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Summary. In this paper, we investigate a new class of graphs, called “Incompatibility
Graphs” which arise from Box Clustering. Besides their importance for the applications in
data mining, these graphs have an intrinsic interest from a theoretical viewpoint, since they
generalize some important classes of graphs, namely, chordal and weakly chordal graphs. The
special structure of the Incompatibility Graphs can be exploited to efficiently solve some key-
problems related to Box Clustering, such as the “Maximum Box” and the “Minimum Covering
by Boxes” problems. In fact, we show that these two problems can be formulated as a vertex
packing and a vertex coloring one, respectively, in an Incompatibility Graph, and that one can
solve in polynomial time the former and, for two important subclasses of instances, also the
latter.

Key words: box clustering, forbidden graphs, vertex packing, vertex coloring, graph
recognition.

1 Introduction

In this paper, we introduce Incompatibility Graphs (IGs), a class of graphs that arises
in the Box Clustering (BC) approach to the supervised classification of data. Box
Clustering was introduced in [12] and it can be viewed as an offspring of a more
general methodology, called Logical Analysis of Data (LAD) (see, for example,
[2, 3, 4, 7, 11]). Unlike LAD, besides binary data, BC is also able to deal with numer-
ical and ordinal data. The input of a BC problem is a training data set, consisting of
a finite set of points in a d-dimensional space, which are classified either as positive
or negative according to the value of the given classification variable. A box (i.e., a
d-dimensional closed interval) is called positive (or negative) if it includes some pos-
itive (resp. negative) observations, but does not include any negative (resp. positive)
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one. Positive and negative boxes will also be called homogeneous. The output of a
BC model is a set of homogeneous boxes, which are used to predict the class of the
observations belonging to a testing data set (see, [18]).
In this paper we address two key-problems related to BC, namely, the Maximum Box
(MB) and the Minimum Covering by Boxes (MCB), see [8, 12]. In order to solve
these problems, we introduce Incompatibility Graphs that, for a given set of obser-
vations in the d-dimensional space, represent the structural relations of homogeneity
between pairs of points. These graphs have shown to be of help in the solution of both
the two above mentioned BC problems, but they also showed to have an autonomous
interest from a theoretical viewpoint.

The broad structure of the paper is as follows. In Section 2, we recall some basic
notions and definitions in BC and we formally state problems MB and MCB. In Sec-
tion 3, we give the general definition of IGs and we show that any arbitrary graph is
an IG in a space of sufficiently large dimension. By restricting the dimension of the
space, we obtain a much richer structure. From Section 4 on, we focus on the two
dimensional case, and we show that, in this case, IGs feature strong structural prop-
erties. In particular, they are shown to be a generalization of weakly chordal graphs.
In Section 6, we also show that IGs have small radius. In section 5 we introduce a
subclass of IGs, called “polarized incompatibility graphs”, having a structure similar
to IGs, but characterized by some special feature related to the relative position of
points in R2. In Section 7, we show that in the two dimensional case MB and MCB
can be formulated as a vertex packing and a vertex coloring problem, respectively, on
an IG; the special structure of IGs makes the former one, and, in many instances, also
the latter one, solvable in polynomial time. In Section 8, we summarize our main con-
clusions, pointing out some directions for future research. Finally, in the Appendix,
we provide a mixed integer linear programming model for the recognition of IGs.

2 Box Clustering

As previously mentioned, BC has the capability to deal directly with numerical, or-
dinal and binary variables. Since a binary variable can be thought to take values in
{0,1} and an ordinal variable in the standard set {1, . . . , p} for some positive integer
p, we may regard an observation, w.l.o.g., as a point in the real d-dimensional space
Rd . Suppose that a set S of (positive and negative) observations is given in Rd and
that x ∈Rd ,x = (x1, . . . ,xi, . . . ,xd), is the generic vector of an observation in the data
set. Let l,u ∈Rd be such that li ≤ ui, i = 1, . . . ,d. A box I (or hyper-rectangle) in Rd

is defined as follows:

I(l,u) = {x ∈ Rd : li ≤ xi ≤ ui, i = 1, . . . ,d}. (1)

Given a finite set S⊂Rd the box-closure of S is the smallest box (i.e., the intersection
of all boxes) containing all points in S (see [12]). Let Li = minx∈S{xi} and Ui =
maxx∈S{xi}, i = 1, . . . ,d. The box-closure of S is given by [S] = I(L,U). Notice that
the two vectors L and U defines two bounding points in Rd that univocally determine
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the box I(L,U). For the sake of simplicity, in the following the same notation B will
be adopted to denote both a box and the set of points included in a box.
For any finite set S of points, the box-closure of S can be also seen as the intersection
of all boxes containing S, that is:

[S] =
⋂

l,u ∈ Rd : l ≤ u
I(l,u)⊇ S

I(l,u). (2)

Suppose that S ⊂ Rd is the set of the n points in Rd representing a BC data set. Let
P and N denote the two finite non empty subsets of S corresponding to the positive
and the negative points, respectively, so that one has P∩N = /0 and S = P∪N. Let
us denote by B a set of boxes in Rd with |B|= m, i.e., B = {B1, . . . ,Bm}.

Definition 1. B is a covering for P if (a) every point x ∈ P is included in some
Bi ∈B; (b) every box Bi includes at least one point x∈P. In other words, S⊆

⋃m
i=1 Bi

and S∩Bi 6= /0 for every i = 1, . . . ,m.

Definition 2. B is a homogeneous set of boxes for P if for every box Bi ∈B one has
N∩Bi = /0 and P∩Bi 6= /0.

If B is homogeneous, we can univocally assign a positive label to each box.

Definition 3. A box system for P is a covering by homogeneous boxes for P.

Similar definitions hold for the set of negative points N. On the basis of the above
definitions, different BC models were provided in the literature in order to study
different data analysis problems [19, 20]. One of the main BC problems is Minimum
Covering by Boxes, which can be formulated as follows:

• Given a set S = P∪N of points in Rd , find a box system B∗ for P (or N) such
that the number of boxes in B∗ is a minimum.

The Maximum Box problem can be stated as follows:

• Given a set S = P∪N of points in Rd , find a positive (resp. negative) box that
contains the largest number of points in P (resp. N).

Without loss of generality, in the rest of the paper we will refer to the case of systems
of positive boxes. The case of systems of negative boxes is similar.

3 Incompatibility Graphs

Given two finite and disjoint sets of points P,N ⊆ Rd , we associate to them a graph
G = GP,N with vertex set V (G) = P and such that two vertices u,v ∈ P are connected
in G by an edge if [u,v]∩N 6= /0. We call GP,N the d-incompatibility graph (d-IG) of
P and N.
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Definition 4. (General definition of IG)
A graph G = (V,E) is a d-IG, if there are two finite and disjoint point sets P,N ⊆Rd

such that GP,N is equal to G. The pair (P,N) will be called a d-embedding of G.

