2
ds1√
2πs2

cos
(

s2
1

2s2
− π

4

)
. . .

dsn√
2πt

cos
(

s2
n

2t
− π

4

)
. (6.12)

The integral w.r.t. s1 yields

2
∫ ∞

0

cos
β2s1

2
1√

2πs2
cos
(

s2
1

2s2
− π

4

)
ds1 =

∫ +∞

−∞
cos

β2s1

2
1√

2πs2
cos
(

s2
1

2s2
− π

4

)
ds1

=
∫ +∞

−∞
e−

β2s1
2

1√
2πs2

cos
(

s2
1

2s2
− π

4

)
ds1

=cos

((
β2

2

)2
s2

2

)
.
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By iterating this procedure we arrive at the final relult∫ +∞

−∞
eiβxµ{F(t) ∈ dx} = cos

(
2t

(
β

2

)2n+1)
.

With this at hand result (6.10) immediately follows.
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Figure 8: The table of fundamental solutions of the Fresnel fractional equation (3.1) with different
orders 2ν of fractionality.
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