We shall say that y ∈ N fathers, or triggers, edge (a,b) ∈ E, if a,b ∈ P and y ∈ [a,b].
Notice that the edge (a,b) ∈ E to be triggered by more than one point y ∈ N.

Theorem 1. (Universality of IGs)
If G = (V,E) is an arbitrary graph then there always exist d ≥ 1 and P,N ⊆Rd such
that GP,N is isomorphic to G, i.e., it is a d-IG.

Proof. Let us choose d = |V |, and define the set of positive points P = {ei}i=1,...,d ,
where ei = (0, . . . ,1, . . . ,0). If (ei,e j) ∈ E, then we consider the negative point in
N: qi j = ei + e j = (0, . . . ,1, . . . ,1, . . . ,0). We check that G = GP,N is d-IG. We have
P∩N = /0. Moreover, for every ei,e j ∈ P: such that (ei,e j) is an edge of G, one has:
[ei,e j]∩N = {qi j}. ut

The above theorem states that every graph G can be seen as a d-IG, but this is not true
in every dimension d (see Section 4). After Theorem 1, we will refer to a d-IGsimply
by IG when this does not cause any confusion. The following two properties hold.

Property 1. (IG hereditary property)
G is a d-IG iff every induced subgraph of G is a d-IG.

Property 2. (IG monotonic dimension property)
If G is d-IG then G is h-IG for every h≥ d.

On the one hand, in view of Property 1, we are interested in investigating the minimal
(w.r.t. the vertex-set inclusion) non-IGs, i.e. those graphs that are not IGs but all their
induced subgraphs are. On the other hand, after Property 2, we are interested in
defining the minimum space dimension where the graph G can be embedded as an
IG. Generally, this is no easy task, but there are some trivial classes of d-IGs. We use
the standard notation Pr, Cr, Kr to denote paths, cycles and cliques with r vertices;
and Kr,s to denote complete bipartite graph with r and s vertices, respectively, on the
two sides.

v1 v2 vs· · · Ks

v1 . . . vr u1 . . . us Kr,s

Fig. 1. Embeddings for Ks and Kr,s in R.

Proposition 1. (Complete graphs)
For every r,s,d ≥ 1 : the graphs Kr and Kr,s are d-IGs.
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Proof. Figure 1 shows examples of embedding for the two graphs as 1-IGs and,
hence, d-IGs for any d ≥ 1 by Property 2. ut

In this paper, we use a very specific notion of “general position” which is stated in
the following definition.

Definition 5. A finite and non-empty set S ⊆ Rd is in general position if no pair of
points lie on the same hyperplane parallel to a coordinated one.

In Figure 2-(a) the points {i, j,k,r} are in general position in R2, but the points
{i, j,k,r,s} in Figure 2-(b) are not, in fact, the points s and k are aligned on the
same vertical line. Let us consider C6 and its two embeddings shown in Figure 3.
The embedding (a) has four negative points, while (b) has only two, and its positive
points are not in general position. Let us first observe that if G is d-IG, then we may
always assume that the points of S = P∪N are in general position.

i

j

k

r

(a)

i

j

k

r

s

(b)

Fig. 2. Embeddings in the plane.

Theorem 2. (Embeddings and general position)
If G is a d-IG, then it is isomorphic to some GP,N (G ∼ GP,N), such that P∩N = /0

and the points of P∪N are in general position.

Proof. Let us assume, for simplicity, that d = 2. Let G ∼ GP′,N′ for some point sets
with P′,N′ ⊆ R2, and let us choose constants ε, δ such that 0 < 2ε < δ and

2δ < min{d([a,b],y) | a,b ∈ P′, a 6= b, (a,b) 6∈ E(G),y ∈ N′},

where d(a,b) denotes the Euclidean distance of points a and b, and for point sets
d(A,B) is defined by d(A,B) = mina∈A, b∈B d(a,b). Let us note that all quantities on
the right hand side of the above inequality are positive, and hence such positive ε

and δ exist. Let us denote by S the set of unit vectors in the plane, and let

S′ = S\
(
{(1,0),(−1,0),(0,1),(0,−1)}∪

{
a−b
‖a−b‖

∣∣∣∣a,b ∈ P′, n 6= b
})

.
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1

2

3

4

5

6

(a)

1 5 3

4 2 6

(b)

Fig. 3. Two embeddings of C6 as IG.

Choose vectors va ∈ S′ for a ∈ P′ such that va 6= vb whenever a 6= b, and set

P = {a+ εva | a ∈ P′}.

Let us further denote by D(y) the open disk of radius δ around point y ∈ N′, i.e.,

D(y) = {z | d(y,z)< δ}.

Let us note on the one hand that for all a,b ∈ P′, (a,b) 6∈ E(G) and y ∈ N′ we must
have d(D(y), [a+ εva,b+ εvb]) > 2δ − (δ + ε) > ε > 0, i.e., D(y)∩ [a+ εva,b+
εvb] = /0. On the other hand, for all a,b∈P′ and for all x∈ [a,b]\ [a+εva,b+εvb] we
have d(x, [a+εva,b+εvb])≤ ε , and consequently, for all a,b∈ P′ and y∈N′∩ [a,b]
we must have D(y)∩ int([a+εva,b+εvb]) 6= /0. Since this intersection is a nonempty
open set, we can choose a z(y,a,b) ∈ D(y)∩ int([a+ εva,b+ εvb]) 6= /0 for all such
tuples such that no two of these vectors are on the same horizontal or vertical line,
and none of them are on the same horizontal or vertical line as a point in P. Let

N = {z(y,a,b) | a,b ∈ P′, a 6= b,y ∈ N′∩ [a,b]}.

Due to the above properties, we can conclude that GP′,N′ ∼GP,N . The proof for arbi-
trary dimension d is based on a similar perturbation technique. ut

At first sight, IGs seem to be a geometrical concept. The following theorem pro-
vides a purely order-theoretic characterization.

Theorem 3. G = (V,E) is a d-incompatibility graph iff there are two finite sets P, N,
with |P|= |V |, P∩N = /0, and d linear orders ≺i, i = 1, . . . ,d on S = P∪N such that
(a,b) ∈ E iff there is some q ∈ N for which
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(a∧i b)≺i q≺i (a∨i b), i = 1, . . . ,d (3)

where (a∧i b) and (a∨i b) denote the minimum and the maximum, respectively, of a
and b in the linear order ≺i, i = 1, . . . ,d.

Proof. Only if). Let (P,N) be a d-embedding of G such that the points in S are in
general position, and define for u,v ∈ S

u≺i v iff ui < vi (4)

Then (3) holds.
If). Let s = |S|. For each u∈ S, let r(u) ∈ {1, . . . ,s}d be the vector whose i-th compo-
nent ri(u) is the rank of u in the linear order ≺i, i = 1, . . . ,d (so the least element of
S in ≺i has rank 1 and the greatest one has rank s). Finally, set P∗ = { r(u) : u ∈ P}
and N∗ = {r(u) : u ∈ N}. Notice that

(a∧i b)≺i q≺i (a∨i b) iff min{ri(a),ri(b)}< ri(q)<max{ri(a),ri(b)}, i= 1, . . . ,d.

Therefore, G is isomorphic to GP∗,N∗ and thus it is a d-IG. ut

4 Incompatibility Graphs in the plane

In this section we shall focus on the case of d = 2. To simplify terminology, we shall
call a graph G = (V,E) an incompatibility graph if it is a 2-incompatibility graph. A
2-embedding of G will be called a plane embedding or simply an embedding of G.
By Property 1 in Section 3, any induced subgraph of an incompatibility graph is also
an IG. Thus, incompatibility graphs can be characterized by a (possibly infinite) list
of forbidden subgraphs. Given x = (x1,x2) ∈ R2, let us define its (open) orthants as
follows:

NE(x) =

{
(y1,y2)

∣∣∣∣ x1 < y1
x2 < y2

}
SE(x) =

{
(y1,y2)

∣∣∣∣ x1 < y1
x2 > y2

}
NW (x) =

{
(y1,y2)

∣∣∣∣ x1 > y1
x2 < y2

}
SW (x) =

{
(y1,y2)

∣∣∣∣ x1 > y1
x2 > y2

}
Since we can assume w.l.o.g. that all point sets realizing IGs are in general posi-
tion, see Theorem 2, for any two points x,y ∈ P, x 6= y, we have exactly one of the
containments y ∈ NE(x), y ∈ NW (x), y ∈ SW (x), or y ∈ SE(x). Let us then call a
pair x,y ∈ R2 a monotone pair, if either x ∈ NE(y) or y ∈ NE(x), and call it a sad-
dle pair otherwise. Note that for a saddle pair we must have either x ∈ NW (y) or
y ∈ NW (x). Two pairs are coherent if they are either both monotone or both saddle.
Clearly, whenever y belongs to an orthant of x, then x belongs to the opposite type of
orthant of y. For example, x ∈ NE(y) iff y ∈ SW (x).
Let us now go back to the structure of IGs. Note first that if y ∈ N, then P is parti-
tioned into four sets by the four orthants of y, and the two sets of points lying within
opposite orthants are the vertices of a complete bipartite subgraph of GP,N , not nec-
essarily induced since other points of N may trigger more edges.



8 Bruno Simeone, Endre Boros, Federica Ricca, and Vincenzo Spinelli

a

b

y

z
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d

Fig. 4. A possible configuration in Lemma 1.

a

b

y

z

c

d

e

Fig. 5. Configuration corresponding to Lemma 2.

Lemma 1. If (a,b) and (c,d) are two edges of an induced 2K2 of the IG G = GP,N
such that a,b is a monotone pair and c,d is a saddle pair, then [a,b]∩ [c,d]∩N 6= /0,
or in other words, there is a single point in N that triggers both edges (a,b) and
(c,d). Consequently, any other point e ∈ P must be connected by an edge in G to at
least one of {a,b,c,d}.

Proof. Let us denote by y,z ∈ N the points triggering the edges (a,b) and (c,d),
respectively. After some rotations and re-labeling, if necessary, we can assume that
a∈ SW (y), b∈NE(y), c∈NW (z), d ∈ SE(z) and y∈NW (z), see Figure 4. Note that
c may belong to any of the orthants of y. Nevertheless. since (a,d) and (b,d) are not
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edges of G, a,b 6∈ NW (z) follows, and consequently, a ∈ SW (z) and b ∈ NE(z) are
implied. Thus, z ∈ [a,b]∩ [c,d]∩N, as claimed. Therefore, for any other point e ∈ P,
z ∈ N will trigger an edge between e and one of {a,b,c,d}, no matter where e is on
the plane. ut

Lemma 2. If (a,b) is an edge triggered by y ∈ N and (c,d) is an edge triggered by
z∈N forming an induced 2K2 of the IG G = GP,N such that the pairs a,b and c,d are
coherent, and e∈ P is a vertex which is not connected to any of the points {a,b,c,d},
then the points {a,b,e} belong to the same orthant of z (NW (z) or SE(z)), the points
{c,d,e} belong to the same orthant of y (NW (y) or SE(y)), and in particular e ∈
[y,z].

Proof. After appropriate rotations and/or relabeling we can assume w.l.o.g. that a ∈
SW (y), b ∈ NE(y), c ∈ SW (z), d ∈ NE(z) and y ∈ NW (z). Since there is no edge
between {a,b} and {c,d,e} we must have {c,d,e} ⊂ NW (y)∪ SE(y). If {c,d,e}
were not all in the same orthant of y, then y would trigger an edge between these
vertices, which then could only be (c,d). But then y would also trigger an edge
between e and one of {a,b,c,d}, a contradiction, showing that {c,d,e} all belong to
the same orthant of y. Then z must also belong to this orthant, and hence we have
{c,d,e} ⊂ SE(y) implied. Analogous arguments show that we must have {a,b,e} ⊆
NW (z). Thus, e ∈ NW (z)∩SE(y) = [y,z] is implied (see Figure 5). ut

Theorem 4. An incompatibility graph cannot have 3K2 as an induced subgraph.

Proof. Assume indirectly that (ai,a′i) ∈ E, i = 1,2,3 form an induced 3K2 in an
incompatibility graph G = GP,N , and let us denote by yi ∈N the corresponding points
inducing these edges, respectively. Let us first note that the pairs {ai,a′i} must all be
coherent. Otherwise, if e.g., {a1,a′1} and {a2,a′2} are not coherent, then by Lemma
1 we can assume that y1 = y2, and then all four orthants of y1 will contain a point
of {a1,a′1,a2,a′2}. Thus, y1 would trigger an edge between a3 and at least one of
{a1,a′1,a2,a′2}, contradicting the assumption that no such edge exists. Thus, after
appropriate rotations we can assume that all pairs {ai,a′i}, i = 1,2,3 are monotone.
Let us apply now Lemma 2 for all 5-tuples obtained by deleting one of ai or a′i,
i = 1,2,3. It follows that {ai,a′i} ⊆ [y j,yk] for all i 6= j 6= k 6= i, and thus yi ∈ [y j,yk]
is implied for all choices of {i, j,k} = {1,2,3}. This leads to a contradiction, since
if, e.g., y1 and y2 are the closest in Euclidean distance, then y3 6∈ [y1,y2]. ut

Theorem 5. An incompatibility graph cannot have C7 as an induced subgraph.

Proof. Assume indirectly that {a0,a1, . . . ,a6} forms an induced C7 of G = GP,N ,
where (ai,ai+1) ∈ E and indices are meant mod 7 here and in the sequel. Assume
first that the pairs {ai,ai+1} are not coherent. Then we must have pairs {ai,ai+1}
and {ai+3,ai+4} that are not coherent. Then, by Lemma 1 we have a point y ∈ N
inducing both edges (ai,ai+1) and (ai+3,ai+4). We can always assume w.l.o.g. that
i = 0, and a0 ∈ SW (y), a1 ∈ NE(y), a3 ∈ SE(y) and a4 ∈ NW (y). Since a6 is not
connected to {a1,a3,a4}, we must have a6 ∈ NE(y), and analogously a5 ∈ SE(y).
Furthermore, since a2 is not connected to {a0,a4}, vertex a2 must lie west of y. But
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then, no matter where a2 is, y will trigger an edge between a2 and one of {a1,a3}.
This contradiction proves that all edges of this C7 configuration must be of the same
orientation, say all of them are monotone. Then, every edge (ai,ai+1) ∈ E moves
from west to east or east to west (and south to north or north to south at the same
time). Since (ai,ai+2) 6∈ E these moves must alternate as we go around this C7. Since
C7 has an odd number of edges, this leads to a contradiction, proving the claim. ut

Theorem 6. An incompatibility graph cannot have C8 as an induced subgraph.

Proof. Assume indirectly that {a0,a1, . . . ,a7} forms an induced C8 of G = GP,N ,
where (ai,ai+1)∈E and indices are meant mod 8 here and in the sequel. Analogously
to the proof of Theorem 4, we can conclude that all edges of this C8 configuration
must be coherent, say all of them are monotone. Let us denote by yi ∈ N the point
inducing edge (ai,ai+1) ∈ E. Since ai,ai+1,ai+3,ai+4 and ai+6 form a 2K2 plus an
isolated vertex, we can apply Lemma 2, and conclude that ai+6 ∈ [yi,yi+3], and that
the pairs {yi,yi+3} are saddle. Thus, for every index i we can conclude that there is
a point y j more to the east than ai. On the other hand, since every edge of this C8 is
monotone, one of {a j,a j+1} is more to the east than y j, for all indices j = 0, . . . ,7.
Thus, the eastmost point in this subconfiguration can be neither an ai nor an y j,
leading to a contradiction which proves our claim. ut

3

4

5

1

2

1

2 3

45

Fig. 6. C5 as IG.

We notice here that C5 and C6 are IGs: in Figure 6 one can see an embedding for C5,
while Figure 3 shows two embeddings for C6.

Corollary 1. An incompatibility graph cannot have Cn, n ≥ 7, as an induced sub-
graph.

Proof. If n = 7,8 the statement is true by Theorems 5 and 6, respectively; if n ≥ 9
then 3K2 is an induced subgraph of Cn and the corollary is true by Theorem 4. ut

After the above result, IGs can be considered as a generalization of weakly chordal
graphs [10], i.e., graphs with forbidden Cn for each n > 4, by Corollary 1.
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Fig. 7. P7 as IG.

In Figure 7 one can see an embedding for P7 as an IG, but the following result states
that IGs cannot have long paths as induced subgraphs.

Corollary 2. An incompatibility graph cannot have Pn, n ≥ 8, as an induced sub-
graph.

Proof. If n≥ 8 then 3K2 is an induced subgraph of Pn and the corollary is true after
Theorem 4. ut

Remark. If a graph is a d-IG we can substitute each vertex by a stable set and still
obtain a d-IG.

Theorem 7. If G∪K1 is IG then G∪nK1 is IG for every n≥ 1.

Proof. Let K1 = {x}. For any y ∈ N, let Ω(x,y) be the orthant of y containing x.
Since vertex x is isolated, the orthant of y opposite to Ω(x,y) does not contain any
point in P. Let Ω = Ω(x) ≡

⋂
y∈N Ω(x,y). Then Ω is either an orthant or an open

rectangle. Place n− 1 positive points in Ω . Each such point x′ must be an isolated
vertex, since for each y ∈ N x′ ∈Ω(x,y) and thus x′ cannot be adjacent to any vertex
of G, else also x would. ut

We realized that, in addition to the forbidden subgraphs reported so far, there exist
a great many others. Relying on a concise (polynomial-sized) mixed integer linear
programming formulation of the recognition problem for non-IGs (see Appendix A),
we have written a computer program for the generation of all (vertex-wise) minimal
non-IGs with n vertices. We have run this program4 for n ∈ {1,2, . . . ,10}, and the
results are shown in Table 1.

4 The procedure is based on some functions of the Nauty environment
(http://cs.anu.edu.au/˜bdm/nauty). In particular, we used the package of programs
called “gtools” distributed along with Nauty to provide efficient processing of files of
graphs (see, [17, 22]).
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Table 1. Summary of minimal non-IGs.

n Graphs with non-IGs minimal non-IGs
n vertices

1 1 0 0
2 2 0 0
3 4 0 0
4 11 0 0
5 34 0 0
6 156 1 0.6% 1 100.0%
7 1,044 14 1.3% 4 28.6%
8 12,346 454 3.7% 76 16.7%
9 274,668 31,767 11.6% 2,956 9.3%

10 12,005,168 3,632,681 30.3% 102,292 2.8%

The third column shows the total number of non-IGs for the graphs with n vertices,
and the fourth one the percentage with respect to the total number of graphs having
n vertices. Notice that 3K2 is the only non-IGwith 6 vertices. The fifth and sixth
columns show the number of minimal non-IGs and their percentage w.r.t. non-IGs,
respectively. From this table it is clear that, when n increases, the number of non-IGs
rapidly increases, while the percentage of minimal non-IGs rapidly decreases. Hence
we did not go beyond n = 10 vertices.

Even if, for obvious reasons, we cannot present all the minimal non-IGs of Table 1,
in Figure 8 we show the four minimal non-IG graphs with n = 7.

1 2 3

4

567

1 2 3

456

7

1 2 3

456

7

1 2 3

456

7

Fig. 8. Minimal non-IGs with p = 7.
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5 Polarized Incompatibility Graphs in the plane

In this section, we introduce a subclass of graphs, called “polarized” IGs, whose
definition is based on the notions of monotone and saddle pairs introduced in Section
4.

Definition 6. An incompatibility graph G = (V,E), is polarized if it has an embed-
ding where the edges are either all monotone or all saddle.

An example is given by the graph P7 which is a polarized IG since the embedding
provided in Figure 7 corresponds only to monotone edges.

Proposition 2. Any polarized IG is a comparability graph.

Proof. In any polarized IG the vertex adjacency relation is a partial order in P. As a
matter of fact, for a given embedding of G, one has

(x,y) ∈ E⇔ ([x,y]∩N 6= /0)∧ ((y ∈ NE(x))∨ (x ∈ NE(y)). (5)

Since ((y ∈ NE(x))∨ (x ∈ NE(y)) is a partial order, the statement follows. ut

As a consequence of Proposition 2, polarized IGs cannot have all induced subgraphs
that are forbidden for comparability graphs. For example, net graphs and C5 - for
which an embedding as an IG exists - are forbidden for polarized IGs (see the famous
Gallai’s characterization theorem of comparability graphs [9]).

Another consequence of the above result is that the vertex coloring problem on a
polarized IG can be solved in polynomial time. Actually, after Proposition 2, the
following result holds.

Corollary 3. Polarized IGs can be colored in polynomial time.

Proof. All comparability graphs can be colored in polynomial time, see [10].
ut

Theorem 8. (NW Theorem)
If G = (V,E) is a polarized IG and i, p,q,r are four vertices of G for which the
following conditions hold: (a) {(p,q),(q,r),(p,r)∈ E}, and (b) {(i, p),(i,q),(i,r) 6∈
E}, see Figure 9-(a). Then in any embedding of G one must have, for some h ∈
{p,q,r}, either h ∈ NW (i) or i ∈ NW (h).

Proof. In view of the symmetry of relation (a), we may always assume that in the
embedding of G, one of two conditions holds: (1) q ∈ NE(p) and r 6∈ NE(q), or (2)
q 6∈ NE(p) and r ∈ NE(q). So p,q,r are embedded as in Figure 9-(b). Suppose that
neither of the relations (c) holds. So i must necessarily belong to one of the four areas
labeled A, B, C, D in Figure 9-(b). But then i must be adjacent to at least one of the
vertices p,q,r, and this is a contradiction to (b). ut
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q

i

r

p

(a)

A

p B

q C

r
D

(b)

Fig. 9. NW Theorem.

After Proposition 2, we know that polarized IGs are comparability graphs. Figure 10
shows the relation between polarized IGs, IGs and the well known classes of graphs
given by Comparability, Co-comparability and Permutation graphs.

In Table 2 we report the number of minimal non-IGs which are comparability graphs.
A small number of such graphs could help in the recognition of polarized IGs. Ac-
tually, the table shows that the number of comparability minimal non-IGs is quite
large already for small values of n, thus suggesting that it might not be an easy task
to recognize polarized IGs by checking all such graphs one by one.

Table 2. Summary of minimal non-IGs.

n comparability
minimal non-IGs

1−5 0
6 1
7 0
8 10
9 159

10 865
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Co-comparability

Incompatibility

Permutation

Comparability

×

C5

× C8

× C6
× Pn,n≤ 7

×nK2,n≥ 3

× Net

Fig. 10. Graph classes. The inner box represents polarized IGs.

Fig. 11. A net graph.

6 Radius of 2-Incompatibility Graphs

In this section, we investigate the radius of IGs. The results related to the absence
of long induced paths in an IG suggest that we can find small upper bounds on the
radius of connected IGs.

Given a graph G = (V,E) we denote by d(x,y) the distance of vertices x,y ∈V , that
is the minimum number of edges on an x-y path in G. Let rG(x) = maxy∈V d(x,y)
and we define r(G) = minx∈V rG(x) as the radius of G. Note that d(x,x) = 0 by this
definition, furthermore, if G is disconnected, then r(G) = +∞; while in a connected
graph G all d(x,y) values are finite, and hence r(G) is finite.

Our main result in this section is that 2-IG-s cannot have a large radius. In fact,
we prove a more general result, which may be of some interest on its own.

For stating our results formally, we need a few more notations. For a vertex x∈V and
a subset S ⊆ V of the vertices we denote by d(x,S) = miny∈S d(x,y) the distance of
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x from S. Given a graph H, we say that G is H− f ree, if it does not have an induced
subgraph isomorphic to H.

Lemma 3. Assume that G = (V,E) is 3K2-free, and X ⊆V induces a subgraph con-
taining an induced 2K2. Then, if (u,v) ∈ E is an edge between vertices u,v ∈ V \X
outside of X, we must have d(u,X)+ d(v,X) ≤ 3. In particular, the sets S1 = {u ∈
V | d(u,X) = 1} and S2 = {u ∈V | d(u,X) = 2} cover all vertices in V \X and S2 is
stable.

Proof. Let e = (u,v) and assume indirectly that d(u,X)+ d(v,X) > 3. Then, since
e ∈ E, we must have both d(u,X) ≥ 2 and d(v,X) ≥ 2. Consequently, edge e with
the two edges of an induced 2K2 within X would induce a 3K2, contradicting our
assumption. ut

Let us note next that the following claim follows by the definitions.

Lemma 4. If r(G)≥ 4 for a connected graph G = (V,E), then for every vertex u∈V
we have another vertex v ∈V such that d(u,v) = 4.

Proof. This is because a subpath of a shortest path is also a shortest path, thus if
there is a vertex w from a finite distance d ≥ 4 from u, then on a shortest path from u
to w we must have a vertex v exactly at distance 4. ut

The above simple claim implies that in a connected G with r(G)≥ 4 all vertices are
endpoints of an induced P5. We shall make repeated use of this basic observation in
the sequel.

Theorem 9. If a connected graph G = (V,E) is 3K2-free and has r(G) ≥ 4, then it
either has a C6 or a C8 as an induced subgraph.

Proof. Let us choose an arbitrary point u= u0 in V and consider the induced P5 start-
ing at this vertex A = {u0,u1,u2,u3,u4}. Then, by Lemma 3 we have all points of G
within distance 2 from A, since it contains and induced 2K2 = {(u0,u1),(u3,u4)}. If
all vertices of V are within distance 2 from the set {u1,u2,u3}, then all are within
distance 3 from u2, contradicting our assumption that r(G)≥ 4. Thus, we must have
(u5,u6) ∈ E such that u5 is connected only to the end point(s) of the path A, and
u6 is not connected to ui, i < 5. Without any loss of generality, we can assume that
(u4,u5)∈ E, and thus B = {u2,u3,u4,u5,u6} is an induced P5. If (u0,u5)∈ E, then G
contains the C6 = {u0,u1,u2,u3,u4,u5}, and we are done. Otherwise, we can assume
that C = A∪B = {u0,u1,u2,u3,u4,u5,u6} is an induced P7. Let us now consider the
point v ∈ V at distance 4 from u3. Since the set C contains an induced 2K2, Lemma
3 is applicable, and thus all points in V are within distance 2 from C. It follows
that v must be at distance 2 from {u1,u5}. Without any loss of generality, we can
assume that d(u5,v) = 2, and let {u5,u7,u8 = v} denote a shortest path of length
2 between u5 and u8 = v. Since d(u3,u8) = 4 we cannot have any edge between
u7 and {u2,u3,u4}. If u6 = u7, the edges T = {(u0,u1),(u3,u4),(u6,u8)} form ei-
ther an induced 3K2, contradicting our assumptions (edge (u0,u8) does not exist), or
{u0,u1,u2,u3,u4,u5,u6,u8} forms an induced C8 (edge (u0,u8) exists), as claimed.
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u0 u1 u2 u3 u4 u5 u6

u7

u8

Fig. 12. Set D in proof of Theorem 9 solid lines show edges, dotted lines show possible edges,
while dashed lines show possible edges some or all of which must be there. This subgraph is
the result of the assumptions that G does not contain an induced 3K2, and has d(u0,u4) = 4,
d(u2,u6) = 4 and d(u3,u8) = 4.

Finally, if u7 6= u6, in the set D = {u0,u1,u2,u3,u4,u5,u7,u8} we can have only
edges between the sets {u0,u1} and {u7,u8}. Note that we cannot have (u0,u7) ∈ E,
because of d(u0,u4) = 4, and we cannot have (u1,u8) ∈ E because of d(u3,u8) = 4.
On the other hand, we must have one or both of (u0,u8) and (u1,u7) as edges of G,
since otherwise {(u0,u1),(u3,u4),(u7,u8)} forms an induced 3K2.

Thus, in the set D = {u0,u1,u2,u3,u4,u5,u7,u8} we have the edges as indicated
on Figure 12 by solid lines, and potential edges as indicated by dotted or dashed
lines, and in fact we must have one or both of the dashed {u0,u1} and {u7,u8}, as
edges in G. In either case, the set D includes an induced C6 or an induced C8, as
claimed. ut

Theorem 10. If G = (V,E) is a connected {3K2,C7}-free graph that has an induced
C6, then it has r(G)≤ 3.

Proof. Let C = {u0,u1,u2,u3,u4,u5} be an induced C6 in G, as shown in Figure
13, and assume indirectly that r(G) ≥ 4. Since C contains induced 2K2 subgraphs,
Lemma 3 implies that all vertices of G are within distance 2 from C, moreover, since
there are 3 induced 2K2 graphs in C, vertices at distance 2 from C must be of distance
2 from at least 2 different, non-opposite vertices of C.

Let us then consider an induced P5 starting at vertex ui ∈ C, which exist by
Lemma 4, and denote by (vi,wi) its last edge, i.e., d(ui,wi) = 4, for i = 0,1, ...,6.
It is easy to see that essentially there are only two possibilities to realize d(ui,wi)= 4.
Look at Figure 13 to illustrate these cases for i = 0. Either we have u3 = v0 and then
there are no other edges in the subgraph induced by C∪{w0} (Type I configuration),
or d(v0,{u2,u3,u4}) = 1 (Type II configuration), and the subgraph induced by C∪
{v0,w0} has only the solid edges shown in Figure 13 plus at least two out of the three
dotted edges, that is, at least two out of (u2,v0), (u3,v0) and (u4,v0) must be edges
of G.

We shall now consider all possibilities for the type of configuration that can occur
for vertices u0, u2 and u4. Due to circular symmetry, it is enough to consider the
following four cases.
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u0

u1 u2

u3

u4u5

w0Type I

u0

u1 u2

u3

u4u5

v0 w0Type II

Fig. 13. The two possible configuration to realize d(u0,w0) = 4. In the case of the top, type II
figure we must have at least two out of the three dotted lines as edges of the graph. There are
no other edges, than indicated, in these induced subgraphs.

1. All three of {u0,u2,u4} are of type I (see Figure 14).

u0

u1 u2

u3

u4u5

w0

w2

w4

Fig. 14. Case: u0, u2 and u4 are all of type I.

In this case none of {w0,w2,w4} are connected to any other (than the ones in-
dicated in Figure 14) vertices of C. Furthermore, wi and w j for i 6= j cannot be
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connected due to the d(ui,wi) = 4, i = 0,2,4 conditions. For instance, an edge
between w0 and w2 would imply that d(u0,w0) = 3, contradicting our assump-
tion that it is 4. Thus, the graph on Figure 14 is an induced subgraph of G. Since
it contains the 3K2 = {(u3,w0),(u1,w4),(u5,w2)}, this contradicts our assump-
tions about G.

2. Vertex u0 is of type II, while vertices u2 and u4 are of type I (see Figure 15).

u0

u1 u2

u3

u4u5

v0 w0

w2

w4

Fig. 15. Case: u0 is of type II, while u2 and u4 are of type I.

In this case the only possible additional edges in the subgraph of G induced by
the vertices in Figure 15 could be edges between the sets {w2,w4} and {v0,w0}.
Since at least two out of the three dotted edges must be in E(G), we have
d(u2,v0) ≤ 2 and d(u4,v0) ≤ 2. Consequently we cannot have edges (w2,v0)
or (w4,v0) in G because of d(u2,w2) = d(u4,w4) = 4. Furthermore, we also have
d(u0,w2) = d(u0,w4) = 2, and thus any edge between w0 and {w2,w4} would
make d(u0,w0)< 4. Consequently, Figure 15 represents an induced subgraph of
G, implying that it must contain the induced 3K2 = {(u1,w4),(u5,w2),(v0,w0)},
a contradiction with our assumptions on G.

3. Vertices u0 and u2 are of type II, while vertex u4 is of type I (see Figure 16).
In this case we should focus on the fact that G does not contain an induced 3K2.
Thus, we must have some edges between the sets w4, and the sets {v2,w2} and
{v0,w0}. Similarly to the previous case, we can argue that w4 cannot be con-
nected to any of the other four vertices. Thus we must have an edge, since G is
3K2-free, between {v2,w2} and {v0,w0}. It is easy to see that we cannot have
an edge between vi and w j for {i, j} = {0,2}. For instance, the existence of
the edge (v0,w2) would imply d(u2,w2) ≤ 3 contradicting our assumption that
d(u2,w2) = 4. Finally, vertices w0 and w2 are of distance 2 from C and hence
by Lemma 3, there is no edge between them. Thus, the only possibility is that
(v0,v2) ∈ E(G). Therefore, d(u0,w0) = 4 implies that (u0,v2) is not an edge of
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u0

u1 u2

u3

u4u5

v0 w0

v2

w2

w4

Fig. 16. Case: u0 and u2 are of type II, while u4 is of type I.

G. Similarly, d(u2,w2) = 4 implies that (u2,v0) is not en edge of G. Thus, the
graph shown in Figure 16 is an induced subgraph of G, in which the solid lines
represent the edges. Hence, the set Q = {u0,u1,u2,u3,v0,v2,u5} is an induced C7
in G, contradicting our assumptions.

4. All the vertices u0, u2, and u4 are of type II. In this case we can repeat the ar-
guments of the previous case and conclude that at least one of the (vi,v j), i 6= j
pairs must be an edge in G. For example, if (v0,v2) ∈ E we can again conclude
that the set Q is an induced C7 in G, contradicting our assumptions.

Since in all cases we obtained a contradiction, our indirect assumption about the
radius must be wrong, proving the statement. ut

Corollary 4. If G=(V,E) is a connected {3K2,C7,C8}-free graph then it has r(G)≤
3.

Proof. Assume indirectly that r(G) ≥ 4. Then, by Theorem 9 G must have an in-
duced C6, which by Theorem 10 implies r(G) ≤ 3. This contradiction proves our
claim. ut

Corollary 5. A connected 2-IG has radius at most 3.

Proof. By Theorems 4, 5 and 6, a 2-IG is {3K2,C7,C8}-free, thus the claim follows
by Corollary 4. ut

7 Box Systems, Vertex Packing and Vertex Coloring

In this section, we analyze the relations between homogeneous boxes in a d-
dimensional space and the vertex packings (or stable sets) of an incompatibility graph
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G, that is, subsets of pairwise non-adjacent vertices of G. A vertex coloring of a graph
G is defined as a partition of its vertices into vertex packings (each vertex packing of
the partition corresponds to a different color). Two well known combinatorial prob-
lems on G are the following: i) find a maximum (cardinality) vertex packing in G;
ii) find a minimum vertex coloring, that is, a partition of the vertex-set of G into the
minimum possible number of vertex packings (colors).

The following Carathéodory-type theorem (proved in [5]), and the implied corol-
laries, provide results that can be exploited to derive equivalences in R2 between the
solutions of the BC problems formulated in Section 2 (i.e., Maximum Box and Min-
imum Covering by Boxes) and the solutions of the maximum vertex packing and
minimum vertex coloring problems, respectively, on the corresponding GP,N . Unfor-
tunately, in Rd these equivalences do not hold, but we can still establish relations
between the two pairs of problems.

Theorem 11. Let X ⊆Rd be a finite set of cardinality m≥ d > 1. Then for any point
x ∈ [X ], there exists a subset Y ⊂ X of size at most d such that x ∈ [Y ].

Then, two fundamental corollaries follows.

Corollary 6. Let X ⊆ Rd be a finite set of cardinality m≥ d > 1, then

[X ] =
⋃

Y ⊆ X
|Y |= d

[Y ]

The above result implies in particular that for d = 2 and a finite set /0 6= S ⊆ Rd one
has:

d = 2⇒ [S] =
⋃

s1,s2∈S

[s1,s2] (6)

Let us note that in d > 2 dimension the box hulls of pairs of points may not cover the
box hull of S, that is,

d > 2⇒ [S]⊇
⋃

s1,s2∈S

[s1,s2]

Example 1. Let us consider S = {x1,x2,x3}⊂R3, where x1 = (0,1,1), x2 = (1, 1
2 ,

1
2 ),

and x3 = ( 1
2 ,0,0). One can check that

[S] = [{x1,x2,x3}] 6= [{x1,x2}]∪ [{x1,x3}]∪ [{x2,x3}].

We are now able to state the following results for the 2-dimensional case.

Theorem 12. Let S = P∪N ⊂R2. A box is homogeneous iff its points correspond to
a stable set of GP,N .
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Proof. The proof follows from the identity 6. ut

Remark. In R2, a maximum box on S defines a maximum stable set in GP,N , and vice
versa. Thus, the maximum box problem on S is equivalent to the maximum stable
set problem in GP,N . In other words, the number of points in a maximum box is the
stability number of GP,N (i.e., the cardinality of a maximum stable set in GP,N).

Corollary 7. In R2, the minimum covering by boxes problem on S is equivalent to
the minimum vertex coloring in GP,N . In other words, the number of boxes in a mini-
mum covering by boxes is equal to the chromatic number of GP,N (i.e., the minimum
number of vertex packings, or colors, necessary to cover the vertices of GP,N).

Proof. Given a minimum covering by boxes in R2, a coloring of the corresponding
GP,N can be obtained by assigning to each point the color of the box it belongs to.
When a point is contained in more than one box, one can choose arbitrarily one of
the colors of such boxes. Notice that in this process each color must be assigned to at
least one vertex, else the covering would not be minimum. On the other hand, given
a coloring of GP,N , one obtains a box system by considering the box closures of the
subsets of vertices with the same color. It must be noticed that in this way one may
get only a covering of the vertices of GP,N by vertex packings, since box closures of
disjoint sets of colored vertices of GP,N may have some points of P in common, see,
Figure 17. Since the number of boxes matches the number of colors both ways, the
statement follows. ut

1

2

3

B

A

C

X

1

2

3B

A

C

X

Fig. 17. Left: the groups of points A, B, C and 1,2,3 form two boxes in the box system. Right:
the groups of vertices A,B,C,X and 1,2,3,X form two vertex packings in GP,N . Point X belongs
to both boxes, and it is covered by both vertex packings.

The nice result is that in R2 the vertex packing problem on GP,N can be solved in
polynomial time; the same is true for the vertex coloring problem (at least) when
GP,N is non trivially disconnected.
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Theorem 13. If G is a 2-IG, a maximum stable set in G can be found in polynomial
time.

Proof. The proof follows from a result by Balas and Yu [1] which bounds the number
of maximal stable sets in a graph without large induced matchings and from another
result by Johnson and Yannakakis [15] stating that all stable sets of a graph can be
generated in time linear in the number of its maximal stable sets. ut

Now we focus our attention to colorings of 2-IGs.

Lemma 5. Every IG embedding in R2 of an induced C5 must admit both a monotone
edge and a saddle one.

Proof. Suppose, to the contrary, that all edges are monotone, say. Since C5 is an
odd cycle, there must exist along it a pair of incident edges (u,v) and (v,w) such
that v ∈ NE(u) and w ∈ NE(v). Then there would exist also an edge (u,w) by the
transitivity of the NE relation and the fact that the rectangle [{u,w}] contains at least
one negative point. But the existence of (u,w) contradicts the assumption that C5 is
induced. A similar proof holds when all the edges of C5 are saddle. ut

We shall say that a connected component of a graph is nontrivial if it contains at
least one edge. A graph is nontrivially disconnected if it has at least two nontrivial
connected components.

Theorem 14. If an IG in R2 is nontrivially disconnected, then it has exactly two non
trivial connected components and they are both weakly chordal.

Proof. The absence of induced 3K2s implies that an IG has at most two nontrivial
components. Thus, we have exactly two components and they must be both IGs for
the hereditary property. Being IGs, they cannot have induced Ck, k≥ 7. Furthermore,
neither of them may have an induced 2K2, since, otherwise, a 3K2 would be implied
and this means that induced C6 are forbidden. Finally, they cannot have an induced
C5, since C5 ∪K2 is forbidden in an IG for the following reason: by Lemma 5 there
would exist in C5 an edge e such that e and f = K2 are not coherent; but then there
would be a vertex of C5 that is not adjacent to e, and obviously not adjacent to f ,
contradicting Lemma 1. ut

Corollary 8. If GP,N in R2 has at least two, and hence exactly two, nontrivial con-
nected components, then it can be recognized and colored in polynomial time.

Proof. Follows from Theorem 14 and from the well-known result that weakly
chordal graphs can be recognized and colored in polynomial time, see [14]. ut

Although not as strong as in the 2-dimensional case, some results can be stated also
for the d-dimensional case. In Rd , it is still true (by construction) that the points
of a homogeneous box correspond to a vertex packing in the related IG, but the
reverse is not true. In fact, a vertex packing of the given GP,N may not result in a
homogeneous box, see Figure 17. However, the stability number of GP,N is always an
upper bound on the cardinality of a maximum homogeneous box. On the other hand,
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for the same reason, the chromatic number of GP,N is a lower bound on the cardinality
of a minimum covering by boxes of S. These two properties might be exploited in the
design of heuristic or exact algorithms for the two above BC problems in an arbitrary
dimension.

8 Conclusions

In this paper, we have introduced and investigated a class of graphs, dubbed Incom-
patibility Graphs, arising in the context of Box Clustering.

Two fundamental problems Box Clustering is faced with are: (i) find a positive
box containing the largest number of points (maximum box problem); (ii) find the
smallest number of positive boxes covering all the positive points in the data set
(minimum covering by boxes problem). Incompatibility graphs are of help in the
solution of both problems in general, but their use becomes particularly attractive in
the two-dimensional case, for two main reasons:

• the maximum box problem and the minimum covering by boxes problem can
be formulated as a vertex packing and a vertex coloring in the corresponding
2-incompatibility graph, respectively.

• 2-incompatibility graphs, unlike general d-incompatibility ones, have a very spe-
cial structure, which allows one to solve the vertex packing problem - and, in two
significant subclasses, also the vertex coloring one - in polynomial time.

The core of the paper is devoted to the analysis of such structure. (2-)incompatibility
graphs are shown to have no large induced matchings, and therefore no large in-
duced paths or cycles. Actually, they cannot have any cycle of length greater than 6.
Hence they may be viewed as a generalization of chordal and weakly chordal graphs.
Besides, they have many other forbidden subgraphs. Dwelling on the fact that the
recognition problem for this class of graphs (whose complexity is open) can be for-
mulated as a polynomial-sized mixed integer linear program, we have generated,
with the help of an appropriate computer program, the 105,329 forbidden subgraphs
with at most 10 vertices. The number and the variety of these graphs makes us be-
lieve that the recognition of an incompatibility graph by forbidden subgraphs might
be a quite challenging task. Perhaps the property that, when the graph is connected,
its radius is small might be of help here.

On the other hand, we have shown that, when an incompatibility graph is non
trivially disconnected, then it admits exactly two nontrivial connected components,
and they are both weakly chordal. Thus, in this case, the vertex coloring problem can
be solved in polynomial time. This nice feature is shared by those IGs that admit an
embedding where all edges have a SW-NE direction (the complexity is still open in
the remaining cases). Instead, the vertex packing problem in an IG is always solvable
in polynomial time on the grounds of the results provided in [1, 15].

Furthermore, we have pointed out that the notion of incompatibility graph - at
first sight, a geometrical one - is purely order-theoretical. This result may be the
starting point of further fruitful investigations.
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Appendix

A - Windrose MILP Model for the Recognition of IGs

The input graph is G = (P,E), with n = |P| nodes and m = |E| edges. W.l.o.g., we
may assume that |N| = m. In the sequel, the unordered pair i j is identified with the
ordered pair (i, j), where i < j. Furthermore we can always consider

P = {1, . . . ,n}

N = {n+1, . . . ,n+m}.
The binary variables of the model are defined as: for every i, j ∈ P∪N

NEi j = 1⇔ j is located NE of i

NWi j = 1⇔ j is located NW of i

The nonnegative real variables are uh
i j and vh

i j where (i, j) ∈ E and h ∈ N. In any
optimal solution of the MILP, uh

i j and vh
i j will take only values 0 or 1.

Let us now consider the constraints:

• The relations NE and NW are transitive - for every i, j,k ∈ P∪N, and i 6= j 6= k

NEi j +NE jk−NEik ≤ 1
NWi j +NW jk−NWik ≤ 1

• The points are in general position - for every i ∈ P, j ∈ P∪N, and i 6= j

NEi j +NWi j +NE ji +NW ji = 1.

This means that j must be in one of the four orthants w.r.t. i.
• Constraints related to edges - for every (i, j) ∈ E, h ∈ N

uh
i j ≤ NEih +NE ji

uh
i j ≤ NEh j +NE ji

uh
i j ≤ NE jh +NEi j

uh
i j ≤ NEhi +NEi j

vh
i j ≤ NWih +NW ji

vh
i j ≤ NWh j +NW ji

vh
i j ≤ NW jh +NWi j

vh
i j ≤ NWhi +NWi j

∑
h∈N

(uh
i j + vh

i j)≥ 1

In any optimal solution at least one between uh
i j and vh

i j must take the value 1, but
not both of them, and thus a negative point h is the box ]i, j[. This means that the
last constraint is always satisfied at the optimal value, and, therefore, it can be
ignored.
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• Constraints related to non-edges - for every (i, j) 6∈ E, i 6= j, h ∈ N

NEi j +NE ji ≤ 1
NEih +NEh j +NEi j ≤ 2
NE jh +NEhi +NE ji ≤ 2

NWi j +NW ji ≤ 1
NWih +NWh j +NWi j ≤ 2
NW jh +NWhi +NW ji ≤ 2

Let us now consider the objective function:

max ∑
(i, j)∈E

∑
h∈N

(uh
i j + vh

i j)

The objective function is chosen so that in any optimal solution one has: uh
i j = 1 or

vh
i j = 1.

In the above MILP model (a) the number of variables is O
(
n2 +m2

)
, and (b)

the number of constraints is O
(
(n+m)3

)
. The validity of such model rests upon

Theorem 3 and the following result.

Proposition 3. The two posets on P defined by the relations NEi j and NWi j have
dimension 2.

Proof. For convenience, define for all the pairs i, j ∈ P the new variables SW and SE
as follows

SWi j = NE ji
SEi j = NW ji

and the generic position constraint for every i, j ∈ P transforms into

NEi j +NWi j +SEi j +SWi j = 1

Let us define for every i, j ∈ P

i≺1 j⇔ (NEi j = 1)∨ (SEi j = 1)
i≺2 j⇔ (NWi j = 1)∨ (SWi j = 1)

Then, one has that completeness holds for ≺1 and ≺2:

(i≺1 j)⇔¬( j ≺1 i)
(i≺2 j)⇔¬( j ≺2 i)

Furthermore, from the transitivity constraints we obtain

max{NEi j +NE jk−NEik,NE ji +NEk j−NEki} ≤ 1

and taking into account the definition of SE and the generic position, one has
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max{NEi j +NE jk−NEik,SEi j +SE jk−SEik} ≤ 1

and this proves the transitivity of ≺1; similarly one proves the transitivity of ≺2. In
conclusion, ≺1 and ≺2 are linear orders, hence, the NE and the NW relations have
dimension 2. ut
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